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Abstract – We study quantum transport in disordered systems with particle-hole symmetric
Hamiltonians. The particle-hole symmetry is spontaneously broken after averaging with respect
to disorder, and the resulting massless mode is treated in a random-phase representation of the
invariant measure of the symmetry group. We compute the resulting fermionic functional integral
of the average two-particle Green’s function in a perturbation theory around the diffusive limit.
The results up to two-loop order show that the corrections vanish, indicating that the diffusive
quantum transport is robust. On the other hand, the diffusion coefficient depends strongly on the
particle-hole symmetric Hamiltonian we choose to study. This reveals a connection between the
underlying microscopic theory and the classical long-scale metallic behaviour of these systems.

                   

Introduction. – Recent studies have found that trans-
port in multi-band semimetals is substantially different
from conventional transport based on the classical Boltz-
mann theory. This is due to the particle-hole (PH)
symmetry, which is realized, at least approximately, in
multi-band systems when the Fermi energy is between two
neighboring bands. A typical example is the Dirac node
of graphene. The PH symmetry of this two-band model
leads to characteristic quantum effects, such as sponta-
neous particle-hole pair creation on arbitrarily small en-
ergy scales, which are only limited by the band width of
the material. This is accompanied by strong fluctuations
(also known as “zitterbewegung”), which causes a finite
dc conductivity even in the absence of disorder. Although
graphene is a two-dimensional (2d) material, where fluc-
tuation effects are strong, these quantum fluctuations may
also play a crucial role in higher dimensions. Based on this
idea, there has been a lot of progress to compute transport
properties in systems like the 3d Weyl semimetals [1–22].
The fundamental quantity for the study of quantum

transport is the transition probability Prr′ , for a particle
to move from site r′ to a site r on a d-dimensional lat-
tice. This classical quantity can be linked to a quantum
model through the average two-particle Green’s function
(A2PGF) of a particle of energy E, given by

Krr′ =
1

π
〈Grr′(E + iε)Gr′r(E − iε)〉d (where ε > 0).

(1)

(a)E-mail: ipsita.mandal@gmail.com (corresponding author)

Here H is a random Hamiltonian, Grr′(E + iε) =〈
r′|(H − E − iε)−1|r

〉
is the one-particle Green’s function,

and 〈. . .〉d denotes averaging with respect to disorder-
induced randomness. Then the transition probability is
given by Prr′ = Krr′/

∑
r′

Krr′ . The time-dependent tran-

sition probability is obtained through the Fourier transfor-
mation E → t. The transport properties in the metallic
regime can be understood by computing the diffusion co-
efficient D, which can be obtained from Krr′ as [23]

D = lim
ε→0

ε2
∑
r∈Λ

r2K0r, (2)

on a lattice Λ. The corresponding dc conductivity is re-
lated to D via the Einstein relation.
We can assume that the form of G results from a self-

energy approximation in interacting many-body systems.
Then ε, as the imaginary part of the self-energy, depends
on the frequency ω and the Fermi energy EF . With this,
we can bridge the microscopic quantum modeling and the
more qualitative hydrodynamic description of transport
due to long-lived modes in quantum systems [24–28]. In
particular, using this formalism, we can analyze the ef-
fect of a vanishing ε ∼ ωs, where s is a positive rational
number.
In this paper, we will focus on diffusion in systems

with PH symmetry, in the presence of disorder. We as-
sume that the disorder also obeys the PH symmetry. Al-
though systems without PH symmetry can also be treated
by the subsequently discussed method (cf. refs. [29,30]),
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we shall focus here only on the PH-symmetric case for
simplicity. Taking into account the fact that averaging
over a random distribution of disorder leads to sponta-
neous PH symmetry breaking, we employ a field theory
representation to study this effect. Although the PH sym-
metry is discrete, an underlying global symmetry of the
field theory is continuous [31]. Thus, there is a mass-
less mode associated with the spontaneous PH symmetry
breaking that leads to long-range correlations. These cor-
relations are the origin of diffusion. They can be calculated
from the massless mode, using the integration over the
symmetry-related saddle point manifold. This is known
as the integration with respect to the invariant measure
of the symmetry group, and is often approximated in a
leading-order gradient expansion, also known as the non-
linear sigma model approach [32]. Here we will consider
the full invariant measure, which was shown to provide a
simple expression for the A2PGF in terms of a random-
phase model [33]. This is briefly summarized in the next
section.

The paper is organized as follows. The representation
of the invariant measure by the random-phase model is
briefly reviewed in the next section. In the third section
we introduce a fermionic functional integral for the de-
scription of the A2PGF, and employ a perturbation ex-
pansion around the diffusive approximation. It is shown
that one- and two-loop corrections vanish, indicating the
robustness of diffusion. In the fourth section we study
some examples of the microscopic Hamiltonians with PH
symmetry, and the results reveal that the diffusion coeffi-
cients depend strongly on the details of these microscopic
Hamiltonians.

Random-phase representation of the average
two-particle Green’s function. – For simplicity, we are
restricting the discussion to two bands, while an extension
to n bands is straightforward. Hence, our starting point is
a two-band Hamiltonian H with matrix elements Hrj,r′j′ ,
where r, r′ are the co-ordinates on a d-dimensional lattice,
and j, j′ are band indices. In this case, we can assign a
Pauli matrix representation for the Hamiltonian as

Hrj,r′j′ =

3∑
a=1

Ha;rr′σa
jj′ , (3)

where σa is a Pauli matrix, and Ha;rr′ a matrix element
on the lattice. An instructive example is discussed in
appendix A. The r-independent PH transformation S
transforms the Hamiltonian H as SHS−1 = −H, which
implies that an eigenvector ΨE with energy E is related
to the eigenvector Ψ−E with energy −E by Ψ−E = SΨE .
Thus, S is a symmetry transformation for the Green’s
function G(z) → −SG(z)S−1 = G(−z) at z = 0, which
is exactly at the mirror-symmetric point between the
two symmetric bands. Due to the poles of G(z), this
symmetry point must be treated with care. We can
avoid the poles by choosing z = iε (ε > 0). Then the

difference, in the limit ε → 0, reads

lim
ε→0

[
−SG(iε)S−1 −G(iε)

]
= lim

ε→0
[G(−iε)−G(iε)] . (4)

A nonzero result indicates a spontaneously broken PH
symmetry. For the diagonal elements of the Green’s
functions, the right-hand side is proportional to the
density of states at E = 0. This reflects the fact that a
nonzero density of states at E = 0 provides a sufficient
condition for spontaneous PH symmetry-breaking.

The disorder-averaged one-particle Green’s function can
be calculated within the self-consistent Born approxima-
tion (or the saddle-point approximation of a functional-
integral representation) as

〈H ± iε〉−1
d ≈ [H0 ± i (ε+ η)]

−1
, H0 = 〈H〉d+Σ′, (5)

where Σ′ is the real part of the self-energy, and η is
its imaginary part. The parameter η provides a broad-
ening of the average one-particle Green’s function, and
also plays the role of an order parameter for spontaneous

PH symmetry breaking, since we get 2iη
(
H2

0 + η2
)−1

for eq. (4).

Transport properties are determined by properties on
large time and spatial scales. In ref. [33], it was shown
that the long-range part of the A2PGF of eq. (1) can be
obtained by reducing the disorder average to the integra-
tion with respect to the invariant measure of the saddle-
point manifold. This means that in practice, we replace
H with the effective random-phase Hamiltonian

HR = UH0U
†, U = diag(eiαrj ), (6)

and then average with respect to the independently and
identically distributed random phases {αrj}. This gives us

Krr′ ∼ Krr′ =
〈adjr̄r̄′C〉α
〈det C〉α

,

〈. . .〉α =
1

2π

∫ 2π

0

. . .
∏
r,j

dαrj ,
(7)

with the random-phase matrix

Crr′ =2δrr′

−
∑
j,j′

eiαrjhrj,r′j′
∑
j′′,r′′

h†
r′j′,r′′j′′e

−iαr′′j′′ , (8)

with

hrr′ = I2δrr′ + 2iη (H0 − iη̄)
−1
rr′ , η̄ = η + ε, (9)

and adjr̄r̄′C denoting the elements of the adjugate ma-
trix. Under a PH transformation, we obtain the Her-
mitian conjugation ShS−1 = h†, which implies that C
is real and symmetric. The quantity UhU † represents
the effective one-particle Green’s function of the generic
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system, while C is the corresponding effective two-particle
propagator.
Although Crr′ is still a random matrix, the A2PGF in

eq. (7) is much simpler to treat than the A2PGF in eq. (1),
because the phase integration is not plagued by poles of
the integrand. Nevertheless, this does not mean that the
theory becomes simple. For instance, the long-range be-
haviour of the A2PGF is based on the zero modes of C,
which exist for any realization of the random-phases due
to the relation

hh† = 1− 4ε (1− ε) η̄
(
H2

0 + η̄2
)−1

. (10)

This implies that the constant mode Ψ0 with vanishing
wave vector k = 0 obeys∑

r′

Crr′Ψ0 ∼ cεΨ0, (11)

i.e., Ψ0 is always a zero-energy eigenmode of the effective
two-particle propagator in the limit ε → 0.

In order to evaluate K, or the diffusion coefficient D,
we can employ two different methods. The first is based
on a graphical representation, while the second involves
a fermionic functional integral representation. While the
former was described and discussed in ref. [33], we will
focus on the latter in this paper.

General properties of K̃q. Before we start with the
specific calculations, it is useful to mention an important
connection between the two-particle and the one-particle
Green’s function (“Ward Identity”), which takes the form

K̃q=0 =
π

ε
〈ρ(0)〉d , (12)

after averaging. Here, 〈ρ(0)〉d is the disorder average of
the density of states at energy E = 0, which is typically
nonzero and finite. Although we do not have a proof, this
relation should also hold for K due to K ∼ K on large
scales. Therefore, K̃q=0 ∼ const ε−1, which will be con-
firmed in the subsequent calculation. The second deriva-
tive with respect to qμ at q = 0 is

− ∂2
qμK̃q

∣∣∣
q=0

≡ −K̃ ′′
0 = Dε−β , (13)

with β = 2 for diffusion. This is in agreement with eq. (2).
Higher-order derivatives of K̃q are also of interest, since

∑
r

(rμ)
2nK0r = (−1)nK̃

(2n)
0 (14)

describe higher moments of spatial fluctuations.

Functional integral representation. – The aver-
aged determinant in eq. (7) can be expressed as a fermionic
(Grassmann) functional integral [34]

〈det C〉α =

∫
Ψ

〈
exp(−Ψ · CΨ̄)

〉
α
, (15)

a)

− + −

−

b)

Fig. 1: First-order perturbation theory of K in eq. (16) around
the diffusion propagator G for the (a) numerator, and (b) the
denominator. These terms cancel each other due to the sym-
metry of the blue square vertex.

which implies that

Krr′ =

∫
Ψ
Ψ̄rΨr′

〈
exp(−Ψ · CΨ̄)

〉
α∫

Ψ

〈
exp(−Ψ · CΨ̄)

〉
α

. (16)

In terms of a perturbation theory around C̄ = 〈C〉α, with

〈Crr′〉α = 2δrr′ −
∑

j,j′=1,2

hrj,r′j′h†
r′j′,rj =

2δrr′ − Tr2(hrr′h†
r′r), (17)

we have

〈e−ΨCΨ̄〉α = 〈e−Ψ(C̄−C′)Ψ̄〉α =

[1 + 〈(ΨC ′Ψ̄)2〉α/2 + . . .]e−ΨC̄Ψ̄. (18)

Using this, we obtain∫
Ψ

Ψ̄rΨr′〈e−ΨCΨ̄〉α =∫
Ψ

Ψ̄rΨr′ [1 + 〈(ΨC ′Ψ̄)2〉α/2 + . . .]e−ΨC̄Ψ̄, (19)

and ∫
Ψ

〈e−ΨCΨ̄〉α =∫
Ψ

[1 + 〈(ΨC ′Ψ̄)2〉α/2 + . . .]e−ΨC̄Ψ̄. (20)

After normalizing both the expressions by Z0 = det 〈C〉α,
we can represent the result graphically by two-loop graphs
as depicted in fig. 1 (neglecting higher-order terms indi-
cated by . . .). The square in fig. 1 represents the vertex

Vr1r2r3r4 ≡
〈
C ′

r1r2C
′
r3r4

〉
α
=

Tr2
(
hr1r2h

†
r2r3hr3r4h

†
r4r1

)
− δr1r3

∑
j

(
hr1r2h

†
r2r1

)
jj

(
hr1r4h

†
r4r1

)
jj
, (21)
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C̃q ∼ 4η

3λ4

⎡
⎢⎢⎢⎣−ηq2 + 6η2ε− 3ηλ2 + 3λ2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η
(
q2 + 2η2

)
ln

(
1 +

q
(
q+

√
q2+4η2

)

2η2

)
q
√

4η2 + q2
− 4ε ln(η/λ)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦ , (29)

and the thick lines are the unperturbed propagator C̄−1.
It turns out that the two-loop corrections cancel each
other. This is a consequence of the anti-commuting prop-
erty of the fermion field. The details of the calculation are
given in appendix B. Thus, in the Fourier space only the
unperturbed propagator

K̃q =
1

2−
∫
k
Tr2(h̃kh̃

†
k−q)

(22)

survives in this approximation. Here
∫
k
denotes the nor-

malized integral with respect to the d-dimensional sphere
with radius λ. The denominator of K̃q can be expanded

in powers of q. This leads to K̃q ∼ 1/(Aε + Bq2), pro-
vided the expansion exists and the system is isotropic.
Due to the mirror-symmetric dispersion (Ek,−Ek) of the
PH-symmetric averaged Hamiltonian H0, we get

A = 8η

∫
k

1

E2
k + η̄2

, B =
1

2

∫
k

Tr2(h̃k∂kμ
∂kμ

h̃†
k). (23)

Thus, K̃q is a diffusion propagator with the diffusion co-
efficient D = B/A. This perturbative result clearly in-
dicates that diffusion is quite robust for a PH-symmetric
Hamiltonian. The robustness of diffusion in terms of a
perturbation theory was also observed for the special case
of 2d Dirac fermions [31,35].

Discussions. – For a better understanding of the result
in eqs. (22) and (23), we will consider a simple example of
a two-band Hamiltonian. It is defined in the Fourier space
with the dispersion Ek as

h̃k = σ0 +
2iη

E2
k + η̄2

(
Ek + iη̄ 0

0 −Ek + iη̄

)
, (24)

which can also be written as

h̃k =

(
κk 0

0 κ∗
k

)
, κk =

E2
k − η̄2 + 2εη̄ + 2iηEk

E2
k + η̄2

.

(25)

In the limit ε → 0, we get a unimodular function

κk → (Ek + iη)2

E2
k + η2

= eiφk , φk = arg
[
(E2

k + iη)2)
]
.

(26)

The Fourier transform of C̄ takes the form

C̃q =

∫
k

[
2− Tr2

(
h̃kh̃

†
k−q

)]
=∫

k

(
2− κ∗

kκk−q − κkκ
∗
k−q

)
, (27)

which gives the expression C̃q ∼ Aε + Bq2 (as shown in
the third section) for small q. Here A is defined as the
integral in eq. (23) and

B = 4η2
∫
k

(
∂kμ

Ek

) (
∂kμ

Ek

)
(E2

k + η2)
2 . (28)

Our model has two independent parameters, the effective
disorder strength η and the momentum cut-off λ, where
1/λ defines the shortest wavelength. Moreover, the di-
mensionality d of the k-integration plays a crucial role.
Although we do not expect that the qualitative behaviour
of diffusion is much affected by the short-distance regime,
the diffusion coefficient D = B/A might depend on it.
In order to study this effect and its relation to different
dispersions Ek, we calculate it for two characteristic ex-
amples, namely Ek = Esk

s with s = 1, 2. The expressions
for A and B imply that the energy coefficient Es can be
absorbed in the scaling of η and ε. Therefore, we implic-
itly assume subsequently that these parameters are scaled
as η → η/Es and ε → ε/Es.

The integral in eq. (27) can be calculated for ε ∼ 0, we
obtain the following results:

1) Ek = k, d = 2:

see eq. (29) above

and

C̃q|q∼0 ∼ 4η

3λ

[{
6η2

λ2
− 12 ln(η/λ)

}
ε

λ
+

λ2 − η2

η
q2
]
.

(30)

2) Ek = k, d = 3:

C̃q ∼ 3η

2πλ3q

[(
32λε− 2πη2

)
q

+ πη
(
4η2 + 3q2

)
arctan

(
q

2η

)]
(31)

and

C̃q|q∼0 ∼ 3η

2πλ

(
32

λ
ε+

4π

3λ2
q2
)
. (32)

This describes diffusion with a diffusion coefficient
D = λ2(η̃−1 − η̃)/(6η̃2 − 12 ln η̃) with η̃ = η/λ in
d = 2 and D = π

24λ in d = 3.

3) Ek = k2:

C̃q ∼
{

4λ−2
[
ε
(
π − 2η/λ2

)
+ q2/λ2

]
, for d = 2,

λ−3
√
2η

(
6ε+ ηq2

)
, for d = 3,

(33)
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Table 1: The diffusion coefficients for the dispersions Ek, and
for dimensionalities d = 2, 3, with η̃ = η/λ. The result for 2d
Dirac fermions is from ref. [31].

d = 2 d = 3

Ek = k
λ2

(
η̃−1 − η̃

)
6η̃2 − 12 ln η̃

π

24λ

Ek = k2
1

λ2 (π − 2η/λ2)
η/6

Dirac fermions − 1

4λη̃ ln η̃
–

for ε ∼ 0 and q ∼ 0. This describes diffusion with
diffusion coefficients D = 1/(πλ2 − 2η) (d = 2)
and D = η/6 (d = 3). It is remarkable that D
vanishes with η → 0 only in d = 3, but not in
d = 2.

The results for the diffusion coefficients D are summa-
rized in table 1. They clearly indicate that these diffu-
sion coefficients depend strongly on the dispersion of H0.
A vanishing order parameter η indicates a transition from
the metallic phase to another phase, typically to an insu-
lating phase. The results in table 1 reveal that the prop-
erties of such a transition from the metallic side depend
strongly on the details of the model and the dimension-
ality of the system. Although we focus on the metallic
phase here, these properties might be interesting and de-
serve a further analysis to identify the strong influences of
the PH-symmetric Hamiltonians.
In conclusion, we have found that diffusion (i.e., metal-

lic behaviour) is very robust if the model Hamiltonian
obeys the PH transformation property H → SHS−1 =
−H, as the one-loop and two-loop corrections vanish. The
reason behind this is the spontaneous PH symmetry break-
ing, which is associated with a spontaneous breaking of
a continuous symmetry, which creates a massless mode.
However, the diffusion coefficient D is very sensitive to
the spectral properties of H and the dimensionality of the
underlying space. This connection between the underlying
microscopic details of the model and the classical diffusion
coefficient is an advantage of our approach, in compari-
son to more heuristic approaches (e.g., the Mori-Zwanzig
memory matrix formalism [27,36–39]). In particular, it
will be interesting to apply this formalism to Luttinger
semimetals, where methods like Kubo formula and mem-
ory matrix fail unless the PH symmetry is broken by un-
equal band masses [38–41]. Finally, it will be worthwhile
to see if our formalism can be used to compute transport
properties in non-Fermi liquids having a critical Fermi sur-
face [42–47].
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Schwinger Foundation.
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Appendix A: example of a particle-hole symmet-
ric tight-binding model. – As an example for a system
with PH symmetry, we consider the tight-binding Hamil-
tonian on the honeycomb lattice with nearest-neighbor
hopping. The honeycomb lattice is bipartite and con-
sists of two triangular sublattices. The nearest-neighbor
hopping connects these two sublattices, such that we can
write the hopping Hamiltonian in the sublattice represen-
tation as

H =

(
0 h
hT 0

)
,

where the hopping term hT is the transpose of h. H can
be expanded in terms of the Pauli matrices as

H = H1σ
1 +H2σ

2, H1 =
(
h+ hT

)
/2,

H2 = i
(
h− hT

)
/2.

Thus, we get H → σ3Hσ3 = −H, i.e., S = σ3 in the
second section, as the PH transformation. PH-symmetric
disorder can be implemented as corrugations or random
strain in the hopping terms.

Appendix B: calculation details of the perturba-
tion theory. – The vertex in eq. (21) reads

Vr1r2r3r4 =
∑

j1,...,j4=1,2

(1− δr1j1,r3j3)hr1j1,r2j2

× h†
r2j2,r3j3

hr3j3,r4j4h
†
r4j4,r1j1

,

which can be decomposed with the help of trace terms as

(1− δr1r3) Tr2
(
hr1r2h

†
r2r3hr3r4h

†
r4r1

)
+ δr1r3

[
Tr2

(
hr1r2h

†
r2r3hr3r4h

†
r4r1

)
−

∑
j

(
hr1r2h

†
r2r1

)
jj

(
hr1r4h

†
r4r1

)
jj

]
=

Tr2
(
hr1r2h

†
r2r3hr3r4h

†
r4r1

)
− δr1r3

∑
j

(
hr1r2h

†
r2r1

)
jj

(
hr1r4h

†
r4r1

)
jj
. (B.1)

Since we get h → ShS−1 = h† from a PH transformation,
the first term obeys the relation

Tr2
(
hr1r2h

†
r2r3hr3r4h

†
r4r1

)
= Tr2

(
h†
r1r2hr2r3h

†
r3r4hr4r1

)
.

(B.2)

Moreover, 〈C〉−1
α is real symmetric, as mentioned in the

second section. With these two properties, the perturba-
tion expansion up to two loops can be rewritten as

1

Z0

∫
Ψ

Ψ̄rΨr′〈e−Ψ·CΨ̄〉α ≈

Grr′ [1 + Vr1r2r3r4(Gr1r2Gr3r4 −Gr1r4Gr3r2)]. (B.3)
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Note that

Vr1r2r3r4 [Grr1(Gr2r3Gr4r′ −Gr2r′Gr4r3)

+Grr3(Gr2r′Gr4r1 −Gr2r1Gr4r′)] = Grr′ , (B.4)

since the vertex is invariant under Vr1r2r3r4 → Vr4r1r2r3

(cyclic permutation of its indices). We also have taken into
account the appropriate signs, which reflect the fermionic
statistics of the field Ψ. These properties finally lead to
the result

1

Z0

∫
Ψ

〈
e−Ψ·CΨ̄

〉
α
≈

1 + Vr1r2r3r4 (Gr1r2Gr3r4 −Gr1r4Gr3r2) = 1. (B.5)
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