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Abstract
Electromyographic (EMG) signals recorded during speech

production encode information on articulatory muscle activity
and also on the facial expression of emotion, thus representing a
speech-related biosignal with strong potential for paralinguistic
applications. In this work, we estimate the electrical activity of
the muscles responsible for speech articulation directly from the
speech signal. To this end, we first perform a neural conversion
of speech features into electromyographic time domain features,
and then attempt to retrieve the original EMG signal from the
time domain features. We propose a feed forward neural net-
work to address the first step of the problem (speech features
to EMG features) and a neural network composed of a convolu-
tional block and a bidirectional long short-term memory block
to address the second problem (true EMG features to EMG sig-
nal). We observe that four out of the five originally proposed
time domain features can be estimated reasonably well from the
speech signal. Further, the five time domain features are able
to predict the original speech-related EMG signal with a con-
cordance correlation coefficient of 0.663. We further compare
our results with the ones achieved on the inverse problem of
generating acoustic speech features from EMG features.
Index Terms: Speech, Electromyography (EMG), Silent Com-
putational Paralinguistics, Acoustic-to-Articulatory Inversion.

1. Introduction
Speech production is a complex process that starts in the brain.
Following the formulation of the intention of speech, manifested
by electrical potentials in the cortex, the signal is conducted
through the nervous system to the muscles involved in the speech
kinematics – and finally, speech is emitted from the mouth as
sound waves. At all these production levels, biosignals can
be captured and studied to draw conclusions about linguistic
and paralinguistic information of spoken communication [1].
Many researchers have taken advantage of biosignals, proposing
systems to generate speech features from Electrocorticography
(ECoG) [2] [3] [4], Electroencephalography (EEG) [5] [6], Elec-
tromyography (EMG) [7] [8] [9], ultrasound [10] [11], and video
recordings of speech articulation [12] [13].

The inverse problem of transforming acoustic speech signals
into the underlying biosignals involved in speech production
has likewise sparked recent interest. In particular, this concerns
the issue of acoustic-to-articulatory inversion (AAI), i. e., the
estimation of articulatory movements from the acoustic speech
signal. Most AAI works are based on Electromagnetic Articulog-
raphy (EMA) data (e. g. [14] [15] [16]), and ultrasound imaging
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Figure 1: Two-step Speech-to-EMG system: AcousticMFCC-to-
EMGTD (step 1) followed by EMGTD-to-EMGOrig (step 2).

[17]. Krishna et al. [18] converted acoustic features to EEG
features, whereas [4] estimates articulatory dynamics from au-
dio recordings, which are included as an explicit intermediate
representation in the decoding of speech from EcoG signals.

By examining how speech is converted into other biosignals
involved in speech production, work on AAI may help us under-
stand the interconnections between different biosignals and their
role in communication. Among these, facial EMG is arguably
one of the most important signals involved in speech production,
e. g., due to its role for signalling facial expressions of emotion
[19] as well as social intentions such as politeness [20]. Further-
more, the synthesis of EMG from acoustic speech shows rich
potential – for example in medicine, as a means to increase artic-
ulatory awareness in speech therapy, or in computer animation,
as a means to visualize realistic muscle movements [21]. AAI
research further complements work on Silent Computational
Paralinguistics (SCP), i. e., the assessment of speaker states and
traits from non-audibly spoken communication [22], by gener-
ating large amounts of synthetic EMG data from audio. Thus,
future work on EMG-based speech models may require smaller
amounts of costly laboratory recordings once important features
can be validated against synthetic EMG obtained from AAI.

To the best of our knowledge, this is the first work that pro-
poses a conversion of acoustic speech to EMG signals. Ours is a
two-step approach (see Figure 1), parallel to standard speech syn-
thesis methodologies: First, we generate EMG time domain (TD)
features, and then derive the EMG signal from those features.
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Table 1: EMG-UKA Corpus. (*) indicates the number of sessions
included in the trial corpus.

Duration [h:m:s]
Session Type Number of sessions Average Total

Small 61 (12) 0:03:08 3:11:34
Large 2 (1) 0:27:02 0:54:04

In this initial study, we consider these two steps as independent
tasks, and consequently, when synthesizing the EMG signal from
the TD EMG features, the TD EMG features considered are the
ones obtained from the true EMG signal rather than the ones
synthesized in step one. Thus, this second step is designed as
a proof-of-concept to validate whether the EMG TD features
encode sufficient information to retrieve the original EMG sig-
nal. With these two separate steps, we intend to present the
basis for a single pipeline that allow the retrieval of the original
EMG signal from speech, and also to validate the use of TD
EMG features as intermediary representations in future silent
paralinguistics systems. For step one, we propose an hourglass-
shaped feed forward neural network, while for the second step,
we propose a convolutional block followed by a bidirectional
long short-term memory (BLSTM) block. For both steps, we
use the Concordance Correlation Coefficient (CCC) [23] as the
evaluation metric.

The rest of this paper is organized as follows: Section 2 de-
scribes the EMG-UKA corpus used for the experiments. Section
3 presents the methods, including the features extracted from
the acoustic and audible EMG signals and the neural network
architectures used at steps 1 and 2. The results are presented
and discussed in section 4. Section 5 summarizes our main
conclusions and directions for future work.

2. Corpora
All experiments in this initial study were performed with the
EMG-UKA parallel EMG-Speech corpus [24], [25]. The corpus
includes 63 small and large sessions from 8 speakers, in 3 speak-
ing modes (audible, silent speech, and whispered speech). A
subset of the sessions is freely available as a trial corpus [24], the
full corpus is available from ELRA [25]. In this work, we use
the EMG and speech recordings that correspond to the audible
speech. Information on the number and duration of the sessions
can be found in Table 1. Each speaker has a varying number
of sessions: two speakers (speaker 2 and 8) recorded a larger
number of sessions (32 and 19, respectively) while the other
speakers recorded up to 3 sessions. Further information on the
sessions can be found in [24].

The acoustic data was recorded at a sampling rate of 16 kHz
with a standard close-talking microphone, whereas the speech-
related EMG signals were recorded using a Becker Meditec
Varioport amplifier with 6 EMG channels, operating at 600 Hz.
The two signals were synchronized via an hardware marker that
marks the same point in time, and assuming an electromechanical
delay between muscle activation and speech production of 50 ms.
Figure 2 shows the positioning of the electrodes, capturing the
EMG signal of six articulatory muscles [24]: Zygomaticus major
and levator anguli oris (both 2, 3), platysma (4, 5), depressor
anguli oris (5), the anterior belly of the digastric (1-2), the tongue
(1-2, 6), and a reference channel on the nose (1-1).

Each session is divided in train and test data. The small
sessions contain 40 train utterances and 10 test utterances. The
large session of speaker 2 contains 500 train utterances and 20

(a) (b)

Figure 2: EMG electrode positioning in the EMG-UKA corpus.
Electrodes numbered in black in (a) are measured against a ref-
erence electrode behind the ear, whereas white numbers indicate
bipolar derivation. Muscle chart in (b) adapted from [26].

test utterances, and the large session of speaker 8 contain 496
train utterances and 13 test utterances. While the training data
partially varies across sessions, the 10 test utterances are unique
and the same in all sessions. In the larger sessions, the test set
includes repetitions of the 10 test utterances [25].

3. Methods
We address the conversion of acoustic speech to EMG as a
two-step problem. In the first step, called ”AcousticMFCC →
EMGTD”, we convert speech represented by 25 Mel Frequency
Cepstral Coefficients (MFCCs) [27] into 5 time domain (TD)
EMG features, establishing an approach parallel to the previous
work on the generation of speech from EMG signals [7]. In
the second step, called ”EMGTD → EMGOrig”, we assess the
possibility of retrieving the original EMG signal from these 5
TD features.

EMG signals are speaker dependent, due to varying tissue
and skin properties across speakers, as well as due to different
muscle and fat proportions, and session dependent e. g., due to
small shifts in the electrode positioning. For these reasons, we
expect that cross-session experiments perform worse than single-
session, as suggested by previous work [9]. Single-session ex-
periments have, on the one hand, less data variability, but, on the
other hand, provide a smaller amount of data for model training.
Furthermore, single-session models are lacking in generalizabil-
ity. Our two-step approach enables the use of simpler models
in step one (session-dependent problem) and deeper models for
step two (session- and channel-independent problem). The train
and test partitions described in section 2 are maintained in all ex-
periments. The development set was defined in each experiment,
with the same dimension as the test set, as a random subset of
the pool of training instances.

3.1. Feature extraction

Both acoustic and EMG signals were windowed using a 32 ms
Blackman filter, shifted by 10 ms per step (i. e., an overlap of
22 ms).

We extract 25 MFCCs [27] per audio frame. To introduce
some context, we stack this feature vector with a stacking height
of 15 frames into the past and future, thus representing each
audio frame by a vector of dimension 25× 31 = 775.

The EMG is represented as a series of 5 TD features per
EMG frame: low frequency (up to 134 Hz) power, low frequency
(up to 134 Hz) mean, high frequency (above 134 Hz) power (HF
power), high frequency zero-crossing rate (HF ZCR), and high
frequency rectified mean (HF rectified mean).

This TD feature set was originally proposed by [28], [29]
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and has been used to convert speech-related EMG to acoustic
speech in several works, such as [9], [30], and [7].

3.2. First step: AcousticMFCC → EMGTD

The 775-dimensional vectors representing each audio frame with
context were fed into an hourglass-shaped feed forward neural
network with three hidden layers [1024, 256, 512], regularized
with dropout with p= 0.5 and batch normalization, yielding six
output layers (channels) for 5 dimensions (TD features) – see
Figure 1. This hourglass shape has been employed in previous
works addressing the inverse problem of converting TD EMG
features to MFCCs [30]. The network uses rectified linear units
(ReLU) as the activation function for the first three layers. The
loss function is based on the CCC. I. e., in line with [23], the loss
function is computed as follows:

loss =
1

C × F

C∑
c=1

(F −
F∑

f=1

CCC(ycf , ŷcf )), (1)

where F is the number of features, C the number of channels,
y and ŷ are the target and predicted value. The learning rate
resembles 0.002, the batch size 32, and the model was trained for
50 epochs with an Adam optimizer. As the EMG signal is session
and speaker dependent, we defined three sets of experiments:

1. Single session. The model is trained and tested with data
from the same session. We perform two single session
experiments, with the two large sessions available in the
corpus, which belong to speakers 2 and 8.

2. Multi-session. Training and testing in leave-one-session-
out cross-validation setting: for each speaker, the model is
trained with all training utterances of all sessions but one,
and tested with the test utterances of the left-out session.
We perform two multi-session experiments, with speakers
2 and 8 (speakers with a larger number of sessions).

3. Multi-speaker. Training and testing in leave-one-speaker-
out cross-validation setting, i. e., models are trained on
all training utterances of all speakers but one, and tested
on all test utterances of the left-out speaker. We repeat
this for the 8 speakers. In these experiments, there is no
session nor speaker overlap between train and test folds.

3.3. Second step: EMGTD → EMGOrig

In this initial study, the second step consists of synthesizing the
original EMG signal from the 5 EMG TD features directly ex-
tracted from the EMG signal. Being able to retrieve the EMG
signal from the TD EMG features justifies their usage as inter-
mediary representations in future silent paralinguistics works.
Furthermore, while we consider the reliable generation of EMG
TD features an important proof-of-concept, the generation of
the original EMG signal opens up new avenues for research and
understanding of EMG signals related to spoken communication,
and for silent speech, which cannot be captured acoustically.

A schematic representation of the network used can be found
at the bottom of Figure 1. It consists of a convolutional-BLSTM
neural network, similar to what has been proposed for other par-
alinguistic tasks, such as detection of emotions [31] and breath-
ing patterns from speech [32]. The neural model includes one
convolutional block, one BLSTM block, and one output linear
layer. The convolutional block includes three 1D convolutional
layers [128, 256, 512], kernel size [5, 3, 3], stride 1, padding to
keep time dimension constant, no pooling, tanh as activation
function, and batch normalization. The BLSTM block includes

two BLSTM layers with hidden layer size 256 and dropout with
a probability of 0.4, followed by batch normalization. Finally,
the output linear layer has a dimension of 6 to match the sam-
pling frequency of the EMG signal (600 Hz) and a frame shift
of 10 ms used to compute the features. Each utterance is fed
into the network as a tensor of dimension f × t, where f is
the number of TD features, and t is the number of frames in
the signal. The f dimension is fed as channels for the first 1D
convolutional layer, and the convolution occurs across the time
dimension. The convolutional and BLSTM blocks perform a
feature mapping in the sense that they keep the time dimension
of the tensor constant. At the linear output layer, the time di-
mension is mapped to match the EMG sampling frequency. The
learning rate resembles 0.001, the batch size 5, and the learning
rate decay 0.1 with a period of 20 epochs. We train the model up
to 50 epochs with early stopping depending on the performance
on the development set.

The extraction of TD EMG features from the raw EMG
signal is independent of the speaker, the session and the elec-
trode positions (channels), thus, when retrieving the raw EMG
from TD features using a neural network, it is not relevant to
distinguish between speakers, sessions nor electrode positions.
Therefore, the data used to train and evaluate the model includes
all channels from all speakers and all sessions. This results in a
training set, a development set, and a test set composed of 2793,
643, and 643 utterances.

4. Results
This section describes and discusses the results generated from
the experiments described above. All results were evaluated
using CCC. CCC assumes values in [−1, 1], where a coefficient
of 0 reflects no correlation between the true and the predicted
values, a coefficient of 1 reflects perfect agreement and a coef-
ficient of −1 reflects perfect reversed agreement. In addition,
CCC also reflects the absolute correctness rather than only a
relative one. No other metrics are reported for the sake of space
and conciseness. We chose CCC over other standard metrics,
such as mean squared error, because CCC assumes values in a
bounded interval, easier to interpret when no previous baselines
are available.

4.1. AcousticMFCC → EMGTD: session and speaker depen-
dencies

The AcousticMFCC → EMGTD results at the single-session
(speaker 8), multi-session (speaker 8), and multi-speaker ex-
periments are detailed in Figure 3. The single-session results
(Figure 3, on the left) appear promising. We achieve a CCC
value of 0.54 for speaker 2, and 0.63 for speaker 8, when averag-
ing all feature scores across all channels. These results increase
to 0.64 and 0.75 if the HF ZCR feature is excluded.

The results obtained at the multi-session and multi-speaker
(Figure 3 – center and right) experiments appear worse when
compared to the single-session experiment. The average CCC for
all the features and channels for the multi-session experiments is
0.50 and 0.57, respectively, for speakers 2 and 8, while for the
multi-speaker experiment, the CCC is 0.46. The average CCCs
improves to 0.59, 0.66 and 0.55 when excluding HF ZCR.

The multi-session and multi-speaker experiments were eval-
uated in a cross validation setting. The aforementioned figure
shows the mean and standard deviation of CCC for each feature
at each channel, obtained for all of the folds. We find that there is
some variation of the results for the different folds. These results
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Figure 3: CCCs between the synthetically generated TD EMG features and the target, for the test sets of the single-session (speaker 8),
multi-session (speaker 8), and multi-speaker experiments. The black dots represent the mean ± standard deviation obtained for the
different sessions in the cross validation experiments.

(a) LF mean. CCC = 0.870

(b) HF ZCR. CCC = 0.182

Figure 4: Examples of the target and predicted features LF mean
and HF ZCR (single-session, speaker 8)

support the notion that EMG signals recorded in this type of set-
ting may be strongly session dependent, likely due to small shifts
in electrode positioning. The multi-speaker results appear worse
than the multi-session results, although it is not evident whether
this is caused by physiological differences between speakers
(e. g., fat, muscles, skin), or a result of an increasing variability
in electrode position (due to an increased number of sessions,
and different number of sessions per speaker) which may hinder
the learning ability of the system.

4.2. AcousticMFCC → EMGTD: feature analysis

Figure 3 suggests that HF ZCR is much harder to predict than the
rest of the TD features in all the experiments. Figure 4 presents
an example of the target and the predicted LF mean and HF ZCR
of channel 0, obtained in the single-session experiment with
speaker 8, to illustrate the meaning of the different CCCs.

The CCCs achieved at the single session experiments for LF
mean, LF power, HF rectified mean, and HF power are above
0.5 for all channels. These results are at a comparable level with
the prediction of the first three MFCCs when converting audible
EMG to acoustic speech [22]. For the remaining MFCCs, the
results in the speech-to-EMG direction are much better than the
results in the direction EMG-to-speech.

4.3. EMGTD → EMGOrig

We use the five true TD features to generate the original EMG
signal. Figure 5 shows an example of the predicted and target
signals, suggesting a reasonable match.

As HF ZCR appeared to be harder to predict than the remain-
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Figure 5: EMG signal generated from TD features.

Table 2: CCC between the target and the predicted EMG signal,
using either four or five TD features.

Input Features CCC
LF mean, LF power, HF rectified mean, HF power, HF ZCR 0.663
LF mean, LF power, HF rectified mean, HF power 0.602

ing features, we also generate the speech-related EMG signal
based on the remaining four TD features. Table 2 shows that
although the CCCs obtained with both feature sets are very sat-
isfactory, the results are better in the presence of ZCR. Thus,
we conclude that ZCR contains relevant information for the
generation of EMGOrig.

5. Conclusions
We presented initial results on a novel two-step approach to
generate speech-related EMG signals from acoustic speech. In
the first step, we successfully converted MFCCs into TD EMG
features. Thus, we established the foundation of the EMG-to-
speech approach - i. e., the inverse of prior works that have aimed
to generate speech from EMG data. The CCCs achieved in the
single session experiments for the prediction of LF mean, LF
power, HF rectified mean, and HF power were comparable to the
first three MFCCs generated from audible EMG in our recent
work on EMG-based SCP [22]. Multi-session and multi-speaker
experiments, although performing worse than the single-session
experiments, still achieved satisfactory results. We expect that
this may be improved with deeper and more complex models
when more data is available. In the second step, we generated
a signal that follows reasonably the true EMG signal, using the
TD features. As future work, we plan to integrate both speech-
to-EMG and EMG-to-speech in one system, as well as retrieve
paralinguistic information from the generated EMG signals.
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