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Abstract
This work discusses the impact of human voice on acoustic
scene classification (ASC) systems. Typically, such systems are
trained and evaluated on data sets lacking human speech. We
show experimentally that the addition of speech can be detri-
mental to system performance. Furthermore, we propose two
alternative solutions to mitigate that effect in the context of deep
neural networks (DNNs). We first utilise data augmentation to
make the algorithm robust against the presence of human speech
in the data. We also introduce a voice-suppression algorithm
that removes human speech from audio recordings, and test the
DNN classifier on those denoised samples. Experimental results
show that both approaches reduce the negative effects of human
voice in ASC systems. Compared to using data augmentation,
applying voice suppression achieved better classification accu-
racy and managed to perform more stably for different speech
intensity.
Index Terms: Acoustic scene classification, speech robustness,
voice suppression, computational auditory scene analysis

1. Introduction
Acoustic scene classification (ASC) is the problem of classify-
ing an audio sample to the type of environment in which it has
been produced [1, 2, 3, 4]. It has been applied in the context of
smartphones [5, 6, 7], robots [8, 9, 10], and wearable devices
including medical equipment like hearing aids [11, 12]. Often-
times, the goal of ASC is to enable adaptation with respect to
the recognised environments.

In latest years, one of the most prominent scientific chal-
lenges for this topic is the Challenge on Detection and Classi-
fication of Acoustic Scenes and Events (DCASE). It contains
tasks for scene classification, sound event detection and local-
isation, and sound source tagging [13, 14, 15]. Typically, the
first task is concerned with the basic problem of ASC, with the
challenge participants competing for the highest classification
accuracy in assigning audio snippets to the environment they
were recorded in.

Sakashita and Aono [16] used an ensemble of neural net-
works, each of them taking as input a log-Mel spectrum. This
approach achieved 81 %, which was the best result of the 2018
edition of the challenge. Chen and Zhang [17] utilised a data
augmentation scheme based on generative adversarial networks
(GANs), to further improve the classification performance, and
achieved an accuracy of 85 %, which was the top performance
on the 2019 edition of the challenge. Both approaches are
based on convolutional neural networks (CNNs), which have
been shown to outperform other approaches for the ASC task
[18, 19, 20].

All the ASC tasks of past DCASE challenges measure sys-
tem performance only in clean conditions without the presence

of human voice. That also allows the data set to conform to
data privacy requirements. However, in real-life applications,
ASC systems will most likely have to work in the presence of
human speech, either because of the nature of the application
itself, e. g., real-time denoising for human-to-human communi-
cation or human-computer interaction. In addition, contempo-
rary and future privacy requirements might not allow constant
monitoring of the surrounding environment, in which case the
system will only have access to audio after a human has explic-
itly requested it to do so [21, 22]. Hence, in real-life situations
the presence of speech will be the norm, and ASC systems will
have to perform well under these more challenging conditions,
too.

In this work, we investigate the effects of human voice,
which in the context of ASC can be considered as noise, on two
deep neural network (DNN) based classification algorithms.
The first is the 2019 DCASE baseline model, and the second is
an attentive atrous CNN used in our previous work [23]. Both
algorithms are described in detail in Section 3. We used the offi-
cial 2019 DCASE data set, and artificially added human speech
from the Edinburgh noisy speech database [24]. Results show
that both algorithms suffer from the presence of human speech.

We propose two alternative methodologies for overcom-
ing this limitation. First, we introduce data augmentation as
a means to expose the models to the conditions encountered at
test-time. Our second approach is based on a voice-suppression
frontend. We formulate voice-suppression as the exact oppo-
site of speech enhancement, which aims to reduce the presence
of environment sounds and enhance the human speech compo-
nents in an audio recording [25, 26]. In contrast, we seek to
reduce the presence of human speech components while pre-
serving the signal characteristics necessary to perform the ASC
task. The voice-suppression architecture is described in detail
in Section 4.2.

The rest of the paper is organised as follows. In Section 2,
we first introduce the data sets we use in this work. In Sec-
tion 3, we present the architectures used for ASC and discuss
their robustness to human voice. In Section 4, we introduce the
voice-suppression architecture.

2. Data sets
As our ASC data, we use the data set provided for the SubTask-
1A of the 2019 DCASE challenge. The data set consists of 40
hours of clean stereo recordings, each recorded with the same
device for 10 known acoustic scene classes in 10 different cities.
The data is split into 9 185 segments in the training set and 4 185
in the test set, with each segment having a duration of 10 sec-
onds.

To simulate the presence of human voice in scene record-
ings, we artificially mixed the clean scene recordings of the
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2019 DCASE test set with clean speech utterances from the
Edinburgh speech database [24]. The Edinburgh database was
recorded from 56 speakers (28 female and 28 male) of different
accent regions in Scotland and the United States, and for each
speaker about 400 utterances are available. The sampling rate
is 48 kHz which is identical to that of 2019 DCASE recordings.

3. Acoustic scene classification
architectures

In this work, we use two different ASC architectures. The first
is the official 2019 DCASE baseline architecture that consists of
two convolutional layers, followed by batch normalisation, rec-
tified linear unit (ReLU) activation, dropout and max pooling,
and two fully-connected layers. The architecture is depicted in
Figure 1(a). The baseline model achieves a classification ac-
curacy of 62.20 % on the official test set of the 2019 DCASE
challenge.

In addition, as outlined we employ an CNN architecture
combining atrous convolution with spatial attention mechanism
that we used in our previous work [23]. The difference of an
atrous CNN compared to the standard architecture is that in-
stead of using pooling layers, it extends the receptive field for
each convolutional layer by exploiting dilation settings which
controls the spacing between the kernel points [27].

As shown in Figure 1(b), our attentive atrous CNN is com-
prised of 4 atrous convolutional layers, on top of which 2D at-
tention values are learnt and allocated to each of the feature
maps. Again, batch normalisation is applied for each convolu-
tional layer. The attentive feature maps are then averaged across
all locations and projected to the scene labels via a dense layer.
The architecture has been reported to be effective for acoustic
scene classification and achieved 69.0 % on the evaluation set of
the official 2018 DCASE challenge. In this work, we develop
and test the attentive atrous CNN on the 2019 DCASE data, and
obtain a classification accuracy of 77.51 % on the evaluation set.

For both architectures, we extract log-Mel spectra using a
frame size of 40 ms and hop size of 20 ms, leading to 40× 500
Mel-band spectrum as the input for the networks.

3.1. Robustness under speech noise

We investigate the robustness of both ASC architectures in the
presence of human speech by training them on the original train-
ing data, and testing them on test data corrupted with speech
noise. For each clean scene recording in the 2019 DCASE test
set, a speech utterance randomly sampled from the Edinburgh
database is first truncated or extended to 10 seconds, and then
mixed into the clean scene recording with different signal-to-
noise ratios (SNRs).

The results shown in the “Noisy” column of Table 2 for
each scene classifier demonstrate the influence of speech on the
classification performance under different SNR conditions. As
expected, the performance of both algorithms deteriorates as the
signal energy of the human voice relative to that of the acoustic
scene increases.

We observe that both architectures do not seem to suffer
from noise in high SNR conditions. However, as the SNR drops,
classification performance does fall down to almost chance per-
formance as for the case of -10 dB. Even for the relatively high
SNR of 10 dB, performance drops by 15 % and 23 %, respec-
tively.

In real-life conditions, an SNR of -10 dB, indicating the
speech is 10 dB stronger than environment in energy, is very
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Figure 1: Acoustic scene classifiers used in this work: (a) Base-
line model of DCASE2019. Kernel size for each convolutional
layer is labelled besides the block, and the number of channels
is denoted between each block transition. (b) Attentive atrous
CNN. Dialation size for each atrous convolutional layer is given
next to the kernel size.

common, especially for audio recordings made on mobile and
wearable devices. These conditions would render both algo-
rithms completely ineffective for the ASC task.

4. Improving speech robustness of ASC
classifiers

4.1. Approach 1: Data Augmentation

A straightforward way to mitigate the effect of human voice on
ASC classifiers is to improve their ability to generalise in the
presence of speech using data augmentation. To this end, both
the baseline and the attentive atrous CNNs are trained on con-
taminated scene recordings generated by mixing clean training
speech utterances from the Edinburgh database into the clean
scene recordings from the training set of the 2019 DCASE chal-
lenge.

We first test this approach under matched SNR conditions,
in which the training set is augmented with data mixed in
the exact same SNR as the test set. We also test the more
realistic multi-SNR case, in which instances in the training
data are mixed with an SNR randomly selected to be one of
−10,−5, 0, 5, 10, 20 or 30 dB.

As can be seen in Table 2, using data augmentation sub-
stantially improves the performance of both models, and they
are able to recover most of the lost accuracy due to the mis-
match between training and testing conditions. The baseline
model performs better for the matched SNR conditions in all
cases. For the atrous CNN model, we observe that the model
performs better in the multi-SNR case for low SNR conditions.
This indicates the generalisation benefit arising from training
with multiple different SNRs.

4.2. Approach 2: Voice Suppression

The experiments in Section 3.1 show that both models are able
to deal with small perturbations in the input signals, as perfor-
mance does not degrade substantially for SNRs up to 20 dB.
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Figure 2: (a) Voice suppression model based on a sequence of 8
residual blocks. (b) Residual block architecture.

In addition, previous work in other audio tasks has shown that
it can be beneficial to use a denoising architecture as a pre-
processing frontend instead of augmenting the training data
with noise [28, 29, 30]. Therefore, we investigate the poten-
tial of a denoising architecture. In this context, the architecture
would need to remove all speech components, rather than all en-
vironment components as is traditionally the case in the speech
enhancement field. Thus, we use the term voice suppression
system to refer to architectures of this kind. A similar definition
has been found in the music source separation task as intro-
duced by zapata2013. However, in this work, source separation
approaches were exploited to concurrently estimate the singing
voice and its accompaniments in a music segment, which can
fall short of clean removal of voice components in the estimated
accompaniments. Hence, we propose a voice suppression sys-
tem, using a spectral-mapping scheme that can directly estimate
the surrounding environments in an audio, and discard the voice
to the greatest possible extent.

Our proposed voice suppression system processes a spec-
trum segment of the contaminated scene recording, and recov-
ers the enhanced scene spectrum segment. The system archi-
tecture consists of a sequence of 8 residual blocks as displayed
in Figure 2. Each basic residual block, shown in Figure 2(b),
consists of two convolutional layers in the main path to pro-
cess the input feature maps. Using a 1 × 1 convolution in the
skip-connection path, the input feature maps are converted to
the same size as the second convolutional layer’s output, and
then added to the main path to produce the output feature maps.
Batch normalisation is applied for each convolutional layer, ac-
tivated by the ReLU function. The skip-connections enable a
substantially deeper CNN architecture, which has been proven
very successful in both the computer vision and audio domains
[31, 32, 33]. Each residual block of the voice suppression sys-
tem has its own kernel size, stride, and number of channels as
appear in Table 1.

The input to the network is a neighbourhood of 35 log short-
time Fourier transform (STFT) frames in the frequency domain,
from which the network learns to directly predict the clean cen-
tral frame. To compute the STFT frames, we used a 25 ms Han-
ning window shifted by 10 ms. The model is trained by min-
imising mean square error (MSE) between the estimated scene
frame and the target frame, which is the central frame of the
clean scene spectrum segment. We optimise the network pa-
rameters using stochastic gradient descent (SGD) with a learn-

Table 1: The speech suppression model specifications.

Block Kernel Stride #Channels

1 (4, 4) (1, 1) 64

2 (4, 4) (1, 1) 64

3 (4, 4) (2, 2) 128

4 (4, 4) (1, 1) 128

5 (3, 3) (2, 2) 256

6 (3, 3) (1, 1) 256

7 (3, 3) (2, 2) 512

8 (3, 3) (1, 1) 512

ing rate of 0.01.
The voice suppression model is trained with artificially

mixed data using the training set of the 2019 DCASE data set,
and clean speech recordings from the training set of the Edin-
burgh data set. The data were mixed with randomly selected
SNRs in the range [-20, -10 -5 ,0, 5, 10, 15] dB.

Figure 3 shows the effect of the trained voice suppression
model on a test instance corrupted with speech. The spec-
trogram of the clean scene recording and that of the speech
utterance are depicted on the first two panels, their mixture
leads the noisy scene, whose spectrogram is shown on the third
panel. Our proposed voice suppression model processes the
noisy scene and produces the denoised scene, which is expected
to be as close as the clean scene. It is observed that the voice in
the noisy scene is explicitly suppressed, while the scene com-
ponents are successfully preserved.

Applying voice suppression to all noisy scene recordings
of the test set, we see that the log Mel-band energies extracted
from the denoised scene audios have less deviation from that
extracted from the clean scene audios, leading to reliable input
for ASC classifiers. The deviation can be measured by comput-
ing the average MSE between the two feature sets, as depicted
in Figure 4. The blue curve represents the deviation between
the noisy scene signals and the clean scene signals in terms of
feature sets, while the red curve stands for the deviation be-
tween the enhanced scene signals and the clean scene signals.
Comparing to the noisy scene recordings, the feature sets from
the enhanced scene recordings are less affected by speech, es-
pecially for the higher SNR cases.

5. Discussion
For each test scene recording contaminated by speech, the scene
spectrum is processed by the voice suppression system to pro-
duce each frame of the enhanced scene spectrum. The log mel-
band energies are then extracted from the enhanced scene spec-
trum and fed into an acoustic scene classifier to predict the as-
sociated environment labels. Experimental results, under the
column “Denoised” of Table 2, imply that voice suppression
assists with acoustic scene classifiers in achieving considerable
improvements in terms of classification accuracy for the large
SNR cases. For the higher SNR values, e. g., above 20 dB,
where, due to the minimal presence of human voice, the origi-
nal classifiers perform similarly for the noisy scene recordings
as for the clean recordings, we observe only a slight improve-
ment. With the assistance of voice suppression, the baseline
model works stably across all SNR cases and achieves around
60 % classification accuracy. The attentive atrous CNN perfor-
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Figure 3: Voice suppression processing on an example of noisy scene recording. The clean scene recording is deteriorated with the
speech utterance, leading to the noisy scene recording. The system processes the noisy scene recording and produces the denoised
scene recording.

Table 2: ASC accuracy[%] results

2019 DCASE Baseline Attentive Atrous Model

SNR Noisy Multi-SNR Matched SNR Denoised Noisy Multi-SNR Matched SNR Denoised

Clean 62.20 − − − 77.51 − − −
30 dB 61.60 41.46 59.89 61.67 76.58 58.78 65.93 77.16

20 dB 59.40 42.15 59.90 60.81 71.95 59.93 62.22 67.00

10 dB 47.38 44.87 59.42 57.35 54.84 60.86 61.51 62.08

5 dB 36.27 46.81 60.22 56.42 41.17 61.15 63.23 60.45

0 dB 25.19 49.68 58.97 57.08 28.29 61.74 58.87 61.91

-5 dB 17.11 52.21 56.27 57.71 21.48 61.31 59.73 63.25

-10 dB 14.27 53.41 57.37 57.71 17.99 60.05 58.23 61.95

Figure 4: Deviation between the extracted log mel-band ener-
gies from denoised scene audio and clean scene over different
SNRs.

mance is less stable across different SNRs. As voice intensity
increases, the classification performance gets worse, but voice
suppression nevertheless assists in reducing the effect of human
voice, and enhances the acoustic scene classification for con-
taminated scene recordings by a great margin.

The scene classifiers with voice suppression as its front-end
processor to improve audio scene quality have achieved reli-
able classification accuracy for contaminated scene recordings,
but the models still do not achieve the same performance as for
clean scene recordings. This can be attributed to two reasons:

• first, although we attempt to suppress the human voice in
noisy scene recordings to the greatest extent, there still
exists some residual voice components in the processed
scene audio, and the speech leftover occasionally turns
to very low fizzer sounds, which, though not always au-
dible, may still lead to classification performance degra-
dation;

• second, the voice suppression model attempts to elimi-
nate all speech contents in scene recordings, and there-
fore may be aggressive towards the scene context itself,

especially when the scene recordings originally contain
some human voice, leading to a loss of environmental
information.

6. Conclusion
In this paper, we investigated the effects that human voice can
have on neural network based acoustic scene classification, and
concluded that the presence of speech in real-world recordings
can be detrimental to system performance.

To tackle the issue, we investigated two alternative ap-
proaches:

1. augmenting the training set with speech data, and

2. training a voice suppression model to be used as a pre-
processing frontend.

In almost all cases, the voice suppression architecture achieved
superior performance in making the classifiers robust to speech
noise compared to simply using data augmentation. Neverthe-
less, there still remains a substantial gap compared to system
performance under clean conditions. This illustrates that the
problem of acoustic scene classification remains very challeng-
ing in real-world conditions.

In addition, more work should be done to extract features
from contaminated scene recordings that are more robust to
speech. Future work should be directed in collecting more re-
alistic ASC data sets “in-the-wild”, so that they cover the case
of humans interacting in the “foreground” of the scene. Fur-
thermore, since the use of pre-processing architectures seems
promising compared to vanilla data augmentation, it would be
beneficial to further investigate such architectures, drawing in-
spiration from related speech enhancement literature, but ex-
tending them for the task of removing, rather than preserving,
human speech.
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