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Cosmic-Ray Neutron Sensing (CRNS) offers a non-invasive method for estimating soil

moisture at the field scale, in our case a few tens of hectares. The current study uses

the Ensemble Adjustment Kalman Filter (EAKF) to assimilate neutron counts observed at

four locations within a 655 km2 pre-alpine river catchment into the Noah-MP land surface

model (LSM) to improve soil moisture simulations and to optimize model parameters. The

model runs with 100m spatial resolution and uses the EU-SoilHydroGrids soil map along

with theMualem–vanGenuchten soil water retention functions. Using the state estimation

(ST) and joint state–parameter estimation (STP) technique, soil moisture states andmodel

parameters controlling infiltration and evaporation rates were optimized, respectively.

The added value of assimilation was evaluated for local and regional impacts using

independent root zone soil moisture observations. The results show that during the

assimilation period both ST and STP significantly improved the simulated soil moisture

around the neutron sensors locations with improvements of the root mean square errors

between 60 and 62% for ST and 55–66% for STP. STP could further enhance the model

performance for the validation period at assimilation locations, mainly by reducing the

Bias. Nevertheless, due to a lack of convergence of calculated parameters and a shorter

evaluation period, performance during the validation phase degraded at a site further

away from the assimilation locations. The comparison of modeled soil moisture with

field-scale spatial patterns of a dense network of CRNS observations showed that STP

helped to improve the average wetness conditions (reduction of spatial Bias from –0.038

cm3 cm−3 to –0.012 cm3 cm−3) for the validation period. However, the assimilation

of neutron counts from only four stations showed limited success in enhancing the

field-scale soil moisture patterns.

Keywords: cosmic-ray neutron sensing, ensemble adjustment Kalman filter, DART, soil moisture, data

assimilation, land surface modeling
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1. INTRODUCTION

The amount of water present in the root zone of the soil
is an essential climate variable and a common link between
the carbon, water, and energy cycles. Soil water content
(SWC) influences multiple processes like runoff generation,
evapotranspiration, sensible and latent heat fluxes, groundwater
recharge, plant water stress and vegetation development (Mishra
et al., 2014; McColl et al., 2017). It acts as a regulator of the
hydrological cycle and the global radiation budget (Small and
Kurc, 2003; Brocca et al., 2017). Therefore, SWC constitutes
a key state variable of land surface models and governs the

lower boundary of atmospheric models. Consequently, the past
two decades have witnessed significant efforts to observe and
assimilate SWC states into hydrological (Moradkhani et al.,
2005; Chen et al., 2011), and land surface models (Kumar
et al., 2008; De Lannoy and Reichle, 2016) to adjust the
model states toward the real-world conditions. The well-
established point measurement techniques for estimating SWC
are thermo-gravimetry, time/frequency domain reflectometry,
thermal sensors and electrical conductivity sensors (Johnson,

1962; Walker et al., 2004). These approaches are labor-intensive
and time consuming. However, there are automated systems
(Bogena et al., 2007) that link multiple sensors to estimate
spatially representative soil moisture estimates over a longer
timeframe. These sensor networks need regular maintenance and
are expensive. Therefore, it is difficult to use them effectively
in catchment scale land surface modeling and data assimilation

applications which requires spatially representative soil moisture
estimates (Entin et al., 2000). Among the spatially distributed soil
moisture estimation techniques, active and passive microwave
remote sensing methods use the dielectric properties of soils to
estimate the SWC. The thermal microwave radiation of a surface
is highly influenced by the dielectric properties of a substance.
The difference between the thermal microwave emissions of dry
soil (dielectric constant of ∼3.5) and that of water (dielectric
constant of ∼80) is significant and can be detected with a high
signal to noise ratio within 1–5GHz of sensing frequency. This
variation in the brightness temperature is used for the estimation
of SWC at the land surface. The soil moisture estimation from
remote platforms possess a coarse spatial footprint (9 to 25 km)
and it contains information from the top few centimeters of soil
(0 to 5 cm). Good quality soil moisture estimates from remote
sensing techniques are limited to the regions with bare soil
and low to moderate vegetation cover (Njoku et al., 2003; Zribi
and Dechambre, 2003; Kerr et al., 2012). However, most of the
land surface, crop and hydrology models operate at finer spatial
resolution (100m–1 km) and they rely on root zone soil moisture
information to efficiently evaluate water and energy balances.

Recent developments of the Cosmic-Ray Neutron Sensing
(CRNS) soil moisture estimation method (Zreda et al., 2008;
Andreasen et al., 2017; Fersch et al., 2018; Schrön et al.,
2018) are promising for overcoming the limitations of point-
and remote sensing-based techniques of SWC quantification.
Water sensitive neutrons are being generated when high energy
primary cosmic radiation (∼1GeV) makes its way through the
Earth’s magnetosphere, thereby generating cascades of secondary

cosmic particles. These secondary cosmic particles further collide
with atmospheric gases (oxygen and nitrogen nuclei) and
water molecules to produce the so called epithermal or fast
neutrons (with energy levels in the range of 1–105 eV) which
are omnipresent near the Earth’s surface. The CRNS method
relies on the density variations of fast neutrons close to the land
surface as the moderation of fast neutron is highly sensitive to the
presence of hydrogen atoms below and at the land surface due to
the similar mass of hydrogen nuclei (Desilets and Zreda, 2013;
Köhli et al., 2015). In addition to soil water, other hydrogen pools
like, e.g., vegetation can influence the amount of available fast
neutrons (Desilets et al., 2010; Zreda et al., 2012). The cosmic-
ray neutron probes (CRNPs) count these ambient fast neutrons
concentrations over certain time intervals which can be then
related to soil moisture due to the strong inverse relationship.
When a CRNP is placed 2m above ground, the footprint of
the estimated SWC is typically in the range of 130–240m
radius, depending on the SWC itself, air humidity and vegetation
conditions (Köhli et al., 2015). Similarily, depending on the soil
dryness, the penetration or origination depth of the measured
neutrons varies from∼15 to 80 cm directly below the sensor and
decreases exponentially with the horizontal distance. Thus, the
spatial footprint of several hectares is analogous to typical grid
resolutions of current generation land surface models. Therefore,
the CRNS based SWC estimates can be effectively used in
hydrological and land surface modeling applications by means
of data assimilation.

To facilitate the assimilation of neutron counts from CRNPs
Shuttleworth et al. (2013) developed the COsmic-ray Soil
Moisture Interaction Code (COSMIC). COSMIC is a forward
operator which relates the depth averaged SWC from multiple
soil layers from a land surface model to the expected ambient
concentration of fast neutrons. COSMIC can be effectively used
for ensemble based sequential assimilation. In the past, very
few studies (specifically, Rosolem et al., 2014; Han et al., 2015;
Baatz et al., 2017) have assimilated CRNS information to estimate
SWC within land surface models. It should be emphasized
that the past study by Baatz et al. (2017) was the only one
to deploy the spatially distributed hydrological modeling for
updating the soil moisture states across the catchment using
CRNS information. Baatz et al. (2017) used the soil moisture
derived from nine CRNP’s from a widely spaced observation
network and estimated SWC and soil hydraulic parameters of
the Community Land Model (CLM) using the FAO soil map,
the BK50 soil map and falsified soil data as input information.
The study confirmed the positive results of data assimilation
by a jackknife validation experiment. Furthermore, they found
that the use of more accurate soil type information can lead
to better soil moisture predictions, hence data assimilation has
limited scope to further improve the soil moisture states during
the validation period. In this study the COSMIC operator was
utilized to inversely estimate the average profile soil moisture
from measured neutron counts prior to assimilation into
the land surface model. However, within an ensemble-based
data assimilation framework, the COSMIC operator can be
used to predict expected neutron counts information in order
to optimally update the spatially and vertically varying soil
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moisture states. Rosolem et al. (2014) found that the Noah
LSM can perform exceptionally good to produce "true" profile
soil moisture estimates when deploying the COSMIC operator
for first predicting neutron counts from model soil moisture
in the data assimilation algorithm. As a result, the COSMIC
operator should be used to predict neutron counts inside the data
assimilation framework (as studied by Rosolem et al., 2014) to
fully analyze the benefits of the CRNS technique for enhancing
soil moisture characterization at the catchment scale.

The work of Tóth et al. (2017) has provided soil hydraulic
information with high spatial resolution (250m) for the
European Union. This raises the question if the assimilation of
CRNS data still holds potential for improvements in land surface
model simulations while using such high spatial resolution soil
type data sets. Further, the observational data sets from a dense
CRNS sensor network as presented by Fersch et al. (2020a)
opens up new possibilities to asses the value of CRNS data
assimilation from more sparsely distributed CRNPs. These data
sets are collected at the TERENO observation site in Fendt using
24 CRNPs over an area of just 1 km2, providing soil moisture
variability at finer spatial scales. This data set along with other
independent sensor observations from the study region can be
used to rigorously test the improved skill of the land surface
model at a larger spatial scale by assimilation of CRNS neutron
counts from a sparse observation network.

Parameter estimation is an important aspect of data
assimilation applications where model parameters can be
estimated along with model states using observed information.
This approach deviates from the assumption of time invariance
of model parameters and helps to accommodate them as
time varying quantities to adapt to changes in catchment
characteristics. Also, it can be useful to improve model
performance during non-assimilation periods. Multiple
parameter estimation approaches have been proposed in
literature such as the augmented state vector approach
(Hendricks Franssen and Kinzelbach, 2008; Xie and Zhang,
2010) and the dual correction approach (Moradkhani et al., 2005;
Pathiraja et al., 2016). Past studies have shown their importance
in estimating soil hydraulic properties (Pauwels et al., 2009; Baatz
et al., 2017) and land surface modeling (Yang et al., 2016; Baatz
et al., 2017). Cuntz et al. (2016) revealed the impact of traditional
and hard-coded model parameters on the hydrological fluxes in
the Noah-MP land surface model and found that the hard coded
parameter of soil surface resistance for direct evaporation was
the most sensitive one. Further, they showed that the calibration
of only soil hydraulic parameters is not enough for a realistic
model setup. Therefore, it is important to study the possible
application of data assimilation techniques to improve model
simulations by estimating a combination of conventional and
hard-coded parameters in land surface models.

To address these research gaps, the key focus of the present
study is to evaluate the potential of sparsely distributed CRNS
data to improve the soil moisture states and dynamics of
a mesoscale land surface model. This is achieved by using
the best quality available input data sets of model forcing,
soil and land use type information. Field scale soil moisture
information from four sparsely distributed CRNPs is assimilated

into the Noah-MP land surface model for a meso-scale
river catchment in southern Germany, using the Ensemble
Adjustment Kalman Filter (EAKF) method to simultaneously
update soil moisture and model parameters (without any soil
hydraulic parameters). The resulting soil moisture fields are
analyzed using independent observation data sets of root zone
soil moisture measurements from a distributed soil sensor
network, point profile measurements at several locations within
the study domain and in addition spatially distributed field
scale soil moisture information from a dense temporary CRNS
network as presented by Fersch et al. (2020a). In contrast to
previous studies by Rosolem et al. (2014), Han et al. (2015),
and Baatz et al. (2017), this study assimilates neutron counts
from four CRNPs to improve 2D soil moisture characterization
for a catchment of 655 km2. The high spatial resolution
(250m) EU-SoilHydroGrids data set, as well as the Mualem–
van Genuchten soil water retention model, were implemented to
accommodate the best quality soil type information within the
existing Noah-MP setup. Furthermore, the COSMIC operator
(Shuttleworth et al., 2013; Rosolem et al., 2014) was utilized, using
a more process-oriented approach within the data assimilation
framework, and the evaluation was based on independent soil
moisture observations from multiple sources (point, sensor
network CRNS).

In the following, section 2 first discusses the study area and
data sets, followed by the description of the model, forward
operator and data assimilation technique. Then the ensemble
generation methods and experimental setup are given. In section
3 the results are presented and discussed. Finally, the summary
and conclusions are given in section 4.

2. METHODOLOGY

2.1. Study Area and Data
This study is carried out at the combined Rott and Ammer
catchment (Figure 1) located in southern Bavaria, Germany.
The catchment comprises the German Terrestrial Environmental
Observatories (TERENO) program’s Pre-Alpine observatory
(Kiese et al., 2018). At the location Peißenberg-Fendt, the
observatory is equipped with a wireless underground sensor
network (SoilNet) to measure spatially distributed soil moisture
and soil temperature profiles at 55 locations and 5, 20, and 50 cm
depths below the surface. The SoilNet spreads across 6 ha and the
sampling rate is 15min (see also Fersch et al., 2018). Additional
soil moisture profile observations are available in the vicinity of
climate stations at the TERENO Pre-Alpine sites Graswang and
Rottenbuch (Figure 1). These soil moisture sensors are located
at 2, 6, 12, 25, 35, and 50 cm depths in three profiles that are
displaced by about 1m each and records available every 15 min.
These observations are used in the present study for model
evaluation purpose. The Fendt observatory is further equipped
with a permanent CRNP (Table 1). In addition, a joint field
campaign was carried out by the Cosmic Sense research unit from
16 May to 22 July 2019. During that time, a dense network of
24 CRNPs was installed around the Fendt site, distributed over
1 km2 within the headwater catchment of the upper Rott river.
For the calibration of the CRNS network derived SWC, in situ
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FIGURE 1 | Location of the study area, the TERENO Pre-Alpine Observatory sites and river gauges. The elevation map was derived from the SRTM 30 meter DEM.

root zone SWC observations were collected on June 25 and 26,
2019. They comprise 23 thermo-gravimetric and 139 FDR soil
profiles. The CRNPs were placed with overlapping footprints
to facilitate spatial maps of field scale SWC dynamics for the
headwater catchment area (Fersch et al., 2020a).

The present study uses 4 CRNPs, operated within the
boundaries of the model domain, for data assimilation purpose.
The station’s properties are listed in Table 1. The Esterbergalm
station is located outside the study catchment but still within
the model domain and therefore included in the analysis. The
CRNS observations exhibit artifacts due to external influences,
such as variations of the incoming neutron flux density,
atmospheric water vapor, and barometric pressure. Thus, all the
CRNS observations were corrected according to Zreda et al.
(2012) using local pressure observations and incoming neutron
variations measured at the Jungfraujoch, Switzerland (JUNG,
https://www.nmdb.eu/) and according to Rosolem et al. (2013)
for water vapor, also based on local observations.

To force the land surface model, the climatologically
corrected DWD radar-based precipitation product RADOLAN-
YW (Winterrath et al., 2018) was used. These data are available
at 5min interval, with 1 × 1 km resolution. Due to the lack of
suitable observations in the study region, all other model forcing
variables (temperature, wind speed, relative humidity, radiation,
and surface pressure) were derived with the Weather Research
and Forecasting modeling system (WRF Skamarock and Klemp,
2008), driven by the ERA-Interim reanalysis (Berrisford et al.,
2011). TheWRFmodel setup closely follows Fersch et al. (2020b).

The spatial variability and temporal dynamics of soil moisture
within the land surface model framework is highly dependent
on soil type information. The present study uses the high
resolution 3D soil hydraulic EU SoilHydroGrids data set (v 1.0)
of Tóth et al. (2017). This database provides soil water content
at saturation, field capacity, and wilting point, soil saturated
hydraulic conductivity, and Mualem–van Genuchten parameters
for the description of the unsaturated hydraulic conductivity
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TABLE 1 | CRNS station information on operational month, soil type, elevation (m.a.s.l.), and parameters used in the COSMIC forward operator, background cosmic

radiation N (-), soil bulk density ρs (g/cm
3), efficiency of fast neutron creation α (-), and shape parameter L3 (g/cm3).

Station name Operational date Soil type COSMIC parameters Elevation

N ρs α L3

Fendt January 2016 Clay loam 407 1.13 0.29 80.55 595

Achele June 2017 Clay loam 425 1.14 0.29 81.54 859

Graswang June 2017 Clay loam 435 0.93 0.31 60.69 864

Esterbergalm July 2017 Silt loam 430 0.66 0.34 33.88 1268

TABLE 2 | Selected physical options for the Noah-MP land surface model.

Model process Description

Dynamic vegetation 2 - Dynamic vegetation model Dickinson et al., 1998; Yang and Niu, 2003

Stomatal resistance 1 - Ball-Woodrow-Berry Ball et al., 1987

Runoff 3 - Infiltration excess surface runoff Schaake et al., 1996

Surface resistance 5 - Sakaguchi and Zeng, 2009

Frozen soil 2 - Freezing point depression equation Koren et al., 1999

Radiative transfer Bad indentation as 1 - GFV (vegetation green fraction)

Soil/snow temperature time scheme 1 - Semi-implicit scheme

curves. All these soil hydraulic parameters are available at 250 and
1,000m spatial resolution and for 6 layers below the surface (0–5,
5–15, 15–30, 30–60, 60–100, and 100–200 cm). The additionally
required soil parameters, namely quartz, and saturated matric
potential were obtained from Dai et al. (2019).

2.2. Land Surface Model
The Noah Multi-Parameterization (Noah-MP) land surface
model (Niu et al., 2011) was selected to simulate the water
and energy balance of the land surface. The Noah-MP land
surface model is the successor of the Noah LSM (Chen and
Dudhia, 2001) and used as an inherent land surface scheme in
WRF. Noah-MP calculates a closed energy balance coupled with
the water balance. The multi-parameterization options can be
used to activate different formulations for interactive processes
like the radiative transfer model, stomatal conductance, soil
parameterization, snow dynamics, and runoff generation.

For the present study, a 100m spatial discretization of Noah-
MP was set-up over the entire spatial domain as shown in
Figure 1. The resampled elevation map at 100m resolution was
derived using the 30m global digital elevation model (GDEM)
from the Advanced Spaceborne Thermal Emission and Reflection
radiometer mission (ASTER, NASA, 2009). The land cover
information was derived reclassifying the CORINE Land Cover
(CLC) data set (Bttner, 2014) to the closest USGS land use class.
The standard Noah-MP configuration possesses one canopy
layer, two snow layers and 4 soil layers. In this study, the 4
soil layer parameterization was extended to 6 soil layers for
compatibility with the EU-SoilHydroGrids data set. As this data
set is based on the Mualem–van Genuchten soil water retention
model, the Clapp and Hornberger (Clapp and Hornberger, 1978)
scheme in standard Noah-MP configuration was complemented
by an implementation of the Mualem–van Genuchten equations

(Mualem, 1976; Van Genuchten, 1980). In the present study,
all model simulations were carried out at hourly time step.
The formulation for soil water estimation and parameterization
relevant in the present study is briefly described here. A detailed
description of Noah-MP can be found in Niu et al. (2011).

Table 2 lists the physical options that were chosen for the
simulations with Noah-MP.

We selected the infiltration excess surface runoff scheme with
gravitational free drainage of Schaake et al. (1996). Themaximum
infiltrated water over a given time step is computed as,

Imax = P
D[1− exp(−kdt · δt)]

P + D[1− exp(−kdt · δt)]
(1)

Where, P is the precipitation rate (mm s−1), Imax is the
infiltration rate (mm s−1), δt is the model time step (days), D
is the liquid soil moisture deficit of the modeled soil column

(m) and given as D =
∑l

i=11Zi(θsat,i − θi), kdt is a shape
parameter and given as kdt = kdtref (Ksat/Kref ). Ksat is the

saturated hydraulic conductivity (m s−1). Kref is the reference

saturated hydraulic conductivity (m s−1) and commonly referred
to as REFDK. In the standard Noah-MP configuration, REFDK
is kept constant with a value of 2 × 10−6 ms−1 for the silt-
clay-loam soil texture. kdtref is an infiltration capacity scaling
parameter, commonly referred to as REFKDT and has a standard
value of 3. Studies of Cuntz et al. (2016) and Rummler et al.
(2019) showed that REFDK and REFKDT are sensitive to the
surface runoff computation. As the quantity kdt in Equation (1)
above is depending on both these parameters their sensitivity in
computing Imax is interlinked (Cuntz et al., 2016). Therefore,
in the present work REFDK is kept constant and spatially
distributed values of REFKDT are updated based on the land-
cover classification of the study domain. Figure 2 shows the
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FIGURE 2 | Spatial plots of parameters estimated during the data assimilation experiment (A) REFKDT (infiltration capacity scaling parameter), (B) MP (slope of

Ball-Woodrow-Berry stomatal conductance model), (C) HVT (vegetation height in meters), and (D) W_RS (control soil surface layer resistance to evaporation).

spatial distribution of REFKDT where smaller values of REFKDT
are mapped to areas with higher runoff potential (e.g., urban
areas, barren land). The transport of liquid water within the soil
column is simulated using the diffusive form of the Richards
equation (Koren et al., 1999),

∂θ

∂t
=
∂

∂z

[

D(θ)
∂θ

∂z

]

+
∂K(θ)

∂z
+ S(θ) (2)

where, θ is the liquid soil water content (m3 m−3), K is the
hydraulic conductivity (m s−1), D is the water diffusivity (m2

s−1) and S is the water storage. In the present study the functions
K(θ) and D(θ) for unsaturated soils were calculated using the
Mualem–van Genuchten soil water retention function,

K = KsS
l
e[1− (1− S1/me )m]2 (3)

D =
(1−m)Ks

αm(θs − θr)
Sl−1/m
e [(1− S1/me )−m + (1− S1/me )m − 2] (4)

where, Se is the effective saturation (0–1), α n, and m =
1 − (1/n) are shape parameters provided in 3D by the soil
hydraulic database of Tóth et al. (2017). The effect of vegetation
on evapotranspiration is accounted for by choosing the dynamic
vegetationmodel of Yang andNiu (2003) and the Ball-Woodrow-
Berry stomatal resistance method (Ball et al., 1987).

2.3. Cosmic Forward Operator
To compare the observed neutron counts with model simulated
soil moisture within the data assimilation framework a forward
model is required. The Monte Carlo N-Particle eXtended
(MCNPX) model is a software to compute the neutron counts of
modeled soil moisture, however, due to its complexity it does not
qualify for ensemble data assimilation applications. Therefore,
a simple and analytical model, the COsmic-ray Soil Moisture
Interaction Code (COSMIC), introduced by Shuttleworth et al.
(2013) was used as forward operator in this work. The COSMIC
method relies on three key assumptions. First it assumes that the
available high energy neutrons to produce fast neutrons reduce
exponentially with the soil depth. Secondly, the moderation

of high energy neutrons to fast neutrons is isotropic at each
soil layer. Finally, there is an exponential reduction of detected
fast neutrons with respect to the distance from their origin to
the detector. Based on these assumptions, the number of fast
neutrons detected by the CRNS sensor can be derived using a
single integral equation as,

Nprobe = N

∫ ∞

0
A(z)[αρs(z)+ ρw(z)]

exp

[

−
(

ms(z)

L1
+

mw(z)

L2

)]

dz (5)

where,

A(z) =
2

5

∫ 5
2

0
exp

[

−1

cos(γ )

(

ms(z)

L3
+

mw(z)

L4

)]

dγ (6)

Here, N is number of high energy neutrons at soil surface, ρs is
soil bulk density (g cm−3), ρw is the soil water density (g cm−3),
z denotes soil depth (m), ms(z) and mw(z) are integrated mass
per unit area of dry soil and water, respectively, (g cm−2), γ is
the angle between the vertical below detector and each point
in the measurement plane. Parameter α represents the relative
efficiency of fast neutron creation by the soil and L1, L2, L3,
and L4 (in g cm−3) are length constants related to the local
soil properties. Shuttleworth et al. (2013) have calibrated the
COSMIC operator against MCNPX model simulations at 42
CRNS sites distributed over the contiguous USA. In their analysis
the parameters L1, L2, and L4 are found constant as 129.1 g cm

−3,
162.0 g cm−3 and 3.16 g cm−3, respectively. Also, the calibrated
values of the parameters alpha and L3 are correlated with the soil
bulk density and their relation is given as,

L3 = −31.65+ 99.29 ρs (7)

α = 0.404+ 0.101 ρs (8)

The value of N in Equation (5) depends strongly on the
site specific soil chemistry, vegetation cover and sensor
characteristics. Therefore, it needs to be calibrated at the
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observation site using observed soil moisture information. In the
present study, N was calibrated at the Fendt site, incorporating
observations from 12 SoilNet profiles, radially distributed around
the CRNS sensor in ∼40 and ∼80m radius. The SoilNet sensor
observations (placed at 5, 20, and 50 cm depths) were first
depth averaged and later area weighted averaged to represent the
average soil moisture for the sensor footprint. For the Achele,
Graswang and Esterbergalm CRNS stations the soil moisture
profiles were taken on July 4, August 22, and July 19, 2017,
respectively. The soil profiles were spatially distributed at annulus
distances of 2, 45, and 125m for Achele and 2, 30, and 100m
for Graswang and Estbergalm. All measurements were taken at
intervals of 5 cm depths from surface to 30 cm. After scaling the
parameter N, using calibration data-sets at all 4 CRNS stations,
the final parameters for the COSMIC operator at all CRNS
stations are summarized in Table 1.

To depict the soil moisture for a CRNS sensor centered at
a 100m spatial model grid, the simulated soil moisture from
Noah-MP was first spatially interpolated from four neighboring
model grids of 100m spatial resolution using an area weighted
averaging method. After that, COSMIC was used to compute
expected neutron counts at the soil surface using this spatially
interpolated soil moisture at 6 Noah-MP soil layers (up to 2
meter depth). COSMIC first linearly interpolates the 6 soil layers
information to 200 soil layers with 1 cm thickness, then computes
the contribution of each soil layer to the total neutron flux at the
surface to compute the expected neutron count. Although the
COSMIC used soil moisture from all 6 modeled soil layers (up
to 2 meter depth), only the top 60 to 80 cm soil depth contributed
to the neutron count calculation as CNRPs can only measure up
to 80 cm deep in dry soil conditions (Rosolem et al., 2013).

2.4. Data Assimilation Algorithm
The present work employs the Data Assimilation Research
Testbed (DART) (Anderson et al., 2009; Rosolem et al., 2014)
for the assimilation of CRNS neutron counts in the Noah-
MP LSM. DART is an open-source framework developed by
the National Center for Atmospheric Research and provides
efficient data assimilation tools to implement with large-scale
geophysical models. DART provides the capabilities for multiple
data assimilation specific configurations for, e.g., inflation,
localization, choice of data assimilation algorithms and a set
of tools to effectively test assimilation performance. Another
advantage of using DART is that it improves reproducibility
by eliminating user-specific implementation differences. The
present study uses the Ensemble Adjustment Kalman Filter
(EAKF Anderson, 2001) as an assimilation algorithm. For the
application of EAKF, the first step is to convert the model state
to model predicted observation state as,

y = H(x)+ ψ (9)

Where x is an ensemble of model states or augmented states and
parameters, y is an ensemble of model predicted observations,
H is a non-linear forward operator which maps the model state
to the observations. In our case the COSMIC operator was used
to compute expected neutron counts as a function of modeled

soil moisture as introduced before. ψ represents the process
noise with a zero mean multivariate normal distribution with
covariance Q. The increment for each ensemble member is
computed in observation space as,

1yi = A(y
f
i − ȳf ) = yai − ȳa (10)

A =
√

R(R+ Qf )−1 (11)

where, 1y is the adjustment to each ensemble member in the
observation space. The superscript a and f represent analysis
and forecast, respectively, and subscript i represents ensemble
member. The parameter R is observation variance and Qf is
the variance of the model predicted observation. In this way,
without calculating full error co-variances the model analysis
is calculated with a minimum computational burden. Once
the 1y are calculated, the final state update xai is computed
using local linear regression. Multiple observations are processed
sequentially in EAKF, where the analyzed state after assimilating
the first observation is considered as the background state for the
second observation. This ensures that the mean and covariance
of the updated ensemble are consistent with theoretical analysis
with the minimum computational requirement.

2.5. Experimental setup
2.5.1. Ensemble Generation

The uncertainties in the model input forcing were represented
by stochastic realizations of precipitation and temperature data
sets. The precipitation data was perturbed using log-normally
distributed multiplicative noise with 0 mean and 0.2mmmm−1

standard deviation (20% errors). The air temperature was
perturbed using normally distributed additive noise with 0
mean and 2K standard deviation. Both forcing variables were
applied with spatially correlated noise derived using fast Fourier
transform (Chabot et al., 2015; Han et al., 2015) with 10 km
radius of influence. The model parameters REFKDT, MP,
HVT and W_RS (as shown in Figure 2) were perturbed to
represent model physics uncertainty. All four parameters were
selected for their sensitivity based on Cuntz et al. (2016). The
perturbation applied to a particular parameter value was spatially
homogeneous. This setup was selected to avoid a spurious
evolution of parameters over the space during assimilation. All
four parameters were perturbed using log-normally distributed
multiplicative noise with 0 mean and 0.1 standard deviation
(10% errors). Furthermore, initial soil moisture was perturbed
using normally distributed additive noise with 0 mean and
0.05 cm3 cm−3 standard deviation to have a satisfactory ensemble
spread of model states at the start of the ensemble simulations.
The measured neutron count rate follows Poisson statistics. It
can be approximated by a normal distribution for a large number
of events per unit time (>30) (Zreda et al., 2012; Schrön, 2016).
Therefore, the observation error standard deviation is kept as√
Nobs, whereNobs is the observed neutron count. In this work, an

ensemble size of 64 realizations was used. All the error terms used
are based on literature (Kumar et al., 2009; Reichle et al., 2010;
Han et al., 2015; Cuntz et al., 2016) and also a few trial model
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runs. To maintain sufficient ensemble spread during the data
assimilation experiment, the spatially-varying Gaussian inflation
(adaptive) by Anderson (2009) was used.

2.5.2. Simulation Setup

The main objective of the present study was to understand
the potential of the field scale soil moisture estimates from
CRNS sensors to improve model parameterization and the
catchment scale soil moisture. To evaluate this, the present
study used three model simulations namely open loop (OL),
state estimation (ST), and state–parameter estimation (STP). The
OL run serves as a baseline run without any data assimilation.
During the ST run, soil moisture at each soil layer was updated
by assimilating neutron counts from all four CRNS stations
(Table 1). Similarly, during the STP run, soil moisture states
and four input parameters (REFKDT, MP, HVT and W_RS;
Figure 2) were updated. As a result, for the ST experiment, the
state vector x in Equation (9) was comprised of soil moisture
states at all soil layers across the catchment. For the STP
experiment, x was comprised of soil moisture states and four
selected model parameters across the catchment. To initialize
the model states for all the members, ensemble model runs
with perturbed parameters and input forcing were performed
from 15 April, 2016 to 1 July 2017. This initialization run
produced the model’s initial conditions on 1st July 2017 for all
three simulation experiments. The hourly neutron counts were
assimilated once per day (at 0 H UTC) during both assimilation
runs (ST and STP). This was done to prevent the ensemble
spread from collapsing due to frequent data assimilation. The
assimilation and model performance assessment was carried
out during non-snow conditions (April 15–October 30) for the
years 2017–2019. However, the model simulations were run
with updated states (and parameters) over the winter season
to preserve continuity (from 30th October until 15th April of
next year).

Considering the availability of data at all 4 CRNS stations
(Table 1), the assimilation was started on 1 July 2017 for
both ST and STP runs and continued until 9May 2019.
The evaluation was carried out from 10 May to 30 August
2019. During the evaluation period, the respective initial
conditions (model states and parameters) for ST and STP
runs on 10 May 2019 were used to run the model without
assimilation. The ST run during the evaluation period helps in
understanding the effect of updated soil moisture states on the
subsequent model simulations in absence of data assimilation.
Similarly, the evaluation period during the STP run helps in
understanding the effect of parameter estimation along with
soil moisture initial condition on model simulations beyond the
assimilation period.

The data assimilation performance was evaluated using
depth weighted root zone soil moisture derived from SoilNet
observations at the Fendt site (see section 2) and the SWC
observations available in the vicinity of the climate stations
at Graswang and Rottenbuch (Figure 1). The depth weighted
soil moisture from sensor observations was computed by
taking the mean of linearly interpolated SWC estimates
at 1 cm thick soil layers within the root zone (0–60 cm).

The Rottenbuch site is not equipped with a CRNP and
therefore the modeled soil moisture evaluation at this site
gives insights for assimilation benefits from sparsely located
CRNS stations on catchment scale soil moisture simulations.
To evaluate the improvements by assimilation beyond the
footprint of a single CRNS observation, additional analysis
was carried out using data from the dense temporary network
of CRNPs (section 2). The statistical evaluation of simulated
and observed soil moisture during all three model runs
was carried out with Root Mean Square Error (RMSE) and
Bias statistics.

3. RESULTS AND DISCUSSION

3.1. Soil Moisture Evaluation
From Figure 3, it can be seen that for the open loop (OL)
simulation the SWC states at Fendt and Graswang correlate
well with the observations, nevertheless they were considerable
drier, as indicated by the Bias statistics for OL (Table 3). Fendt
and Graswang had a strong negative bias (–0.135 cm3 cm−3

and –0.123 cm3 cm−3), whereas Rottenbuch had only a small
deviation (–0.024 cm3 cm−3). Likewise the RMSE values for
the OL run (Table 3) were high for Fendt (0.143 cm3 cm−3),
and Graswang (0.133 cm3 cm−3) and low for Rottenbuch (0.046
cm3 cm−3).

During the assimilation period (1 July 2017–9May 2019), the
simulated root zone SWC matches better with observations at
Fendt and Graswang for both the state estimation (ST) and the
state–parameter estimation (STP) assimilation runs (Figure 3).
Among the assimilation runs, STP has resulted in relatively better
performance for most of the simulation time for Graswang and
Rottenbuch. For the STP run. the improvements of the RMSE
were 67 and 21% of their OL value, respectively, for Graswang
and Rottenbuch.

On the contrary, for Rottenbuch, the course of SWC for the
ST run showed relatively wetter characteristics than observations,
resulting in slightly higher RMSE compared to OL run (increase
of RMSE by 4%). The wetter SWC updates for Rottenbuch during
the ST run were mainly caused by the updates at the surface
(0–5 cm and 5–15 cm) soil layers (see Figure A3). One of the
reasons for slightly degraded SWC updates at the Rottenbuch
site was the relatively low spatial correlation with observations
from distant CRNPs. Another reason could be that during the
OL simulation, the SWC predictions had small RMS errors at
Rottenbuch, leaving little opportunity for improvement after
assimilation. Despite this, the parameter estimation during the
STP assimilation experiment enhanced the spatial correlations of
SWC at the CRNP’s and Rottenbuch site and improved the RMSE
by 21%.

It is observed that during OL (mainly for Graswang and
Rottenbuch), the variability of simulated SWC (corresponding to
the soil water depletion rate) was much lower than the observed
SWC (Figure 3). This variability in observation was mainly due
to the high drying rate in the surface layer SWC (0–15 cm) at
Graswang and Rottenbuch (Figures A2, A3). One of the reasons
behind this was that the Graswang and Rottenbuch observation
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FIGURE 3 | Temporal evolution of simulated soil moisture for the root zone (0–60 cm) from the open loop (OL), state estimation (ST) and state parameter estimation

(STP) model runs during the assimilation (1 July 2017–09 May 2019) and evaluation (10 May 2019–30 Aug 2019) period at Fendt, Graswang and Rottenbuch

observation sites along with observed (in-situ) soil moisture and Rainfall. The temporal evolution of observed CRNS neutron counts at Fendt and Graswang site are

also shown as gray and blue dots, respectively. The aggregated SWC estimates were obtained by depth weighted averaging from all soil layers within the root zone

depth.

sites exhibit higher clay content for the upper soil layers (0–
30 cm depth). Also, the use of the Mualem–van Genuchten
(Van Genuchten, 1980) parameterisation in the present study has
shown slower soil water movement within soil layers during OL
as compared to observed SWC conditions. The SWC changes on
a short time scale are better simulated during STP than during ST,
as shown in the Figure 3. During STP assimilation, this helped to
enhance the RMSE statistics at all observation sites.

During the evaluation period (10May 2019–30 Aug 2019), the
ST and STP assimilation runs yielded significantly wetter SWC

characteristics at all observation sites. For both assimilation runs,
the simulated SWC of the evaluation period does not resemble
the temporal dynamics of the observations. Nonetheless, the
SWC characteristics at the Graswang were clearly improved
during the evaluation period. This is also reflected in the
improvement in RMSE (55% reduction for ST and STP) and
Bias (74% reduction for ST and 80% for STP) for Graswang
(Table 3). The Bias statistics at Fendt site were improved (by
4% for ST and 46% for STP) during the evaluation period
but the RMSE was increased by 30% compared to the OL
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TABLE 3 | RMSE (cm3 cm−3) and mean Bias (cm3 cm−3 ) for root zone soil

moisture at three observation sites for OL, ST, and STP model runs for assimilation

(1 July 2017–09 May 2019) and evaluation (10 May 2019–30 Aug 2019) period.

Station name Model run Assimilation Evaluation

(RMSE ) (Bias ) (RMSE ) (Bias)

Fendt OL

ST

STP

0.143

0.056

0.063

–0.135

–0.044

–0.009

0.068

0.089

0.082

–0.062

0.059

0.033

Graswang OL

ST

STP

0.133

0.051

0.044

–0.123

–0.003

–0.009

0.096

0.044

0.043

–0.08

0.021

0.016

Rottenbuch OL

ST

STP

0.046

0.048

0.036

–0.024

0.026

0.016

0.035

0.053

0.078

0.01

0.043

0.071

The RMSE was computed for depth weighted root zone (0–60 cm) soil moisture from

model simulations and sensor observations.

run. The simulated SWC at the Rottenbuch site deviated
larger from the observations than the OL for evaluation
period. One of the reasons behind wetter SWC conditions at
all three evaluation sites were the updates in the REFKDT
parameter (discussed in section 3.2). REFKDT for Fendt was
updated to a higher value (more than 5) at the end of
the assimilation experiment. Further, it was found that the
observation sites Fendt, Graswang and Rottenbuch share the
same value for REFKDT. The updated REFKDT has increased
the soil infiltration and therefore induced the positive bias in
simulated SWC (wet soil water conditions) at all evaluation
sites. In the present study, the observations from 4 CRNPs
were assimilated to update the states and model parameters.
However, all possible model parameter configurations were not
covered by the locations of these 4 stations. Therefore, in order
to estimate the associated parameters, it is necessary to have
CRNPs in the catchment sufficiently covering all land use and
soil types. This would help in efficiently improving the parameter
estimation procedure and help in improving model performance
for SWC estimation over the entire catchment. Another cause
for the varying success in soil moisture characterization among
assimilation studies at different sites is the comparatively short
time (113 days) of the evaluation experiment when compared
to the assimilation period (346 days). Longer duration of
assessment can help reduce the fluctuations in the performance
of simulated SWC induced by seasonal changes. Furthermore,
the errors adopted for perturbing the initial conditions and
model forcing were based on previous studies and a few trial
simulations, and adaptive inflation by Anderson (2009) was
employed to maintain enough ensemble spread during data
assimilation. The observational errors, on the other hand, were
derived based on past study by Schrön (2016) and were not
explicitly evaluated. As a result, there could be more room to
tune the forcing and observational errors in order to improve
the assimilation performance. Additional research is required
to optimize the forecast and observational errors in the data
assimilation system.

3.2. Parameter Estimation
The temporal evolution for parameters REFKDT, MP, HVT
and W_RS during the STP assimilation run is shown in
Figure 4. The standard Noah-MP configuration uses a constant
value (rk3.0) for REFKDT (Eq 1). At simulation initialization,
the values of REFKDT are spatially varied from 0.5 to
3.5, based on the land use type information as shown in
Figure 2. The temporal evolution of the individual REFKDT
values during the STP assimilation mode is represented by
rk0.5–rk3.5 (Figure 4). The spatially distributed parameter
W_RS (Figure 2) is initially varied from 1 to 5.01 and
its temporal evolution is shown as wr1.0 to wr5.01 in
Figure 4. Similarly, the parameters MP and HVT are based
on USGS land use categories and their temporal evolution is
represented by mp6.0 and mp9.0 for MP and from hvt0.5 to
hvt20.0 for HVT in Figure 4. For reference, the parameters
representing the CRNP location at Fendt are printed as dashed
red line.

From Figure 4, it is observed that the estimated parameters
did not converge to constant values during the STP experiment.
Among the parameters, REFKDT varies between 0.5 and
6 for the entire assimilation period which is also within
the assumed physically meaningful range. Smaller values of
REFKDT represent soils with lesser infiltration and higher
runoff potential. During the STP run, REFKDT for Fendt
(rk2.0) was increased (close to 6) thus increasing the soil
infiltration and therefore compensating the negative Bias in
simulated SWC as well as causing wet soil moisture conditions
at all three observation sites (Fendt, Graswang, Rottenbuch)
for the evaluation period (discussed in section 3.1). Similar
patterns for REFKDT were found for the Estbergalm site
(rk2.5). Here, relatively drier soil moisture conditions were
observed from Apr 2018 to July 2018 (not shown) and
rk2.5 evolved to compensate for the dry soil conditions by
allowing more infiltration. According to Cuntz et al. (2016),
the MP parameter has the highest sensitivity for transpiration
computations. During STP, MP varied between 1 and 15 from
initial values of 9 and 6, respectively. It was found that
all four CRNP locations represented the same value for MP
(mp9.0). During parameter estimation, mp9.0 evolved to the
value 15, therefore yielded an transpiration increase at all three
observation sites.

The parameter HVT (maximum height of vegetation canopy)
which had initial values between 0–22m evolved and 0–25m
over the entire assimilation period. For evergreen and deciduous
forest (hvt16.0 and hvt20.0) the values were consistently above
20m and finally updated to 24 and 25m, respectively, at the
end of assimilation period (on 9 May 2019). The parameters
MP and HVT can have an interlinked feedback with respect
to soil moisture and evapotranspiration calculations. Therefore,
the estimated values of these two parameters may depend on
each other. The parameter W_RS controls how fast water can
be removed from the surface soil layer by evaporation and
it is the most sensitive hard coded parameter for evaporation
computation (Cuntz et al., 2016). In this study, wr5.0 is evolving
within a broad range of 5 to 20 and all other courses of W_RS
were optimized within the range of 1–6 toward the end of the STP
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FIGURE 4 | Parameter updates for REFKDT, MP, HVT, and W_RS during the STP assimilation run. The parameters representing the Fendt CRNP are printed as

dashed red line.

run, thereby reducing the soil evaporation effectively for large
parts of the catchment.

The evolution of the four parameters in Figure 4 indicates that
updates in all sets of parameters over the assimilation period were
dynamic and they did not converge toward a consistent value. In
particular, modifications of the parameter values were noticeable
near the end of the assimilation experiment throughout 2019.
This could have adversely affected modeled SWC estimations
throughout the STP assimilation cycle validation phase (as
indicated in section 3.1). The temporally unstable parameter
values therefore imply the possibility of various optimal seasonal
parameter values. The selected parameters in the present study
may not be the only error sources in the soil moisture estimation.
For example, the assumption of a uniform root distribution for
the removal of water from subsurface layers adds additional

uncertainties. Such kind of uncertainties can also affect the
performance of the parameter estimation. In addition, the
current framework is not looking at the soil hydraulic parameters
for calibration, because of the tremendous parameter space in the
3D EUSoilHydroGrids data sets. All of these factors may have
an influence on the convergence of parameter values. In the end,
only a much more rigorous multivariate assimilation study with
a higher density of CRNPs (as opposed to 4 stations over 655 km2

in this study) and appropriate validation data sets would be able
to address these shortcomings in the future.

Depending on the observation location, the parameters of
the COSMIC operator are subject to different uncertainties
which add to those of the parameters estimated during the
data assimilation experiment. In particular the variation in bulk
density (ρs) of soil within the CRNS footprint can lead to errors
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in estimation of parameter L3 and α. Furthermore, for the Achele,
Graswang, and Esterbergalm sites, the scaling of parameter N
in the COSMIC operator (Equation 5) was based on only 1 day
of observed soil moisture information in the vicinity of these
CRNPs. The performance of both the ST and STP experiments
might have been affected as a consequence of these uncertainties.

3.3. Spatial Evaluation of Field Scale SWC
In the following it is analyzed, if the assimilation of cosmogenic
neutron counts can improve the simulated SWC in the proximity
of a CRNP. To that end the simulation results are evaluated
with observations from the dense CRNS network experiment of
Fersch et al. (2020a) for the 1 km2 Rott headwater catchment at
Fendt (Figure 5). The root zone SWC estimates (0–60 cm) of the
evaluation period (10 May 2019–30 Aug 2019), are compared
against the derived soil moisture estimates from the dense CRNS
sensor network on 6 different days (Figure 5), for the OL, ST,
and STP assimilation runs. The CRNS based SWC estimates
illustrated in Figure 5 were derived following the approach
of Desilets et al. (2010). The depth weighted SWC from the
model was computed with the depth distribution obtained from
the COSMIC operator at the permanent CRNP location. The
temporal evolution of spatial mean, spatial standard deviation of
all four SWC estimates (CRNS, OL, ST and STP), spatial mean
Bias, and spatial RMSE of the three model runs is visualized in
Figure 6.

In Figure 5, the CRNS derived SWCs are represented by
circles with 150m ground radius. High intensity rainfall events
on May 20–21, May 29 and June 19 have resulted in wet
soil moisture conditions over the entire field. Accordingly,
the spatial SWC patterns on May 20, May 30, and June 21
show wet conditions across space. The spatial variability of the
soil moisture observed by CRNS is largely dominated by the
topography. The soil moisture condition around the watershed
outlet in the north of the observation field shows wetter soil
moisture conditions during the entire field campaign. This part
of the catchment is characterized by higher water tables where
capillary rise keeps the root zone SWC close to saturation. Due to
the topography and land use patterns, SWC from CRNS exhibits
a high spatial variability across the observation site (Figure 5).
From Figure 6C it is observed that the spatial standard deviation
of CRNS derived SWC ranges from 0.08 to 0.18 (cm3 cm−3).

The temporal evolution of spatial mean SWC from all
three model runs correlates well with the CRNS derived SWC
(Figure 6A). The simulated SWC maintained some negative
Bias from 15 May to 5 June (Figure 6B). Nonetheless, the high
variability of SWC states across space as observed from CRNS
stations is not well reflected by all three model runs. As shown in
Figures 5, 6C, OL and ST have very low spatial variability, while
ST has a similar SWC progression to OL (Figure 3). This is due
to the updated SWC states at the beginning of the evaluation
period (on May 10th 2019) which had little influence to alter
the spatial distribution of SWC for Fendt. Because of modified
model parameters the SWC estimates for the STP run have a
different spatial distribution than the OL run. The parameter
estimation assisted in improving the spatial mean of simulated
SWC (Figure 6A) and reducing the spatial Bias from –0.033

(cm3 cm−3) to –0.013 (cm3 cm−3) (Figure 6B). However, when
compared to CRNS based SWC (Figure 6C) for the STP model
run the overall spatial standard deviation increased slightly after
15 July 2019 (Figure 6C) and the soil moisture fields shows some
variability (Figure 5). Therefore, the spatial RMSE improved
from 0.152 (cm3 cm−3) in theOL simulation to 0.137 (cm3 cm−3)
in the STP experiment.

The lack of spatial variability in model simulated SWC
can have multiple causes. Noah-MP does not consider the
lateral interaction of soil water between grid cells. Also, the
assumption of the free drainage lower boundary in the model
does not consider upward groundwater flow in the lowest soil
layer. Therefore, the spatial variability in soil moisture due to
lateral movement of water and high water table may not be
well represented in model simulations. The obtained spatial
heterogeneity in the simulated soil moisture for all three model
runs (OL, ST and STP) is mainly governed by spatially variable
forcing, land cover, and soil type parameterization. However,
the rainfall and other forcing data sets may not be substantially
variable over the 1 km2 observation site as both the WRF
simulations and the gridded RADOLAN precipitation product
have 1 km2 resolution. Another factor can be the presence of
high clay contents in the soils at Fendt. The Mualem–van
Genuchten soil parameterization is known to be relatively less
accurate in clay type soils. Similar observations of the low spatial
variance of simulated soil moisture in clay soil types are reported
by Poltoradnev et al. (2018). In general, the average field soil
moisture conditions are better represented by all model runs
with improved simulations by the STP run due to updated model
parameters. However, the assimilation of CRNS neutron counts
at one observation site can not improve the characterization of
the smaller-scale SWC variability for domains.

4. SUMMARY AND CONCLUSIONS

The presented study investigates the real world application of the
CRNS technique for improving SWC states and parameter values
for a Noah-MP land surface model configuration that features
high resolution soil information and land use maps. Count
rates of cosmogenic water sensitive neutrons were assimilated
with an EAKF and the COSMIC forward operator. The study
was conducted for the 655 km2 pre-alpine Ammer and Rott
catchments with a spatial resolution of the land surface model of
100m. The high resolution 3D soil hydraulic EU SoilHydroGrids
data set of Tóth et al. (2017) was used along with the Mualem–
van Genuchten (Van Genuchten, 1980) scheme to describe the
vertical water transport in the soil. Soil water content dynamics
and four sensitive model parameters controlling the infiltration
and evaporation rates were estimated using the joint state–
parameter estimation technique. Separate evaluations were made
to assess the added value at assimilation locations, distant
location from CRNS stations, and at a small catchment within
the vicinity of the assimilation location.

The joint state—parameter estimation technique (STP)
allowed to update the model parameter values within physically
realistic ranges without any discrepancies in the underlying
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FIGURE 5 | Rainfall and spatial distribution of field scale soil moisture on 20 May 19, 30 May 19, 9 June 19, 21 June 19, 30 June 19, and 10 July 19 at the Fendt

study site from dense CRNS sensor network (Fersch et al., 2020a) and its comparison with simulated root zone soil moisture (0–60 cm) from OL, ST, and STP model

runs for the evaluation period. The black line in the spatial soil moisture plots shows the boundary of the field campaign site and the vertical lines on the rainfall time

series represent the selected time steps for the spatial plots.

FIGURE 6 | Temporal evolution of (A) spatial mean and (C) spatial standard deviation, respectively, for root zone SWC derived using CRNS and open loop (OL), state

estimation (ST) and state–parameter estimation (STP) model runs. Similarly (B,D) represents the spatial Bias and spatial RMSE, respectively, during OL, ST, and STP

model runs. The the statistics RMSE and Bias were computed with respect to CRNS derived SWC estimates at the Fendt study site from 15 May 19 to 16 July 19.

Both the assimilation runs (ST and STP) soil moisture estimates belongs to the evaluation period (10 May 19–30 Aug 19).
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model physics and improved the SWC estimates locally, for
the assimilation period. The parameter estimation helped
mainly to reduce the error and Bias in model simulated
SWC. The RMSE of simulated SWC after assimilation was
improved by 60 and 55% for Fendt and 62 and 66% for
Graswang during state estimation ST and STP assimilation
runs, respectively. For the ST experiment, the SWC estimation
at locations remote to the assimilation sites (Rottenbuch) was
affected by imperfect forecast error co-variances and resulted
in erroneous SWC estimates compared to OL simulation.
The joint state—parameter estimation experiment helped to
improve the forecast errors, therefore, helped to minimize
the impact of drier SWC estimates at this location during
assimilation experiment. During the assimilation period of the
STP experiment, small temporal variations of the simulated SWC
were better represented. These temporal changes in the simulated
SWC were not effectively reflected during the evaluation period.
Therefore, during the evaluation experiment with ST and STP
assimilation runs, the performance of model simulated SWC
exhibited mixed results. For all assimilation studies, the SWC
characterization at Fendt and Graswang showed a reduced Bias
compared to the OL run, however the reduction in RMSE
was only detected at Graswang. The comparison of spatial
SWC states with a dense network of CRNS stations at one
of the observation sites shows that the joint state—parameter
estimation experiment helped to improve the average SWC
with the reduction of spatial Bias from –0.038 (cm3 cm−3)
to –0.012 (cm3 cm−3). However, the assimilation of neutron
counts at a single station showed partial success in altering the
field-scale spatial patterns of estimated SWC (only during STP
run) in the present assimilation framework. The limitations in
improving the spatial SWC patterns can be attributed to the
existing Noah-MP model physics which do not consider the
2D lateral soil water movement between grid cells, therefore,
limiting the influence of topographic effects on SWC. Also,
the assumptions of free drainage from lower soil layers was
not valid at the evaluation site. Another important factor that
needs to be considered is that the present study used the
best quality available detests for meteorological forcing, soil
type and land use information. Therefore, the data assimilation
experiments resulted in minimal or no further improvements in
SWC estimations at the locations where open-loop SWC states
were reasonably accurate (e.g., for Rottenbuch). However, clear
improvements were found for Bias and errors in simulated SWC
across the catchment.

When compared to previous research that used microwave
remote sensing-based soil moisture data assimilation to improve
catchment scale SWC prediction, the CRNS technique clearly
demonstrates several advantages. Information from CRNS
observations greatly enhanced root zone soil moisture estimates
at the observation sites, whereas improving the root zone
estimates using surface soil moisture information from remote
sensing products depends on model physics and needs special
attention (Patil and Ramsankaran, 2018; Ju et al., 2020). When
using CRNS data, improved soil moisture estimation at locations
distant from the observation site can be achieved through
parameter estimation and using cross-correlation between soil

moisture states, whereas the spatial soil moisture patterns of
the surface soil layer (0–5 cm) can be better represented when
assimilating remote sensing-based products (Han et al., 2012).
Furthermore, the root zone information on soil moisture from
the CRNS technique provides the opportunity to optimize
the parameters of multiple model processes ranging from soil
infiltration to evapotranspiration. In future research, it would
be desirable to incorporate the benefits of both CRNS and
microwave remote sensing data products in land surface data
assimilation applications.

In this study, only four stations were used to assimilate the
neutron count information into the land surface model. The
existing configuration may not be sufficient for considering the
large variety in soil types, land use classes and slope patterns in
the study area. Therefore, more CRNS stations are desirable to
enhance the parameter estimation during the data assimilation.
The present study did not update any parameters related to soil
types due to the vast parameter space and tomaintain consistency
in the parameter sets. However, future work needs to be done to
estimate the parameters relevant to the soil water routing method
by optimizing the soil pedotransfer functions within the data
assimilation framework. In future, the spatial patterns in model
states can be improved by assimilation of mobile CRNPs that are
suited to scan larger areas, even with diverse land cover properties
while the stationarity assumption for the observed SWC still
holds true.
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