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Port-Hamiltonian formulations of poroelastic network models
R. Altmann a, V. Mehrmann b and B. Unger c

aDepartment of Mathematics, University of Augsburg, Augsburg, Germany; bDepartment of Natural Sciences 
and Mathematics, Technical University Berlin, Berlin, Germany; cStuttgart Center for Simulation Science (SC 
SimTech), University of Stuttgart, Stuttgart, Germany

ABSTRACT
We investigate an energy-based formulation of the two-field poroelas-
ticity model and the related multiple-network model as they appear in 
geosciences or medical applications. We propose a port-Hamiltonian 
formulation of the system equations, which is beneficial for preserving 
important system properties after discretization or model-order reduc-
tion. For this, we include the commonly omitted second-order term 
and consider the corresponding first-order formulation. The port- 
Hamiltonian formulation of the quasi-static case is then obtained by 
(formally) setting the second-order term zero. Further, we interpret the 
poroelastic equations as an interconnection of a network of submodels 
with internal energies, adding a control-theoretic understanding of the 
poroelastic equations.
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1. Introduction

The port-Hamiltonian (pH) framework constitutes an energy-based model paradigm that 
offers a systematic approach for the interactions of (physical) systems with each other and with 
the environment and thus extends Hamiltonian systems to open physical systems. The pH 
structure, introduced originally in [1], see [2,3] for an overview, provides a geometric 
description of the model in terms of a Dirac structure, which directly encodes system 
properties such as passivity and stability into the system of equations. Structure-preserving 
methods, such as space-discretization [4,5], model-order reduction [6–11], and time- 
integration [12,13], ensure the preservation of these properties through numerical approx-
imation schemes. Recently, the definition of pH systems was extended to cover implicit 
systems [13–16], resulting in so-called port-Hamiltonian differential-algebraic equations (pH- 
DAEs). Although this system class covers a wide range of equations and simplifies the 
mathematical theory in many aspects, almost all results are obtained for finite-dimensional 
DAEs. Extensions of the pH framework to (constrained) infinite-dimensional systems typi-
cally do not exist in a general form, but rather consider particular applications or special model 
classes [4, 17–23].

In view of extending the range of application classes, this paper is devoted to the 
generation and analysis of the pH structure for partial differential equations, which 
model the deformation of porous media saturated by an incompressible viscous fluid, 
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namely poroelasticity [24–27]. These equations represent coupled systems of different types 
of differential equations and, hence, form a so-called partial differential-algebraic equation 
(PDAE) in total [28, 29]. The main interest in terms of applications can be found in the field 
of geomechanics [30], often in connection with heterogeneous structures [31–33]. 
Moreover, also the displacement of a material due to temperature changes can be modelled 
with a mathematically equivalent model called thermoelasticity, cf. [34,35].

The full strength of the pH approach, however, becomes visible in the network case, 
including multiple pressure variables. Such models typically appear in medical applica-
tions, such as cerebral infusion tests [36,37] or the investigation of cerebral oedema [38]. 
In both cases, the brain is modelled as a poroelastic medium saturated by different fluids. 
The formulation as a pH system then allows an interpretation as a network of submodels 
with internal energies and interconnections.

This paper is structured as follows. After introducing the classical two-field formula-
tion of poroelasticity in terms of a weak operator formulation in Section 2, we discuss its 
extension to the network case. Although the system equations are quasi-static, we include 
the usually omitted second-order term to find a pH formulation. In Section 3 we recall 
the finite-dimensional pH-DAE framework and show that the poroelastic equations can 
be cast in a corresponding infinite-dimensional structure. In Section 4 we then derive the 
pH structure from an interconnection point of view. This means that we already consider 
the original poroelastic system as a coupled system of pH subsystems. Finally, we 
summarize the paper in Section 5.

2. Poroelastic network models

In this section, we introduce the model equations of poroelasticity and a corresponding 
operator formulation, which corresponds to the weak form. In view of the subsequent 
reformulations, it turns out that the full model is better suited than the often considered 
quasi-static form. This model is then extended by additional pressure variables leading to 
the multiple-network case.

2.1. Two-field formulation

The original model of linear poroelasticity in a bounded Lipschitz domain Ω � R d with 
d 2 f2; 3g (and boundary @Ω) was introduced in [24], see [27] for a modern formulation 
covering different modelling components. Within this model, the unknown displace-
ment field and the pressure are averaged quantities across (infinitesimal) cubic elements. 
Hence, both variables can be treated as variables on the entire domain Ω. Considering 
a time horizon 0<T <1 and setting T ¼ ½0;T�, one wants to determine the displace-
ment field u : T � Ω! R d and the pressure p : T � Ω! R satisfying the system of 
coupled partial differential equations 

ρ@ttu � Ñ � ðσðuÞÞ þ ÑðαpÞ ¼ f̂ in ð0;T� � Ω; (1a) 

@tðαÑ � uþ
1
M

pÞ � Ñ � ð
κ
ν

ÑpÞ ¼ ĝ in ð0;T� �Ω; (1b) 

430 R. ALTMANN ET AL.



which describe the balance of momentum (1a) and the conservation of mass of the fluid 
(1b). Within this system, the stress tensor σ models the linear elastic stress-strain 
constitutive relation 

σðuÞ ¼ 2μεðuÞ þ λðÑ � uÞI ; εðuÞ ¼ 1
2ðÑuþ ðÑuÞTÞ

with the Lamé coefficients μ and λ and the identity tensor I . Further, α denotes the Biot- 
Willis fluid-solid coupling coefficient, M the Biot modulus, κ the permeability, ρ the 
density, and ν the fluid viscosity. The right-hand side ĝ represents an injection or 
production process and ̂f denotes the volume-distributed external forces. In what follows 
we will interpret ĝ and f̂ as distributed inputs to the system.

The system is equipped with Dirichlet boundary conditions 

u ¼ ûb on ð0;T� � @Ω; (1c) 

p ¼ p̂b on ð0;T� � @Ω (1d) 

and initial conditions pð � ; 0Þ ¼ p0, uð � ; 0Þ ¼ u0, as well as @tuð � ; 0Þ ¼ _u0:

For the weak formulation of the poroelastic model, we assume homogeneous 
boundary conditions, i.e., we assume that ûb and p̂b are zero. Inhomogeneous 
boundary conditions will be briefly discussed in Remark 3.6. Let us introduce the 
spaces 

V ¼ ½H1
0ðΩÞ�

d
; HV ¼ ½L2ðΩÞ�d; Q ¼ H1

0ðΩÞ; HQ ¼ L2ðΩÞ;

where L2ðΩÞ is the space of square-Lebesgue integrable functions on Ω and H1
0ðΩÞ is the 

Hilbert space of functions that have a weak derivative in L2ðΩÞ and satisfy zero boundary 
conditions on @Ω. Hence, V and Q already include the respective homogeneous bound-
ary conditions. With the corresponding dual spaces V� and Q� we have two Gelfand 
triples at hand, namely V;HV ;V� and Q;HQ;Q�. Recall that this means that V is 
continuously and densely embedded in HV , which in turn implies a continuous and 
dense embedding from HV ffi H�V to V�, cf. [29, Ch. 23.4]. For both triples we will use the 
notion h � ; � i for the respective duality pairing. The resulting embedding is denoted by 
I : Q ! Q�, hI � ; � i ¼ ð � ; � ÞHQ .

We introduce the operators Y : HV ! H
�
V , M : HQ ! H

�
Q by 

hYu; vi ¼
ð

Ω
ρuvdx; hMp; qi ¼

ð

Ω

1
M

pqdx 

as well as the differential operators A : V ! V�, K : Q ! Q�, and D : V ! H�Q by 

hAu; vi ¼
ð

Ω
σðuÞ : εðvÞdx; hKp; qi ¼

ð

Ω

κ
ν

Ñp � Ñqdx; hDu; qi ¼
ð

Ω
αðÑ � uÞqdx;

where we use for A the classical double dot notation from continuum mechanics. Note 
that, due to the integration by parts formula, the operator D can also be considered in the 
form D : HV ! Q

�. To obtain the weak formulation, equation (1a) is multiplied by a test 
function v 2 V and (1b) by a test function q 2 Q. Integration over the computational 
domain Ω then induces the appearance of the previously defined operators. Accordingly, 
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integrals of the right-hand sides multiplied by a test function arise. For this, we introduce 

f ðtÞ ¼
ð

Ω
f̂ ðtÞ � dx 2 H�V and gðtÞ ¼

ð

Ω
ĝðtÞ � dx 2 H�Q. 

It follows from Korn’s inequality [8, Th. 6.3.4] that the operator A is elliptic and, thus, 
invertible. Furthermore, it is self-adjoint and bounded in V. Similarly, the operator K is 
self-adjoint, elliptic, and bounded in Q. The operator M mainly contains the multi-
plication by the constant 1=M > 0 and is thus self-adjoint, elliptic, and bounded in the 
pivot space HQ, although it may also be interpreted as an operator M : Q ! Q�. In the 
latter setting, however, the operator is only continuous and not elliptic. Similarly, the 
operator Y represents the multiplication with the constant ρ > 0 and thus is self-adjoint, 
elliptic, and bounded in HV . Finally, the coupling operator D equals, up to the multi-
plicative prefactor α, the divergence and is thus bounded.

The weak form of (1) can be stated as follows: Determine u : T ! V and p : T ! Q

such that for almost all t 2 ð0;TÞ we have 

Y€uðtÞ þ AuðtÞ � D�pðtÞ ¼ f ðtÞ inV�; (2a) 

D _uðtÞ þ M _pðtÞ þ KpðtÞ ¼ gðtÞ inQ� (2b) 

for initial conditions p0 2 HQ, u0 2 V, and _u0 2 HV . Note that D� : HQ ! V
� denotes 

the dual operator of D, i.e., hD�q; vi ¼ hq;Dvi for all v 2 V and q 2 Q. Assuming right- 
hand sides f 2 L2ðT;HVÞ, g 2 L2ðT;HQÞ, suitable solution spaces (for the weak formu-
lation) read u 2 L2ðT;VÞ, p 2 L2ðT;QÞ with _u 2 L2ðT;HVÞ, €u 2 L2ðT;V�Þ, and 
_p 2 L2ðT;Q�Þ. Sobolev embeddings and the existence theory of [21, Ch. 3, Sect. 8.4] 
then imply that p 2 CðT;HQÞ and u 2 CðT;VÞ, _u 2 CðT;HVÞ such that initial conditions 
are meaningful.

Within this paper, we will study system (2) in the corresponding formulation in terms 
of operator matrices, i.e., 

Y 0
0 0

� �
€u
€p

� �

þ
0 0
D M

� �
_u
_p

� �

þ
A � D�

0 K

� �
u
p

� �

¼
f
g

� �

: (3) 

Besides the second-order formulation presented here, we will study an associated first- 
order formulation by introducing a new variable for _u. This will be investigated together 
with the pH formulation of the model equations in Section 3.2. As a result, we study (3) as 
two systems that are interconnected via power-conserving feedback in Section 4, giving 
a system-theoretic interpretation to these equations. 

Remark 2.1. In several applications, see for instance [39], the permeability κ, or more 
precisely, the hydraulic conductivity, depends on the dilatation Ñ � u, i.e., κ ¼ κðÑ � uÞ. In 
this case, the term Kp becomes nonlinear. Assuming that there exist positive constants 
κ� ; κþ satisfying 0< κ� � κð�Þ � κþ for all � 2 R still renders the operator KðuÞ self- 
adjoint and elliptic, which is sufficient for the forthcoming analysis. For instance, this is 
the case for the Kozney-Carmen type hydraulic conductivity [39,40], see also [41] for 
a corresponding numerical setup.
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2.2. Quasi-static formulation

In many applications, the coefficient ρ in (1a) is considered small enough so that 
the second-order term ρ€u can be neglected. This leads to the so-called quasi-static 
formulation, studied, for instance, in [4,27]. Note that a detailed asymptotic analysis 
considering different orders in small terms may lead to a different formulation than just 
formally considering ρ€u ¼ 0.

In view of the operator formulation (2), the quasi-static model is given by 

Au � D�p ¼ f inV�; (4a) 

D _uþM _pþKp ¼ g inQ�: (4b) 

Remark 2.2. For the quasi-static formulation (4) there is no need to prescribe an initial 
value for _u. In fact, it it not even necessary to prescribe an initial value for u, since u0 is 
uniquely determined from (4a), see for instance [28] and the forthcoming Section 3.5. 
The dependence of u0 on p0 is a typical consistency condition known for PDAEs.

If f is differentiable in time, then, since the operator A is invertible, we can formally 
solve (4a) for u and insert the result into (4b). Then, one obtains a parabolic equation for 
the pressure p given by 

fM _pþKp ¼ ~g; (5) 

with fM¼MþDA� 1D� : HQ ! H
�
Q and adapted right-hand side ~g ¼ g � DA� 1 _f . 

For any computed value of pðtÞ at time t, the solution uðtÞ can be computed by solving 
the elliptic system 

AuðtÞ ¼ D�pðtÞ þ f ðtÞ:

We would like to emphasize that system (4) covers general elliptic-parabolic problems 
[28]. Clearly, this includes (quasi-static) linear poroelasticity and thermoelasticity. In 
contrast, the full model (2) covers a general hyperbolic-parabolic coupling.

2.3. Multi-field network systems

For medical applications, the poroelastic model (1) is often extended by additional 
pressure variables, e.g., to distinguish vessel types in the investigation of cerebral oedema, 
cf. [38]. For instance, one may distinguish arterial and venous blood flow, which we 
schematically depict in Figure 1. Here, the arterial and venous blood each have their own 
(averaged) pressure variables. For a general description of multiple-network poroelastic 
theory, we refer to [42].

As before, such applications usually come with non-zero boundary conditions, cf. 
remark 3.6 below. For our analysis, however, we restrict ourselves to homogeneous 
Dirichlet boundary conditions to focus on the structure of the equations.

In the multi-field network case, we want to compute the displacement u : T �Ω! R 

and pressures pi : T � Ω! R , i ¼ 1; . . . ;m, such that 
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ρ@ttu � Ñ � ðσðuÞÞ þ
Xm

i¼1
ÑðαipiÞ ¼ f̂ in ð0;T� �Ω; (6a) 

@tðαiÑ � uþ
1
M

piÞ � Ñ � ð
κi

νi
ÑpiÞ �

X

j�i
βijðpi � pjÞ ¼ ĝi in ð0;T� �Ω (6b) 

with initial conditions for u, _u, and all pi. Note that the second equation has to be 
considered for i ¼ 1; . . . ;m, leading to mþ 1 equations in total. The parameters βij 

model exchange rates from one subsystem to the other and are usually small. In several 
applications, symmetric exchange rates βij ¼ βji are considered, see e.g. [42].

To shorten notation, we introduce the matrix B ¼ ½βij�
m
i;j¼1 2 R m;m with diagonal 

entries βii ¼ �
P

j�i βij, i ¼ 1; . . . ;m. Thus, B contains all exchange rates of the system 
in the off-diagonal elements and the row sums are all equal to zero by construction. In 
this way, the exchange conditions resemble Kirchhoff’s laws in electric or energy trans-
port networks [3,15,43].

For the weak formulation of (6) we define operators Ki : Q ! Q� and Di : V ! H�Q
as in Section 2.1 with the same properties as K and D, respectively. We further introduce 
the block operators 

�KB ¼

K1

. .
.

Km

2

6
4

3

7
5þ B� I ; �M¼

M

. .
.

M

2

4

3

5; �D ¼

D1

..

.

Dm

2

6
4

3

7
5:

Note that, in order to allow a compact notion of the network case, we write Qm and Hm
Q

for the product spaces Q� . . .�Q and HQ � . . .�HQ, respectively. Further, B� I
mimics the Kronecker product, i.e., for p ¼ ½p1; . . . ; pm�

T
; q ¼ ½q1; . . . ; qm�

T
2 Qm we 

have 

hðB� IÞp; qi ¼
Xm

i¼1

Xm

j¼1
βij hIpj; qii ¼

Xm

i¼1

Xm

j¼1
βij ðpj; qiÞHQ :

Figure 1. Schematic illustration of arterial (red) and venous (blue) blood flow networks in the tissue 
(grey) acting as the porous material.
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Lemma 2.3. The bounded operator �KB : Qm ! ½Qm�
� is elliptic for sufficiently small 

exchange rates βij. Further, �KB is self-adjoint if the matrix B is symmetric.

Proof. The claim on the symmetry of KB is obvious, since all operators Ki are self-adjoint. 
Let c denote the (uniform) ellipticity constant for all Ki and Cβ ¼ maxi�j jβijj. Then, for 

p ¼ ½p1; . . . ; pm�
T
2 Qm we obtain the estimate 

h �KBp; pi ¼
Xm

i¼1
hKipi; pii þ hðB� IÞp;pi � c

Xm

i¼1
k pik

2Q � 2mCβ
Xm

i¼1
k pi k

2
HQ

:

The continuous embedding Q,!HQ implies h �KBp; pi � ðc � 2mCβ,!HÞ k pk2
Q and 

hence the ellipticity of �KB for Cβ <C=ð2mC2
Q,!Hq

Þ. Here CQ,!HQ denotes the constant of 
the continuous embedding Q,!HQ.

Assumption 2.4. Throughout this paper, we assume that the operator �KB is elliptic and thus 
invertible.

Note that Assumption 2.4 does not include the symmetry of B. For the nonsymmetric 
case, we make the following observation. 

Lemma 2.5. Let Bsym ¼
1
2ðBþ BTÞ. Then, �KB is elliptic if and only if �KBsym is elliptic.

Proof. Let q 2 Qm. The proof follows immediately from the identity 

h �KBq; qi ¼ h �KBsym q; qi þ 1
2hðB� I � BT � IÞq; qi

and the observation that 

hðB� I � BT � IÞq; qi ¼ hðB� IÞq; qi � hðB� IÞq; qi ¼ 0: □

Let us emphasize that Lemma 2.3 indicates that small exchange rates in the sense that 

max
i�j
jβijj<

c
2mC2

Q,!HQ 

with c denoting the uniform ellipticity constant of all Ki, is a sufficient condition for the 
ellipticity in Assumption 2.4.

The weak formulation of (6) in terms of the introduced operator matrices has the form: 
Determine u : T ! V and p : T ! Qm such that for almost all t 2 T the operator equation 

Y 0
0 0

� �
€u
€p

� �

þ
0 0
�D �M

� �
_u
_p

� �

þ
A � �D

�

0 �KB

� �
u
p

� �

¼
f
g

� �

(13) 

is satisfied. Here we have used the notion g ¼ ½g1; . . . ; gm�
T , where the gi are defined in 

terms of ĝi as in Section 2.1.
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Thus, the network case has the same structure as the two-field poroelastic model, cf. 
system (3). A direct consequence is that a semi-discretization in space of the multi-field 
network model (7) yields an operator equation of the same structure as the two-field 
model.

2.4. Quasi-static network case

Similar to the two-field case considered above, we briefly discuss the case where the 
coefficient ρ is assumed to be small and thus neglected. This then yields the quasi-static 
network model 

0 0
�D �M

� �
_u
_p

� �

þ
A � �D

�

0 �KB

� �
u
p

� �

¼
f
g

� �

with initial condition pð0Þ ¼ p0 2 Hm
Q. As in the two-field model, a consistency condi-

tion then uniquely determines u0.
Assuming once more that f is differentiable in time, we can use the invertibility of A to 

eliminate the first equation. This then leads to a system of m coupled parabolic equations, 
namely 

fM _pþ �KBp ¼ ~g 

with fM¼ �Mþ �DA� 1 �D� : Hm
Q ! ½H

m
Q�
� and adapted right-hand side ~g ¼ g � �DA� 1 _f . 

To restore the displacement u, one computes the solution to the elliptic pro-
blem Au ¼ �D�pþ f . 

Example 2.6 (Poroelastic brain model). The example in [38] considers ρ€u ¼ 0, m ¼ 4 
pressure variables, and no external forces or injections, i.e., f ;0 and gi;0. This means 
that the system is driven only by its hydrostatic pressure gradients.

3. Port-Hamiltonian descriptor system formulation

To render the paper self-contained, we recall the definition and some results for pH- 
DAEs, also called port-Hamiltonian descriptor systems. For the finite-dimensional setting, 
this is presented in [13], see also earlier versions in [14,15]. Afterwards, we show that the 
poroelastic equations can be formulated in a corresponding way, leading to a port- 
Hamiltonian partial differential-algebraic equation (pH-PDAE).

3.1. Port-Hamiltonian framework

We start with the definition of a pH-DAE in the finite-dimensional framework, which we 
will mimic in the pH-PDAE setting. We present a special case of the definition given in 
[14] that is sufficient for our analysis, using a slightly different notation than therein. For 
a generalization to time dependent and nonlinear descriptor systems we refer to [13]. 

436 R. ALTMANN ET AL.



Definition 3.1 (pH-DAE). A descriptor system of the form 

E _z
y

� �

¼
A B
C D

� �
z
v

� �

(8) 

with state z : T ! R n, input v : T ! R m, and output y : T ! R m is called pH-DAE with 
associated quadratic Hamiltonian 

H : R n ! R ; HðzÞ ¼ hEz; zi ¼ zTEz 

if ET ¼ E 2 R n�n is positive semi-definite and the symmetric matrix 

W ¼ sym � A � B
C D

� �� �

¼
1
2

� A � B
C D

� �

þ
� A � B
C D

� �T
 !

2 R ðnþmÞ�ðnþmÞ;

called the dissipation matrix, is positive semi-definite.

Note that (8) can be equivalently written as 

E _z ¼ ðJ � RÞz þ ðG � PÞv (9a) 

y ¼ ðGþ PÞTz þ ðS � NÞv (9b) 

with skew-symmetric matrices J ¼ 1
2ðA � ATÞ and N ¼ � 1

2ðD � DTÞ, symmetric 
matrices R ¼ � 1

2ðAþ ATÞ and S ¼ 1
2ðDþ DTÞ, and G ¼ 1

2ðB � CTÞ, P ¼ � 1
2ðBþ CTÞ. 

Computing the dissipation matrix for (9) yields 

W ¼ R P
PT N

� �

: (10) 

We thus obtain the following equivalent formulation of a pH-DAE. 

Lemma 3.2. The descriptor system (9) with symmetric matrices R ¼ RT , S ¼ ST , skew- 
symmetric matrices J ¼ � JT , N ¼ � NT , and symmetric positive semi-definite matrix 
E ¼ ET is a pH-DAE, if the dissipation matrix (10) is positive semi-definite.

Let us emphasize that if no feedthrough term is present, i.e., D ¼ 0 in (8) or S ¼ N ¼ 0 
in (9), then the dissipation matrix (10) being semi-definite immediately implies P ¼ 0 
such that the pH formulation is given as 

E _z ¼ ðJ � RÞz þ Gv; (11a) 

y ¼ GTz; (11b) 

with skew-symmetric J and symmetric positive semi-definite E and R. For our remaining 
analysis, the latter formulation is sufficient, serving as the main reason to restrict 
ourselves to systems of the form (11).

The class of pH-DAEs, respectively the extensions presented in [13], have many nice 
properties, see also [14]. The general definition in [13] extends to weak solutions and 
infinite dimension, the structure is invariant under state-time diffeomorphisms, the 
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structure is invariant when making the system autonomous, and the class can be 
described via a Dirac structure. Furthermore, pH-DAEs satisfy a power balance equation 
and dissipation inequality. 

Theorem 3.3 (Dissipation inequality for pH-DAEs [13,14]). Consider a pH-DAE of the 
form (8). Then, the power balance equation 

d
dt
HðzðtÞÞ ¼ � z

v

� �T

W z
v

� �

þ yTv; (12) 

holds along any solution z, for any input v. In particular, the dissipation inequality 

Hðzðt2ÞÞ � Hðzðt1ÞÞ �

ðt2

t1

yðτÞTvðτÞdτ (13) 

holds for all t2 > t1.

Another important property, see [13], is that the class of pH-DAEs is invariant under 
power-conserving or dissipative interconnection. To see this, consider two pH-DAEs 

Ei _zi ¼ ðJi � RiÞzi þ Givi;

yi ¼ GT
i zi 

with Hamiltonians Hi : R ni ! R , for i ¼ 1; 2, and assume that the two systems are 
interconnected via 

v1
v2

� �

¼
F11 F12
F21 F22

� �
y1
y2

� �

þ
~v1
~v2

� �

; F ¼ F11 F12
F21 F22

� �

:

Then, defining the aggregated state, input, and output, respectively, via 

z ¼ z1
z2

� �

; ~v ¼ ~v1
~v2

� �

; y ¼ y1
y2

� �

;

and aggregated system matrices J ¼ diagðJ1; J2Þ, R ¼ diagðR1;R2Þ, G ¼ diagðG1;G2Þ, the 
coupled system is given by 

E _z ¼ ðJ � Rþ GFGTÞz þ G~v; (14a) 

y ¼ GTz: (14b) 

Writing F ¼ Fskew þ Fsym with skew-symmetric part Fskew (corresponding to the power- 
preserving component) and symmetric part Fsym, we immediately observe that (14) is 
again a pH system if, and only if, R � GFsymGT is positive semi-definite. A sufficient 
condition to retain the pH structure is thus to require that Fsym is negative semi-definite 
corresponding to a potentially dissipative component of the interconnection.

Finally, a key property for our later analysis is that the pH-DAE structure is invariant 
under Galerkin projection in the sense that whenever we use a variational formulation 
and restrict the dynamics by using the same subspace as ansatz and test space; cf. 
[4,43,44]. This will form the basis for our forthcoming analysis, where we show that 
the poroelastic (network) equations introduced in Section 2 exhibit such a pH structure. 
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Since we analyse the equations in the operator formulation, which we will then call a pH- 
PDAE, we cannot follow the exact wording but only the spirit of Definition 3.1, respec-
tively Lemma 3.2. Nevertheless, applying a spatial discretization by a finite element 
method afterwards will retain the structural properties such that the semi-discretized 
models are then pH-DAEs. Since the operator matrices are constant in time and there is 
no feed-through term, we consider the special case that the matrices P, S, and N are zero. 
As a result, the requirements of Definition 3.1, respectively Lemma 3.2, reduce to J being 
skew-symmetric and E, R being symmetric as well as positive semi-definite.

3.2. pH formulation of the two-field model

In this section, we discuss a reformulation of the operator form of the poroelastic 
equations, which although we discuss the infinite dimensional case exhibits the pH 
structure in the spirit of Definition 3.1. Consequently, a Galerkin projection of the 
operator form will then lead to a (finite-dimensional) pH-DAE. Note, furthermore, 
that the inhomogeneities f ; g are domain-distributed inputs, which demands for the 
infinite dimensional setting.

Starting with the second-order formulation (3), we first perform a first-order (mixed) 
formulation by introducing w ¼ _u as new variable and adding the equation Aw ¼ A _u to 
the system. Recall that in our case A� ¼ A is elliptic and thus, invertible. Assuming ρ> 0, 
we obtain the (implicit) first-order system 

Y 0 0
0 A 0
0 0 M

2

4

3

5
_w
_u
_p

2

4

3

5 ¼

0 � A D�

A 0 0
� D 0 � K

2

4

3

5
w
u
p

2

4

3

5þ

f
0
g

2

4

3

5: (15) 

Note that the three operators Y, A, and M appearing on the left-hand side are invertible. 
Hence, there are no algebraic constraints. The canonical Hamiltonian (energy function) 
associated with this system is given by 

Hðw; u; pÞ ¼
1
2
ðhYw;wi þ hAu; ui þ hMp; piÞ; (16) 

where 1
2hYw;wi describes the kinetic part of the energy and 1

2hAu; ui þ 1
2hMp; pi the 

potential energy. Let us emphasize that although, formally, the two-field model does not 
feature any control inputs, we will view the source terms f and g as external (distributed) 
inputs (respectively forces, cf. [27]) to the system and complement the system with the 
power-conjugated output, i.e., with 

y ¼ Id 0 0
0 0 Id

� � w
u
p

2

4

3

5 ¼
w
p

� �

: (17) 

We immediately observe that the first-order formulation (15) together with the power- 
conjugated output equation (17) emulates the pH-DAE structure with 
P ¼ 0, S ¼ N ¼ 0, 
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E ¼

Y 0 0
0 A 0
0 0 M

2

4

3

5; J ¼

0 � A D�

A 0 0
� D 0 0

2

4

3

5; R ¼

0 0 0
0 0 0
0 0 K

2

4

3

5; B ¼

Id 0
0 0
0 Id

2

4

3

5:

Recall that the operators A, M, K, and Y are positive definite. We expect, similarly to the 
finite-dimensional case considered in Theorem 3.3, a power balance equation and 
a dissipation inequality. Let us demonstrate this as an example for the formulation (15). 
In the other formulations that we discuss in the following, the result and proof is analogous. 

Theorem 3.4 (Dissipation inequality). Let ðw; u; pÞ satisfy (15). Then, the Hamiltonian 
defined in (16) satisfies the power balance equation 

d
dt
Hðw; u; pÞ ¼ � hKp; pi þ hv; yi (18) 

In particular, the Hamiltonian satisfies the dissipation inequality: 

d
dt
Hðu; q; pÞ � hv; yi:

Proof. For v ¼ ½f ; g�T let ðw; u; p; yÞ satisfy (15) and (17). Then, 

d
dt
Hðu; q; pÞ ¼ hY _w;wi þ hA _u; ui þ hM _p; pi

¼ h� AuþD�pþ f ;wi þ hAw; ui � hDwþKp � g; pi
¼ � hKp; pi þ hv; yi;

where the last equality follows from hv; yi ¼ hf ;wi þ hg; pi.

Note that the pH structure also allows the operators M and Y to become singular, but 
still semi-definite. In particular, we immediately have the structure also in the (formal) 
limiting situation ρ€u ¼ 0. Furthermore, the pH-PDAE structure still holds if K is not self- 
adjoint, it suffices that the symmetric part of K is positive semi-definite. In addition, we 
immediately observe that the power balance equation (18) is still satisfied for a nonlinear 
operator K as discussed in Remark 2.1. 

Remark 3.5. Due to the inclusion of the equation Aw ¼ A _u, where we applied the 
operator A in order to obtain the skew-adjoint structure, the pH-PDAE (15) formally 
calls for _u 2 L2ðT;VÞ. Hence, this formulation is only valid for more regular right-hand 
sides f and g. For an alternative formulation, we use the fact that the square root A1=2 of 
A is well-defined, cf. [19, Ch. 1, § 3, Th. 3.35]). Moreover, A1=2 is self-adjoint and elliptic. 
Introducing the new variable eu ¼ A1=2u, and applying A� 1=2 to the second equation, we 
obtain 

Y 0 0
0 Id 0
0 0 M

2

4

3

5
_w
eu
_p

2

4

3

5 ¼
0 � A1=2 D�

A1=2 0 0
� D 0 � K

2

4

3

5
w
eu
p

2

4

3

5þ

Id 0
0 0
0 Id

2

4

3

5 f
g

� �

; (19a) 
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ey ¼ Id 0 0
0 0 Id

� � w
eu
p

2

4

3

5: (19b) 

The corresponding Hamiltonian reads 

eHðw;eu; pÞ ¼
1
2
ðhYw;wi þ heu;eui þ hMp; piÞ

and is thus equal to the original energy defined in (16). Further note that also the output 
coincides, i.e., ey ¼ y. In contrast to the formulation (15), however, the pH-PDAE (19) 
only requires the usual regularity assumptions, namely _u 2 L2ðT;HVÞ.

Remark 3.6. Also in the case of inhomogeneous Dirichlet boundary conditions, i.e., ûb�0 
or p̂b�0 in (1c) and (1d), we can obtain a pH formulation that explicitly encodes the 
boundary conditions. In more detail, following [45,46], we can use the trace-operator to 
write the boundary condition as an operator equation, which is then coupled to the 
original system via a Lagrange multiplier. To retain the pH structure, we have to choose 
a negative sign for the Lagrange multiplier and add the derivative of the boundary 
operator equation for the displacement u. From an DAE perspective, the latter corre-
sponds to an index reduction. Denoting the respective trace operators by Bu and Bp, and 
ub, pb defined analogously to f , g as functionals acting on appropriate test functions, the 
pH formulation (15) extends to 

Y 0 0 0 0
0 A 0 0 0
0 0 M 0 0
0 0 0 0 0
0 0 0 0 0

2

6
6
6
6
4

3

7
7
7
7
5

_w
_u
_p
_λu
_λp

2

6
6
6
6
4

3

7
7
7
7
5
¼

0 � A D� B�u 0
A 0 0 0 0
� D 0 � K 0 B�p
� Bu 0 0 0 0

0 0 � Bp 0 0

2

6
6
6
6
4

3

7
7
7
7
5

w
u
p
λu
λp

2

6
6
6
6
4

3

7
7
7
7
5
þ

f
0
g
_ub
pb

2

6
6
6
6
4

3

7
7
7
7
5
;by ¼

w
p
λu
λp

2

6
6
4

3

7
7
5:

With this choice, the additional terms for the boundary conditions enter the skew- 
symmetric operator matrix J . Moreover, the Dirichlet data acts as additional input thus 
allowing control via the boundary.

3.3. PH formulation of the quasi-static case

First, we observe that the quasi-static case, i.e., ρ€u ¼ 0, is included in the pH formulation 
(15), by setting Y ¼ 0. It is worth noting that this strategy also works for the correspond-
ing three-field formulation of poroelasticity, cf. [24]. This formulation considers a mixed 
(or partitioned) version of the operator K with the fluid flux (or Darcy velocity) as an 
additional variable.

Recall that the first-order formulation (15) results from introducing the derivative of u 
as an additional variable. If we directly start with the quasi-static case (4) and do not 
introduce a new variable for the derivative of u, then we can obtain another pH-PDAE 
formulation. We have already seen that one may eliminate the variable u, which leads to 
the parabolic equation (5). Also this has a pH structure but does not cover the full 
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information due to the missing displacement variable. To reveal the structure of the 
entire system, we consider a reformulation. Since K is invertible by assumption, we may 
introduce a new variable q via 

Kq ¼ DuþMp: (20) 

Assuming sufficient regularity of the given data, it is easy to see that the pairs ðu; pÞ and 
ðu; qÞ are equivalent in the sense that one can convert them into each other by 

u
q

� �

¼
Id 0
K� 1D K� 1M

� �
u
p

� �

;
u
p

� �

¼
Id 0

� M� 1D M� 1K

� �
u
q

� �

:

With this equivalence, we can write the quasi-static formulation (4) equivalently in terms 
of the new variable, as 

0 0
0 K

� �
_u
_q

� �

¼
� A � D�M� 1D D�M� 1K

KM� 1D � KM� 1K

� �
u
q

� �

þ
f
g

� �

: (21) 

The operator-matrix on the right-hand side is self-adjoint and negative semi-definite 
revealing that (21) is already in pH form. Note, however, that the operator KM� 1K

occurs on the right-hand side, which requires strong spatial regularity and is thus not 
favourable. Instead, we observe that the system matrix in (21) is a Schur complement, i.e., 
we have the identity 

� A 0 D�

0 0 � K

� D K � M

2

4

3

5
Id 0 0
0 Id 0

� M� 1D M� 1K Id

2

4

3

5

¼

� A � D�M� 1D D�M� 1K D�

KM� 1D � KM� 1K � K

0 0 � M

2

4

3

5:

Hence, if we combine (20) and (21) and rearrange the equations we obtain the extended 
system 

0 0 0
0 0 0
0 0 K

2

4

3

5
_u
_p
_q

2

4

3

5 ¼

0 D� 0
� D 0 K

0 � K 0

2

4

3

5 �

A 0 0
0 M 0
0 0 0

2

4

3

5

0

@

1

A
u
p
q

2

4

3

5þ

f
0
g

2

4

3

5: (22) 

We emphasize that this gives a pH-PDAE in the spirit of Definition 3.1 with 
Hamiltonian: 

bHðu; p; qÞ ¼
1
2
hKq; qi ¼

1
2
hMpþDu; qi: (23) 

This can be verified immediately by noting that the operator matrices on the left and 
the second on the right are self-adjoint and positive semi-definite. Furthermore, the first 
operator matrix on the right is skew-adjoint. Let us emphasize that the formulation (22) 
is not a pH-PDAE in the sense of our definition if K is not self-adjoint. 
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Remark 3.7. The pH-PDAE formulation (22) may also be obtained directly by adding the 
equation (20) to the quasi-static formulation (4) and using the time derivative of this 
equation to replace D _uþM _p by K _q.

3.4. PH formulation of the network case

In Section 2.3 we have seen that the multi-field network case can be formulated in the 
same way as the two-field model if the operators are adjusted accordingly. More 
precisely, we simply need to replace the operators K, M, and D by the operator matrices 
�KB, �M, and �D, respectively. By Assumption 2.4 we know that �KB is elliptic. As a result, 

the pH formulation of (7) is given by 

Y 0 0
0 A 0
0 0 �M

2

4

3

5
_w
_u
_p

2

4

3

5 ¼

0 � A �D
�

A 0 0
� �D 0 � �KB

2

4

3

5
w
u
p

2

4

3

5þ

f
0
g

2

4

3

5: (24) 

As before, we may reinterpret the right-hand sides as external inputs, leading to the power- 
conjugated output consisting of w and p. The corresponding Hamiltonian has the form 

Hðw; u; pÞ ¼
1
2
ðhYw;wi þ hAu; ui þ h �Mp;piÞ

¼
1
2
ðhYw;wi þ hAu; ui þ

Xm

i¼1
hMpi; piiÞ:

Finally, the pH formulation of the quasi-static network case immediately follows by 
setting Y ¼ 0.

3.5. DAE structure and index

A spatial discretization of the operator equations (15), (19), or (22), e.g., by the finite 
element method, yields a (finite-dimensional) pH-DAE. However, it is interesting to note 
that the DAE structure and, in particular, the differentiation index vary in the different 
formulations. Recall, see e.g. [47,48], that a constant coefficient DAE E _z ¼ Az þ k with 
a regular pair ðE;AÞ (i.e. detðλE � AÞ is not identically zero) has differentiation index 
ν ¼ 0 if E is invertible. It has differentiation index one if WTAV is invertible, where V is 
a matrix that spans the kernel of E and W is a matrix that spans the kernel of ET . 
Otherwise, it has differentiation index ν � 2.

The spatial discretization of (15) with discretization parameter h yields the pH-DAE 

MY 0 0
0 KA 0
0 0 MM

2

4

3

5
_wh
_uh
_ph

2

4

3

5 ¼

0 � KA DT

KA 0 0
� D 0 � KK

2

4

3

5
wh
uh
ph

2

4

3

5þ

fh
0
gh

2

4

3

5: (25) 
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Here, KA and KK denote the stiffness matrices corresponding to the operators A and K, 
respectively, and MY , MM are the mass matrices corresponding to Y and M. Since the 
finite element method is a Galerkin projection, we immediately observe that these 
matrices are symmetric. Under reasonable assumptions on the spatial discretization, 
the matrices are even positive definite (in the case ρ> 0).

If ρ> 0, then (25) is an implicit equation with nonsingular matrix on the left-hand side. 
Thus, it is a pH-DAE of differentiation-index ν ¼ 0. If ρ€u ¼ 0, then the operator Y and 
the corresponding mass matrix MY are zero, i.e., the space-discretized system (25) reads 

0 0 0
0 KA 0
0 0 MM

2

4

3

5
_wh
_uh
_ph

2

4

3

5 ¼

0 � KA DT

KA 0 0
� D 0 � KK

2

4

3

5
wh
uh
ph

2

4

3

5þ

Mu 0
0 0
0 Mp

2

4

3

5 vu;h
vp;h

� �

;

(26a) 

yu;h
yp;h

� �

¼
Mu 0 0
0 0 Mp

� � wh
uh
ph

2

4

3

5; (26b) 

where we have interpreted the external forcing as control variables and, as before, added 
the power-conjugated output equation. As before, the mass matrices Mu and Mp are 
assumed to be symmetric positive definite. Since the upper-left block in the matrix on the 
right-hand side of (26a) is zero, the pH-DAE cannot be of index ν ¼ 1. Multiplication of 
the second and third equation with K � 1

A and M� 1
M , rearranging the equations and 

variables details that (26a) is in Hessenberg form, see [47]. We immediately conclude 
that (26a) has differentiation index ν ¼ 2. The constraint equation KAuh ¼ DTph þ fh is 
thus complemented with the hidden constraint, i.e., the constraint that arises from 
a linear combination of the original equations and their time derivatives. In the present 
case, we obtain with (26a) the hidden constraint 

ðKA þ DTM� 1
MDÞwh þ DTM� 1

MKKph þ _fh ¼ DTM� 1
Mgh:

As a direct consequence, initial values w0
h and u0

h for wh and uh, respectively, have to 
satisfy the consistency conditions 

KAu0
h ¼ DTp0

h þ fhð0Þ;

ðKA þ DTM� 1
MDÞw0

h ¼ � DTM� 1
MKKp0

h �
_fhð0Þ þ DTM� 1

Mghð0Þ;

showing that it is sufficient to prescribe an initial value p0
h for ph. We emphasize that this 

is not specific to the discretized pH-DAE, but also applies to the pH-PDAE (15) with 
Y ¼ 0. In this case, the initial values w0 and u0 are given implicitly by 

Au0 ¼ D�p0 þ f ð0Þ; (27) 

ðA þ D�M� 1DÞw0 ¼ � D�M� 1Kp0 � _f ð0Þ þ D�M� 1gð0Þ: (28) 
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Remark 3.8. Although the semi-discrete pH-DAE (26) has differentiation index ν ¼ 2, 
the index can be reduced to ν ¼ 1 by output feedback. This is a standard procedure in 
DAE control to avoid impulsive solutions when the chosen input functions are not 
sufficiently smooth, see e.g. [49,50]. In more detail, consider a feedback 

vu;h
vp;h

� �

¼
F11 0
0 0

� �
yu;h
yp;h

� �

þ
~vu;h
~vp;h

� �

:

The resulting closed-loop system is given by 

0 0 0
0 KA 0
0 0 MM

2

4

3

5
_wh
_uh
_ph

2

4

3

5 ¼

MT
u F11Mu � KA DT

KA 0 0
� D 0 � KK

2

4

3

5
wh
uh
ph

2

4

3

5þ

Id 0
0 0
0 Id

2

4

3

5 ~vu;h
~vp;h

� �

; (29) 

showing that (29) has differentiation index ν ¼ 1, whenever F11 is nonsingular, and has 
pH structure, whenever the symmetric part of F11 is negative semi-definite.

If one does not introduce the new variable w, then it has been shown in [28] that the 
spatial discretization of the original quasi-static formulation (4) results in a system of 
differentiation index ν ¼ 1. We emphasize that the original quasi-static formulation (4) 
only encodes the consistency condition (27) for u but not the consistency condition (28) 
for w (respectively _u). 

Remark 3.9. If the inhomogeneity f is sufficiently smooth in time, then there is also another 
pH-PDAE like formulation. Going back to the original second-order model (3) and differ-
entiating the first equation with respect to time yields the third-order (in time) equation 

Yuð3Þ þ A _u � D� _p ¼ _f in V�; (30a) 

D _u þ M _p þ Kp ¼ g in Q�: (30b) 

This is a formulation where all coefficients are positive semi-definite, except for one 
which has a positive semi-definite symmetric part. This is the structure of the higher- 
order dissipative Hamiltonian systems is discussed in [51]. In principle, we could work 
directly with this formulation and do not transform to first order, but we will not discuss 
this formulation further here.

4. Interconnection of subsystems

It has been shown in [13], see also Section 3, that the (energy-preserving or dissipative) 
interconnection of pH-DAEs is again a pH-DAE. In the following, we show how the 
presented pH-PDAE formulations can be obtained via the interconnection of subsystems 
via a suitable output feedback relation.
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4.1. Interconnection in the two-field case

In the two-field case, we construct an interconnection of a hyperbolic (or elliptic) and 
a parabolic equation. We treat the two cases ρ€u�0 and ρ€u ¼ 0 together. First, consider 
the system 

Y€u ¼ � Auþ f ; (31) 

which, by going to the first-order formulation and adding an output equation, can be 
written as 

Y 0
0 A

� �
_w
_u

� �

¼
0 � A

A 0

� �
w
u

� �

þ
vu
0

� �

; yu ¼ Id 0½ �
w
u

� �

¼ w: (32) 

For the system in p we consider the (parabolic) system 

M _p ¼ � Kpþ vp; yp ¼ p: (33) 

Both systems have a pH structure in the spirit of Definition 3.1 with Hamiltonians 

Huðw; uÞ ¼
1
2
ðhYw;wi þ hAu; uiÞ and HpðpÞ ¼

1
2
hMp; pi: (34) 

Theorem 4.1. The pH-PDAE (15) is obtained from (32) and (33) via the output feedback 

vu
vp

� �

¼
0 D�

� D 0

� �
yu
yp

� �

þ
f
g

� �

:

The Hamiltonian (16) of the coupled system is the sum of the Hamiltonians in (34).

4.2. Interconnection for the alternative quasi-static case

If we are solely interested in the quasi-static case, i.e., ρ€u ¼ 0 and Y ¼ 0, then (31) 
reduces to the elliptic equation 

� Auþ vu ¼ 0: (35) 

In this case, we may choose the output as yu ¼ u. In terms of Definition 3.1, respectively, 
Lemma 3.2, we have R ¼ A, B ¼ Id, and zero operators otherwise. The associated 
Hamiltonian in this case is constant in time and we may for simplicity choose HuðuÞ ¼ 0.

To obtain the alternative pH formulation presented in Section 3.3, we consider for p 
the last two equations in (22), given by 

0 0
0 K

� �
_p
_q

� �

¼
0 K

� K 0

� �

�
M 0
0 0

� �� �
p
q

� �

þ
vp
vq

� �

; (36a) 

yp
yq

� �

¼
p
q

� �

(36b) 

with associated Hamiltonian Hpðp; qÞ ¼ 1
2hKq; qi. Choosing a suitable output feedback 

for vu, vp, vp, we recover (22) as stated in the following immediate result. 
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Theorem 4.2. The alternative pH formulation (22) for the quasi-static model (4) is 
obtained by the output feedback 

vu
vp
vq

2

4

3

5 ¼

0 D� 0
� D 0 0

0 0 0

2

4

3

5
yu
yp
yq

2

4

3

5þ

f
0
g

2

4

3

5:

The Hamiltonian (23) of the coupled system is the sum of the Hamiltonians of the 
subsystems.

4.3. Interconnection in the network case

Clearly, we obtain all the different pH-PDAE formulations similarly as in the two-field 
case, since the multi-field network structure is precisely the same as that of the two-field 
system, provided that Assumption 2.4 holds, i.e., we have small exchange rates. To 
perform the interconnection via output feedback, replace the parabolic equation (33) 
with 

M _pi ¼ � Kipi þ vpi ; ypi ¼ pi (37) 

for i ¼ 1; . . . ;m with associated Hamiltonians HiðpiÞ ¼
1
2hMpi; pii. Collecting the input 

and output variables in vp ¼ ½vp1 ; . . . ; vpm � and vp ¼ ½vp1 ; . . . ; vpm �, respectively, the feed-
back interconnection is – similar to Theorem 4.1 – given by 

vu
vp

� �

¼
0 �D

�

� �D Bskew � I

� �

þ
0 0
0 Bsym � I

� �� �
yu
yp

� �

þ
f
g

� �

:

Note that Assumption 2.4 ensures that the dissipation operator R remains positive semi- 
definite. In fact, Assumption 2.4 can be weakened in the sense that it is sufficient that the 
symmetric part Bsym of the exchange rate matrix B is small enough in the sense of positive 
semi-definite operators, cf. Lemma 2.5.

If the exchange rates are symmetric, i.e., B ¼ Bsym, then we can also use the alternative 
quasi-static pH formulation derived in Section 3.3. Since the exchange rates, encoded in 
the matrix B, then appear on the left-hand side in the pH formulation (22), the pH 
formulation cannot be obtained directly via feedback interconnection. Instead, we can 
first couple the pressure equations (37), then introduce the new variable q as in 
Section 3.3, and afterwards obtain the final form with the coupling from Theorem 4.2. 
An illustration of the two pH formulations for the quasi-static network case is presented 
in Figure 2.

5. Summary

We have studied Biot’s poroelasticity model from an energy-based perspective and 
introduced different pH formulations. Our operator matrices mimic the finite- 
dimensional definition of pH-DAEs such that a spatial discretization via finite elements 
yields a pH-DAE. To obtain the required properties, we have used the commonly 
omitted second-order term and performed a first-order reformulation. The quasi-static 
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pH formulation is then obtained by formally setting the second-order term zero, which 
does not affect the pH structure. The formulation as pH-PDAE is favourable because it 
automatically induces a dissipation inequality and is invariant under Galerkin projection, 
making our formulation amenable to structure-preserving discretization and model- 
order reduction. Besides, the pH formulation offers a system-theoretic interpretation of 
poroelastic network models. In particular, we have shown that the pH formulation of the 
network models can be obtained via output feedback interconnection of the different 
submodels with internal energies. We emphasize that such an interconnection is not 
directly possible with the quasi-static model typically studied in the literature, since the 
coupling of the subsystems requires the derivative of the displacement.

Figure 2. Illustration of different pH formulations via feedback interconnection for the quasi-static 
poroelastic network.
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