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Abstract

Large deviations for additive path functionals of stochastic processes have attracted significant
esearch interest, in particular in the context of stochastic particle systems and statistical physics.
fficient numerical ‘cloning’ algorithms have been developed to estimate the scaled cumulant generating

unction, based on importance sampling via cloning of rare event trajectories. So far, attempts to study
he convergence properties of these algorithms in continuous time have led to only partial results for
articular cases. Adapting previous results from the literature of particle filters and sequential Monte
arlo methods, we establish a first comprehensive and fully rigorous approach to bound systematic and

andom errors of cloning algorithms in continuous time. To this end we develop a method to compare
ifferent algorithms for particular classes of observables, based on the martingale characterization of
tochastic processes. Our results apply to a large class of jump processes on compact state space, and
o not involve any time discretization in contrast to previous approaches. This provides a robust and
igorous framework that can also be used to evaluate and improve the efficiency of algorithms.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
icense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cloning algorithms have been introduced to the theoretical physics literature [29,39] as
umerical methods to study large deviations of particle currents and other dynamic observables
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in stochastic particle systems. They combine importance sampling with a stochastic selection
mechanism which is used to evaluate numerically the scaled cumulant generating function for
time-additive path functionals of stochastic processes. Based on classical ideas of evolutionary
algorithms [1,32], a fixed size population of copies of the original system evolves in parallel,
subject to cloning or killing in such a way as to favour the realization of atypical trajectories
contributing to rare events. Various variants of the approach are now applied on a regular
basis to different systems and large deviation phenomena of interest [28,36,47], including also
current fluctuations of non-equilibrium lattice gas models [10,36,37,45], turbulent flows [40],
glassy dynamics [24,34,43,48], heat waves in climate models [49] and pressure of the edge-
triangle model [27]. Due to its widespread applications, the mathematical justification and
convergence properties of the algorithm have recently become a subject of research interest with
only partial progress. Formal approaches so far are based on a branching process interpretation
of the algorithm in discrete time [46], with limited and mostly numerical results in continuous
time [6,35,44,52].

In this paper, we provide a novel interpretation of cloning algorithms through
eynman–Kac models and their particle approximations (see [13,14,16,18] for comprehensive
eviews), which is itself an established approach to understanding sequential Monte Carlo
ethods and particle filtering. Previous results provide rigorous control on convergence

roperties and error bounds of particle filters and related algorithms, mostly for models in
iscrete time, beginning with the chain of research initiated by [12] with a recent survey
rovided in [14]. Fewer results address continuous-time dynamics, dating back to [11] in
he filtering context, with a Feynman–Kac-based treatment provided by [16] and references
herein; a survey of the filtering literature is provided by [3, Chapter 9]. In the current context,
articularly relevant recent works include [8,15,17,22,50]. This literature generally considers
iffusive dynamics and relies upon approximative time-discretizations of those dynamics.
dapting those results to the context of jump processes on locally compact state spaces, for
hich exact simulation from the dynamics is possible, we can establish the first rigorous

onvergence results for the cloning algorithm in continuous time including L p bounds on the
andom error and bounds on the systematic error. These bounds include the explicit dependence
n the clone size distribution, which is a key parameter of the cloning algorithm. The setting
f finite activity pure jump processes in which cloning algorithms are primarily employed
llows these algorithms to avoid time discretization by simulating exactly from the law of
he underlying process and allows the use of different approximating particle systems. Similar

ethods have been previously employed in the probabilistic rare event analysis literature in
oth discrete and continuous time, via explicit Feynman–Kac approximations, e.g. [7], and
plitting algorithms (see [5] and references therein); however, both the underlying processes
nd approximations considered are quite different to those for which cloning algorithms are
sually employed. Practically, an important contribution of our approach is a systematic method
o compare different cloning algorithms and particle approximations for particular classes of
bservables of interest, based on the martingale characterization of continuous-time stochastic
rocesses.

This framework provides a novel perspective on the underlying structure of cloning algo-
ithms in terms of McKean representations [14, Section 1.2.2], and can be used to systemati-
ally explore several degrees of freedom in the design of algorithms that can be used to improve
erformance, as illustrated in [2] for current large deviations of the inclusion process [10].
ere we focus on presenting full rigorous results obtained by applying this approach to a

ersion of the classical cloning algorithm in continuous time [39]. In contrast to previous work
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in the context of cloning algorithms [35,46], our mathematical approach does not require a
time discretization and works in the very general setting of a pure jump Markov process on a
locally compact state space. This covers in particular any finite-state Markov chain or stochastic
particle systems on finite lattices.

The paper is organized as follows. In Section 2 we introduce general Feynman–Kac models
ssociated to pure jump Markov processes and show that they can be interpreted as the law
f a non-linear Markov process, known as a McKean interpretation [13]. In Section 3 we
ntroduce particle approximations for Feynman–Kac models, including classical mean-field
ersions and cloning algorithms. We provide generalized conditions for convergence as our
ain result (proved in Section 4), and use this to establish rigorous convergence bounds for

loning algorithms. In Section 5 we introduce large deviations and scaled cumulant generating
unctions (SCGF) of additive observables for pure jump Markov processes and discuss how
he results presented in Section 3 can be applied to estimate the SCGF. We conclude with a
hort discussion in Section 6.

. Mathematical setting

.1. Dynamics and Feynman–Kac models

We consider a continuous-time homogeneous Feller process
(
X t : t ≥ 0

)
taking values on a

ocally compact Polish state space (E,B(E)), where B(E) is the Borel field on E . We denote
y M(E) and P(E) the sets of measures and probability measures, respectively, on (E,B(E)).
P(t) : t ≥ 0

)
describes the semigroup associated with X t , which is considered as acting on

the Banach space Cb(E) of bounded continuous functions f : E → R, endowed with the
upremum norm

∥ f ∥ = sup
x∈E

| f (x)|.

e use the standard notation P and E for the distribution and the corresponding expectation
n the usual path space

Ω :=
{
ω : [0, ∞) → E right continuous with left limits

}
.

he measurable structure on Ω is given by the Borel σ -algebra induced by the Skorokhod
opology (see [4], Chapter 3). If we want to emphasize a particular initial condition x ∈ E or
istribution µ ∈ P(E) of the process we write Px and Ex , or Pµ and Eµ, respectively. The
emigroup P(t) acts on bounded continuous functions f and probability measures µ ∈ P(E)
ia

P(t) f (x) = Ex
[

f (X t )
]

, µP(t) ( f ) :=

∫
E

P(t) f (x)µ(dx) = Eµ

[
f (X t )

]
,

here the latter provides a weak characterization of the distribution µP(t) at time t ≥ 0. Here
nd in the following we use the common notation µ( f ) for expectations of f ∈ Cb(E) w.r.t.
easures µ on E .
Using the Hille–Yosida Theorem (see e.g. [41], Chapter 3), it is possible to associate to the

bove Feller process an infinitesimal generator L acting on a dense subset D ⊂ Cb(E) so that
d
dt

P(t) f = L
(
P(t) f

)
= P(t)L( f ),

or all f ∈ D and t ≥ 0.
119
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In this work, we restrict ourselves to nonexplosive pure jump Feller processes. We denote
y λ(x) the escape rate from state x ∈ E and the target state is chosen with the probability
ernel p(x, dy), so that the overall transition rate is

W (x, dy) := λ(x) · p(x, dy) (1)

or (x, y) ∈ E2. We assume λ : E → [0, ∞) to be a strictly positive, bounded and continuous
unction and x ↦→ p(x, A) to be a continuous function for every A ∈ B(E). Under these
ssumptions, the pure jump process possesses an infinitesimal generator [23, p. 162] with full
omain D = Cb(E) given by

L( f )(x) =

∫
E

W (x, dy)[ f (y) − f (x)], ∀ f ∈ Cb(E), x ∈ E .

Along with jump processes on continuous spaces such as continuous-time random walks on
Rd (see e.g. [38]), this setting includes in particular any finite-state continuous-time Markov
chain. Typical compact examples we have in mind are given by stochastic particle systems on
E = SΛ, with finite local state space S and lattice Λ which can be finite or countably infinite.
These include spin systems with S = {−1, 1} or exclusion processes with S = {0, 1}, in

hich particles can jump only onto empty sites. Stochastic particle systems such as zero-range
rocesses with S = N0 are locally compact as long as the lattice Λ is finite (see e.g. [42] for
etails).

We will study Feynman–Kac models associated to the jump process by tilting its generator
ith a diagonal part or potential, which arise in many applications including dynamic large
eviations, as explained in detail in Section 5.

emma 2.1. Consider a potential function V ∈ Cb(E) and the tilted generator

LV ( f )(x) := L( f )(x) + V(x) f (x) defined for all f ∈ Cb(E) . (2)

hen the family of operators
(
PV (t) : t ≥ 0

)
with PV

: Cb(E) → Cb(E), defined as the
olution to the backward equation

d
dt

PV (t) f = LV(
PV (t) f

)
with PV (0) f = f (3)

or all f ∈ Cb(E), forms a non-conservative semigroup, the so-called Feynman–Kac semigroup,
nd LV is its infinitesimal generator in the sense of the Hille–Yosida Theorem.

Proof. See [41], Theorem 3.47. □

In order to control the asymptotic behaviour of PV (t), we make the following assumption,
hich closely resembles [50, Assumption 1], on asymptotic stability.

ssumption 2.2 (Asymptotic Stability). The spectrum of LV
= L + V (2) is bounded by a

rincipal eigenvalue λ0. Moreover, λ0 is associated to a positive eigenfunction r ∈ Cb(E) and
n eigenmeasure µ∞ ∈ P(E). Finally, there exist constants α > 0 and ρ ∈ (0, 1) such thate−tλ0 PV (t) f (·) − µ∞( f )

 ≤ ∥ f ∥ · αρ t , (4)

or every t ≥ 0 and f ∈ Cb(E).

Asymptotic stability is for example guaranteed for all irreducible, finite-state continu-

us-time Markov chains which necessarily have a spectral gap. For alternative sufficient
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conditions implying asymptotic stability in a more general context including continuous state
spaces, see Appendix.

We introduce the measures νt,µ0 for any general initial distribution µ0 ∈ P(E) and t ≥ 0,
efined by

νt,µ0 ( f ) := µ0
(
PV (t) f

)
, (5)

or any f ∈ Cb(E). In the literature [13], νt is known as the unnormalized t-marginal
eynman–Kac measure. Applying Lemma 2.1, we can see that νt solves the evolution equation

d
dt

νt,µ0 ( f ) = νt,µ0

(
LV ( f )

)
= νt,µ0

(
L( f ) + V · f

)
, (6)

or any f ∈ Cb(E), t ≥ 0 and µ0 ∈ P(E). The measures with which one can most naturally
ssociate a process are the corresponding normalized t-marginal Feynman–Kac measures in
(E),

µt,µ0 ( f ) :=
νt,µ0 ( f )
νt,µ0 (1)

, (7)

efined for any t ≥ 0 and f ∈ Cb(E).
Observe that, as a direct consequence of asymptotic stability (Assumption 2.2), there exist

onstants α̃ ≥ 0 and 0 < ρ < 1 such that for any f ∈ Cb(E),⏐⏐µt,µ0 ( f ) − µ∞( f )
⏐⏐ ≤ ∥ f ∥ · α̃ρ t , (8)

or any t ≥ 0 and initial distribution µ0 ∈ P(E). In particular µt,µ0 converges weakly to µ∞,
as t → ∞. Indeed, by definition of µt,µ0 (7) and then by asymptotic stability (Assumption 2.2),

µ∞( f ) − ∥ f ∥ α · ρ t

1 + α · ρ t
≤ µt,µ0 ( f ) =

µ0
(
e−tλ0 PV (t) f

)
µ0

(
e−tλ0 PV (t)1

) ≤
µ∞( f ) + ∥ f ∥ α · ρ t

1 − α · ρ t
, (9)

or any t > − log α/ log ρ and for some constant α > 0. This gives the bound (8) for any
large enough. Increasing α̃ accordingly to ensure that the bound holds also for small t , we
btain (8) for any t ≥ 0.

For simplicity, in the rest of this article the initial distribution µ0 is fixed and we write µt

resp. νt ) instead of µt,µ0 (resp. νt,µ0 ).

.2. McKean interpretations

Now, we want to outline the evolution of the time-marginal distribution µt in terms of
nteracting jump-type infinitesimal generators. The content presented in the rest of this section
s based on the works of Del Moral and Miclo [13,14,16]. In this established framework it is
ossible to define generic Markov processes with time marginals µt and then use Monte Carlo

sampling techniques to approximate those marginals.

Lemma 2.3. For every f ∈ Cb(E) and t ≥ 0, the normalized t-marginal µt (7) solves the
non-linear evolution equation

d
dt

µt ( f ) = µt
(
L( f )

)
+ µt (V f ) − µt ( f ) · µt (V). (10)
121
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Proof. Using the evolution equation (6) of νt , we see that
d
dt

µt ( f ) =
d
dt

νt ( f )
νt (1)

=
1

νt (1)
· νt

(
L( f ) + V · f

)
−

νt ( f )
νt (1)2 νt

(
L(1) + V

)
= µt

(
L( f )

)
+ µt (V f ) − µt ( f ) · µt (V) . □

The evolution equation (10) results from the unique decomposition of the non-conservative
enerator L + V into a conservative and a diagonal part given by the potential V . The latter,

together with the normalization of νt , leads to the nonlinear second part in (10) which we want
to rewrite to be in the form of another infinitesimal generator, that we denote by L̃µt . Since
(10) is non-linear in µt , this depends itself on the current distribution such that

µ
(
L̃µ( f )

)
= µ(V f ) − µ( f ) · µ(V) , (11)

for every µ ∈ P(E) and f ∈ Cb(E). The choice of the non-linear generator L̃µ is not unique,
leading to various representations of the form

L̃µ( f )(x) =

∫
E

W̃ (x, y)
(

f (y) − f (x)
)
µ(dy) , (12)

where W̃ (x, y)µ(dy) is the overall transition kernel of L̃µ and depends on the current
distribution µ.

Lemma 2.4 (Sufficient Conditions). An infinitesimal generator in the form (12) satisfies
condition (11) if and only if

µ
(
W̃ (·, x) − W̃ (x, ·)

)
= V(x) − µ(V) ,

for all µ ∈ P(E) and x ∈ E. In particular, a sufficient condition on L̃µ (12) for (11) to hold
is

W̃ (y, x) − W̃ (x, y) = V(x) − V(y) ,

for all x, y ∈ E.

Proof. It is enough to observe that

µ
(
L̃µ( f )

)
=

∫
E2

W̃ (x, y)
(

f (y) − f (x)
)
µ(dy)µ(dx)

=

∫
E2

(
W̃ (y, x) − W̃ (x, y)

)
f (x)µ(dy)µ(dx) . □

Combining L̃µ with the linear part L of (10) into a so-called McKean generator on Cb(E),

Lµ := L + L̃µ for all µ ∈ P(E) , (13)

he evolution equation (10) can be written as
d
dt

µt ( f ) = µt
(
Lµt ( f )

)
,

or every f ∈ Cb(E) and t ≥ 0. Therefore, the normalized Feynman–Kac marginal µt can be
nterpreted as the law of a Markov process

(
X t : t ≥ 0

)
on E , associated to the family

f generators
(
L : t ≥ 0

)
. This process is also known as a McKean representation of
µt
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the process associated to the Feynman–Kac measure µt , and it is non-linear and in particular
time-inhomogeneous. This can be formulated using the propagator

Θt,T f (x) :=
PV (T − t) f (x)
µt

(
PV (T − t)1

) such that µT ( f ) = µt (Θt,T f ) (14)

or all 0 ≤ t ≤ T , which follows directly from the definition of µt (7) and the semigroup
haracterizing the time evolution for νt (3).

While the time evolution of µt is uniquely determined by (10) and therefore independent of
he choice of (13), Lemma 2.4 leads to various different McKean representations of the form
12) (see e.g. [2,50]), that can be characterized by the operator W̃ . One common choice related
o algorithms in [29,39] is

W̃c(x, y) =
(
V(x) − c

)−
+

(
V(y) − c

)+
, (15)

here c ∈ R is an arbitrary constant, and we use the standard notation a+
= max{0, a} and

−
= max{0, −a} for positive and negative part of a ∈ R.
One other possible representation of (12) we want to mention explicitly here is given by

W̃ (x, y) =
(
V(y) − V(x)

)+
. (16)

his corresponds to a pure jump process on E in which every jump strictly increases the
alue of the potential V in contrast to the previous representation (15). We will see in the next
ection that V can be interpreted as a fitness potential for the overall process. Further McKean
epresentations of (10) are discussed in [2], here we focus on cloning algorithms which are
ased on (15).

. Interacting particle approximations

Independent of the particular representation, the rates of the McKean process (X t : t ≥ 0)
epend on the distribution µt itself, which is in general not known. A standard approach is
o sample such processes through particle approximations [18], which involve running, in
arallel, N copies or clones ξt := (ξ 1

t , . . . , ξ N
t ) ∈ E N of the process (called particles), and

hen approximating µt by the empirical distribution m(ξt ) of the realizations. For any x ∈ E N

the latter is defined as

m(x)(dy) :=
1
N

N∑
i=1

δxi (dy) ∈ P(E). (17)

We write L
N

for the infinitesimal generator of an N -particle system ξt and also call this an
PS generator, and denote the associated empirical distribution as

µN
t (·) := m(ξt )(·). (18)

e denote by

Γ
L N (γ, ϕ) := L

N
(γ · ϕ) − γ · L

N
(ϕ) − ϕ · L

N
(γ ) , γ, ϕ ∈ Cb(E N ) ,

the standard carre-du-champ operator associated to the generator L
N

.
´
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3.1. A general convergence result

The full dynamics can be set up in various different ways such that µN
t → µt converges

n an appropriate sense as N → ∞ for any t ≥ 0. Theoretical convergence results can be
btained under the following assumptions, which are fulfilled by standard mean field particle
pproximations (as shown in Section 3.2) and cloning algorithms (Section 3.3).

ssumption 3.1. Given a family of McKean generators
(
Lµ

)
µ∈P(E) (13) on Cb(E), we assume

hat the sequence of particle approximations (ξt : t ≥ 0) with generators (L
N

)N∈N on Cb(E N )
atisfies

L
N

(F)(x) = m(x)
(
Lm(·)( f )

)
, (19a)

Γ
L N (F, F)(x) =

1
N

m(x)
(
Gm(·)( f, f )

)
+ ∆N (x, f ) , (19b)

for mean-field observables F ∈ Cb(E N ) of the form F(x) = m(x)( f ), f ∈ Cb(E). Here
N (x, f ) is a function of x , and N , such that there exists a constant C > 0 (independent

f N , f ) with

∥∆N ( · , f )∥ ≤ C
∥ f ∥

2

N 2 ,

or any f ∈ Cb(E) and N ∈ N.
(
Gµ

)
µ∈P(E) is a family of bilinear operators Gµ : Cb(E) ×

b(E) → Cb(E) independent of the population size N , such that

sup
µ∈P(E)

sup
∥ f ∥≤1

∥Gµ( f, f )∥ < ∞ .

urthermore, we assume there exists a constant K < ∞ (independent of N ), such that for all
N ∈ N, almost surely,

sup
t≥0

⏐⏐{i ∈ 1, . . . , N : ξ i
t ̸= ξ i

t−

}⏐⏐ ≤ K . (19c)

or the initial condition of the particle approximation we assume that

ξ 1
0 , . . . , ξ N

0 are i.i.d.r.v’s with distribution µ0 . (19d)

emark. Test functions of the form

F(x) = m(x)( f ) =
1
N

N∑
i=1

f (xi )

describe mean-field observables averaged over the particle ensemble which are generally of
most interest, e.g. for the estimator (79) of the SCGF it is sufficient to consider such functions,
as shown in Section 5.2. In general the goal is to approximate µt ( f ) for a given f ∈ C(E), so
t is natural to set up the auxiliary particle approximation in a permutation invariant way and
se mean-field observables.

To better understand the above assumptions, recall that the carré du champ of an interacting
article system is a quadratic operator associated to the fluctuations of the process, whereas the
enerator determines the expected behaviour of the observables F(ξt ). Thus, Assumption 3.1
mplies that trajectories of mean-field observables in a particle approximation coincide in
xpectation with average trajectories of the McKean representation they are based on (19a),
124
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and concentrate on their expectation with diverging N (19b). We include the operators Gµ

xplicitly in (19b), because it allows the condition to be stated in a convenient form and we
nticipate it being useful in further analysis. Condition (19c) assures that at any given time only
bounded number of particles can change their state, which is a mild technical assumption,

ecessary to allow the application of Lemma 4.1 in the proof of the L p error estimates.

heorem 3.2. Consider a sequence of particle approximations satisfying Assumption 3.1 with
mpirical distributions µN

t (18). Under Assumption 2.2, for every p ≥ 2 there exists a constant
p > 0 independent of N and T such that

sup
T ≥0

E
[(

µN
T ( f ) − µT ( f )

)p
]1/p

≤
cp∥ f ∥

N 1/2 , (20)

or any f ∈ Cb(E). Furthermore, there exists a constant c′ > 0 independent of N and T such
hat

sup
T ≥0

⏐⏐E [
µN

T ( f )
]
− µT ( f )

⏐⏐ ≤
c′

∥ f ∥

N
, (21)

or any f ∈ Cb(E) and N ∈ N large enough.

Remark. The constants cp and c′ depend on the Feynman–Kac model of interest, on the choice
of the McKean model and on the considered interacting particle approximation.

The proof, presented in Section 4, is an adaptation of the results in [50] and makes use of
the propagator (14) of µt and the martingale characterization of (ξt : t ≥ 0).

emark. Observe that, by Markov’s inequality, Theorem 3.2 implies

P
(⏐⏐µN

t ( f ) − µt ( f )
⏐⏐ ≥ ε

)
≤

cp
p · ∥ f ∥

p

ε p · N p/2 ,

or every ε, t > 0, f ∈ Cb(E), N ≥ K and p ≥ 2, where cp > 0 does not depend on N . In
particular, considering p > 2, we can see that

µN
t ( f ) → µt ( f ) a.s. (22)

as N → ∞, for any f ∈ Cb(E), by a Borel–Cantelli argument. The existence of a countable
determining class allows this to be further strengthened to the almost sure convergence of µN

t
to µt in the weak topology (see, for example, [51, Theorem 4]).

It is important to clarify that the estimators of the Feynman–Kac distribution µt given
by the empirical measures µN

t usually have a bias, i.e. E[µN
t ( f )] ̸= µt ( f ) for f ∈ Cb(E),

which vanishes only asymptotically, as illustrated in Theorem 3.2. This arises from the
non-linear time evolution of µt . However, it is straightforward to derive unbiased estimators
of the unnormalized measures νt (5), as shown by the following result.

Proposition 3.3 (Unbiased Estimators). Consider a sequence of particle approximations
satisfying (19a) and initial condition (19d), with empirical distributions µN

t (18). Then, the
unnormalized empirical measure

νN
t ( f ) := νN

t (1)µN
t ( f ) with νN

t (1) := exp
(∫ t

µN
s (V)ds

)
,

0
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is an unbiased estimator of the unnormalized t-marginal νt (5), i.e.

E
[
νN

t ( f )
]

= νt ( f ) for all t ≥ 0 and N ≥ 1 , (23)

or any f ∈ Cb(E).

roof. First observe that E
[
νN

0 ( f )
]

= ν0( f ). Indeed, νN
0 ( f ) = µN

0 ( f ) is the average of N i.i.d.
andom variables with law f#µ0, and µ0 corresponds to the initial distribution of νt = νt,µ0

5).
Note that E

[
νN

t ( f )
]

satisfies the evolution equation

d
dt

E
[
νN

t ( f )
]

= E
[
νN

t ( f )µN
t (V) + νN

t (1)L
N
µN

t ( f )
]

. (24)

oreover, by assumption (19a) and using the characterization of Lµ (11)–(13), we have

L
N
µN

t ( f ) = µN
t (L f ) + µN

t (V f ) − µN
t (V) · µN

t ( f ) .

Inserting into (24), this simplifies to

d
dt

E
[
νN

t ( f )
]

= E
[
νN

t (L f ) + νN
t (V f )

]
.

ince L + V also generates the time evolution of νt ( f ) (6), a simple Gronwall argument with[
νN

0 ( f )
]

= ν0( f ) gives (23). □

A generic version of interacting particle systems, directly related to the above McKean
epresentations has been studied in the applied probability literature in great detail [18,50],
roviding quantitative control on error bounds for convergence. After reviewing those results
n the next subsection, we present a different approach taken in the theoretical physics literature
nder the name of cloning algorithms [28,29], which provides some computational advantages
ut lacks general rigorous error control so far [35,46].

.2. Mean field particle approximation

The most basic particle approximation is simply to run the McKean dynamics in parallel
n each of the particles, replacing the distribution µt by the empirical measure. Formally, the
ean field particle model (ξt : t ≥ 0) with ξt = (ξ i

t : i = 1, . . . , N ) associated to a McKean
enerator Lµt (13), is a Markov process on E N with homogeneous infinitesimal generator L

N

efined by

L
N

(F)(x1, . . . , x N ) :=

N∑
i=1

L(i)
m(x)(F)(x1, . . . , x i , . . . , x N ), (25)

for any F ∈ Cb(E N ). Here L(i)
m(x) denotes the McKean generator Lm(x) (13) acting on the

unction x i
↦→ F(x1, . . . , x i , . . . , x N ), where the dependence on µ has been replaced by the

mpirical distribution m(x).
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In analogy to the decomposition Lµ = L+ L̃µ in (13), the generator (25) can be decomposed
s L

N
= L N

+ L̃ N with

L N (F)(x) :=

N∑
i=1

L(i)(F)(x) , (26)

L̃ N (F)(x) :=

N∑
i=1

L̃(i)
m(x)(F)(x) , (27)

here L(i) and L̃(i)
m(x) stand respectively for the operators L and L̃m(x) acting on the function

x i
↦→ F(x), i.e. only on particle i .
Moreover, using representation (12) for L̃µ, we can write

L̃(i)
m(x)(F)(x) =

1
N

N∑
j=1

W̃ (xi , x j )
(
F(x i,x j ) − F(x)

)
, (28)

ith x i,y
:= (x1, . . . , xi−1, y, xi+1, . . . , xN ), which introduces an interaction between the

articles. In this decomposition, (26) generates the so-called mutation dynamics, where the
articles evolve independently under the dynamics given by the infinitesimal generator L
f the original process, whereas (27) generates the selection dynamics, which leads to
ean-field interactions between particles. With (28) the state of particle i gets replaced by

hat of particle j with rate 1
N W̃ (xi , x j ). The total selection rate in the particle approximation

s 1
N

∑N
i, j=1 W̃ (xi , x j ), and depends on the McKean representation, in particular the choice of

L̃µ in (12).
From general practical experience it is favourable to minimize the total selection rate in order

to improve the estimator’s asymptotic variance; it is widely understood in the SMC literature
that eliminating unnecessary selection events can significantly improve estimator variances,
see, for example, [13, Section 7.2.1, 7.4.2] and [26]. For mean-field particle approximations
this suggests that (16) is preferable to (15) since

W̃ (x, y) =
(
V(y) − V(x)

)+
≤ W̃c(x, y) =

(
V(x) − c

)−
+

(
V(y) − c

)+

for all x, y ∈ E and c ∈ R. In view of Lemma 2.4, minimizing the total selection rate
pertains to maximizing

∑N
i=1 V(xi ), and V can be interpreted as a fitness function. With

(16) every selection event therefore increases the fitness of the particle ensemble, which is
not necessarily the case with (15), and there are even more optimal choices than (16) in
that sense as discussed in [2].1 On the other hand, depending on the particular application,
implementing particle approximations with lower total selection rate could be computationally
more expensive, leading to a trade-off in lower values for N to be accessible in practice. This
is discussed in [2] for a particular example, and is not the subject of this paper.

1 As a side remark, the mutation part of the McKean dynamics (which is fixed for mean-field particle
approximations by (26)), can naturally also decrease the fitness of the ensemble.
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In order to motivate the choice of the cloning algorithm in the next subsection which is
ased on the selection rates (15), we note that one can write (27) as

L̃ N (F)(x) =

N∑
i=1

(
V(xi ) − c

)− 1
N

N∑
j=1

(
F(x i,x j ) − F(x)

)
+

N∑
i=1

(
V(xi ) − c

)+ 1
N

N∑
j=1

(
F(x j,xi ) − F(x)

)
, (29)

sing a change of summation indices in the second term. With the above discussion this can be
nterpreted as follows: If particle i is less fit than level c it is killed and replaced by a uniformly
hosen particle j , and if it is fitter than c it cloned, replacing a uniformly chosen particle j .

Observe that, by definition of L
N

(25), for any function F on E N of the form F(x) =

m(x)( f ), with f ∈ Cb(E), we have that

L
N

(F)(x) = m(x)
(
Lm(x)( f )

)
, (30)

Γ
L N (F, F)(x) =

1
N

m(x)
(
ΓLm(x)

( f, f )
)

, (31)

hus conditions (19a)–(19b) are satisfied.
Analogous relations hold also for the individual mutation and cloning parts of the generator.

ince generators are linear, the identity (30) is immediate. The carré du champ (31) is
uadratic in F , but off-diagonal terms in the corresponding double sum turn out to vanish
n a straightforward computation, leading to the additional factor 1/N . Furthermore, by
onstruction, for almost every realization ξt , t > 0, of the mean field particle approximation,
here exists at most one particle i such that ξ i

t ̸= ξ i
t−, thus condition (19c) is satisfied with

K = 1. Therefore, Theorem 3.2 holds and provides L p-error and bias estimates of order 1/
√

N
nd 1/N respectively, in accordance with already established results, e.g. in [14,18,50].

3.3. The cloning algorithm

Cloning algorithms have been proposed in the theoretical physics literature [29,39] for
evaluating large deviation functions associated to Markov processes similar to the mean field
system (25), using the same mutation dynamics. While selection and mutation events are
independent in the latter due to the additive structure of L

N
in (26) and (27), in cloning

lgorithms both are combined to reduce computational cost. We focus the exposition on a
ariant of the algorithm proposed in [39], but other continuous-time versions can be analysed
nalogously. This cloning algorithm is constructed from the McKean model Lµ (13) with
election rates W̃c(x, y) =

(
V(x) − c

)−
+

(
V(y) − c

)+ as in (15), and we denote the associated
McKean generator by

Lµ,c( f )(x) := L( f )(x) +

∫
E

W̃c(x, y)
(

f (y) − f (x)
)
µ(dy) . (32)

e will use in particular the killing/cloning interpretation introduced in (29). We recall that the
verall escape rate and probability kernel of the original dynamics L are denoted respectively
y λ(x) and p(x, dy).
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The infinitesimal description of the cloning algorithm as a continuous-time Markov process
n the state space E N is given by the generator

L
N
c (F)(x) =

N∑
i=1

λ(xi )
∫

E
p(xi , dy)

∑
A∈N

πxi (A) ·
(
F(x A,xi ; i,y) − F(x)

)
+

N∑
i=1

(
V(xi ) − c

)− 1
N

N∑
j=1

(
F(x i,x j ) − F(x)

)
, (33)

for any F ∈ Cb(E N ) and x ∈ E . Here N is the set of all subsets of N particle indices, x A,w

enotes the vector (z1, . . . , zN ) ∈ E N , with

z j :=

{
x j j ̸∈ A
w j ∈ A,

nd, similarly, x A,w; i,y denotes the vector (z1, . . . , zN ) ∈ E N with

z j :=

⎧⎪⎨⎪⎩
x j j ̸∈ A, j ̸= i
w j ∈ A, j ̸= i
y j = i,

or any w, y ∈ E . Cloning events are now coupled with mutation, and if V(xi ) > c, a
on-empty set A of particles is chosen at random from the ensemble with probability πxi (A)
nd every particle j ∈ A is replaced by a clone of i , before particle i mutates to a new state

y ∈ E . If V(xi ) ≤ c we set πxi (A) = δA,∅, so that no cloning occurs. Further properties of the
loning distribution πx (·), which is the main distinctive feature of this algorithm, are discussed
elow. The killing part in the second line runs independently and remains unchanged from
29). The algorithm is often applied in situations with V(x) ≥ c for all x ∈ E (in particular
lso with c = 0), leaving cloning coupled with mutation as the only selection events.

In order to simplify the presentation, we make some further assumptions on πx (A), which
re all satisfied by common choices in the theoretical physics literature. The probability of
hoosing a set A depends only on its size |A| and not on its elements, i.e. for any x ∈ E

πx (A) = πx,|A|

/(
N
|A|

)
with πx,0, . . . , πx,N such that

N∑
n=0

πx,n = 1

and πx,n = δn,0 if V(x) ≤ c . (34)

enote the mean and second moment of this distribution by

M(x) :=

N∑
n=1

nπx,n, Q(x) :=

N∑
n=1

n2πx,n. (35)

f course, πx,. and its moments also depend on N and c, which we omit in the notation
or simplicity. In order to ensure that the third condition in Assumption 3.1, namely (19c), is
atisfied, we assume that the support of πx,. is uniformly bounded in N , i.e.

there exists K > 0 such that πx,k = 0 for all k > K , x ∈ E . (36)

ote that this implies that also M(x) and Q(x) are uniformly bounded, so we take M, Q ∈

b(E). We further assume N ≥ K , i.e. N is large enough so that the process (33) is well
efined.
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The most common choice in the physics literature (see, e.g., the recent summary in [47])
or the distribution πx,. is

πx,n =

⎧⎪⎨⎪⎩
M(x) − ⌊M(x)⌋ n = ⌊M(x)⌋ + 1,

⌊M(x)⌋ + 1 − M(x) n = ⌊M(x)⌋,
0 otherwise.

(37)

his corresponds to a binary distribution on the two integers nearest to the prescribed mean,
nd minimizes the second moment Q of the distribution for a given mean. Note that if M(x)
s an integer, πx,n = δn,M(x) concentrates, which includes the case M(x) = 0.

The next two results assure respectively that condition (19a) and condition (19b) in
ssumption 3.1 are satisfied for the cloning algorithm, so we can apply Theorem 3.2. The
nly condition is to choose M(x) such that each particle i produces on average

(
V(xi ) − c

)+

lones per unit time, in accordance with the second term in (29).

roposition 3.4. Consider the cloning generator L
N
c (33) with πx (A) as in (34) and (36),

uch that the mean of the cloning size (35) is

M(x) =

(
V(x) − c

)+

λ(x)
≥ 0 for all x ∈ E , (38)

nd supx∈E M(x) < ∞. Then, for any test function of the form F(x) = m(x)( f ), with
f ∈ Cb(E) and N large enough, we get

L
N
c F(x) = m(x)

(
Lm(x),c( f )

)
,

here Lm(x),c is the McKean generator given in (32).

emark. Note that supx∈E M(x) < ∞ is essential for (36) and (19c), and a simple sufficient
ondition is for the escape rates to be uniformly bounded below, i.e. infx∈E λ(x) > 0.

roof. We start by considering the first term in the expression of L
N
c (33). Observe that with

F(x) = m(x)( f ),

F(x A,xi ; i,y) − F(x) =
1
N

(
f (y) − f (xi )

)
+

1
N

∑
j∈A

(
f (xi ) − f (x j )

)
=

(
F(x i,y) − F(x)

)
+

(
F(x A,xi ) − F(x)

)
. (39)

hus, we can write∫
y∈E

p(xi , dy)
∑
A∈N

πxi (A)
(
F(x A,xi ; i,y) − F(x)

)
=

∫
y∈E

p(xi , dy)
∑
A∈N

πxi (A)
((

F(x i,y) − F(x)
)
+

(
F(x A,xi ) − F(x)

))
=

∫
E

p(xi , dy)
(
F(x i,y) − F(x)

)
+

∑
A∈N

πxi (A)
(
F(x A,xi ) − F(x)

)
.

oreover, by (34), we have that, for any j ∈ {1, . . . , N },∑
πxi (A) =

N∑ πxi ,n(N) ·

(
N − 1
n − 1

)
=

M(xi )
N

. (40)

A∈N | j∈A n=1 n
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Therefore,∑
A∈N

πxi (A)
(
F(x A,xi ) − F(x)

)
=

1
N

N∑
j=1

M(xi )
(

f (xi ) − f (x j )
)

=
1
N

N∑
j=1

(
V(xi ) − c

)+

λ(xi )

(
f (xi ) − f (x j )

)
. (41)

hus, (33) can be rewritten as

L
N
c (F)(x) =

1
N

N∑
i=1

λ(xi )
∫

E
p(xi , dy)

(
f (y) − f (xi )

)
+

1
N 2

N∑
i, j=1

((
V(x j ) − c

)+
+

(
V(xi ) − c

)−
)(

f (x j ) − f (xi )
)

= m(x)
(
Lm(x),c( f )

)
y changing summation variables in the cloning term and using (32). □

roposition 3.5. Let L
N
c be a cloning generator satisfying the conditions in Proposition 3.4.

hen, for any test function of the form F(x) = m(x)( f ), with f ∈ Cb(E),

Γ
L N

c
(F, F)(x) =

1
N

m(x)
(

Gm(·)( f, f )
)

+ ∆N (x, f ) ,

s N → ∞, where ∥∆N ( · , f )∥ ≤ C ∥ f ∥
2

N2 for some constant C > 0 independent of f and N,
nd

Gµ( f, f )(x) =ΓLµ,c
( f, f )(x) + λ(x)

(
Q(x) − M(x)

)
·
(
ℓµ( f )(x)

)2

−
2

λ(x)
L( f )(x) · L̃t

µ,c( f )(x) , (42)

ith

ℓµ( f )(x) :=

∫
E

(
f (y) − f (x)

)
µ(dy) ,

nd

L̃t
µ,c( f )(x) :=

(
V(x) − c

)+

∫
E

(
f (y) − f (x)

)
µ(dy) .

Remark. Due to the linearity of the generator, the combined mutation/cloning events in the
cloning algorithm can be decomposed easily, which leads to extra terms only in the quadratic
carré du champ. In the expression of the operator Gµ (42), the term

1
λ(x)

L f (x) · L̃t
µ,c f (x)

s due to the dependence between mutation and cloning dynamics and its sign is not known
priori. Whereas, the term λ(x)

(
Q(x) − M(x)

)
·

(
ℓµ f (x)

)2 arises from the dependence
etween clones (since multiple cloning events are allowed at the same time) and is always
on-negative. In particular, in any setting in which there is at most one clone per event, i.e. when
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Q(x) = M(x), the term vanishes. Furthermore, minimizing Q(x) as in (37) for given M(x) (38)
eads to the best bound on the carré du champ and convergence properties of the algorithm.

roof. Consider the carré du champ of L
N
c ,

Γ
L N

c

(
F, F

)
(x)

=

N∑
i=1

(
λ(xi )

∫
E

p(xi , dy)
∑
A∈N

πxi (A) ·
(
F(x A,xi ; i,y) − F(x)

)2

+

(
V(xi ) − c

)−

N

N∑
j=1

(
F(x i,x j ) − F(x)

)2
)

.

Using (39), the first term can be decomposed as∫
E

p(xi , dy)
∑
A∈N

πxi (A)
(
F(x A,xi ;i,y) − F(x)

)2

=

∫
E

p(xi , dy)
(
F(x i,y) − F(x)

)2
+

∑
A∈N

πxi (A)
(
F(x A,xi ) − F(x)

)2

+ 2
∫

E
p(xi , dy)

(
F(x i,y) − F(x)

) ∑
A∈N

πxi (A)
(
F(x A,xi ) − F(x)

)
,

here with (40) and (41) the last line can be rewritten as

2
N 2

∫
E

p(xi , dy)
(

f (y) − f (xi )
)(
V(xi ) − c

)+

λ(xi )

N∑
j=1

(
f (xi ) − f (x j )

)
= −

2
N 2 ·

1
λ(xi )2 L f (xi ) · L̃t

m(x),c f (xi ) .

Substituting in the expression of the carré du champ Γ
L N

c
, we obtain

Γ
L N

c

(
F, F

)
(x) =

N∑
i=1

λ(xi )
∫

E
p(xi , dy)

(
F(x i,y) − F(x)

)2

+

N∑
i=1

λ(xi )
∑
A∈N

πxi (A)
(
F(x A,xi ) − F(x)

)2

+

N∑
i=1

(
V(xi ) − c

)−

N

N∑
j=1

(
F(x i,x j ) − F(x)

)2

−
2

N 2

N∑
i=1

1
λ(xi )

L f (xi ) · L̃t
m(x),c f (xi ) . (43)

he first line in (43) is simply

N∑
λ(xi )

∫
p(xi , dy)

(
F(x i,y) − F(x)

)2
=

1
N 2

N∑
ΓL( f, f )(xi ) .
i=1 E i=1
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Now, considering the second line of (43), we can write

λ(xi )
∑
A∈N

πxi (A)
(
F(x A,xi ) − F(x)

)2

=
λ(xi )
N 2

∑
A∈N

πxi (A)
∑
j,k∈A

(
f (xi ) − f (x j )

)
·
(

f (xi ) − f (xk)
)

=
λ(xi )
N 2

( N∑
j=1

M(xi )
N

(
f (xi ) − f (x j )

)2

+

N∑
j,k=1
k ̸= j

Q(xi ) − M(xi )
N (N − 1)

(
f (xi ) − f (x j )

)
·
(

f (xi ) − f (xk)
))

,

ince ∑
A|k, j∈A

πxi (A) =

N∑
n=2

πxi ,n(N
n

) ·

(
N − 2
n − 2

)
=

Q(xi ) − M(xi )
N (N − 1)

,

or every j, k ∈ {1, . . . , N } such that j ̸= k.
Recalling that λ(x)M(x) =

(
V(x)−c

)+, exchanging summation indices and combining with
he third line of (43), we see that

N∑
i=1

λ(xi )
N 2

N∑
j=1

M(xi )
N

(
f (xi ) − f (x j )

)2

+

N∑
i=1

(
V(xi ) − c

)−

N

N∑
j=1

(
F(x i,x j ) − F(x)

)2
=

1
N 2

N∑
i=1

ΓL̃m(x),c
( f, f )(xi ) .

Moreover,

N∑
i=1

λ(xi )
N 2

N∑
j,k=1
k ̸= j

Q(xi ) − M(xi )
N (N − 1)

(
f (xi ) − f (x j )

)(
f (xi ) − f (xk)

)

=

N∑
i=1

λ(xi )
N 2

(
Q(xi ) − M(xi )

) (
ℓm(x) f (xi )

)2
+ ∆N (x, f ) ,

ith

∆N (x, f ) =

N∑
i=1

λ(xi )
N 2(N − 1)

(
Q(xi ) − M(xi )

) (
ℓm(x) f (xi )

)2

−

N∑
i, j=1

λ(xi )
(
Q(xi ) − M(xi )

)
N 3(N − 1)

(
f (xi ) − f (x j )

)2
,

for all x ∈ E , thus

∥∆N ( · , f )∥ ≤ C
∥ f ∥

2

,

N 2
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for some constant C > 0, since M(x) and Q(x) are bounded by condition (36), λ(x) is bounded
y assumption, and ∥ℓµ f ∥ ≤ 2∥ f ∥ for any µ ∈ P(E) by definition. Combining all together,

we obtain the statement. □

Propositions 3.4 and 3.5 show in particular that Assumption 3.1 is satisfied for cloning
algorithms, hence Theorem 3.2 holds and provides bias and L p error bounds.

. Proof of Theorem 3.2

This section is devoted to the proof of Theorem 3.2, which is an adaptation of the results
resented by M. Rousset in [50]. Throughout this section we consider a generic sequence
f IPS generators (L

N
)N∈N satisfying Assumption 3.1 for some McKean generator Lµ (13).

urthermore, we assume that the normalized Feynman–Kac measure µt is asymptotically
table, i.e. Assumption 2.2 holds.

The proof makes use of the propagator Θt,T of µt defined in (14), and the martingale
haracterization of L

N
. We denote by C0,1

b (E × R+) the set of bounded functions ϕ· such that
ϕt (·) is continuous on E for every t ∈ R+ and ϕ·(x) has continuous time derivative for every
x ∈ E . Following the standard martingale characterization of Feller-type Markov processes,
sing Itô’s formula and (19a) one can show that (see also [50], Proposition 3.3), for every
· ∈ C0,1

b (E × R+), the process

MN
t (ϕ·) = µN

t (ϕt ) − µN
0 (ϕ0) −

∫ t

0
µN

s

(
∂sϕs + LµN

s
(ϕs)

)
ds (44)

s a local martingale. With (19b) its predictable quadratic variation is bounded by⟨
MN (ϕ·)

⟩
t ≤

1
N

∫ t

0
µN

s

(
GµN

s
(ϕs, ϕs)

)
ds + C t · sup

s∈[0,t]

∥ϕs∥
2

N 2 , (45)

or some constant C ≥ 0 independent of ϕ and N , and with (19c) jumps are bounded by⏐⏐∆MN
t (ϕ·)

⏐⏐ ≤
2K ∥ϕt∥

N
. (46)

The following technical Lemma for martingales will play a central role in the proof of
heorem 3.2.

emma 4.1. Let M be a locally square-integrable martingale with continuous predictable
uadratic variation ⟨M⟩, M0 = 0 and uniformly bounded jumps supt |∆Mt | ≤ a < ∞. Then,
or every q ∈ N0 and T ≥ 0, there exists a constant Cq > 0 such that

sup
t≤T

E
[
M2q+1

t

]
≤ Cq

q∑
k=0

a2q+1
−2k+1E

[
(⟨M⟩T )2k

]
.

roof. See [50], Lemma 6.2. □

.1. Properties of the normalized propagator

emma 4.2. For any test function f ∈ Cb(E) and 0 ≤ t ≤ T , we have for the normalized
ropagator (14)

∂t
(
Θt,T f (x)

)
= −

(
L + V(x) − µt (V)

)(
Θt,T f (x)

)
.
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Proof. See [50], p. 836. The idea of the proof is to substitute (3) into the time derivative of
t,T f (14). □

Lemma 4.3. Under Assumption 2.2 on asymptotic stability, for any 0 ≤ t ≤ T and n ∈ N
and f ∈ Cb(E), there exists a constant β > 0 such that

∥Θt,T f ∥ ≤ β · ∥ f ∥ and
∫ T

t
∥Θs,T f ∥

2n
ds ≤ β2n

· ∥ f ∥
2n

· (T − t).

Moreover, for any f := f − µT ( f ), there exists some 0 < ρ < 1, such that

∥Θt,T f ∥ ≤ β · ∥ f ∥ · ρT −t and
∫ T

t
∥Θs,T f ∥

2n
ds ≤ β2n

· ∥ f ∥
2n

.

roof. The proof can be found in [50, Lemma 5.1] and the result is due to the asymptotic
tability of the Feynman–Kac model. □

Observe that, applying Lemma 4.2 to the martingale characterization (44) of L
N

, we obtain

MN
T

(
Θ·,T f

)
= µN

T ( f ) − µN
0

(
Θ0,T f

)
−

∫ T

0
µN

s

((
L̃µN

s
− V + µs(V)

)(
Θs,T f

))
ds

= µN
T ( f ) − µN

0

(
Θ0,T f

)
−

∫ T

0
µN

s

(
Θs,T f

)
·
(
µs(V) − µN

s (V)
)

ds , (47)

for any f ∈ Cb(E), where the last equality follows by the characterization (11) of McKean
models. By (47), we obtain the stochastic differential equation

dµN
t (Θt,T f ) = dMN

t (Θ·,T f ) +
(
µt (V) − µN

t (V)
)
· µN

t (Θt,T f ) dt . (48)

Moreover, applying Lemma 4.3 to the predictable quadratic variation (45), we obtain that
almost surely,⟨

MN (Θ·,T f )
⟩
t ≤

1
N

∥G∥ · β2
∥ f ∥

2 (T − t) + C (T − t)
β2

· ∥ f ∥
2

N 2 , (49)

here G( f, f ) = supµ∈P(E) Gµ( f, f ) .
Note that Eq. (47) for centred test functions f = f − µT ( f ) can be rewritten as

µN
T ( f )−µT ( f ) = µN

0 (Θ0,T f ) + MN
T (Θ·,T f ) +

∫ T

0
µN

s

(
Θs,T f

)
·
(
µs(V)−µN

s (V)
)

ds .

(50)

The martingale characterization (47)–(50) will be the key element in the proof of Theorem 3.2.

4.2. L p and bias estimates

Define

Φt,T (µ) :=
µPV (T − t)

µ
(
PV (T − t)1

) ∈ P(E), (51)

ith µ ∈ P(E) and 0 ≤ t ≤ T . Observe that the measure Φt,T (µ) can be also rewritten in
erms of Θt,T (14) as

Φt,T (µ)( f ) =
µ(Θt,T f )

, (52)

µ(Θt,T 1)
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for any f ∈ Cb(E). To prove Theorem 3.2, we consider the decomposition

E[|µN
T ( f ) − µT ( f )|

p
]1/p

≤ E[|µN
T ( f ) − Φt,T (µN

t )( f )|
p
]1/p

+ E[|Φt,T (µN
t )( f ) − µT ( f )|

p
]1/p, (53)

or any 0 ≤ t ≤ T . The proof is structured as follows:

• In Lemma 4.4, we bound the first term of the decomposition under Assumptions 2.2 and
3.1;

• In Lemma 4.5, we bound the second term under Assumption 2.2;
• In Lemma 4.6, we combine Lemmas 4.4 and 4.5 to obtain L p-error estimates of order

1/N δ/2, for some δ ∈ (0, 1);
• Finally, from Lemma 4.6 we derive, by iteration, L p estimates of order 1/

√
N , as

presented in Theorem 3.2.

emma 4.4. Consider a sequence of particle approximations satisfying Assumption 3.1 with
mpirical distributions µN

t (18). Under Assumption 2.2 on asymptotic stability, for any p ≥ 2
here exists a constant cp > 0 such that

E
[⏐⏐µN

T ( f ) − Φt,T (µN
t )( f )

⏐⏐p
]

≤ cp e4p(T −t)∥V∥

(
∥ f ∥

p (T − t)p/2

N p/2

)
,

or any f ∈ Cb(E) and 0 ≤ t ≤ T .

roof. This is an adaptation of the first part of the proof of Lemma 5.3 in [50]. First, consider

At2
t1 := exp

(∫ t2

t1

(
µN

s (V) − µs(V)
)

ds
)

, (54)

ith 0 ≤ t1 ≤ t2. Observe that, by the stochastic differential equation (48), we can write

d
(

As
t µ

N
s (Θs,T f )

)
= As

t dMN
s (Θ·,T f ) ,

or any t ≤ s ≤ T . Therefore,

AT
t µN

T ( f ) − µN
t (Θt,T f ) =

∫ T

t
As

t dMN
s (Θ·,T f ) . (55)

ixing 0 ≤ t ≤ T , the process

N N
τ ( f ) :=

∫ τ

t
As

t dMN
s (Θ·,T f ) = Aτ

t · µN
τ

(
Θτ,T f

)
− µN

t (Θt,T f ) ,

ith t ≤ τ ≤ T , as the integral of a progressively measurable process with respect to a local
artingale, is itself a local martingale with predictable quadratic variation given by

⟨N N ( f )⟩τ =

∫ τ

t

(
As

t

)2d⟨MN
s (Θ·,T f )⟩ ,

nd jumps bounded by⏐⏐∆N N
τ ( f )

⏐⏐ ≤ e2(T −t)∥V∥
·

4K β ∥ f ∥

N
,

y Assumption (19c) on bounded jumps, (46) and Lemma 4.3.
Moreover, with (52), we can write⏐⏐µN ( f ) − Φ (µN )( f )

⏐⏐

T t,T t
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L
(
f

f

f

=

⏐⏐⏐ µN
T ( f ) − (AT

t )−1µN
t (Θt,T f ) −

(
1 − (AT

t )−1µN
t (Θt,T 1)

)
· Φt,T (µN

t )( f )
⏐⏐⏐

= (AT
t )−1

⏐⏐⏐N N
T ( f ) − N N

T (1) · Φt,T (µN
t )( f )

⏐⏐⏐ ,

here the last equality follows by (55). Noting that (AT
t )−1

≤ exp
(
2(T − t) · ∥V∥

)
by definition

54), we get

E
[⏐⏐µN

T ( f ) − Φt,T (µN
t )( f )

⏐⏐p
]

≤ e2p(T −t)∥V∥ E
[ ⏐⏐⏐N N

T ( f ) − N N
T (1) · Φt,T (µN

t )( f )
⏐⏐⏐p ]

. (56)

y Lemma 4.1, we have that, for any q ∈ N0,

E
[⏐⏐N N

T ( f )
⏐⏐2q+1]

≤ Cq

q∑
k=0

(
e2(T −t)∥V∥

·
2K β∥ f ∥

N

)2q+1
−2k+1

E
[(⟨

N N
·

( f )
⟩
T

)2k ]
≤ C̃q

q∑
k=0

(
e2(T −t)∥V∥

·
∥ f ∥

N

)2q+1
−2k+1( 1

N
∥ f ∥

2 (T − t)
)2k

,

here the last inequality follows by (49). Therefore, for p = 2q+1, q ∈ N0, we get

E
[⏐⏐N N

T ( f )
⏐⏐p

]
≤ C̃ p e2p(T −t)∥V∥

(
∥ f ∥

p (T − t)p/2

N p/2

)
.

y Jensen’s inequality, this bound holds for any p ≥ 2. Applying this to inequality (56), we
btain the result. □

emma 4.5. Under Assumption 2.2 on asymptotic stability with constants α > 0 and ρ ∈

0, 1), we have that for any p ≥ 2 and any 0 ≤ t ≤ T such that T − t ≥ (log ε − log α)/ log ρ

or some ε ∈ (0, 1), the following bound holds

E
[
|Φt,T (µN

t )( f ) − µT ( f )|
p]1/p

≤
4∥ f ∥ αρT −t

1 − ε
,

or any f in Cb(E). Furthermore, when t = 0, there exists a constant C p > 0 depending on p
such that

sup
T ≥0

E
[⏐⏐Φ0,T (µN

0 )( f ) − µT ( f )
⏐⏐p]1/p

≤
C p ∥ f ∥

N 1/2 ,

or any f in Cb(E).

Proof. By definition (51) of Φt,T , for any η ∈ P(E) and λ ∈ R we have

Φt,T (η)( f ) =
η
(
e−(T −t)λ PV (T − t) f

)
η
(
e−(T −t)λ PV (T − t)1

) .

Taking λ to be the principal eigenvalue of L+V , using Assumption 2.2 on asymptotic stability
and the basic fact η(1) = 1, we can write

η
(
e−(T −t)λ PV (T − t) f

)
≤ µ∞( f ) + ∥ f ∥ · αρT −t ,

η
(
e−(T −t)λ PV (T − t)1

)
≥ 1 − αρT −t .
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Therefore, for T − t ≥ (log ε − log α)/ log ρ, for some ε ∈ (0, 1), we have

Φt,T (η)( f ) − µ∞( f ) ≤ µ∞( f ) ·

( 1
1 − αρT −t

− 1
)

+
∥ f ∥αρT −t

1 − αρT −t

≤
2∥ f ∥ αρT −t

1 − ε
,

nd similarly

Φt,T (η)( f ) − µ∞( f ) ≥ −
2∥ f ∥ αρT −t

1 − ε
.

Therefore,

E
[
|Φt,T (µN

t )( f ) − µT ( f )|p]1/p

≤ E
[
|Φt,T (µN

t )( f ) − µ∞( f )|
p]1/p

+ E
[
|Φt,T (µt )( f ) − µ∞( f )|p]1/p

≤
4∥ f ∥ αρT −t

1 − ε
.

Now, for t = 0, observe that

Φ0,T (µN
0 )( f ) − µT ( f )

= µN
0

(
Θ0,T ( f )

)
− µ0

(
Θ0,T ( f )

)
+ Φ0,T (µN

0 )( f ) ·
(
1 − µN

0 (Θ0,T (1))
)

.

sing the basic fact 1 = µ0(Θ0,T (1)), to conclude it is enough to observe that, for any
f ∈ Cb(E),

E
[⏐⏐µN

0 ( f ) − µ0( f )
⏐⏐p]

≤
C p ∥ f ∥

p

N p/2 , (57)

ith C p > 0 constant depending on p. Indeed, with (19d) at time t = 0, µN
0 ( f ) is the sum

f N i.i.d. random variables with law f#µ0. Inequality (57) is then a direct application of
Marcinkiewicz–Zygmund/BDG inequalities for i.i.d. variables. □

emma 4.6. Consider a sequence of particle approximations satisfying Assumption 3.1 with
mpirical distributions µN

t (18). Under Assumption 2.2, there exists δ ∈ (0, 1) such that for
any p ≥ 2 there exist cp > 0 such that

sup
T ≥0

E[|µN
T ( f ) − µT ( f )|

p
]1/p

≤
cp ∥ f ∥

N δ/2 ,

for any N ∈ N large enough.

Proof. Recalling decomposition (53), where the first term is estimated in Lemma 4.4 and the
second in Lemma 4.5, and using the basic fact T − t ≤ eT −t , we obtain

E[|µN
T ( f ) − µT ( f )|p]1/p

≤ cp ∥ f ∥ ·
e(4∥V∥+1/2)T

+ 1
N 1/2 , (58)

aking t = 0, and

E[|µN
T ( f ) − µT ( f )|p]1/p

≤ cp∥ f ∥ ·

(e(4∥V∥+1/2)·(T −t)

+ ρT −t
)

, (59)

N 1/2
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taking 0 ≤ t ≤ T such that T − t is large enough.
The idea is to find t ≥ 0 and ε ∈ (0, 1) such that{

e(4∥V∥+1/2)·(T −t)

N 1/2 ≤
1

Nε/2 ,

ρT −t
≤

1
Nε/2 .

Recalling that log ρ < 0, the solution is given by{
ε =

− log ρ

4∥V∥+
1
2 −log ρ

,

t = T −
log N

8∥V∥+1−2 log ρ
,

(60)

rovided T ≥ log N/(8∥V∥ + 1 − 2 log ρ) to ensure that t ≥ 0. Also observe that for N large
enough, T − t satisfies the conditions in Lemma 4.5.

Otherwise, in case T < log N/(8∥V∥ + 1 − 2 log ρ), we consider the bound (58) instead,
and we obtain

e(4∥V∥+1/2)T
+ 1

N 1/2 ≤
1

N ε/2 +
1

N 1/2 ,

with

ε = 1 −
8∥V∥ + 1

8∥V∥ + 1 − 2 log ρ
.

aking δ = min{ε, ε} the result follows from observing that

e4(T −t)∥V∥

N
=

1
Nα

, with α >
1
2

,

or t = 0 and T at most of order log N as above, or for t ≥ 0 given by (60). □

roof of Theorem 3.2. We denote

Ip(N ) := sup
∥g∥=1

sup
T ≥0

E
[⏐⏐µN

T (g) − µT (g)
⏐⏐p]

,

in accordance with Rousset [50], Section 5.2. Using (50), we have⏐⏐µN
T ( f ) − µT ( f )

⏐⏐p
≤ 3p

⏐⏐µN
0 (Θ0,T f )

⏐⏐p
+ 3p

⏐⏐MN
T (Θ·,T f )

⏐⏐p
+

3p
(∫ T

0

⏐⏐µN
s

(
Θs,T f

)⏐⏐ ·
⏐⏐µN

s (V) − µs(V)
⏐⏐ ds

)p
,

ith f = f − µT ( f ) for any f ∈ Cb(E).
First, observe that, similarly to (57), we have

E
[⏐⏐µN

0 (Θ0,T f )
⏐⏐p]

= E
[⏐⏐µN

0 (Θ0,T f ) − µ0(Θ0,T f )
⏐⏐p]

≤
C p∥ f ∥

p

N p/2 ,

for some constant C p > 0 depending on p. Moreover, by Lemma 4.1 and bound (49), we get
with another p-dependent constant

E
[⏐⏐MN

T (Θ·,T f )
⏐⏐p]

≤
C p∥ f ∥

p

N p/2 .

Finally, writing⏐⏐µN
s

(
Θs,T f

)⏐⏐ ·
⏐⏐µN

s (V) − µs(V)
⏐⏐

= ∥Θs,T f ∥
1−1/p

·

( ⏐⏐⏐µN
s

( Θs,T f )⏐⏐⏐ · ∥Θs,T f ∥
1/p

·
⏐⏐µN

s (V) − µs(V)
⏐⏐ ) ,
∥Θs,T f ∥
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and using Hölder’s inequality, we get( ∫ T

0

⏐⏐µN
s

(
Θs,T f

)⏐⏐ ·
⏐⏐µN

s (V) − µs(V)
⏐⏐ ds

)p

≤

(∫ T

0
∥Θs,T f ∥ ds

)p−1
·

(∫ T

0

⏐⏐⏐µN
s

( Θs,T f

∥Θs,T f ∥

)⏐⏐⏐p
· ∥Θs,T f ∥ ·

⏐⏐µN
s (V) − µs(V)

⏐⏐p ds
)

≤ C p∥ f ∥
p−1

(∫ T

0

⏐⏐⏐µN
s

( Θs,T f

∥Θs,T f ∥

)⏐⏐⏐p
· ∥Θs,T f ∥ ·

⏐⏐µN
s (V) − µs(V)

⏐⏐p ds
)

,

y Lemma 4.3. Using the fact that

µN
s

(
Θs,T f

)
= µN

s

(
Θs,T f

)
− µs

(
Θs,T f

)
,

or centred test functions, and applying the Cauchy–Schwarz inequality, we get

E
[∫ T

0

⏐⏐⏐µN
s

( Θs,T f

∥Θs,T f ∥

)⏐⏐⏐p
·
⏐⏐µN

s (V) − µs(V)
⏐⏐p

· ∥Θs,T f ∥ ds
]

≤

∫ T

0
E

[⏐⏐⏐µN
s

( Θs,T f

∥Θs,T f ∥

)
− µs

( Θs,T f

∥Θs,T f ∥

)⏐⏐⏐2p]1/2

· ∥V∥
p E

[⏐⏐⏐µN
s

( V
∥V∥

)
− µs

( V
∥V∥

)⏐⏐⏐2p]1/2
· ∥Θs,T f ∥ ds

≤

∫ T

0
I2p(N ) ∥V∥

p
· ∥Θs,T f ∥ ds

≤ C p∥ f ∥ I2p(N ) . (61)

Combining all together, we obtain

E
[⏐⏐µN

T ( f ) − µT ( f )
⏐⏐p]

≤ C p∥ f ∥
p
( 1

N p/2 + I2p(N )
)

,

or any f ∈ Cb(E) and T ≥ 0. In particular,

Ip(N ) ≤ C p

( 1
N p/2 + I2p(N )

)
, (62)

or any p ≥ 2. Applying Lemma 4.6, we get

Ip(N ) ≤
C p

N min{1,2kδ}p/2
,

or any k ∈ N, by iteration of (62). Thus, we can conclude

Ip(N ) ≤
C p

N p/2 .

This proves the L p-error estimate (20).
We conclude by proving the bias estimate (21). By Eq. (50), we have

E
[
µN

T ( f )
]

− µT ( f ) =

∫ T

0
∥Θs,T f ∥ · E

[
µN

s

( Θs,T f

∥Θs,T f ∥

)
·
(
µs(V) − µN

s (V)
)]

ds .

By (61) for p = 1, we obtain⏐⏐E[
µN

T ( f )
]

− µT ( f )
⏐⏐ ≤ C∥ f ∥ · I2(N ) ≤

C∥ f ∥

N
. □
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5. Interacting particle approximations for dynamic large deviations

5.1. Large deviations and Feynman–Kac models

Dynamic large deviations of continuous-time jump processes are a common application
rea of cloning algorithms [29,39]. For a given process (X t : t ≥ 0) with bounded rates

W (x, dy) = λ(x)p(x, dy) (1) and path space Ω as outlined in Section 2, we consider a
ime-additive observable AT : Ω → R, taken to be a real measurable function of the paths
f X t over the time interval [0, T ] of the form [9]

AT (ω) :=
1
T

∑
t≤T

ω(t−)̸=ω(t)

g
(
ω(t−), ω(t)

)
+

1
T

∫ T

0
h
(
ω(t)

)
dt. (63)

ere g ∈ Cb(E2) is such that g(x, x) = 0, for any x ∈ E , and h ∈ Cb(E), with ω ∈ Ω a
realization of (X t : t ≥ 0). Note that AT is well defined since the bound on λ(x) implies
that the process does not explode and the first sum contains almost surely only finitely many
non-zero terms for any T ≥ 0.

More precisely, we are interested in studying the limiting behaviour, as T → ∞, of the
family of probability measures Pµ0 (AT ∈ · ) = Pµ0◦A−1

T on (R, B(R)), where µ0 represents the
initial distribution of the underlying process. This can be characterized by the large deviation
principle (LDP) [19,20], in terms of a rate function. We assume that an LDP with convex rate
function I holds, which can be written as

lim sup
T →∞

1
T

logPµ0 (AT ∈ C) ≤ − inf
a∈C

I (a) ,

lim inf
T →∞

1
T

logPµ0 (AT ∈ O) ≥ − inf
a∈O

I (a) ,

for every C ⊆ R closed and O ⊆ R open. For the study of large deviations, a key role is
played by the scaled cumulant generating function (SCGF)

Λk := lim
T →∞

1
T

logEµ0

[
ekT AT

]
∈ (−∞, ∞]. (64)

ndeed, if the rate function I is convex and the limit Λk in (64) exists and is finite for every
∈ R, then I is fully characterized by the SCGF via Legendre duality (see [19], Theorem

.5.10), i.e.

Λk = sup
a∈R

{ka − I (a)} and I (a) = sup
k∈R

{k a − Λk}.

The SCGF is also the object that can be numerically approximated by cloning algo-
rithms [29,39] and related approaches and our main aim in this section is to illustrate how
our results on Feynman–Kac models can be applied here. Possible subtleties regarding the
LDP are not our focus and we restrict ourselves to settings where Λk exists and is finite. In the
following we introduce the associated Feynman–Kac models in the notation that is established
in this context.

Lemma 5.1. For any k ∈ R the family of operators
(
Pk(t) : t ≥ 0

)
on Cb(E) defined by

Pk(t) f (x) := Ex
[

f
(
X t

)
ekt At

]
, (65)

ith f ∈ Cb(E), is well defined and it is a non-conservative semigroup, the so-called tilted
emigroup.
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Moreover, the infinitesimal generator associated with
(
Pk(t) : t ≥ 0

)
, in the sense of the

ille–Yosida Theorem, can be written in the form

Lk( f )(x) =

∫
E

W (x, dy)[ekg(x,y) f (y) − f (x)] + kh(x) f (x), (66)

or f ∈ Cb(E) and all x ∈ E, with g and h the bounded continuous functions which
haracterize AT via (63). In particular, the semigroup Pk(t) satisfies the differential equations

d
dt

Pk(t) f = Pk(t)Lk( f ) = Lk
(
Pk(t) f

)
, (67)

or all f ∈ Cb(E) and t ≥ 0.

Proof. See [9], Appendix A.1. □

Observe that, if the SCGF (64) is independent of the choice of the initial distribution µ0, it
an be written in terms of the tilted semigroup as

Λk = lim
t→∞

1
t

log
(
Pk(t) 1(x)

)
, (68)

or all x ∈ E , moreover Λk is the spectral radius of the generator Lk (see also (70)). With
ssumption 2.2 on asymptotic stability, Λk is also the principal eigenvalue of Lk and there

xists a probability measure µ∞ = µ∞,k ∈ P(E)2 and constants α > 0 and ρ ∈ (0, 1) such
hat e−tΛk Pk(t) f (·) − µ∞( f )

 ≤ ∥ f ∥ · αρ t , (69)

or every t ≥ 0 and f ∈ Cb(E). Note that this implies the independence of the SCGF from the
initial distribution, µ0, and thus (68) holds for every initial state x ∈ E . Note that (69) implies
in particular that µ0e−tΛk Pk(t) converges weakly to µ∞ for all initial distributions µ0, and that

∞ is the unique invariant probability measure for the modified semigroup t ↦→ e−tΛk Pk(t).
herefore we have from the generator Lk − Λk of this semigroup that

µ∞

(
Lk( f )

)
= Λkµ∞( f ) for all f ∈ Cb(E) . (70)

Neither the semigroup Pk(t) nor the modified one e−tΛk Pk(t) conserve probability, and
herefore they do not provide a corresponding process to sample from and use standard MCMC

ethods to estimate the SCGF Λk . This can be achieved by interpreting the tilted generator
k through Feynman–Kac models analogous to Lemma 2.1, so that we can apply our results

rom Section 3.

emma 5.2. The infinitesimal generator Lk (66) can be written as

Lk( f )(x) = L̂k( f )(x) + Vk(x) · f (x), (71)

or all f ∈ Cb(E) and x ∈ E. Here

L̂k( f )(x) :=

∫
E

W (x, dy)ekg(x,y)[ f (y) − f (x)] (72)

s the generator of a pure jump process with modified rates W (x, dy) ekg(x,y), and

Vk(x) := λ̂k(x) − λ(x) + kh(x) ∈ Cb(E), (73)

2 To avoid notation overload, we omit writing explicitly the dependence of certain quantities on the fixed
parameter k in the rest of this section.
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is a diagonal potential term where λ̂k(x) :=
∫

E W (x, dy)ekg(x,y) is the escape rate of L̂k .

roof. Follows directly from the definition of Lk in (66). □

In analogy with (1), in the following we also use the notation with a probability kernel

W (x, dy)ekg(x,y)
= λ̂k(x) p̂k(x, dy) . (74)

bserve that

Lk(1)(x) = Vk(x), (75)

hus, we get with (70) another representation of the SCGF,

Λk = µ∞(Vk) . (76)

Recall the unnormalized and normalized versions of the Feynman–Kac measures defined in
5) and (7) for a given initial distribution µ0 ∈ P(E),

νt ( f ) = µ0
(
Pk(t) f

)
and µt ( f ) = νt ( f )/νt (1) , f ∈ Cb(E) ,

nd that asymptotic stability (69) implies that µt → µ∞ weakly as t → ∞. This suggests the
ollowing finite-time approximations for Λk .

roposition 5.3. For any k ∈ R and every t ≥ 0, we have that

logEµ0

[
ekt At

]
=

∫ t

0
µs(Vk) ds,

here Vk is defined in (73). In particular, if asymptotic stability (69) is satisfied,

1
T

∫ T

0
µs(Vk) ds → Λk as T → ∞ .

roof. Recalling the evolution equation (6) of νt , we have

d
dt

log νt (1) =
1

νt (1)
·

d
dt

νt (1) =
νt

(
Lk(1)

)
νt (1)

= µt
(
Lk(1)

)
.

And, thus,

νt (1) = exp
(∫ t

0
µs

(
Lk(1)

)
ds

)
,

since ν0(1) = 1. We can conclude by observing that Lk(1)(x) = Vk(x) and

νt (1) = Eµ0

[
ekt At

]
, (77)

using that the SCGF is well defined under asymptotic stability (69). □

For any t < T , we define

Λt,T
k :=

1
T − t

∫ T

t
µs(Vk)ds (78)

s a finite-time approximation for Λk .
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Lemma 5.4. For any k ∈ R, under asymptotic stability (69) with ρ ∈ (0, 1), there exists a
constant α′ > 0 such that⏐⏐ΛaT,T (k) − Λ(k)

⏐⏐ ≤ ∥Vk∥ ·
α′ ρaT

(1 − a)T
,

or any given a ∈ [0, 1) and T > 0.

roof. By (8), we have⏐⏐⏐⏐ 1
(1 − a)T

∫ T

aT
µt (Vk)dt − µ∞(Vk)

⏐⏐⏐⏐ ≤
1

(1 − a)T

∫ T

aT

⏐⏐µt (Vk) − µ∞(Vk)
⏐⏐dt

≤
1

(1 − a)T

∫ T

aT
∥Vk∥ · α̃ ρ t dt

=
α̃ ∥Vk∥

(1 − a)T
·
ρT

− ρaT

log ρ

≤ ∥Vk∥ ·
α′ ρaT

(1 − a)T
,

here α′
:= α̃/(− log ρ) > 0, using the basic fact 0 ≤ ρaT

− ρT
≤ ρaT . In particular,

imT →∞ ΛaT,T (k) = µ∞(Vk) = Λ(k), by (76). □

Note that for a = 0 the above result only implies a convergence rate of order 1/T , since
errors from the arbitrary initial condition have to be averaged out over time. In contrast for

> 0 (corresponding to the usual idea of burn-in in conventional Markov chain Monte Carlo
approximations — see [25], for example), we get a much better exponential rate of convergence
dominated by the asymptotic stability parameter ρ ∈ (0, 1).

5.2. Estimation of the SCGF

In this section we establish the convergence of estimators of the SCGF, Λk (64), provided
by interacting particle approximations. Approximating µt by the empirical distribution µN

t (18)
associated to an interacting particle system, we can estimate Λt,T

k with

Λt,T,N
k :=

1
T − t

∫ T

t
µN

s (Vk) ds . (79)

Note that, choosing f ≡ 1 in Proposition 3.3 and (77) implies that exp
(
t · Λ0,t,N

k

)
is an

nbiased estimator of exp
(
t · Λ0,t

k

)
. Recall that particle approximations are characterized by a

equence of IPS generators (L
N

)N∈N on Cb(E N ), based on the McKean generators (13)

Lµ,k := L̂k + L̃µ,k for all µ ∈ P(E) ,

where L̃µ,k describes the selection dynamics of the McKean model as in Lemma 2.4, with
examples in (15) or (16). Due to tilted dynamics explained in Lemma 5.2 we have an additional
dependence on the parameter k.

Proposition 5.5. Given k ∈ R, let (L
N
k )N∈N be a sequence of IPS generators satisfying

ssumption 3.1 with McKean generators L . Under asymptotic stability (69) with ρ ∈ (0, 1),
µ,k
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for every p ≥ 2 and a ∈ [0, 1) there exist constants cp, c′, α′ > 0 independent of N and T ,
uch that

E
[⏐⏐ΛaT,T,N

k − Λk
⏐⏐p

]1/p
≤

cp

N 1/2 +
α′

· ρaT

(1 − a)T
, (80)

nd ⏐⏐⏐E[
ΛaT,T,N

k

]
− Λk

⏐⏐⏐ ≤
c′

N
+

α′
· ρaT

(1 − a)T
, (81)

or any N ∈ N large enough and T > 0.

roof. First, note that

E
[⏐⏐ΛaT,T,N

k − Λk
⏐⏐p]1/p

≤ E
[⏐⏐ΛaT,T,N

k − ΛaT,T
k

⏐⏐p]1/p
+

⏐⏐ΛaT,T
k − Λk

⏐⏐ .

he bound for the second term is given in Lemma 5.4, whereas we can bound the first term
y observing that

E
[⏐⏐ΛaT,T,N

k − ΛaT,T
k

⏐⏐p
]1/p

≤
1

(1 − a)T

∫ T

aT
E

[⏐⏐µN
t (Vk) − µt (Vk)

⏐⏐p]1/p
dt ,

nd applying Theorem 3.2. The second claim can be established similarly. □

Proposition 5.5 provides the L p and bias estimates of the approximation error with order of
onvergence respectively given by 1/

√
N and 1/N . The necessarily finite simulation time T

eads to an additional error of order ρaT /T , with ρ ∈ (0, 1), which is controlled by asymptotic
tability properties of the process as summarized in Lemma 5.4. Ideally, during simulations
e want to choose the final time T = T (N ) with respect to the population size N in order to
alance both terms in (80), resp. (81). The details depend on asymptotic stability properties of
he process and values of constants, but it is clear in general that choosing any T (N ) ≫ N
ould only give the same order of convergence as T (N ) ≈ N , which is computationally

heaper. Proposition 5.5 also implies that ΛaT,T,N
k converges almost surely to ΛaT,T

k as N → ∞.

.3. The cloning factor

Most results in the physics literature do not use the estimator ΛaT,T,N
k (79) based on the

rgodic average of the mean fitness of the clone ensemble, but an estimator based on a
o-called ‘cloning factor’ (see, e.g., [28,29,47]). This is essentially a continuous-time jump
rocess (C N

t : t ≥ 0) on (0, ∞) with C N
0 = 1, where at each cloning event of size n ∈ N0∪{−1}

t a given time τ , the value is updated as

C N
t = C N

t−

(
1 +

n
N

)
,

here n = −1 occurs when there is a ‘killing’ event. In our context, we can define the dynamics
f C N

t jointly with the cloning algorithm via an extension of the cloning generator L
N
c,k (33)

s introduced in Section 3.3, with exit rate λ(x) and probability kernel p(x, dy) replaced by
λk and p̂k , respectively. On the state space E N

× (0, ∞) define

L
(N ,⋆)
c,k (F⋆)(x, ς) :=

N∑ (̂
λk(xi )

∫
p̂k(xi , dy)

∑
πxi (A)

(
F⋆(x A,xi ; i,y, ς|A|) − F⋆(x, ς)

)

i=1 E A∈N
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+

N∑
j=1

(
Vk(xi ) − c

)−

N

(
F⋆(x i,x j , ς−1) − F⋆(x, ς)

))
, (82)

here the test function F⋆
: E N

× (0, ∞) → R now has a second counting coordinate, and we
denote ςn := ς ·

(
1+

n
N

)
, with n ∈ N0 ∪ {−1}. Also recall that the cloning algorithm is based

on a McKean model with parameter c ∈ R as given in (15).
We introduce the coordinate projection G(x, ς ) := ς in order to observe only the cloning

factor, G(ζ N
t , C N

t ) = C N
t . Note that E N

× (0, ∞) is not compact, and G is an unbounded
est function. However, since the range of the clone size distribution is uniformly bounded
condition (19c)), t ↦→ log C N

t is a birth–death process on [0, ∞) with bounded jump length,
nd the generator (82) and associated semigroup are therefore well defined for the test function

G (see e.g. [33]) and all t ≥ 0.
The following result provides an unbiased estimator for the unnormalized quantity νt (1)

ased on the cloning factor.

roposition 5.6. Let L
(N ,⋆)
c,k be the extension (82) of the cloning generator L

N
c,k (33). Then,

the quantity etcC N
t is an unbiased estimator for νt (1) (5), i.e.

E
[
etcC N

t

]
= E

[
νN

t (1)
]

= νt (1),

for every t ≥ 0 and N ≥ 1, and all choices of the parameter c ∈ R (cf. (15)).

Proof. First, observe that following (40) and (41)

L
(N ,⋆)
c,k (G)(x, ς) =

N∑
i=1

N∑
n=0

λ̂k(xi ) πxi ,n · (ς n/N ) −

N∑
i=1

ς

N

(
Vk(xi ) − c

)−

=
ς

N

N∑
i=1

(
Vk(xi ) − c

)
, (83)

sing the mean M(xi ) of the distribution πxi ,n as given in Proposition 3.4. Therefore,

L
(N ,⋆)
c,k (G)(x, ς) = ς m(x)

(
Vk − c

)
,

nd analogously to (24), the expected time evolution of C N
t is then given by

d
dt

E[C N
t ] = E[C N

t · µN
t (Vk − c)].

his is also the evolution of νN
t (e−tc) = e−tcνN

t (1), since

d
dt

E[νN
t (e−tc)] = E[µN

t (Vk) · e−tcνN
t (1) − c e−tcνN

t (1)]

= E[νN
t (e−tc) · µN

t (Vk − c)].

ith initial conditions C N
k (0) = 1 = νN

t (1), the statement follows by a Gronwall argument
nalogous to (23) and by Proposition 3.3. □

Proposition 5.6 leads to an alternative estimator for Λt,T
k (78) given by

Λ
t,T,N
k :=

1 (
log C N

T − log C N
t

)
+ c. (84)
T − t
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Note that this is not itself unbiased as a consequence of the nonlinear transformation involving
the logarithm.

In order to study the convergence of the new estimator to the SCGF, it is convenient to use
he martingale characterization of the process, which is given by the following result.

roposition 5.7. Let L
(N ,⋆)
c,k be the extension (82) of the cloning generator L

N
c,k . Then, the

process

M⋆
t := log C N

t −

∫ t

0
L

(N ,⋆)
c,k (H )

(
ζ N

s , C N
s

)
ds,

with H (x, ς) = log ς , is a local martingale satisfying

M⋆
t = log C N

t −

∫ t

0

(
µN

s (Vk) − c
)

ds + t · O
( 1

N

)
,

and with predictable quadratic variation

⟨M⋆
·
⟩t =

1
N

∫ t

0
µN

s

(̂
λk Q + (Vk − c)−

)
ds + t · O

( 1
N 2

)
,

here Q(xi ) is the second moment of the distribution πxi ,n (35).

emark. Note that, in the case in which there is at most one clone per transition event, i.e. if
Q(xi ) = M(xi ) = (Vk(xi ) − c)+/̂λk(xi ), then

⟨M⋆
·
⟩t =

1
N

∫ t

0

(
µN

s (Vk) − c
)

ds + t · O
( 1

N 2

)
.

roof. Observe that we can rewrite (82) as

L
(N ,⋆)
c,k (H )(x, ς) =

N∑
i=1

( N∑
n=0

λ̂k(xi ) πxi ,n log(1+n/N ) +
(
Vk(xi )−c

)− log(1−1/N )
)

= m(x)
(
Vk

)
− c + O

( 1
N

)
,

using the expansion log(1 + x) = x + O(x2) as x → 0. Similarly,

Γ
L(N ,⋆)

c,k
(H, H )(x, ς)

=

N∑
i=1

( N∑
n=0

λ̂k(xi ) πxi ,n
(
log(1+n/N )

)2
+

(
Vk(xi )−c

)− (
log(1−1/N )

)2
)

=
1
N

m(x)
(
λ̂k Q + (Vk − c)−

)
+ O

( 1
N 2

)
.

The statement corresponds to the martingale problem associated to L
(N ,⋆)
c,k (H ). □

By Proposition 5.7 and recalling the definition of the SCGF estimators Λt,T,N
k (79) and

Λ
t,T,N
k (84) we immediately get

Λt,T,N
k = Λ

t,T,N
k −

M⋆
T − M⋆

t

T − t
+ O

( 1
N

)
.

In what follows, we discuss the convergence of the estimator Λ
aT,T,N
k to the SCGF Λk , which

s based on the cloning factor.
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Theorem 5.8. Let L
(N ,⋆)
c,k be the extension (82) of the cloning generator L

N
c,k . Then, for every

p ≥ 2 and a ∈ [0, 1), there exists a constant C⋆
p > 0 such that for all N large enough

E
[⏐⏐⏐ΛaT,T,N

k − ΛaT,T,N
k

⏐⏐⏐p
]1/p

≤
C⋆

p

N 1+1/p ·
√

T
. (85)

f in addition Assumption (69) on asymptotic stability holds, there exist constants γ ⋆
p , c⋆

p, α
′ > 0

and 0 < ρ < 1 (dependent on a, p, λ̂k, Q and Vk) such that

E
[⏐⏐⏐ΛaT,T,N

k − Λk

⏐⏐⏐p
]1/p

≤
γ ⋆

p

N 1+1/p ·
√

T
+

c⋆
p

√
N

+
α′ρaT

T
,

or every T ≥ 1.

Proof. Thanks to Jensen’s inequality, it is enough to prove the inequality for all p = 2q ,
∈ N. First, we can write

E
[⏐⏐⏐⏐ΛaT,T,N

k − ΛaT,T,N
k

⏐⏐⏐⏐2q ]
=

1(
N · (1 − a)T

)2q · E
[⏐⏐M⋆

T − M⋆
aT

⏐⏐2q ]
≤

1(
N · (1 − a)T

)2q · E
[⏐⏐M⋆

T

⏐⏐2q ]
.

bserve that supt≤T

⏐⏐M⋆
t

⏐⏐ < ∞, so the assumptions of Lemma 4.1 are satisfied. Thus, using
emma 4.1, we obtain

1
N 2q

· T 2q · E
[⏐⏐M⋆

T

⏐⏐2q ]
≤

Cq

N 2q
· T 2q

q−1∑
k=0

E
[
(⟨M⋆

·
⟩T )2k ]

≤
C̃q

N 2q

q−1∑
k=0

1
T 2q−2k

(
1

N 2k + O
( 1

N 2k+1

))
≤

C⋆
q

N 2q+1 · T 2q−1 .

he second part of the Theorem follows directly by Proposition 5.5. □

Therefore, the L p-error for estimator Λ
aT,T,N
k has the same rate of convergence 1/

√
N as

aT,T,N
k . Analogous results hold for the bias estimates, which have order of convergence 1/N
s for the estimator ΛaT,T,N

k (Proposition 5.5), since with (85) the difference of both estimators
is only of order N−1−1/p.

6. Discussion

In this work we have established a framework to compare variants of cloning algorithms
and understand their connections with mean field particle approximations. This allowed us to
obtain first rigorous results on the convergence properties of cloning algorithms in continuous
time. Our results apply in the general setting of jump Markov processes on locally compact state
spaces. Essential conditions for our approach are summarized in Assumption 2.2 on asymptotic
stability of the process and 3.1 on the particle approximation, which are usually straightforward
to check for practical applications. We summarize further sufficient conditions for asymptotic
stability in the Appendix.
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In certain situations the cloning algorithm is computationally cheaper and simpler to
mplement than mean field particle systems, since only the mutation process has to be sampled
ndependently for all particles and cloning events happen simultaneously. However, as discussed
n [2], this choice reduces in general the accuracy of the estimator since it does not consider the
tness potential of the replaced particles during the cloning events. Adjusting the algorithm by
llowing only substitutions of particles with lower fitness based on different McKean models
ould improve the accuracy. The approach developed in this paper can be used to conduct a
ystematic study of this question, which is current work in progress.
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ppendix. Asymptotic stability

We present sufficient conditions for asymptotic stability as presented in Assumption 2.2.
he discussion is based on the work of Tweedie et al. [21,53], which we briefly recall in
emma A.3.

efinition A.1. A Feller process Yt is said to be φ-irreducible for a non-trivial measure φ

i.e. φ(E) > 0) on (E,B(E)), if Ex
[∫

∞

0 1Yt ∈Adt
]

> 0 for every x ∈ E and every set A ∈ B(E)
uch that φ(A) > 0. We simply say that Yt is irreducible if it is φ-irreducible for some φ.

Definition A.2. A φ-irreducible Feller process Yt is called aperiodic if there exists a small set
∈ B(E), φ(C) > 0, such that the associated Markov semigroup P(t) satisfies the following

onditions:

• there exists a non-trivial measure η and t > 0 such that P(t) (x, B) ≥ η(B), for all x ∈ C
and B ∈ B(E);

• there exists a time τ ≥ 0 such that P(t) (x, C) > 0, for all t ≥ τ and x ∈ C .

emma A.3. Let Yt be a φ-irreducible and aperiodic Feller process on a locally compact
tate space E such that supp φ has non-empty interior. Denote by L and P(t) the associated
nfinitesimal generator and the semigroup, respectively. Assume that for a given function

h ∈ Cb(E) such that h ≥ 1, there exist constants b, c > 0 and a compact set S ∈ B(E)
uch that for all x ∈ E

L(h)(x) ≤ −c · h(x) + b1S(x).

hen there exist constants α ≥ 0 and ρ ∈ (0, 1) such that for any test function f ∈ Cb(E) and
≥ 0,⏐⏐P(t) f (x) − π ( f )

⏐⏐ ≤ ∥ f ∥ h(x) · αρ t ,

or any x ∈ E, where π is the (unique) invariant measure of Y .
t
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Proof. See [21], Theorem 5.2(c), using the fact that if a Feller process Yt is φ-irreducible and
upp φ has non-empty interior, then every compact set is petite (See [53], Theorem 7.1 and
heorem 5.1). □

In the following we discuss how the spectral properties of the tilted generator LV in
ssumption 2.2 can imply asymptotic stability in the sense of (4).

ssumption A.4. We assume that the spectrum of LV (2) is bounded by a greatest eigenvalue
0. Moreover, there exist a positive function r ∈ Cb(E), unique up to multiplicative constants,

and a probability measure µ∞ ∈ P(E) satisfying respectively

LV (r ) = λ0 · r ,

nd

µ∞

(
LV ( f )

)
= λ0 · µ∞( f ) for any f ∈ C(E) .

ithout loss of generality, we can assume µ∞(r ) = 1.

emark. Sufficient conditions for Assumption A.4 to hold can be found, for instance,
n [30,31]. These are of course satisfied if the original process with generator L is an
rreducible, finite-state Markov chain, including for example stochastic particle systems on
nite lattices with a fixed number of particles.

Under Assumption A.4, we define the generator

LV
r ( f )(x) = r−1(x) · LV (r · f )(x) − λ0 · f (x) ,

hich is known in the literature as Doob’s h-transform of LV [9] or twisted Markov kernel [54].
bserve that LV

r 1 = 0, so that it is a probability generator associated to a Markov process with
robability semigroup defined for any f ∈ Cb(E) by

PV
r (t) f (x) := r−1(x) · e−λ0 PV (t)(r f )(x).

roposition A.5 (Asymptotic Stability). Assume that there exists ε > 0 such that the set

Kε :=
{

x ∈ E
⏐⏐V(x) ≥ λ0 − ε

}
s compact. Under Assumption A.4, if the initial pure jump process (X t : t ≥ 0) with generator

is φ-irreducible for some φ for which supp φ has non-empty interior, and aperiodic as defined
bove then (4) holds, i.e. there exists α > 0 and ρ ∈ (0, 1) such thate−λ0 PV (t) f − µ∞( f )

 ≤ ∥ f ∥ · αρ t

or every t ≥ 0 and f ∈ Cb(E).

roof. First, note that if the initial process X t is irreducible and aperiodic, then also the
rocess associated to LV

r is irreducible and aperiodic. Moreover, LV
r is bounded in Kε and

V
r (r−1) ≤ −ε r−1 for every x ̸∈ Kε. Therefore, the hypotheses of Lemma A.3 are satisfied

for the generator LV
r acting on the function h = r−1. Thus, applying the lemma we obtain⏐⏐PV

r (t) f (x) − π ( f )
⏐⏐ ≤ ∥ f ∥ r−1(x) · αρ t ,

or any f ∈ Cb(E) and x ∈ E , where π (·) = µ∞(r ·) ∈ P(E) is the invariant measure for LV
r .

Dividing by r−1(x) and substituting f with r−1 f ∈ Cb(E), we obtain the statement (∥r−1
∥ < ∞

and can be included in the constant α). □
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