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Abstract
We establish a complete picture of condensation in the inclusion process in the thermody-
namic limit with vanishing diffusion, covering all scaling regimes of the diffusion parameter
and including large deviation results for the maximum occupation number. We make use of
size-biased sampling to study the structure of the condensed phase, which can extend over
more than one lattice site and exhibit an interesting hierarchical structure characterized by
the Poisson–Dirichlet distribution.While this approach is established in other areas including
population genetics or random permutations, we show that it also provides a powerful tool
to analyse homogeneous condensation in stochastic particle systems with stationary product
distributions. We discuss the main mechanisms beyond inclusion processes that lead to the
interesting structure of the condensed phase, and the connection to other generic particle
systems. Our results are exact, and we present Monte-Carlo simulation data and recursive
numerics for partition functions to illustrate the main points.

Keywords Condensation · Inclusion process · Poisson–Dirichlet distribution · Size-biased
sampling

1 Introduction

Condensation phenomena in stochastic particle systems (SPS) continue to be a topic of
major research interest. They can be caused by spatial inhomogeneities (see e.g. [1,2] and
references therein) or attractive particle interaction in spatially homogeneous systems, which
is the focus of this paper. If the total density of particles exceeds a critical value, the system
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phase separates into a homogeneous bulk and a condensed phase, with a finite fraction of the
total mass concentrating in a vanishing volume fraction. First introduced in [3], zero-range
processes and related models provided a first example of condensation in homogeneous SPS
[4–6]. On the level of stationary distributions condensation is characterized by heavy-tail
behaviour of stationary weights as first noted in [7,8], which has been used to study the
phenomenon in the context of equivalence of ensembles and large deviations [9–11].

The inclusion process has been introduced in [12] as a discrete dual to a model of heat
conduction, and has later been studied as an interesting model of stochastic transport on its
own [13–15]. It is a natural bosonic counterpart to the exclusion process where particles are
subject to an attractive inclusion interaction in addition to independent diffusivemotion. It can
also be interpreted as a multi-species version of theMoranmodel of population genetics [16],
where the inclusion interaction corresponds to selection, and diffusion to mutation dynamics.
The inclusion process is part of a larger class of models introduced in [17] that exhibit
factorized stationary distributions, which has recently been extended [18]. Condensation in
the inclusion process has first been studied in [19] for inhomogeneous systems. Condensation
in homogeneous systems only occurs if the diffusion strength vanishes with the system size.
While such scaling of system parameters can lead to non-equivalence of ensembles and
discontinuous behaviour as established for a toy zero-range model in [20,21], this is not the
case for the inclusion process and small diffusion or mutation rates are in fact very natural in
many applications. The dynamics on various time scales have been established on a rigorous
level in [22,23], restricted to finite lattices in the limit of diverging particle density. In the
thermodynamic limit with a finite limiting density there are only heuristic results so far,
covering the dynamics of condensation in the inclusion process [24] and extensions with
stronger particle interactions and instantaneous condensation [25,26].

In particular, the stationary behaviour of the inclusion process in the thermodynamic limit
has not been characterized so far, which is the main aim of this paper. We establish the
equivalence of ensembles, and show that for vanishing diffusion strength the inclusion pro-
cess exhibits condensation for any positive particle density. While the bulk of the system is
empty, the condensed phase can exhibit an interesting hierarchical structure following the
Poisson–Dirichlet distribution. The latter was originally introduced in the context of popu-
lation genetics [27,28], and has later been identified as the generic stationary distribution of
split-merge dynamics [29,30], which is related to its appearance in cycle length distributions
of random permutations [31–33]. It has further been observed (though not identified) more
recently in systems of interacting diffusions [34,35], but to our knowledge is a novelty in
the context of condensation in SPS. In general, the condensed phase in SPS with stationary
product distributions concentrates on a single lattice site [7,8,10,36]. A spread over multiple
sites has only been observed in versions of zero-range processes which include an effective
(soft) cut-off for site occupation numbers [37,38], or inmodels with pair-factorized stationary
states [39,40]where it occurs naturally due to spatial correlations. Poisson–Dirichlet statistics
arise when the diffusion parameter in the inclusion process scales with the inverse system
size, and we also establish complete condensation for smaller diffusion where all particles
concentrate on a single site, and a universal exponential law for intermediate scales.

Our main results on the structure of the condensed phase are derived using size-biased
sampling of occupation numbers, which is related in a natural way to the Poisson–Dirichlet
distribution as reviewed inSect. 3.2.While this point of view is standard in population genetics
(see e.g. [41]), this approach also provides a strong tool to study the condensed phase in SPS
where it has not been used so far. After introducing the basic notation and concepts in Sect. 2,
we derive our main results on condensation and the typical structure of the condensed phase
for the inclusion process in Sect. 3. Our results are rigorous and derivations are presented in

123



684 W. Jatuviriyapornchai et al.

a general, transferable way, and we show simulation data for illustration. We include results
on large deviations of the condensed phase in Sect. 4, and conclude with a discussion of
the main points and relations to other models in Sect. 5. In Appendix 1 we show that under
a general definition of condensation the system phase separates into a homogeneous bulk
and a condensed phase, and that condensation implies divergence of higher moments. In
Appendix 2 we comment on Monte-Carlo dynamics to generate stationary samples, and on
differences between one-dimensional and mean-field geometries.

2 Mathematical Setting

2.1 Condensation in Homogeneous Particle Systems

We study stochastic particle systems (SPS) on a finite set of spatial locations/sites � of size
|�| = L , which can for example be a regular lattice with periodic or closed boundaries. The
system has a fixed, finite number of N particles, and we denote configurations by η = (ηx :
x ∈ �), ηx ∈ N0, and the state space EL,N = {

η : ∑x∈� ηx = N
}
denotes the set of all

configurations. The dynamics should be irreducible on EL,N , so that the process has a unique
(canonical) stationary distribution πL,N . We assume that πL,N is spatially homogeneous, i.e.
the single-site marginals πL,N [ηx ∈ .] do not depend on site x , and in particular this implies
that the density (the expected number of particles per site) is given as

〈ηx 〉L,N :=
N∑

n=1

n πL,N [ηx = n] = N/L. (1)

We are interested in large-scale condensation phenomena of the system in the thermo-
dynamic limit L, N → ∞ such that the density converges as N/L → ρ ≥ 0, which in
the following we often denote by limN/L→ρ to simplify notation. We assume that in this
limit finite marginals of πL,N converge, and we denote the limiting single site marginal as a
distribution on N0 by

νρ := lim
N/L→ρ

πL,N [ηx ∈ .]. (2)

This convergence of distribution functions is equivalent to weak convergence, i.e.
〈
f (ηx )

〉
L,N → 〈 f 〉ρ as L, N → ∞ N/L → ρ (3)

for all x ∈ � and bounded, continuous test functions f ∈ Cb(N0). With (1) the first moment
〈ηx 〉L,N → ρ converges in the thermodynamic limit, and by Fatou’s Lemma this implies for
the first moment of the limiting distribution that

ρb:=〈ηx 〉ρ ≤ ρ. (4)

This is usually called the background or bulk density (indicated by the subscript) as is
explained below. Strict inequality above is possible since f (ηx ) = ηx is an unbounded
function on N0, and implies that locally the system loses mass in the limit, providing the
following standard definition of condensation.

Definition 1 A system with canonical distributions πL,N exhibits condensation in the ther-
modynamic limit N/L → ρ with background density ρb as in (4), if νρ exists as defined in
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(2) and ρb < ρ. A system with ρb = 0 is said to exhibit complete condensation if

πL,N

[
max
x∈�

ηx = N
]

→ 1 as L, N → ∞, N/L → ρ, (5)

i.e. typically all particles in the system concentrate on a single lattice site.
If νρ exists for all ρ ≥ 0, the systems is said to exhibit a condensation transitionwith critical
density ρc ≥ 0, if

ρb

{= ρ , for all ρ < ρc
< ρ , for all ρ > ρc

. (6)

Condensation in the above setting has been established in various SPS, including zero-
range processes and related models (see e.g. [42,43] and references therein). It has been
shown on a case-by-case basis that ρb is monotone increasing with ρ and there exists a
unique critical density ρc ∈ [0,∞] in the sense of (6). One sufficient general condition
is monotonicity of the dynamics for the underlying particle system. But in principle more
complicated behaviour such as non-monotonicity of ρb cannot be ruled out, even though we
are not aware of any generic examples in the thermodynamic limit. For condensation on finite
lattices possible non-monotonicity of ρb has been established and discussed e.g. in [44,45]
and references therein.

As is discussed in more detail in Appendix 1, the interpretation of ρb < ρ is that the
system phase separates into a homogeneous bulk phase and a condensed phase. The latter
concentrates on a vanishing volume fraction but contains a non-zero fraction ρ − ρb > 0 of
the total mass in the system, and is usually simply called the condensate. Depending on the
specific example and the nature of πL,N the condensate may cover only a single lattice site
(see e.g. [10,36]) or a sub-extensive volume [39,40]. In most cases the bulk density ρb = ρc
is equal to critical one, but there are also models with ρb < ρc, such as zero-range toy models
with size-dependent rates [20,21]which introduce an effective long-range interaction and lead
to non-equivalence of ensembles. Complete condensation has been established for particular
zero-range processes in [7,46] and for inclusion processes in a fixed volume in [23].

As we show in Appendix 1 in Proposition 6, condensation as defined above implies in
particular divergence of higher moments 〈ηax 〉L,N with a > 1. This has been used in some
papers as a definition of condensation often using a = 2 [47,48]. The converse does not hold,
since moments of limiting distributions νρ with heavy tails can diverge also in the absence
of phase separation, so we stick to Definition 1 to characterize condensation. For condensing
systems, divergence of higher moments is due to the contribution of diverging occupation
numbers in the condensed phase which is not described by the limiting distribution νρ .

2.2 Models with Stationary Product Measures

From now on we focus on stochastic particle systems which are defined by a generator of
the form

L f (η) =
∑

x,y∈�

p(x, y)u(ηx , ηy)
(
f (ηxy) − f (η)

)
, (7)

for continuous test functions f ∈ C(EL,N ). This defines a continuous-time Markov process
on the state space EL,N jumping from configurations η to ηxy where one particle moves from
site x to y. The spatial dependence of the rates is given by a multiplicative factor p(x, y),
which we take to be an irreducible transition kernel for a single particle on�. The interaction
between particles is determined by the function u which depends only on the occupation
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numbers of departure and target site of a jump event. To ensure irreducibility of the process
on EL,N we assume

u(m, n) ≥ 0 and u(m, n) = 0 if and only if m = 0.

To ensure spatial homogeneity at stationarity we assume
∑

x∈�

p(x, y) =
∑

x∈�

p(y, x) for all y ∈ �,

which is a slight generalization of translation invariance on regular lattices. This type of
models have first been introduced in the seminal paper [17]. It is well known (see also [2,18])
that they exhibit stationary product measures if and only if

u(n + 1,m)

u(m + 1, n)
= u(n + 1, 0)

u(1, n)

u(1,m)

u(m + 1, 0)
for all n,m ≥ 0, (8)

and either p(·, ·) is symmetric, or

u(n,m) − u(m, n) = u(n, 0) − u(m, 0) for all n,m ≥ 0. (9)

In this case, normalizing the weights w(n) =
n∏

k=1

u(1, k)

u(k, 0)
leads to product distributions

νL
φ [dη] =

(
1

z(φ)

)L ∏

x∈�

w(ηx )φ
ηx dη with z(φ) =

∑

n∈N0

w(n) φn, (10)

which are stationary for all φ ≥ 0 such that the normalizing partition function z(φ) < ∞.
Note that these ‘grand-canonical’ distributions are supported on the extended state space
EL = {

η : ηx ≥ 0
}
without fixing the total number of particles. The expected number of

particles per site is given as a monotone increasing function of φ as

R(φ):=〈ηx 〉φ = φ ∂φ log z(φ). (11)

For such processes we have explicit representations of the canonical distributions as condi-
tional grand-canonical distributions

πL,N = νL
φ

[
·
∣∣∣
∑

x∈�

ηx = N

]
,

which in fact do not depend on the choice of φ > 0. This leads to the useful form

πL,N [dη] = 1

ZL,N

∏

x∈�

w(ηx ) δ

(∑

x

ηx , N

)
dη with ZL,N =

∑

η∈EL,N

∏

x∈�

w(ηx ) (12)

with canonical partition function ZL,N . This implies in particular that for ρ < ρc the limits
(2) of single-site marginals are given by the marginal ν1φ with φ ≥ 0 such that R(φ) = ρ.

For models of the above type, the condensation transition as given in Definition 1 is
equivalent to existence of φc < ∞ such that z(φ) = ∞ for all φ > φc, and R(φ) → ρ∗ < ∞
as φ → φc (see e.g. [2] for a detailed discussion). Examples of this type studied so far
include zero-range processes with u(m, n) = u(m) and decreasing rates u(m) [5,8,36],
where ρ∗ = ρc = ρb. If the rates can depend on the system size, the transition can also
be discontinuous with ρb < ρc < ρ∗ where grand-canonical distributions with densities in
the range (ρc, ρ

∗) are metastable [20,21]. More recently, condensation has also been studied
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for inclusion processes [19] and explosive condensation models [25,26,43] with rates of the
form

u(m, n) = mγ
(
d + nγ

)
, γ ≥ 1, d > 0 . (13)

If γ > 2 the system exhibits a condensation transition for all d > 0 with ρc > 0. For
inclusion processes we have γ = 1, and this case is covered in more detail in Sect. 3.1. In
all generic systems with stationary product measures studied so far, we have

1

L
max
x∈�

ηx → ρ − ρb as L, N → ∞, N/L → ρ,

and the condensed phase concentrates on a single lattice site. In Sect. 3 we will see for the
inclusion process that the condensed phase can extend over more than one site and have
an interesting hierarchical structure, which has not been observed for condensing particle
systems so far.

2.3 Size-Biased Sampling

Since the condensed phase concentrates on a vanishing volume fraction, the limitingmarginal
probabilities for a fixed number k of occupation numbers converge to the distribution of the
bulk in a condensed system.As explained above, formodels with stationary productmeasures
this is usually given by the maximal product measure with critical density ρc = R(φc) and
we have (cf. [10])

πL,N [ηx1 = n1, . . . , ηxk = nk] →
k∏

i=1

νφc (ni ),

for all x1, . . . , xk ∈ � and n1, . . . , nk ≥ 0. This asymptotic equivalence of canonical and
grand canonical ensembles (distributions) has been established for a large class of models
[2,9], and implies weak convergence w.r.t. local, bounded test functions as in (3).

Since it contains a non-zero fraction of all particles, the distribution of the condensed
phase can be accessed via size-biased permutations of particle configurations. This can be
interpreted as picking a particle uniformly at random and sampling the occupation number
ηx at its location x . The larger ηx , the more likely it is to pick site x in this way. Formally,
this can be defined recursively (see e.g. [41, Sect. 2.4]).

Definition 2 For given η ∈ EL,N pick a random permutation σ : � → � of the lattice
indices as

σ(1) = x with probability
ηx

N
, x ∈ � ;

σ(2) = x with probability
ηx

N − ησ(1)
, x ∈ � \ {σ(1)} ;

. . . and so on.

Then we call η̃ = (
η̃1, . . . , η̃L

):=(ησ(1), . . . , ησ(L)

)
a size-biased permutation of η.

For models with canonical distributions of the form (12), the distribution of the first
size-biased marginal is given by

πL,N [η̃1 = n] = L

N
nπL,N [η1 = n] = L

N
nw(n)

ZL−1,N−n

ZL,N
, (14)
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where the stationary weight w(n) is re-weighted proportional to n and re-normalized. Here
and in the following we use the convention ZL,k = 0 for all k < 0, so we can omit indicator
functions of the form 1n≤N to simplify notation. Note that the first identity in (14) with the
re-weighted marginal probability holds in general, but the second one only because πL,N is
a conditional product measure of the form (12). For a two-site size-biased marginal we then
have

πL,N
[
η̃1 = n1, η̃2 = n2

] = πL,N
[
η̃2 = n2

∣∣η̃1 = n1
]
πL,N [η̃1 = n1]

= L − 1

N − n1

ZL−2,N−n1−n2

ZL−1,N−n1
n2w(n2)

L

N

ZL−1,N−n1

ZL,N
n1w(n1)

= L(L − 1)

N (N − n1)
n1n2w(n1)w(n2)

ZL−2,N−n1−n2

ZL,N
.

Generalizing to the k-site case we get

πL,N
[
η̃1 = n1, η̃2 = n2, . . . , η̃k = nk

]

= L(L − 1) · · · (L − k + 1)

N (N − n1) · · · (N −∑k−1
i=1 ni )

k∏

i=1

(niw(ni ))
ZL−k,N−∑k

i=1 ni

ZL,N
, (15)

which includes k = L to get the full distribution of η̃ with Z0,n = 1 for all n ∈ {0, . . . , N }.
Note that due to size-biased re-ordering, the distribution of η̃ and its marginals is of course
not spatially homogeneous.

To our knowledge, essentially all previous studies of condensation in homogeneous par-
ticle systems focus instead on the (decreasing) order statistics

η̂ = (
η(1), . . . , η(L)

)
where η(1) ≥ η(2) ≥ . . . ≥ η(L), (16)

and in particular the maximum occupation number η(1) (see e.g. [10,21,49,50]). We will
see below how this is related to size-biased sampling, and that the latter is very suitable to
study condensation in systems with ρb = 0 such as the inclusion process and related models.
A size-biased sampling approach can also be useful in models with ρb > 0 to study the
dynamics of the condensed phase and phase separation as recently shown in [51].

2.4 The Poisson–Dirichlet and GEMDistribution

The Poisson–Dirichlet distribution has been introduced by Kingman in the context of popu-
lation genetics [27,28] and has since occurred in a variety of applications, such as split-merge
dynamics [29,30] and random permutations [31–33]. It is a one-parameter family of proba-
bility measures defined on the set of ordered partitions of the unit interval

∇:=
{
(v1, v2, . . .) ∈ [0, 1]∞ : v1 ≥ v2 ≥ · · · ≥ 0,

∞∑

j=1

v j = 1

}
.

It can be characterized for instance as a scaling limit of Dirichlet random variables which
form a finite partition of [0, 1], or via scale invariant Poisson processes (see Chap. 2 in [41]
for details). One of the most accessible characterization in terms of practical use is related
to the GEM distribution, named in [52] after Griffiths [53,54], Engen [55] and McCloskey
[56], which is defined as follows. Let U1,U2, . . . be i.i.d. Beta(1, α) random variables with
α > 0, which take values on [0, 1] with PDF α(1− x)α−1, and the uniform distribution as a
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special case for α = 1. On the set of (unordered) partitions


:=
{
(v1, v2, . . .) ∈ [0, 1]∞ :

∞∑

j=1

v j = 1

}
.

define a random element V :=(V1, V2, . . .) ∈ 
 recursively via

V1 = U1, V2 = (1 −U1)U2, V3 = (1 −U1)(1 −U2)U3, . . . , (17)

which corresponds intuitively to breaking off a fraction 1 − U1 from the unit interval and
continuing this process recursively with the remaining interval. The law of V on 
 is called
the Griffiths-Engen-McCloskey distribution GEM(α), and the corresponding order statistics
V̂ on ∇ has Poisson–Dirichlet distribution PD(α). Alternatively, given a PD(α) distributed
partition V on ∇, its size-biased permutation Ṽ has GEM(α) distribution on 
 (see e.g. [41]
for details).

Note that the construction (17) leads to a hierarchical structure of a GEM(α) partition
V , and the parameter α > 0 controls the expected size of the components. The expectation
of Beta(1, α)-distributed random variables Ui is 1

1+α
, so for small α the size of the first

component V1 is larger and the hierarchy stronger. For larger α the expected sizes of the
components are more similar, but always show a strict order since

〈
1 −

n∑

k=1

Vk
〉

GEM(α)
=
〈 n∏

k=1

(1 −Uk)
〉

GEM(α)
=
(

α

1 + α

)n

→ 0 as n → ∞. (18)

This shows that in fact V ∈ 
 and that the expected component sizes of Vk vanish as k → ∞,
and is also a useful relation to numerically test for GEM distributions (see Sect. 3.4).

Carrying over the product topology from [0, 1]∞, weak convergence of probability dis-
tributions on 
 and ∇ is equivalent to convergence in distribution of finite marginals
(V1, . . . , Vk) of partitions. By Theorem 2 in [57], convergence in distribution of a sequence
of size biased partitions Ṽ i → V on 
, implies convergence in distribution of the corre-
sponding ordered partitions V̂ i → V̂ , and V is a size-biased permutation of V̂ . In Sect. 3.2
we will use this fact and that rescaled particle configurations 1

N η ∈ 
 can be interpreted
as finite partitions of the unit interval, to derive our main results. Note that in a condensing
system with ρb < ρ (4) the partitions 1

N η in the thermodynamic limit only converge on the
extended space


:=
{
(v1, v2, . . .) ∈ [0, 1]∞ :

∞∑

j=1

v j ≤ 1

}
,

which allows for the loss of mass due to phase separation (see Proposition 6 in Appendix 1).
On the other hand, size-biased permutations capture the condensed phase and the full mass
of the system, and 1

N η̃ converge on 
, as we will establish in the next Section.

3 Condensation in the Inclusion Process

The inclusion process is a stochastic particle system of type (7) with rates

u(m, n) = m(d + n) with parameter d > 0, (19)

which was first introduced in [12] in the context of energy/mass transport. Another important
interpretation of this model is as a multi-species version of the Moran model of population
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genetics, which describes the selection-mutation dynamics of a population of N individuals
which can take L different types [58]. Here the parameter d describes the mutation rate,
which is small compared to the reproduction rate of the system and is often taken to depend
on the system size d = dL > 0 and vanish as L → ∞. Results in [23] show that for fixed L
as N → ∞, complete condensation occurs if d = dN � 1/ log N . The thermodynamic limit
has not been studied so far, and in this section we will establish a complete picture covering
all densities ρ > 0 and possible scaling regimes of the parameter d .

The inclusion process satisfies conditions (8) and (9) and has stationary product measures
of the form (10) with weights

w(n) = �(n + d)

n!�(d)
� d nd−1 as n → ∞, (20)

1 and with normalization z(φ) = (1 − φ)−d . So φc = 1 and

R(φ) = d
φ

1 − φ
→ ∞ as φ → 1 for all d > 0. (21)

This also leads to an explicit formula for the canonical distributions

πL,N [dη] = 1

ZL,N

∏

x∈�

�(ηx + d)

ηx !�(d)
dη with ZL,N = �(N + dL)

N !�(dL)
, (22)

which can be identified as a Dirichlet multinomial distribution (cf. [41, Chap. 1]). These have
been studied in detail in the context of urn models and have interesting structural properties
and symmetries, but in the followingwe onlymake use of the asymptotic form of the partition
function so that our results can be more easily translated to other systems. Our main results
in the thermodynamic limit N , L → ∞, N/L → ρ ≥ 0 are derived in the next subsections,
and can be summarized as follows:

1. d > 0 constant or dL → d > 0: we have asymptotic equivalence of canonical measures
and stationary product distributions (10) with φ ∈ [0, 1) such that R(φ) = ρ (11), and
there is no condensation.

2. d → 0: the inclusion process exhibits a condensation transition with ρc = 0 as follows:

(a) d → 0 and dL log L → 0: complete condensation
(b) d → 0 and dL → α ∈ (0,∞): the condensed phase exhibits a hierarchical structure

on the scale N given by the PD(α) distribution.
(c) d → 0 and dL → ∞: the condensed phase consists of order dL sites with indepen-

dent occupation numbers of order ρ/d and exponential distribution.

We will make use of the asymptotic behaviour of w(n) (20) and the partition function ZL,N ,
which can be derived by standard Stirling approximations from (22). Particularly useful in
the following is the asymptotic behaviour of the ratio

�(L + a)

�(L + b)
= La−b(1 + o(1)

)
as L → ∞, (23)

2 which holds for all sequences a = aL and b = bL such that a2, b2 � L . Recall also that
�(d) = 1

d

(
1 + o(1)

)
as d → 0.

1 for functions or sequences we write f (n) � g(n) if f (n)/g(n) → 1 as n → ∞
2 we write f (n) = o

(
g(n)

)
if f (n)/g(n) → 0 as n → ∞
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3.1 Equivalence of Ensembles and Condensation

We assume d > 0 constant or dL → d > 0. In this case (21) implies that there exist
grand-canonical distributions for any density ρ ≥ 0, by choosing

φ = �(ρ):= ρ

d + ρ
∈ [0, 1) (24)

such that R(φ) = ρ. In this case the equivalence of ensembles can be established most
naturally in terms of the specific relative entropy between canonical and grand-canonical
distributions (see e.g. [2,9])

1

L
H(πL,N , νL

φ ) = 1

L

∑

η∈EL,N

πL,N [η] log πL,N [η]
νL
φ [η]

= log z(φ) − N

L
logφ − 1

L
log ZL,N . (25)

Computing the leading order terms of ZL,N from (22) with standard Stirling formula we get

1

L
log ZL,N → ρ log

(
1 + d

ρ

)
+ d log ρ,

so choosing φ = φ(ρ) as in (24) we see that (25) vanishes in the thermodynamic limit since
log z(φ) = −d log(1 − φ). Convergence in specific relative entropy implies convergence of
finite marginals [2], i.e. for any fixed k > 0 and n1, . . . , nk ≥ 0

πL,N
[
η1 = n1, . . . , ηk = nk

] → 1

z(φ)k

k∏

i=1

w(ni )φ(ρ)ni as N/L → ρ.

The latter limit could also be computed directly in analogy to other results below, but the
route via the equivalence of ensembles is more robust since only the logarithm of the partition
function has to be controlled to leading order.

An alternative representation of the specific relative entropy is given by (see e.g. [9])

1

L
H(πL,N , νL

φ ) = − 1

L
log νL

φ

[∑

x∈�

ηx = N
]
.

Since the secondmoment of the single-site marginal νφ is finite when φ(ρ) = ρ/(ρ+d) < 1,
one can show that this vanishes in the thermodynamic limit even without computing the
asymptotics of ZL,N , by applying a local central limit theorem to the right hand side (see for
example [59,60]).

In the case d → 0, (21) implies that there are no grand-canonical distributions for any
positive density and therefore we expect a condensation transition, following the discussion
after (12). We summarize this in the following result proved by a direct computation.

Proposition 1 Provided that d → 0as L → ∞, the inclusionprocess exhibits a condensation
transition as given in Definition 1 with ρc = ρb = 0, i.e. we have for all fixed n ≥ 0 and
ρ ≥ 0

πL,N [η1 = n] → δ0,n as L, N → ∞, N/L → ρ > 0.

Proof We have for any n ≥ 0 fixed

πL,N
[
η1 = n

] = w(n)
ZL−1,N−n

ZL,N
� w(n), (26)
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sincewith the scaling (27) given below for the partition function in the casedL → α ∈ [0,∞)

we have
ZL−1,N−n

ZL,N
�
(
1 − n

N

)dL → 1.

The same holds with (33) in the case dL → ∞. From (20) we have w(0) = 1 and w(n) =
O(d) for any n ≥ 1, leading to πL,N [η1 = n] → δ0,n , independently of ρ. With Definition 1
this implies condensation with ρc = ρb = 0. 
�

So locally the system appears empty in the limit, and a further investigation of the con-
densed phase will be given below in terms of size-biased samples. Note that in the proof
we only use the asymptotic behaviour of ratios of partition functions and the fact that
w(n) = O(d) for all n > 0.

3.2 GEM Scaling Limit and Complete Condensation

We study the distribution of the condensed phase by computing size-biased marginals in the
case dL → α ≥ 0. Using (23), the leading order behaviour of the partition function is given
by

ZL,N = �(N + dL)

N !�(dL)
�
{

dNdL/ρ if dL → 0,
NdL−1/�(α) if dL → α > 0.

(27)

Recall from Sect. 2.4 that 1
N (η1, . . . , ηL) is a (finite) partition of the unit interval.

Theorem 1 In the thermodynamic limit L, N → ∞ such that N/L → ρ with dL → α > 0,
the rescaled order statistics of η (16) converge in distribution to Poisson Dirichlet, i.e.

1

N
η̂ = 1

N

(
η(1), . . . , η(L)

) D−→ PD(α) . (28)

Equivalently, size-biased samples converge as 1
N η̃

D−→ GEM(α).

Proof Following the discussion in Sect. 2.4 it suffices to show that for all k ≥ 1, x1, . . . , xk ∈
[0, 1] we have

N (N − n1) · · ·
(
N−

k−1∑

i=1

ni

)
πL,N [η̃1=n1, η̃2=n2, . . . , η̃k=nk ] → αk

k∏

i=1

(1 − xi )
α−1, (29)

provided that n1
N → x1 ∈ [0, 1], n2

N → (1 − x1)x2, · · · ,
nk
N → (1 − x1)(1 − x2) · · · (1 −

xk−1)xk . With the characterization in (17) this establishes convergence in distribution of
size-biased permutations to GEM(α), which is equivalent to (28).

Using (15), the scaling of w(n) � dnd−1 as n → ∞ (20) and the partition function (27),
and (23) we get

πL,N [η̃1 = n1, η̃2 = n2, . . . , η̃k = nk]

= L(L − 1) · · · (L − k + 1)

N (N − n1) · · · (N −∑k−1
i=1 ni )

ZL−k,N−∑k
i=1 ni

ZL,N

k∏

i=1

(niw(ni ))

� L(L − 1) · · · (L − k + 1)dk

N (N − n1) · · · (N −∑k−1
i=1 ni )

(
N −∑k

i=1 ni
N

)dL−1(
N −

k∑

i=1

ni

)−dk k∏

i=1

ndi .

(30)
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Since d = O(1/L) we have ndi → 1 and also
(
N −∑k

i=1 ni
)−dk → 1. Furthermore, with

the choice of ni we have

1 − 1

N

k∑

i=1

ni � (1 − x1) · · · (1 − xk)

which implies (29). 
�

For α → 0 the above limiting distribution PD(α) degenerates, with the mass fraction of
the maximal occupation number tending to 1. Under a mild additional assumption dL �
1/ log L on the scaling, this statement can be significantly strengthened to ensure complete
condensation in analogy with results in [23] for fixed L as N → ∞.

Proposition 2 In the thermodynamic limit L, N → ∞ such that N/L → ρ with dL log L →
0, we have complete condensation in the sense of (5), i.e. πL,N

[
maxx∈� ηx = N

] → 1.

Proof It suffices to show for the first size-biased marginal that

πL,N [η̃1 = N − n] → δn,0 for all n ≥ 0, (31)

which implies the same for the maximal occupation number. Using again (14), (20) and (27)
we have for all n ≥ 0

πL,N [η̃1 = N − n] = L

N
(N − n)w(N − n)

ZL−1,n

ZL,N
� d

ρ
(N − n)d

ZL−1,n

dNdL/ρ

=
(
1 − n

N

)d
N−d(L−1)ZL−1,n .

The first term tends to 1 for all n ≥ 0 and the second scales like

N−d(L−1) = e−d(L−1) log N → 1 since dL � 1/ log L .

Then ZL−1,0 = 1 and ZL−1,n � dL/n → 0 for n ≥ 1, which implies (31). 
�

3.3 Intermediate Scales

Assuming that d → 0 with dL → ∞ we cannot easily apply (23) for asymptotic estimates,
and after a slightly more involved Stirling approximation the leading order of the partition
function (12) is

ZL,N � e−1

√
2πdL

( N

dL

)dL−1(
1 + dL

N

)N+dL
. (32)

While in principle this scaling together with that of the weights (20) fully determines the
asymptotics of size-biased distributions, it turns out to be more useful to use particular
cancellations when estimating ratios of partition functions to proof our main result below.
The above scaling implies for all fixed n ≥ 0 that

ZL−1,N−n

ZL,N
� (

1 − n/N
)dL(1 + 1/L

)dL(1 + dL/N
)−n → 1, (33)

which we have used to prove Proposition 1.
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Theorem 2 In the thermodynamic limit L, N → ∞ such that N/L → ρ, d → 0 and
dL → ∞, we have for any ρ > 0 and fixed k ∈ N

d(η̃1, . . . , η̃k)
D−→ i.i.d. Exp(1/ρ).

i.e. marginals of rescaled size-biased samples η̃ converge in distribution to independent
exponential random variables with mean ρ.

Proof To establish convergence of the joint density we have to show for all n1, . . . , nk such
that nid → xi > 0

1

dk
πL,N

[
η̃1 = n1, . . . , η̃k = nk] → 1

ρk
exp

(
−

k∑

i=1

xi
/

ρ

)
. (34)

In an analogous computation to (30), we get

1

dk
πL,N [η̃1 = n1, η̃2 = n2, . . . , η̃k = nk]

= 1

dk
L(L − 1) · · · (L − k + 1)

N (N − n1) · · · (N −∑k
i=1 ni )

ZL−k,N−∑i ni

ZL,N

k∏

i=1

(niw(ni ))

�
( 1

ρ

)k k∏

i=1

( xi
d

)d

︸ ︷︷ ︸
:=A

�(N −∑
i ni + d(L − k))

(N −∑
i ni )!︸ ︷︷ ︸

:=B

N !
�(N + dL)︸ ︷︷ ︸

:=C

�(dL)

�(d(L − k))︸ ︷︷ ︸
:=D

, (35)

where we used the asymptotic behaviour of the stationary weights (20), and arranged the
contributions of the ratio of partition functions in a convenient way. Since d → 0 we have
A → 1 and D � (dL)dk using (23). The latter does not apply to the other two terms since
dL → ∞, and a more careful (but straightforward) analysis leads to

C � N 1−dL
(
1 + d

ρ

)N+dL(
1 − 1

N

)N
edL−1

and analogously, using �(N−∑i ni+d(L−k))
�(N−∑i ni+dL)

�
(
N −∑

i ni + dL

)−kd

� N−kd ,

B � N−kd
(
N −

∑

i

ni

)dL−1((
1 + d

ρ

)(
1 + d

∑
i ni

ρN

))∑
i ni−N−dL

×
(
1 − 1

N −∑
i ni

)∑
i ni−N

e1−dL .

Therefore we get

BCD � (d/ρ)dk
(
1 + d

ρ

)∑
i xi /d

(
1 −

∑
i xi

ρdL

)dL(
1 +

∑
i xi

ρN

)−N

→ e−∑
i xi /ρ,

and inserting into (35) implies (34). 
�
So the condensed phase for any intermediate scale with dL → ∞ has a non-hierarchical

structure, locally consisting of independent clusters of average size ρ/d . This general
behaviour across a large range of scaling regimes is quite remarkable. However, since
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dN → ∞, the rescaled size-biased samples dη̃ do not form a partition of a compact interval
(as in the previous case of dL → α). So our result on convergence of finite marginals does
not imply weak convergence of the full sequence dη̃, and we only get a local characterization
of the condensed phase. Since the total mass of the condensed phase is N , and k in the above
result can be chosen arbitrarily large, this at least implies that the volume fraction covered
by the condensed phase scales at least as d to leading order.

Note also that the limiting exponential distribution of a rescaled cluster in the condensed
phase is not itself the size-biased distribution of a random variable, since this would have
density

ρ

x

1

ρ
e−x/ρ = 1

x
e−x/ρ .

This cannot be normalized due to divergence at x = 0, and suggests that the condensed phase
does not simply consist of O(1/d) clusters with i.i.d. occupation numbers. If, conditional
on the volume covered by the condensed phase, one could probe a cluster size without size
bias, it would vanish on the scale 1/d . This suggests that the volume fraction covered by
the condensed phase could indeed be larger than d with many clusters on smaller scales that
do not contribute to the total mass to leading order. Details of this behaviour are most likely
depending on the particular scaling of d , and are very hard to access analytically or even to
observe numerically.

3.4 Simulation Results

We illustrate our main results with Monte Carlo simulations of the inclusion process at
stationarity. Recall that with (7) and (19) the generator describing the dynamics is given by

L f (η) =
∑

x,y∈�

p(x, y)ηx (d + ηy)
(
f (ηxy) − f (η)

)
. (36)

We initialize the system by distributing N particles independently, uniformly at random on
the lattice. The stationary distributions πL,N (22) are conditional product measures for all
translation invariant or symmetric choices of p(x, y). On the complete graph with p(x, y) ≡
1

L−1 one can implement a simple rejection based algorithm to simulate the dynamics, which
we summarize in Appendix 2 and call CG dynamics in the following. We also implemented
the standard Gillespie algorithm [61] to simulate totally asymmetric dynamics on a one-
dimensional lattice with periodic boundary conditions, i.e. p(x, y) = δy,x+1modL , which we
call TA dynamics.

In both geometries, the number of empty sites grows in time and the particles concentrate
in clusters, which exchange particles. Smaller clusters disappear and the average cluster size
increases, driving a coarsening process. This leads to stationary distributions where either a
balance between cluster aggregation and break-up is reached, which is the case for d → 0 and
dL → α ∈ (0,∞], or the system saturateswith a single cluster remaining for dL → 0.While
for CG dynamics clusters can directly exchange particles, for TA dynamics the clusters are
isolated and the coarsening process is limited by particle transport, which has been studied
in [24]. Still, once stationarity is reached (see Appendix 2 for more details on this), both
dynamics provide samples from the same stationary distributions πL,N which do not have
any spatial correlations. Two typical stationary configurations for CG and TA dynamics are
illustrated in Fig. 1.
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Fig. 1 Typical stationary configurations for the inclusion process with N = 2048 particles on a lattice of size
L = 1024 for TA dynamics with dL = 1 (left) and CG dynamics with dL = 10 (right)
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Fig. 2 Sample averages of Rk (37) against k from CG dynamics for the inclusion process are compared to
the expected limiting behaviour (38) (black lines) for dL = 0.5 and 1 (left) and dL = 10 (right). Data are
given in coloured symbols with error bars and averaged over 100 realizations η and a further 5 size-biased
re-samples η̃ for each. Grey lines on the right show 100 individual Rk (η̃) for L = 2048, the smallest possible
non-zero value of Rk here is 1/4096

Since the complete condensation regime dL → 0 has been studied numerically before
[24], we focus on the hierarchical results in Theorem 1with dL → α ∈ (0,∞), and comment
on intermediate scales with dL → ∞ from Theorem 2 later. There are no particularly useful
results for marginals of Poisson Dirichlet random variables, so we compare size-biased
samples of stationary configurations η̃ to the GEM(α) distribution. For each k ≥ 1, we
define

Rk(η̃):=1 − 1

N

k∑

i=1

η̃i , (37)

the mass fraction remaining on all sites with index > k in the size-biased sample η̃. With
the representation (17) of the GEM distribution, Theorem 1 implies that for each k ≥ 1 the
random variable Rk converges in distribution to a product of i.i.d. random variables 1 −Ui ,
where Ui ∼ Beta(1, α). With (18) this implies that

〈Rk〉L,N →
( α

1 + α

)k
as L, N → ∞, N/L → ρ, dL → α, (38)

which is illustrated in Fig. 2 for various values of α and ρ. We see good agreement for
small values of k, but in addition to statistical errors there are large systematic finite-size
effects (illustrated for α = 10 in Fig. 2 right). These are related to the small amount of non-
zero occupation numbers #(η) in typical stationary configurations, leading to a systematic
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Fig. 3 Empirical tail distributions of dη̃i for i = 1, 2, 3 from 100 samples η and 5 size-biased re-samples η̃

are shown as coloured step functions, and compared to the theoretical prediction e−u/ρ from Theorem 2 for
the intermediate regime (full black lines). On the left we fix ρ = 1 and agreement with e−u improves with
increasing d. We also include the size-biased grand canonical prediction (39) for the regime of constant d > 0
(dashed black line), which agrees well with the discrete data for d = 0.5. On the right we fix d = 32 = 1/

√
L ,

with good agreement with theory for densities ρ = 0.5, 1 and 2

underestimation of 〈Rk〉L,N . This can be derived from Ewen’s sampling formula (see e.g.
[41], Theorem 2.8), where #(η) corresponds to the number of different types in a finite sample
of size N from a Poisson–Dirichlet population, and can be shown to scale as

#(η) � α log N as L, N → ∞, N/L → ρ, dL → α.

This logarithmic scaling can be seen in Fig. 2 (right). Convergence of #(η)/ log N to α is
very slow on the scale 1/

√
log N (see [41, Theorem 2.11]), so this is not a good estimator

for α, and the comparison based on (38) in Fig. 2 is more useful.
For small values of d and finite system size L there is a data cross-over to the condensed

regime,with very fewoccupied sites. This is very hard to access numerically, but theoretically,
a single condensate site is fully consistent with the limit α → 0 in (38). For large values
of d there is a data cross-over to the intermediate regime d → 0 with dL → ∞, which
is covered by Theorem 2. This cross-over is illustrated in Fig. 3 (left), where we plot the
empirical tail distribution of dη̃i for i = 1, 2, 3 based on 5 size-biased re-samples η̃ of 100
independent samples of η from πL,N using CG dynamics. We pick small values for i in order
to use the same procedure for all values of d including 1/L . For larger d , larger values for
i lead to the same behaviour, and tests reveal that the samples η̃i are indeed uncorrelated.
For fixed density ρ = 1 we see that agreement with the exponential tail, e−u/ρ predicted by
Theorem 2, improves with increasing d up to d = 32/L = 1/

√
L . In Fig. 3 (right) for this

value of d we see good agreement with the predicted tail for several densities ρ.
If we increase d further the system crosses over to the behaviour for constant d > 0,

where we have equivalence of ensembles to grand canonical measures νφ as explained in
Sect. 3.1. Rescaled size-biased variables dη̃i will then take discrete values in dN given by
the size-biased version of ν1φ (10), i.e.

πL,N
[
dη̃i = dn

] → n

ρ
ν1φ(ρ)[ηx = n] = nw(n)

ρz(φ(ρ))
φ(ρ)n (39)

as L, N → ∞, N/L → ρ and d > 0 fixed. Here φ(ρ) = ρ/(d + ρ) < 1 is given in (24)
and z(φ) = (1 − φ)−d . This is illustrated for d = 512L = 0.5 in Fig. 3 (left), where we
compare the empirical tail with the tail of the size-biased distribution (39) and see very good
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agreement. Note that for d → 0, we have from the right-hand side of (39) that

1

d

n

ρ
ν1φ(ρ)[ηx = n] → 1

ρ
e−u/ρ if nd → u,

since nw(n)/d → 1, z(φ(ρ)) → 1 and φ(ρ)n → e−u/ρ . So the size-biased grand-canonical
distributions scale consistently with the result in Theorem 2.

4 Large Deviations

In Sect. 3 we derived the typical stationary behaviour in the condensed phase, and will
now study the statistics of large deviations of the maximum occupation number. The most
interesting case of complete condensation is covered in Sect. 4.3, for completeness and
to introduce the main concepts of large deviations we first cover the non-condensing and
intermediate regime. Note that in the hierarchical regime with dL → α ∈ (0,∞), the typical
size of the maximum is of order L and it can take any value on that scale with non-vanishing
probability.

4.1 Non-condensing Regime

We first treat the case d → d > 0 as L → ∞ for which we have equivalence of ensembles.
We find that the probability of observing maximum site occupations of order L decays
exponentially in L , as would be the case under the grand-canonical measures νφ (10) where
the site occupations are i.i.d. with finite mean and variance. We characterise this decay in
terms of the large deviation rate function Iρ(m), which is informally defined as

πL,N [η(1) = M] ∼ e−L Iρ(m), for L, N , M → ∞ and N/L → ρ, M/L → m.

This is made precise in the following result which characterizes the local large deviations,
and provides an explicit form for the rate function. The results in this section imply large
deviation principles in the usual sense, see for example [59,62] and references therein for
details.

Proposition 3 If d → d > 0 and m ∈ [0, ρ), then in the thermodynamic limit

1

L
logπL,N

[
η(1) = M] → −Iρ(m) as N/L → ρ, M/L → m ∈ [0, ρ), (40)

where

Iρ(m) = (ρ − m) log
ρ − m

ρ − m + d
− ρ log

ρ

ρ + d
− d log

ρ − m + d

ρ + d
. (41)

Proof The proof follows a standard tilting argument which we only sketch here, more details
can be found in [59]. First note that for grand-canonical measures (10) with φ, φ′ ∈ [0, 1)

νL
φ

[∑

x

ηx = N
]

= νL
φ′
[∑

x

ηx = N
]( φ

φ′
)N( z(φ′)

z(φ)

)L
, (42)

and recall that ν1φ[η1 = n] = w(n)φn/z(φ) with weights w(n) given in (20) and normaliza-

tion z(φ) = (1 − φ)−d for all φ ∈ [0, 1). Since
πL,N [η(1) = M] = νL

φ

[
η(1) = M

∣∣
∑

x

ηx = N
]
,
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and (ηx : x ∈ �) are i.i.d. under νL
φ , we have

1

L
logπL,N [η(1) = M] = 1

L
log νL

φ

[
η(1) = M;

∑

x

ηx = N
]

− 1

L
log νL

φ

[∑

x

ηx = N
]

= 1

L
log νL−1

φ

[∑

x

ηx = N − M; η(1) ≤ M
]

+ 1

L
log νφ[η1 = M]

− 1

L
log νL

φ

[∑

x

ηx = N
]
.

Since the grand canonical single site marginals νφ have finite exponential moments for each
φ ∈ [0, 1), we may choose a sequence of φ such that the expected number of particles per
site under νφ[ · ; η1 < M] is (N − M)/(L − 1). Further, since M/L → m, this implies
φ → �(ρ −m) in the thermodynamic limit, with� given in (24) as the inverse of R(φ) (21).
Since νφ has second moment which converges to 〈η2x 〉�(ρ−m) < ∞, we may then apply a
standard local limit theorem for triangular arrays (see e.g. [60]) to show that with this choice
of φ the first term on the second line vanishes. The same is true for the term in the third line
choosing φ = �(ρ) = ρ/(ρ + d) by equivalence of ensembles proved in Sect. 3.1, and we
can conclude using (42) and taking limits. 
�

4.2 Intermediate Scales

For the intermediate scale, d → 0 with dL → ∞, we cannot directly apply a local limit
theorem for triangular arrays as in the previous case, since with (21) there are no grand-
canonicalmeasureswith positive densities.Herewewillmake use of Stirling’s approximation
of the partition function (32) and truncation arguments to derive the large deviations behaviour
of the maximum η(1). In this regime the probability of observing a maximum site occupation
of order L has asymptotic decay rate dL .

Proposition 4 If d → 0 and dL � log L, then in the thermodynamic limit we have

− 1

dL
logπL,N

[
η(1) = M

] → Iρ(m):= log

(
ρ

ρ − m

)
, (43)

as N/L → ρ and M/L → m ∈ [0, ρ).

Note that this rate function is consistent with the limit d → 0 of Iρ(m)/d in (41), but the
case d = 0 is not covered by Proposition 3 and needs a separate proof.

Proof We firstly extract the contribution due to the maximum site occupation by observing
that

w(M)Z (M)
L−1,N−M

ZL,N
≤ πL,N

[
η(1) = M

] ≤ Lw(M)Z (M)
L−1,N−M

ZL,N
, (44)

where Z (M)
L,N =

∑

η∈EL,N

∏

x∈�

w(ηx )1{ηx ≤ M} is a truncated canonical partition function.

This immediately implies the upper bound

πL,N
[
max
x∈�

ηx = M
] ≤ Lw(M)ZL−1,N−M

ZL,N
.
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Fig. 4 The large deviation rate functions of the maximum site occupation, Iρ(m). Theoretical results are given
by full black lines and numerics (45) for finite L by dashed coloured lines. Left: The intermediate case as
given in (43), with numerics for d = 1/

√
L . According to Theorem 2 the maximum typically contains of order

1/d = √
L particles, so the location of the minima of Iρ(m) vanishes with 1/

√
L and there are significant

finite size effects close to the origin. Right: The complete condensation case as given in (50), with numerics
for d = L−2

We can bound from above the total weight of configurations violating the truncation by

ZL−1,N−M − Z (M)
L−1,N−M ≤ (L − 1)(N − M)w(M)ZL−2,N−2M ,

where we use monotone decay in N of the weights w(N ) (20) and the partition function
ZL,N (12), which holds since dL > 1 for L sufficiently large. This leads to a lower bound
on Z (M)

L−1,N−M in (44) and we get

πL,N
[
η(1) = M

] ≥ w(M)ZL−1,N−M

ZL,N

(
1 − (L − 1)(N − M)w(M)

ZL−2,N−2M

ZL−1,N−M

)
.

By applying (32) together with (20) we find that

(L − 1)(N − M)w(M)
ZL−2,N−2M

ZL,N−M
→ 0,

in the thermodynamic limit if M/L → m > 0. We conclude by taking logarithms, and again
applying (32) together with (20). 
�

We illustrate the rate function for this and the following case of complete condensation
in Fig. 4 and compare to exact numerics obtained for finite system size. The latter are gen-
erated using the right-hand side of (44) and the recursive structure of the canonical partition
functions

ZL,N =
N∑

n=0

Zk,n ZL−k,N−n for all k = 1, . . . L − 1. (45)

The same relation holds for truncated partition functions (see [59] for details). With initial
condition Z1,n = w(n), n = 0, . . . N and choosing k = L/2 this can be used effectively in
an iteration to reach large system sizes.

4.3 Complete Condensation

In the case dL � 1/ log L we have complete condensation as stated in Proposition 2.
We characterise the large deviations of the maximum on the scale L , which turn out to be
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dominated by the probability of observing the smallest number of occupied sites required
to realise a given size of the maximum. To derive this result, it is easier to first understand
probabilities of size-biased configurations in analogy to Theorem 1.

Proposition 5 In the thermodynamic limit N , L → ∞ such that N/L → ρ, with dL log L →
0 we have

1

dk
πL,N [η̃1 = n1, . . . , η̃k = nk] → ρ−k

k∏

i=1

(1 − xi )
i−k−1, (46)

provided that n1
N → x1,

n2
N → (1− x1)x2, · · · nk

N → (1− x1)(1− x2) · · · (1− xk−1)xk with
x1, x2, . . . , xk ∈ (0, 1). Furthermore, in the same limit

πL,N [η̃1 = n1, . . . , η̃k = nk] � πL,N

[

η̃1 = n1, . . . , η̃k = nk, η̃k+1 = N −
k∑

i=1

ni

]

.

(47)

Proof In analogy to (30) in the proof of Theorem 1 we get

1

dk
πL,N [η̃1 = n1, . . . , η̃k = nk] � ρ−k

k−1∏

i=1

(1 − xi )
i−k

ZL−k,N−∑k
i=1 ni

ZL,N
, (48)

where we also used

N (N − n1) · · · (N −
k−1∑

i=1

ni ) � Lkρk
k−1∏

i=1

(1 − xi )
k−i .

The remaining mass, N − ∑k
i=1 ni , is of order L since x1, x2, . . . , xk ∈ (0, 1). Therefore,

applying (27) to the ratio of partition functions we find

ZL−k,N−∑k
i=1 ni

ZL,N
→ 1

(1 − x1)(1 − x2) . . . (1 − xk)
,

where we used NdL , (N −∑k
i=1 ni )

dL → 1, since dL log L → 0. This completes the proof
of (46).

Finally, for (47), we let nk+1 = N −∑k
i=1 ni . Then using (15) and the fact that ZL,0 = 1

for all L ≥ 1 we have

πL,N
[
η̃1 = n1, . . . , η̃k = nk, η̃k+1 = nk+1

]

πL,N [η̃1 = n1, . . . , η̃k = nk] = (L − k)nk+1w(nk+1)ZL−k−1,0

nk+1ZL−k,nk+1

= πL−k,nk+1 [η(1) = nk+1],
which tends to one by Proposition 2. 
�
Corollary 1 In the thermodynamic limit N , L → ∞ such that N/L → ρ, M/N → x ∈
(0, 1) with dL log L → 0 we have

1

d�1/x�−1N �1/x�−2 πL,N
[
η(1) = M

] → C(x)

ρ�1/x�−1 , (49)

where 0 < C(x) < ∞ is an x dependent constant.
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Proof The result follows rather directly from the previous proposition, andwe sketch themain
calculations required. First fix M ∈ [N/2, N ) ∩N, then conditioned on the event {η(1)=M}
the configuration must contain at least two non-empty sites. Observe that {η(1)=M} is given
by the disjoint union

{η(1) = M} = {η(1) = M, η̃3 > 0} ∪ {η̃1 = M, η̃2 = N − M} ∪ {η̃1 = N − M, η̃2 = M}.
From (47) in Proposition 5 we see that πL,N

[
η(1) = M ; η̃3 > 0

]
decays to zero faster than

d . Applying (46) to the probability of the remaining two events we find

1

d
πL,N

[
η(1) = M

] → 1

ρx(1 − x)
so C(x) = 1

x(1 − x)
for x ∈ [1/2, 1).

More generally, fix k ∈ N and M ∈ [N/(k + 1), N/k), let n1 = M , then we can again
decompose as a disjoint union as follows

{η(1) = M} = {η(1) = n1, η̃k+2 > 0
}

⋃

σ∈Sk+1

⋃

n2,...,nk :
n1≥n2≥...≥nk+1

{η̃1 = nσ(1), η̃2 = nσ(2), . . . , η̃k+1 = nσ(k+1)}

where Sk+1 is the set of permutations of {1, 2, . . . , k+1} and nk+1 = N −∑k
i=1 ni . In order

for n1 ≥ n2 ≥ . . . ≥ nk+1 to hold we must have that (k + 1 − i)ni+1 ≥ N −∑i
j=1 n j for

each i ∈ {1, . . . , k − 1}. Again with (47), the probability of the event {η(1) = n1, η̃k+2 > 0
}

decays faster than dk Lk−1. Applying (46) yields

1

dk
πL,N [η(1) = M] � Nk−1 1

ρk

∑

σ∈Sk+1

∫ x

1−x
k

. . .

∫ xk−1

∏k−1
i=1 (1−xi )

2

k∏

i=1

(1 − xσ(i))
i−k−1dxk . . .dx2

︸ ︷︷ ︸
:=C(x)

,

and (49) follows. 
�
If we take d = L−γ with γ > 1 then we may summarize Corollary 1 in terms of a large

deviation rate function (with speed log L), as follows

− 1

log L
logπL,N [η(1) = M] → Iρ(m) = (�ρ/m� − 1)γ − (�ρ/m� − 2). (50)

This is illustrated in Fig. 4 (right) for γ = 2.

5 Discussion

5.1 Summary

We have established a complete picture for condensation in the inclusion process in the
thermodynamic limit, and characterized the condensed phase in several regimes using size-
biased sampling of configurations. Our results cover the full scaling regime of the diffusion
parameter d , only excluding some narrow bands of size log L/L for complete condensation
and large deviations. A particularly interesting regime is the hierarchical structure discussed
in Sect. 3.2 related to theGEMand the Poisson–Dirichlet distribution. This is well established
in the context of population genetics [41], where the full structure of Dirichlet multinomials
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has been exploited to derive very detailed results for Moran models, which can be interpreted
as inclusion processes. We derived our results using only the most general properties of
inclusion processes so that our approach can be easily transferred to other systems, and we
give more details in the next subsection.

The Poisson–Dirichlet distribution has been identified as the unique stationary distribution
of split-merge dynamics of clusters [29,30], where split and merge rates are proportional to
cluster sizes. Our results show that the inclusion process can be seen as a generic ’monomer
exchange’ version of such dynamics, where now only single particles are exchanged but with
the same proportionality of rates in the inclusion interaction. It would be very interesting to
investigate this connection in detail in the context of Poisson–Dirichlet diffusions in analogy
to [63]. The crucial prerequisite to see Poisson–Dirichlet statistics in particle systems such
as the inclusion process is the asymptotic behaviour of the stationary weights (20),

w(0) = 1, w(n) = O(d) for all n ≥ 1 as L → ∞, and w(n)/d � n−1 as n → ∞.

The fact thatw(n) vanishes proportionally to d as L → ∞ for all n > 0 leads to ρb = ρc = 0
and condensation with an empty bulk. The structure of the condensed phase is determined by
the 1/n decay of stationary weights for large occupation numbers. This is quite robust, as is
discussed in the next subsection. There we summarize some previous results and connections
to other particle systems with Poisson–Dirichlet statistics.

5.2 Other Particle Systems with Poisson–Dirichlet Statistics

The model studied in [34] consists of N particles moving diffusively on a one-dimensional
torus of length L , subject to a logarithmic attractive potential and short-range hard-core exclu-
sion. The weak attraction leads to the formation of large gaps between groups of particles,
and the distances y = (y1, . . . , yN ) between particles have a stationary distribution of the
form (12) with weights w(y) = y−β , where β < 1 corresponds to a dimensionless inverse
temperature controlling the strength of the noise. So the rescaled distances 1

L y provide a par-
tition of the unit interval and follow a Dirichlet(1− β, . . . , 1− β) distribution. Of particular
interest in [34] is the temperature scaling β = N−b

N−1 ↗ 1 as N → ∞ with b > 1, where
Theorem 2.1 in [41] directly applies so that the order statistics

1

L
ŷ

D−→ PD(b − 1) as N , L → ∞, L/N → ρ,

converges in distribution to a Poisson–Dirichlet partition of [0, 1]. Indeed, the corresponding
Beta(1, b − 1) distribution of the first size-biased marginal ỹ1 as in (17) is established inde-
pendently in [34] without mentioning the connection to the Poisson–Dirichlet distribution.
Note that in this model gaps between particles correspond to cluster sizes, and the average
cluster size is therefore L/N . A related paper with a hierarchical clustering phenomenon for
interacting diffusions on a ring is [35], and to our knowledge these continuous models are the
only particle systems where a connection to Poisson–Dirichlet statistics has been recognized
so far. The Brownian energy process introduced in [12,13] as a dual model to the inclusion
process exhibits stationary product measures with chi-squared marginals, and conditioning
on the total sum of occupation numbers leads to the same canonical distributions as the model
in [34].

To test the robustness of our results against small changes in the stationary weights w(n),
it is useful to consider zero-range processes. For any given w(n) it is well known that a
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process with the jump rate for a cluster of size n to lose a particle given by

u(n) = w(n − 1)

w(n)
for n ≥ 1

exhibits stationary product measures of the form (10) (see e.g. [3,17] and references therein).
Using the weights (20) for the inclusion process this leads to jump rates

u(n) = n

d + n − 1
for all n ≥ 1, (51)

so that u(1) = 1/d diverges in a scaling limit with d → 0. All other rates are bounded and
converge as

u(n) → n

n − 1
as L → ∞ for all n ≥ 2.

A zero-range process with rates (51) has exactly the same stationary distributions (12) as the
inclusion process and all our results apply. Condensation in zero-range processes has been a
major research area in recent years (see e.g. [2,5,9]), where decreasing rates u(n) � 1+ b/n
lead to stationary weights of order n−b, so that φc = 1 and the critical density is given by
(see discussion in Sect. 2.2)

ρc = R(1) = 1

z(1)

∞∑

n=1

nw(n) < ∞ for b > 2.

In such models, condensation is driven by strong enough on-site attraction between particles.
The rates (51) have asymptotic behaviour

u(n) � n

n − 1
� 1 + 1

n
as n → ∞ (52)

and the attraction between particles is not strong enough. Instead, cluster coarsening and
condensation is driven by divergence of u(1) = 1/d , which ensures that ρb = 0 in the bulk
of the system and the remaining mass concentrates on a number of lattice sites decreasing in
time.

We have checked numerically that the particular form of the rates (51) is in fact not
important, and choices of the form u(n) = n/(n − 1) or u(n) = 1 + 1/n for n ≥ 2 lead to
the expected Poisson–Dirichlet statistics at stationarity for u(1) = 1/d � L/α with α > 0.
This can be checked analytically on a case-by-case basis, but it is known that in general
the asymptotic behaviour of the partition function and condensation behaviour may depend
sensitively on perturbations of the rates (see e.g. [46,64,65]), so we are currently not able
to prove a general result analogous to Theorem 1 based only on asymptotics of stationary
weights or jump rates.
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Appendix A: Condensation and Phase Separation

For completeness we summarize some implications of Definition 1 on phase separation and
divergence of highermoments, using only the definition itselfwithout any further assumptions
on the canonical measures. Assume that we have a condensing particle system on the state
space EL,N according to Definition 1, with canonical distributions πL,N and limiting single-
site marginal νρ as defined in (2). Weak convergence of πL,N to νρ in the thermodynamic
limit N , L → ∞, N/L → ρ is equivalent to convergence of expectations of bounded test
functions, so that for any K > 0

〈ηx1ηx≤K 〉L,N → 〈ηx1ηx≤K 〉ρ.

Now taking a second limit K → ∞ the right-hand side converges to ρb = 〈ηx 〉ρ , which is
strictly smaller than ρ in a condensing system (so that both limits do not commute).

The two limits in this order can be used to characterize phase separation as explained in
Sect. 2 on the level of single-site marginals, where ηx1ηx≤K describes the bulk part of the
distribution and ηx1ηx>K the condensed part. Definition 1 implies that the condensed phase
is supported on a vanishing volume fraction but contains a non-zero fraction of the total mass.
In the limit L, N → ∞, N/L → ρ and then K → ∞ we get

condensed bulk/background

mass fraction 〈ηx 〉L,N = 〈ηx1ηx>K 〉L,N + 〈ηx1ηx≤K 〉L,N

→ ρ → ρ − ρb → ρb

volume fraction 〈1〉L,N = 〈1ηx>K 〉L,N + 〈1ηx≤K 〉L,N

= 1 → 0 → 1.

(53)

This follows simply from convergence for bounded test functions in the bulk and conservation
of total probability and mass. It implies in particular that in this ordered limit

〈ηx |ηx ≤ K 〉L,N → ρb and 〈ηx |ηx > K 〉L,N → ∞
for the average occupation numbers in the bulk and condensed phase, respectively.

A further interesting property that is often used is that condensation leads to the divergence
of higher order moments, due to the contribution of the condensed phase. This is implied by
the following general result.

Proposition 6 Assume that a system exhibits condensation as in Definition 1 in the thermo-
dynamic limit with density ρ. Then for all x ∈ � and any positive function f : N0 → R

+
with f (n) → ∞ as n → ∞ we have

〈
ηx f (ηx )

〉
L,N → ∞ and

〈
ηx/ f (ηx )

〉
L,N → 〈

ηx/ f (ηx )
〉
ρ
, (54)

as L, N → ∞, and N/L → ρ.

Proof For any fixed K > 0 we have

〈
ηx f (ηx )

〉
L,N =

∞∑

n=0

n f (n)πL,N [ηx = n] ≥ min
n>K

f (n)

∞∑

n=K+1

nπL,N [ηx = n]

= min
n>K

f (n)
(N
L

− 〈ηx1ηx≤K 〉L,N

)
→ min

n>K
f (n)

(
ρ − 〈ηx1ηx≤K 〉ρ

)
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as L, N → ∞, N/L → ρ. This holds for all K > 0 and ρ − 〈ηx1ηx≤K 〉ρ → ρ − ρb > 0
as K → ∞ with (53), so there exists C > 0 such that

〈
ηx f (ηx )

〉
L,N ≥ C min

n>K
f (n) for all K large enough.

Then f (n) → ∞ implies minn>K f (n) → ∞ as K → ∞, which proves the first statement.
Essentially the same argument works for the second statement, we have for all K > 0

fixed
〈 ηx

f (ηx )

〉

L,N
≤
〈
1ηx≤K

ηx

f (ηx )

〉

L,N
+ 1

minn>K f (n)

〈
1ηx>K ηx

〉
L,N →

〈
1ηx≤K

ηx

f (ηx )

〉

ρ

as L, N → ∞, N/L → ρ, because minn>K f (n) diverges and 〈1ηx>K ηx
〉
L,N is uniformly

bounded since it converges to ρ − ρb as K → ∞ (53). In that limit, the right-hand side
converges to

〈
ηx/ f (ηx )〉ρ which implies

lim sup
L→∞,N/L→ρ

〈 ηx

f (ηx )

〉

L,N
≤
〈 ηx

f (ηx )

〉

ρ
.

This implies in particular that lim inf
L→∞,N/L→ρ

〈
ηx

f (ηx )
1ηx>K

〉

L,N
→ 0 as K → ∞. Therefore

we get the lower bound
〈 ηx

f (ηx )

〉

L,N
≥
〈
1ηx≤K

ηx

f (ηx )

〉

ρ
+ lim inf

L→∞,N/L→ρ

〈 ηx

f (ηx )
1ηx>K

〉

L,N
,

which converges to
〈
ηx/ f (ηx )〉ρ as K → ∞. 
�

This result implies in particular, that for condensing systems all higher moments 〈ηax 〉L,N

with a > 1 diverge in the thermodynamic limit due to contributions from the condensed
phase. Lower moments with a < 1 converge to 〈ηax 〉ρ , and the first moment with a = 1 is the
boundary case, converging to a strictly larger value ρ > ρb = 〈ηx 〉ρ than the bulk density.
We stress again that we have only used Definition 1 and weak convergence of single-site
marginals of the canonical measures to derive these results. So they hold very generally,
and do not depend on the existence of stationary product measures or any other particular
structure.

Appendix B: Some Details on Dynamics andMonte Carlo Simulations

Heuristic results for TA dynamics of the inclusion process [24] show that the equilibration
time scales like L/d , and is dominated by a coarsening process with a transport limited mass
exchange dynamics between isolated clusters: On a time scale of order 1 the mass in the
system concentrates on isolated cluster sites which are separated by at least one empty site.
Each cluster of size m then performs an effective totally asymmetric random walk with rate
dm. So larger clusters move faster and overtake smaller ones, and during the overtake both
clusters exchange mass. This leads to fluctuations in cluster sizes and drives the coarsening
process, where smaller clusters disappear and the average cluster size grows as a power law
in time. From the point of view of an individual cluster, coarsening determines the time scale
τa on which it aggregates a macroscopic amount of mass, and on the fragmentation time
scale τ f it loses a non-zero mass fraction which forms a new cluster on a previously empty
site. For TA dynamics, the latter only happens if during a step when a cluster extends over
two sites (which takes only a time fraction of order d), a further particle breaks away, which
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happens again at rate proportional to d (see discussion in [24] for more details). In summary
both time scales are

τa = L/d and τ f = d−2,

and we see that they agree exactly in the case dL → α ∈ (0,∞), leading to a balance of
aggregation and fragmentation for macroscopic clusters at stationarity, and the interesting
hierarchical structures of Theorem 1. If dL → 0 then τa � τ f and the balance cannot be
reached, rather the system saturates in a single remaining cluster consistent with complete
condensation results Proposition 2. On the other hand if dL → ∞, fragmentation dominates
with τ f � τa for macroscopic clusters, and a balance is reached at sizes of scale 1/d instead
(consistent with Theorem 2), which includes the case of no condensation with d = O(1).
This heuristic provides useful insight on the level of the dynamics into our rigorous results
which only depend on the form of the stationary distributions (12), and also implies that TA
dynamics have to be simulated on times of order τa = L/d to reach stationarity.

Algorithm 1: Inclusion process (36) on a complete graph (CG dynamics)

Parameters L size of lattice �; N # of particles; d > 0; t simulation time;
Initialize particle locations σi ∼ U (�), i = 1, . . . , N i.i.d. uniform;

while s < t do
pick particle i ∼ U

([1..N ]) uniformly at random;
if R ∼ U

([0, 1)) < dL/(dL + N ) then
σi ← U (�);

else
pick particle j ∼ U

([1..N ]) uniformly at random;
σi ↔ σ j exchange positions;

end
s ← s + 1

N (dL+N )
;

end
Output ηx = ∑

i δσi ,x for x = 1, . . . , L;

A similar argument can be made for the complete graph geometry, where the dynamics is
entirely different. Cluster sites are in direct contact, and exchange single particles with a rate
of orderm2/L , where we understandm � 1 to be a ’typical’ cluster size. Since the exchange
is symmetric, it takes of orderm2 exchange events to change cluster sizes by a finite fraction,
leading to

τa = L

m2m
2 = L and τ f = 1

dm
m = 1

d
.

The fragmentation time scale τ f follows since particles jump onto empty sites with rate dm
and of order m jumps are needed to fragment a finite fraction of a cluster’s mass. Here we
used that due to m � 1 cluster sites only cover a vanishing volume fraction. Even though
both time scales are different from TA dynamics, an aggregation fragmentation balance is
again reached for dL → α. Since we only care about the mass distribution and not the
spatial location of clusters, equilibration time is now faster of order τa = L . This is a crucial
difference to TA dynamics, where the coarsening process is transport limited and clusters
have to move in order to exchange particles. Due to the particular form of the jump rates for
the inclusion process (36), CG dynamics can be implemented in a rejection-based algorithm
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summarized in Algorithm 1, and this provides a very simple and efficient way to produce
Monte Carlo samples from the distribution πL,N (12).
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