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Dynamics of condensation in
the symmetric inclusion process
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Abstract

The inclusion process is a stochastic lattice gas, which is a natural bosonic counter-
part of the well-studied exclusion process and has strong connections to models of
heat conduction and applications in population genetics. Like the zero-range process,
due to attractive interaction between the particles, the inclusion process can exhibit
a condensation transition. In this paper we present first rigorous results on the dy-
namics of the condensate formation for this class of models. We study the symmetric
inclusion process on a finite set S with total number of particles N in the regime of
strong interaction, i.e. with independent diffusion rate m = mN → 0. For the case
NmN → ∞ we show that on the time scale 1/mN condensates emerge from general
homogeneous initial conditions, and we precisely characterize their limiting dynam-
ics. In the simplest case of two sites or a fully connected underlying random walk
kernel, there is a single condensate hopping over S as a continuous-time random
walk. In the non fully connected case several condensates can coexist and exchange
mass via intermediate sites in an interesting coarsening process, which consists of a
mixture of a diffusive motion and a jump process, until a single condensate is formed.
Our result is based on a general two-scale form of the generator, with a fast-scale neu-
tral Wright-Fisher diffusion and a slow-scale deterministic motion. The motion of the
condensates is described in terms of the generator of the deterministic motion and
the harmonic projection corresponding to the absorbing states of the Wright-Fisher
diffusion.
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1 Introduction

The inclusion process, introduced in [1] as the dual of a model of heat conduction,
and further developed in [2], is a natural counterpart of the well-known and extensively

∗Mathematics Institute, University of Warwick, UK.
E-mail: S.W.Grosskinsky@warwick.ac.uk
†Delft Institute of Applied Mathematics, Technische Universiteit Delft, Nederland.
E-mail: F.H.J.Redig@tudelft.nl
‡Department of Mathematics and Computer Sciences, Technische Universiteit Eindhoven, Nederland.
E-mail: k.vafayi@tue.nl

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/EJP.v18-2720
http://arXiv.org/abs/1210.3827
mailto:S.W.Grosskinsky@warwick.ac.uk
mailto:F.H.J.Redig@tudelft.nl
mailto:k.vafayi@tue.nl


Dynamics of condensation in SIP

studied exclusion process. The inclusion process on a finite set S combines random
walk jumps at rate mp(i, j)/2 with inclusion jumps, where each particle at site i is
attracted by each particle at j independently with rate p(i, j). Here p(i, j), i, j ∈ S are
the rates of a symmetric irreducible continuous-time random walk on S. The inclusion
jumps introduce a form of attractive interaction between the particles.

When m tends to zero and simultaneously many particles are in the system, due to
the attractive interaction between the particles, large piles of particles will be formed
at individual sites. In fact we proved in [3] condensation for the stationary measure,
in a limit where both m → 0 and the number of particles N → ∞. In this paper we
prove dynamical results for the condensation phenomenon. More precisely, we study
how clusters arise from an arbitrary initial condition, and how they move and merge
into a single condensate, which then jumps over the finite lattice as a random walk. We
therefore make m = mN dependent on N ∈ N such that mN → 0 as N → ∞, which
implies that diffusion will get slower and the attractive inclusion interaction will create
condensates.

This model can be interpreted as a multi-allele version of the Moran model [4], de-
scribing the evolutionary competition of several species in a fixed size population. The
inclusion part describes reproduction and death and mN plays the role of an additional
mutation rate, which is typically very small on the reproduction time scale (see e.g. [5]
and references therein). It is also important as a dual process to models of energy or
momentum transport [1, 2, 6, 7].

Related recent theoretical results include explosive condensation in a totally asym-
metric model [8] which exhibits a slinky motion of the condensate also observed re-
cently in [9] for non-Markovian zero-range dynamics. Results on the equilibration dy-
namics in zero-range processes with decreasing rates are currently under investigation
[10]. In order to have a well defined limit dynamics we require symmetry of the p(i, j),
but our proof is not based on potential theoretic methods as used in [11, 12] for zero-
range processes. Due to the system-size dependence of the diffusion rate we can apply
more general multi-scale methods (see e.g. [13]). In particular, we use a two-scale de-
composition of the generator and construct the generator of the limit process similarly
to results in [14].

The decomposition consists of a Wright-Fisher type diffusion part which runs at
“infinite speed” (in the limit N → ∞), and a p(i, j)-dependent drift part. The limiting
motion is then described by the harmonic projection of the drift part on the absorbing
set of the diffusion. In the simplest case of two sites, or similarly, in the fully connected
case where all p(i, j) are strictly positive, the absorbing set of the diffusion is the set
of corner points of the simplex E = {x ∈ [0, 1]S :

∑
i∈S xi = 1}. This corresponds to

the immediate formation of a single condensate, which then hops over the set S as a
random walk. In that case we can characterize the limit dynamics in a relatively simply
way as the solution to a martingale problem for linear functions. In the more general
case, in a first stage, several condensates will form, and interact via intermediate sites.
Condensates do not split but can merge, and this coarsening dynamics eventually leads
to a single condensate which then again moves over S as a random walk. In this case,
we compute the generator explicitly making use of the separation of time scales and
the martingales for the fast Wright-Fisher diffusion.

The rest of our paper is organized as follows. In Section 2 we introduce the model
and present the main results and possible extensions. In Section 3 we collect general
results on tightness and the comparison of semigroups and work out the simple two-site
and fully connected cases. The proof of the general case is treated in Sections 4 and
Sections 6 where we give a general definition of the limiting generator of a two-scale
system in terms of projection operators on harmonic functions. In Section 5 we give
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Dynamics of condensation in SIP

an explicit computation of the limiting generator in the case of 3 lattice sites, which
already contains most of the difficulties of the general case.

2 Definitions and main results

2.1 The model and the auxiliary slow-fast system

We consider a finite set S, with associated jump rates p(i, j) = p(j, i), j, i ∈ S of a
symmetric, irreducible random walk with p(i, i) = 0.

The symmetric inclusion process
(
η(t) : t ≥ 0

)
with parameter m > 0 based on p(i, j)

is then defined as in [2] to be the continuous-time Markov process on the configuration
space ZS+, with generator

LSIPN f(η) =
∑
i,j∈S

p(i, j)ηi

(m
2

+ ηj

) (
f(ηij)− f(η)

)
, (2.1)

where ηi ∈ Z+ denotes the number of particles at site i ∈ S, and ηijk = ηk − δi,k + δj,k,
k ∈ S denotes the configuration where one particle moved from i to j. Since the total
number of particles is conserved, we consider the process with generator (2.1) on the
state space ΩN =

{
η ∈ ZS+ :

∑
i∈S ηi = N

}
with a fixed total number N ∈ N of particles.

We consider m = mN dependent on the number of particles N such that mN → 0

as N → ∞, which implies that diffusion becomes slower and the attractive inclusion
interaction will create condensates. We are interested in the limiting dynamics of the
rescaled process after accelerating time by a factor θN := α/mN with α > 0. We will
assume throughout the paper that

mN → 0 , NmN →∞ so that
θN
N

=
α

mNN
→ 0 . (2.2)

We denote by ei, i ∈ S the canonical unit vectors of l1(S) with entries ei(j) = δi,j .
Consider the rescaled process

(
xN (t) : t ≥ 0

)
defined by

xN (t) :=
(
ηi(θN t)/N : i ∈ S

)
.

This is a Markov process on the simplex E =
{
x ∈ [0, 1]S :

∑
i∈S xi = 1

}
with generator

LNf(x) =
∑
i,j∈S

θNp(i, j)Nxi
(
m
2 +Nxj

) (
f(x− 1

N ei+
1
N ej)− f(x)

)
. (2.3)

Assuming smooth f in (2.3), Taylor expansion of the right-hand side gives, using the
symmetry of p(i, j),

LNf(x) = −
∑
i,j∈S

α

4
p(i, j)(xi − xj)(∂ijf)(x)

+
1

2

∑
i,j∈S

p(i, j)xixjθN (∂2ijf)(x) +O(θN/N) , (2.4)

where we abbreviated

∂ij :=

(
∂

∂xi
− ∂

∂xj

)
. (2.5)

Here, by (2.2), the correction term denoted by O(θN/N) is a function of x which con-
verges to zero uniformly in x, as N → ∞. We will show that this correction terms can
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Dynamics of condensation in SIP

be ignored and one can study the easier auxiliary process
(
yN (t) : t ≥ 0

)
on E with

generator

LN := L+ θNL
′

= −
∑
i,j∈S

α

4
p(i, j)(yi − yj)∂ij + θN

1

2

∑
i,j∈S

p(i, j)yiyj∂
2
ij . (2.6)

As N →∞ this is a slow-fast system with two scales, where the fast part

L′ =
1

2

∑
i,j∈S

p(i, j)yiyj∂
2
ij (2.7)

corresponds to a Wright-Fisher diffusion with absorbing states given by

A :=
{
x ∈ E : p(i, j)xixj = 0 for all i, j ∈ S

}
. (2.8)

The slow part is a deterministic motion with generator

L = −
∑
i,j∈S

α

4
p(i, j)(yi − yj)∂ij . (2.9)

The limiting dynamics of the process with generator LN is intuitively described as
follows. The fast (θNL′)-part of the generator pushes “infinitely” fast to the set of ab-
sorbing states A, whereas the slow (L) part tries to move away from A. To quanti-
tatively describe this process, we first define the harmonic measure νx on A for the
Wright-Fisher diffusion

(
X ′(t) : t ≥ 0

)
with generator L′. This is given by the hitting

probabilities from any point x ∈ E

νx(A) := lim
t→∞

Px(X ′(t) ∈ A) , (2.10)

which are well defined for all measurable subsets A ⊂ A. Of course we have νx = δx
for all x ∈ A. In the spirit of [14], Theorem 1.11, we define the X ′-harmonic projection
operator

P : C(E,R)→ H(E) where Pf(x) :=

∫
A
f(a)νx(da) (2.11)

for all f ∈ C(E,R), where the range of P is the set of L′-harmonic functions H(E).
The function Pf is harmonic for L′ and solves the Dirichlet problem L′ψ = 0 with
ψ(a) = f(a) for all a ∈ A. In particular Pf(a) = f(a) for a ∈ A, and as a consequence
P 2f = Pf , i.e., P acts as a projection from the set C(E,R) onto the set of harmonic
functions. The limiting generator A of the two-scale system (2.6) is then given by A =

P L, corresponging to infinitesimally moving away from A under the slow dynamics
with generator L and immediately being projected back onto A. We will give our main
results in the next subsection and a rigorous justification of this projection procedure
in section 4.2.

2.2 Main results

Our main results rigorously characterize the limiting dynamics of the process (xN (t) :

t ≥ 0), by showing convergence to a limit process
(
x(t) : t ≥ 0

)
which concentrates on

the subset A ⊂ E. Furthermore, the set of corner points

C :=
{
ei : i ∈ S

}
⊂ A (2.12)

is in turn absorbing for the limit process, as we can conclude from the first theorem.
In the following we speak of weak convergence on path space, if for every T > 0 the
processes (xN (t), 0 ≤ t ≤ T ) converge to (x(t), 0 ≤ t ≤ T ) weakly in the Skorokhod
topology.
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Dynamics of condensation in SIP

Theorem 2.1. 1. Assume that xN (0) → x0 ∈ C in distribution. Then
(
xN (t) : t ≥ 0

)
converges weakly on path space to

(
x(t) : t ≥ 0

)
, which is a Markov chain on C

with initial condition x(0) = x0 and generator

Af(ei) =
∑
j∈S

α

2
p(i, j)

(
f(ej)− f(ei)

)
. (2.13)

2. In the fully connected case, i.e., if p(i, j) > 0 for all i, j ∈ S, then the same holds
for a general initial condition. I.e., if xN (0)→ x0 ∈ E in distribution, then

(
xN (t) :

t ≥ 0
)

converges weakly on path space to
(
x(t) : t ≥ 0

)
, the process on C with

generator (2.13), and with initial condition P(x(0) = ei) = E[x0i ].

So if the process is started from a configuration in C, i.e., when (as N → ∞) all the
mass concentrates on a single site, all future configurations are of this type and the
single pile of mass (condensate) performs a random walk on S with rates proportional
to p(i, j). The same holds in the fully connected case for general initial conditions, since
in that case A = C and only the corner points are absorbing for the Wright-Fisher part.
For the initial condition in item 2, note that for non-random x0 the harmonic measure
is exactly νx0(ei) = x0i , since the marginal dynamics on each site is given by a diffusion
(see Section 3.3 for details) and only the corner points are absorbing.

For general symmetric p(i, j), A has a more complicated structure, the limit process
is not ergodic on A and there is no easy explicit formula for the harmonic measure νx0 .
In the following we will describe the dynamics for general initial conditions under the
additional assumption

p(i, j) ∈ {0, 1} for all i, j ∈ S , (2.14)

i.e., where edges are either connected or not with uniform jump rate 1. The more
general case can be treated as well but is more complicated to formulate, and we will
comment on that in a discussion in Section 2.3. Let

p̂(i, j) =
(
1− p(i, j)

)∑
k∈S

p(i, k)p(k, j) ≥ 0 (2.15)

be the number of two-step connections between sites i, j ∈ S, which are not directly
connected.

Theorem 2.2. Assume (2.14) and assume that at time zero xN (0) → x0 ∈ E in distri-
bution. Then

(
xN (t) : t > 0

)
converges weakly on path space to

(
x(t) : t ≥ 0

)
, which is

a Markov process on A with initial condition x(0) ∼ E[νx0 ] determined by the harmonic
measure (2.10) and generator

Af(x) =
∑
i,j∈S

α

2
p̂(i, j)xixj∂

2
ijf(x)

+
∑
j∈S

δxj ,0

(∑
i∈S

α

2
p(i, j)xi

)(
f
(
x+
∑
i∈S

p(i, j)xi
(
ej−ei

))
−f(x)

)
. (2.16)

The generator of this process consists of two parts. The first part corresponds to
an effective Wright-Fisher diffusion between sites which are connected by a path of
length two only, which results from exchanging mass via the intermediate site. This
mechanism of mass exchange is also studied heuristically in [8] for a totally asymmetric
model. The second part corresponds to all the neighbouring mass of an empty site j

accumulating on that site with a rate proportional to the total neighbouring mass. In the
simplest case where there is only one neighbour with non-zero mass, this corresponds
to a jump of a single pile. Therefore piles can exchange mass continuously or merge, but
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Figure 1: Simulation illustrating the main results by a sample path of the process
with normalized occupation numbers ηi/N shown in different colors. The lattice is
S = {1, . . . , 4} with nearest neighbour connections and periodic boundary conditions.
Initially, there is diffusive mass exchange between sites which are not directly con-
nected, and later all mass concentrates on a single pile. Fluctuations are due to finite
parameter values, where N = 1000, mN = 0.01 and θN = 100.

they never split and the set of corner points C where all mass concentrates in a single
pile is absorbing. For the inclusion process this absorbing set is reached on the same
time scale θN as the stationary motion on the corner set takes place. This is different
from other models such as the zero-range process, where these dynamics happen on
different time scales [15, 16, 11, 12, 10].

Note that the initial condition for the limit process is not x0 and convergence in the
usual sense does not hold at time 0, since the process is “immediately” projected onto
the absorbing set A. The initial condition is then distributed as the absorption point on
A starting from x0, which is consistent with the right limit x(0+).

2.3 Discussion

The general limit dynamics of Theorem 2.2 is illustrated in Figure 1 for a ring of
4 sites. After initial diffusive mass exchange between opposite, non-connected sites,
the system reaches the absorbing set of corner points and turns into a jump process.
Figure 2 illustrates the fully connected case (second item in Theorem 2.1) where the
system instantaneously reaches a corner and a single pile performs a random walk on
the lattice.

Our results hold for symmetric jump rates p(i, j), since otherwise the Taylor expan-
sion (2.4) would contain first order drift terms diverging with N , which would lead to
infinite limiting speed of the clusters. Therefore the limit dynamics are not well defined
unless the p(i, j) are symmetric.

In the formulation of Theorem 2.2 we restrict ourselves to p(i, j) ∈ {0, 1}, only for
simplicity of presentation. Our methods can be applied straightforwardly to the gen-
eral case, only the concrete computations in Section 5 have to be adapted. Assuming
p(1, 2) = p(2, 1) = p, p(2, 3) = p(3, 2) = q and p(1, 3) = p(3, 1) = 0 for the case of 3 sites,
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Figure 2: Simulation illustrating the main results for a fully connected lattice S =

{1, 2, 3} of three sites, where immediately all mass concentrates on a single pile. The
left panel shows the evolution of the occupation number of all sites in different colors,
and the right panel the evolution of site 1 for longer times. Fluctuations are smaller
than in Fig. 1 since here N = 10000, mN = 0.001 and θN = 1000.

the continuous part of the limit generator A (2.16) then takes the form

α

4
(q−p)x1x3 ∂13 +

α

2

(
qx1+(p−q)x21

)(
px3+(q−p)x23

)
∂213 .

Compared to (5.14) and (2.16), there is an additional drift term and the diffusive term is
no longer of Wright-Fisher type. This can be formulated for general lattices analogously.
The jump part of A still takes the same form as in (2.16) on a general lattice.

3 A technical lemma and first results for the two-site and the
fully connected case

This section consists of two parts.

1. In section 3.1, we show the following. If the auxiliary process (yN (t) : t ≥ 0) with
generator LN (2.6) converges to a limiting process (y(t) : t ≥ 0) and if the “true
process” (xN (t) : t ≥ 0) with generator LN (2.3) converges along a subsequence,
then this limit is the same process (y(t) : t ≥ 0). As a consequence, if the sequence
(xN (t) : t ≥ 0) is tight, then it has the limit characterized by the auxiliary process.
This observation will be proved in Lemma 3.1 below and allows us to work with
the simpler generator LN to characterize the limit process.

2. In subsection 3.2 below we first consider the case of two sites, which is easier
than the general case because the limiting process is a pure jump process on the
set of unit vectors {e1, e2}. Then we work out the fully connected case, which is
similar to the two site case, and where the limiting process is also a pure jump
process on the set of unit vectors {ei : i ∈ S}.

3.1 General results on comparison and tightness

We start with a technical lemma that we will apply later to justify dropping the
O(θN/N) part in the Taylor expansion of the generator (2.4).

Lemma 3.1. Suppose LN and LN are generators of Markov processes on the com-
pact state space E, such that on a common core of functions K ⊂ C(E) contained in
continuous functions C(E) we have

‖LNf − LNf‖∞ ≤ ‖|f‖|βN . (3.1)
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Dynamics of condensation in SIP

Here ‖.‖∞ denotes the supremum norm, βN is a sequence of numbers converging to
zero as N →∞, and ‖|.‖| denotes a norm or seminorm such that for all f ∈ K and t > 0

sup
N

sup
0≤s≤t

‖|esLN f‖| <∞ . (3.2)

Then we have:

1. For the associated semigroups, for all t ≥ 0 and f ∈ K

lim
N→∞

‖etLN f − etLN f‖∞ = 0 . (3.3)

2. If limN→∞ etLN f = Stf for all t ≥ 0, f ∈ C(E) with (St : t ≥ 0) a Feller semigroup,
then limN→∞ etLN f = Stf as well.

3. If the processes with generators LN and LN are tight on the path space D(0,∞)

of rcll functions (right-continuous with left limits), then they have the same limit
process.

Proof. Pick f ∈ K. Start from integration by parts (or Dyson’s) formula (see e.g. [17]
p. 367) and use that esLN is a contraction in the supremum norm to estimate

‖etLN f − etLN f‖∞ =
∥∥∥ ∫ t

0

esLN (LN − LN )e(t−s)LN f ds
∥∥∥
∞

≤
∫ t

0

‖(LN − LN )e(t−s)LN f‖∞ds

≤
∫ t

0

βN‖|e(t−s)LN f‖|ds

≤ βN t sup
0≤s≤t

‖|esLN f‖| → 0 (3.4)

as N →∞ for all t > 0.
For the second item, let f ∈ C(E), and for given ε > 0 choose g ∈ K such that

‖g−f‖∞ < ε. Then for N large enough we have, by item 1, ‖etLN g−etLN g‖∞ < ε and by
the contraction property of etLN , etLN , ‖etLN (f−g)‖∞ , ‖etLN (f−g)‖∞ < ε. This implies
‖etLN f − etLN f‖∞ < 3ε and if one of the terms converges to a semigroup, so does the
other.

Finally, the third item follows because a Markov process on the path space D(0,∞)

is uniquely determined by its semigroup.

Lemma 3.2. The sequence of Markov processes
(
xN (t) : t > 0

)
on a complete separable

metric space E is tight on the path space D(0,∞) of rcll functions if

1. The sequence
(
xN (t) : t ≥ 0

)
is stochastically bounded on D[0,∞), and

2. For all f ∈ C∞c (E), denoting compact smooth functions (which are uniformly dense
in C(E)) and all ε > 0 there exist non-negative random variables ZN (δ, f, ε) such
that for all δ∣∣∣E[f(xN (t+ u))− f(xN (t))

∣∣xN (t) = x
]∣∣∣ ≤ E[ZN (δ, f, ε)

∣∣xN (t) = x
]

(3.5)

with probability 1 for all t ≥ ε and 0 ≤ u ≤ δ, and

lim
δ↘0

lim sup
N→∞

E
[
ZN (δ, f, ε)

]
= 0 . (3.6)
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The conditions are sufficient but not necessary, for a proof, see e.g. [19], Lemma
3.11 or [20], Chapter 3. The first condition will always be fulfilled since our state space
E is a compact, finite dimensional simplex and ‖xN (t)‖∞ ≤ 1. The second condition has
been modified for our purposes, and ensures boundedness of the modulus of continuity
of sample paths starting the process from any strictly positive time and will be verified
later. At time 0 the sequence of processes we consider is actually not tight, since in the
limit it gets instantly projected onto an absorbing state of the Wright-Fisher diffusion
L′. So we can show convergence only for all positive times t > 0, and by right-continuity
of sample paths we can extend the limit process uniquely to all t ≥ 0. We will show in
Section 4 that this extension is consistent with the harmonic measure, describing the
absorption of the fast Wright-Fisher diffusion.

3.2 The two site case

We start now with the simplest case

S = {1, 2} and p(1, 2) = p(2, 1) = 1 , (3.7)

where S contains only two sites and A = C = {e1, e2}.

Theorem 3.3. Assume (3.7) with initial conditions xN (0) such that xN (0) → x0 ∈ [0, 1]

in distribution as N → ∞. Then the process
(
xN (t) : t > 0

)
converges weakly on path

space to
(
x(t) : t ≥ 0

)
, which is a simple random walk on {e1, e2} with jump rates α/2

and initial condition x(0) ∈ {e1, e2} with P(x(0) = e1) = x01.

The rest of this section is devoted to the proof. Since S consists of two elements we
abbreviate x1 = x, and because in the process x1 + x2 = 1 is conserved, we effectively
have only one variable (denoted by x). The Taylor expansion leading to (2.4) then gives
in terms of x:

LNf(x) =
(
− 1

2θNmN (2x− 1)∂x + 2θNx(1− x)∂2x
)
f(x) +O(θN/N)

= : LNf(x) +O(θN/N) (3.8)

where the terms O(θN/N) go to zero uniformly in x, as N →∞. The generator

LN = − 1
2α(2x− 1)∂x + 2 θNx(1− x)∂2x (3.9)

appearing in (3.8) is a Wright-Fisher diffusion with mutation where in front of the dif-
fusion term x(1− x)∂2x we have a factor θN , i.e., the diffusion part (also called “genetic
drift part” in the population dynamics language) of the process is accelerated w.r.t. the
mutation process.

This implies intuitively that the process will tend to evolve “immediately” towards
the fixed points of the genetic drift process, which are the homo-zygotes x = 1 and
x = 0, and the mutation process will then lead to a random flipping between these two
states.

First, we show that we can apply Lemma 3.1 to our case. Since this is slightly
technical, we state it as a separate lemma.

Lemma 3.4. The generators LN and LN of (3.8) satisfy the assumptions of Lemma 3.1
with the seminorm ‖|f‖| = (‖f ′′‖∞ + ‖f ′′′‖∞) and with K the set of polynomials as a
common core.

Proof. The approximate generator reads (for simplicity we put α/2 = 1 in the following)

LN = −(2x− 1)∂x + 2 θNx(1− x)∂2x
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and for the difference with the true generator we have the estimate

‖LNf − LNf‖∞ ≤ C
( 1

N
‖f ′′‖∞ +

θN
N
‖f ′′′‖∞

)
≤ CθN

N

(
‖f ′′‖∞ + ‖f ′′′‖∞

)
from a standard expression of the remainder in Taylor expansions. The seminorm
‖|f‖| = (‖f ′′‖∞ + ‖f ′′′‖∞) can thus be used in (3.1).

So in order to see that (3.2) holds for this choice of norm, it is sufficient to prove
that for the auxiliary process yN (t) with generator LN , the expectations

Eyf(yN (s)) = esLN f(y)

have bounded second and third derivatives in x, uniformly in 0 ≤ s ≤ t and N ∈ N, for
sufficiently many f . Choosing for f the polynomial fn(y) = yn, we have,

LNfn = 2 θNn(n− 1)(fn−1 − fn) + n(fn−1 − fn)− nfn

This can be interpreted as follows: the first two terms form the generator of a Markov
chain (nt : t ≥ 0) that jumps from n to n − 1 at rate 2 θNn(n − 1) + n corresponding to
the classical ancestral dual of Wright-Fisher diffusion (Kingman’s coalescent + muta-
tion contribution), and the last term is an extra killing part. For more details on that
connection see e.g. the nice account on duality in population models [18]. Using the
Feynman-Kac formula we then obtain,

ψ(N, t, n, y) := Eyfn(yN (t)) = ENn
(
e−

∫ t
0
nsdsfnt(y)

)
where ENn denotes expectation for the process on N with generator

KNg(n) = θNn(n− 1)(g(n− 1)− g(n)) + n(g(n− 1)− g(n)) .

As a consequence, since the process with generator KN only lowers the starting n in
the course of time, we obtain the uniform estimate∣∣∣ dk

dxk
ψ(N, t, n, y)

∣∣∣ =
∣∣∣ENn (e−

∫ t
0
nsdsynt−knt(nt − 1) . . . (nt − k + 1))

∣∣ ≤ nk
for all y ∈ [0, 1], which gives (3.2). Finally, it is clear that on the compact simplex E the
polynomials form a common core of the generators LN ,LN .

So Lemma 3.1 guarantees that we can identify the limit from the auxiliary process(
yN (t) : t ≥ 0

)
with generator LN . We first show that the limit process concentrates

on the set {0, 1} and then characterize it as a solution to the martingale problem of the
claimed limiting process.

Lemma 3.5. We have for all t > 0

sup
y∈[0,1]

Ey
[
yN (t)(1− yN (t))

]
→ 0 as N →∞ , (3.10)

and furthermore

lim sup
N→∞

θN sup
y∈[0,1]

Ey
[
yN (t)(1− yN (t))

]
≤ C (3.11)

for some C > 0. The same holds for xN (t)(1 − xN (t)) of the original process with
generator LN .
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Proof. We abbreviate f(y) = 2y(1− y), g(y) = 2(2y − 1)2 and compute

d

dt
Eyf(yN (t)) = Ey(g(yN (t)))− 2 θNEyf(yN (t)) .

Putting ψt(y) = Eyf(yN (t)), ϕt(y) = Exg(yN (t)), we rewrite this equation as

d

dt
ψt = ϕt − 2 θNψt ,

which has the standard form of a slow-fast system (see e.g. [13] for more background),
omitting the fixed argument y. This can be rewritten as

ψt = ψ0e
−2θN t +

e−2θN t

θN

∫ θN t

0

ϕs/θN e
2sds . (3.12)

Using now the fact that y ∈ [0, 1], we obtain that ϕ ≤ 2 and ψ ≤ 1 which gives

0 ≤ ψt(y) ≤ e−θN t +
2

θN

(
1− e−2 θN t

)
(3.13)

which goes to zero as N →∞ for all t > 0, thus proving (3.10). The estimate (3.13) also
implies the second statement (3.11).
The same argument holds for xN (t)(1−xN (t)) if we replace ϕt by ϕt+O(θN/N) including
the remainder terms, since we only use boundedness of ϕt for N large enough.

This shows that the limit process (if it exists) concentrates on the state space {0, 1}
for all t > 0, and the estimate can also be used to show tightness using the criterion
of Lemma 3.2, which implies existence of a subsequential limit by Prohorov’s theorem
(see e.g. [20], Chapter 3).

Lemma 3.6. The processes
(
yN (t) : t > 0

)
and

(
xN (t) : t > 0

)
are tight on the path

space D(0,∞).

Proof. As mentioned before, the state space E = [0, 1] is compact and the first condition
of Lemma 3.2 holds clearly. For the second condition, we first note that the process is
not tight for t = 0 since it is immediately projected onto the absorbing set A which is
{0, 1} in this simple case. For all t > 0 we can show tightness for the auxiliary process
first by noting that for any smooth function f on [0, 1]

E
[
f(yN (t+u))−f(yN (t))

∣∣yN (t)=y
]

= E
[ ∫ t+u

t

LNf(yN (s)) ds
∣∣∣yN (t)=y

]
. (3.14)

On the right-hand side

LNf(y) = −(2y − 1)f ′(y) + θNy(1− y)f ′′(y) (3.15)

and the first term is bounded by u ‖f ′‖∞ since y ∈ [0, 1]. For the second term we can
exchange expectation and time integration since the integrand is positive and bounded
above, and use (3.12) to get

θN E

[∫ t+u

t

yN (s)
(
1− yN (s)

)
ds
∣∣∣ yN (t)=y

]
=

∫ t+u

t

(
θNy(1−y)e−2θN (s−t)+e−2θN (s−t)

∫ θN (s−t)

0

ϕw/θN e
2wdw

)
ds

≤ 1

2
y(1− y)

(
1− e−2θNu

)
+ 2u , (3.16)
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where we also used boundedness of ϕ as before. This is independent of t and for all
t ≥ ε and 0 ≤ u ≤ δ we can therefore use

ZN (δ, f, ε) := δ ‖f ′‖∞ +
(

1
2y(1− y) + 2δ

)
‖f ′′‖∞ (3.17)

to bound the modulus of (3.14) as in Lemma 3.2. For every fixed ε > 0 this bound
holds uniformly in N , and uniformly in the conditional value y ∈ E at time t. Using that
y = yN (t) for some t ≥ ε it follows from Lemma 3.5 that for all y0 ∈ E

Ey0
[
ZN (δ, f, ε)

]
→ 0 (3.18)

as N → ∞ and δ ↘ 0, since f is smooth and all derivatives are bounded on [0, 1]. This
implies tightness by Lemma 3.2. Since ε > 0 was arbitrary we have tightness for all
strictly positive times t > 0.
The same argument holds for the original process (xN (t) : t > 0), since also third
derivatives of f are bounded and additional terms are of the form δ‖f ′′′‖∞(C + θN/N).

In order to identify the limit process by a martingale problem, the following well-
known result gives a simplified version for a process that jumps with rate λ between 0

and 1.

Lemma 3.7. Let Xt be a Markov process with values in {0, 1} and λ > 0. If

Mt := Xt −X0 −
∫ t

0

λ(2Xt − 1)ds (3.19)

is a martingale, then Xt is the process that jumps with rate λ between 1 and 0.

Proof. Denote by

Lf(x) = λx(f(0)−f(1)) + λ(1− x)(f(1)−f(0)) = −λ(2x− 1)(f(1)−f(0))

the generator of the process jumping back and forth between 0, 1 at rate λ. Let f :

{0, 1} → R, then f(x) = xf(1) + (1 − x)f(0) = x(f(1) − f(0)) + f(0) is always linear.
Therefore, using (3.19)

f(Xt)− f(X0)−
∫ t

0

Lf(Xs) = Mf
t (3.20)

is a martingale for all f : {0, 1} → R, which characterizes the process.

Now we can conclude the proof of Theorem 3.3. Applying the generator LN (3.8) of
the auxiliary process to the function f(y) = y gives that

MN (t) := yN (t)− yN (0)− α

2

∫ t

0

(
2yN (s)− 1

)
ds

is a martingale. Therefore, if
(
yN (t) : t > 0

)
→
(
x(t) : t > 0

)
along a subsequence, for

the limiting process we have that

M(t) := x(t)− x(0)− α

2

∫ t

0

(
2x(s)− 1

)
ds

is a martingale. Thus the limit is the claimed jump process on {0, 1}. By Lemma 3.1 this
is also the limit of the original process xN (t).
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Since the limit process
(
x(t) : t > 0

)
has right-continuous paths the consistent initial

condition is given by
x(0) := lim

ε↘0
lim
N→∞

yN (ε) , (3.21)

which concentrates on {0, 1} by Lemma 3.5. To see that this has the distribution claimed
in Theorem 3.3, denote ϕ(t,N) = EyN (0)(y

N (t)). Then using the generator (3.9), we see
that

dϕ(t,N)

dt
= −α

2
(2ϕ(t,N)− 1)

which gives

ϕ(t,N) = yN (0) +
1

2
(1− e−αt) .

Taking the limits N → ∞ and then t ↓ 0, and using that the limiting process is concen-
trated on {0, 1} gives the initial condition as claimed.

Remark 3.8. We will see in Section 4 that in general the limiting semigroup S(t) has
the property that S(0) = P is a projection onto harmonic functions on E. So if µ is the
distribution of limiting initial condition x0 as given in Theorems 2.1 and 2.2, the initial
distribution of y(0) for the limit process is given by µP = Eµ[νx0 ] since (Pf)(x) = Eνx [f ]

for all f ∈ C(E,R). For a symmetric diffusion on [0, 1] the harmonic measure νx on {0, 1}
is then given by νx = x01, i.e. equal to the first component of x0 ∈ E (see the second
item of Theorem 2.1).

3.3 The fully connected case

We will see in the next section that Lemma 3.1, the concentration Lemma 3.5 and
the tightness argument in Lemma 3.6 can be extended straightforwardly to the general
case. In case the set S is fully connected, i.e. all p(i, j) > 0, we have A = C and the limit
process still concentrates on the corner points and can be characterized by a simple
martingale problem. This will provide a proof of the second statement of Theorem 2.1.

The following lemma gives the martingale characterization of the process jumping
with rates p(i, j) from ei to ej .

Lemma 3.9. Let
(
y(t) : t ≥ 0

)
be a process on {ei, i ∈ S}, and denote yi(t) = y(t).ei =

1l(y(t) = ei). If for all i

M i(t) := yi(t)− yi(0)−
∑
j∈S

∫ t

0

(yj(s)− yi(s)) p(i, j)ds (3.22)

is a martingale, then y is the random walk jumping at rate p(i, j) = p(j, i) between ei
and ej .

Proof. As this is a straightforward extension of Lemma 3.7, we will be brief. On the
corner points C of the finite simplex E a general function

f(y) =
∑
i∈S

f(ei) yi (3.23)

can again be written as a linear combination of simple linear functions yi, which implies
the simpler martingale characterization along the same arguments as Lemma 3.7 in the
two-site case.

The generator LN =
∑
i,j∈S L

ij
N (2.6) applied to the linear function fk(y) = yk gives

LNfk(y) =
∑
i∈S

α

2
p(k, i)(xi − xk)
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Therefore, for all k ∈ S

yNk (t)− yNk (0)−
∑
i∈S

∫ t

0

α

2
p(k, i)(yNi − yNk )

is a martingale. So the limit along any convergent subsequence of (yN (t) : t > 0) will
fulfill the condition in Lemma 3.9 and is therefore unique. Again, the initial conditions
of the right-continuous limit process can be defined as in (3.21) and have distribution
E[νx0 ] by the same arguments, which proves the second statement of Theorem 2.1.

4 The general case

4.1 Concentration and tightness

Recall the generators (2.4) and (2.6) of the original and the auxiliary process,

LNf(x) = −
∑
i,j∈S

α

4
p(i, j)(xi − xj)(∂ijf)(x)

+
1

2

∑
i,j∈S

p(i, j)xixjθN (∂2ijf)(x) +O(θN/N)

= Lf(x) + θNL
′f(x) +O(θN/N) . (4.1)

Individual terms for fixed i, j are precisely of the form dealt with in the two-site case.
Therefore, Lemmas 3.5 and 3.6 on concentration and tightness are relatively straight-
forward to generalize, and we only give short proofs in the following.

Lemma 4.1. We have for all t > 0 for the auxiliary process

p(i, j) sup
y∈E

Ey
[
yNi (t) yNj (t)

]
→ 0 as N →∞ , (4.2)

and furthermore
p(i, j) lim sup

N→∞
θN sup

y∈[0,1]
Ey
[
yNi (t)yNj (t)

]
≤ C (4.3)

for some C > 0. The same holds for the original process
(
xN (t) : t > 0

)
with generator

LN .

Proof. Fix i, j ∈ S with p(i, j) = p(j, i) > 0 (otherwise there is nothing to prove). Analo-
gous to the proof of Lemma 3.5 we can compute

L′(yiyj) = −2p(i, j)yiyj (4.4)

and
L(yiyj) = −α

4

(
yi
∑
k∈S

p(j, k)(yj − yk) + yj
∑
k∈S

p(i, k)(yi − yk)
)
. (4.5)

The second term is bounded in absolute value by the constant

C := αmax
i,j∈S

∑
k∈S

(p(i, k) + p(j, k))

and only the first term is relevant, since it is multiplied by θN . Using the notation

ϕt(y) = Ey
[
yNi (t)yNj (t)

]
and ψt(y) = Ey

[
L(yNi y

N
j )
]

(4.6)

we get the estimate

0 ≤ ψt(y) ≤ e−2p(i,j)θN t +
C

2p(i, j)θN

(
1− e−2p(i,j)θN t

)
(4.7)

with the same arguments that lead to (3.13). The rest of the proof follows analogously
to the two-site case.
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Lemma 4.2. The sequences
(
xN (t) : t > 0

)
for the full process and

(
yN (t) : t > 0

)
for

the auxiliary process are tight on the path space D(0,∞) of rcll functions.

Proof. We use again the criterion in Lemma 3.2 on the compact state space E and the
same argument as in the two-site case. The only new element is the estimate of the
generator which follows analogously using

sup
y∈E

Ey
[
LNf(yN (t))

]
≤
∑
i,j∈S

(
p(i, j)‖∂ijf‖∞ + C‖∂2ijf‖∞

)
(4.8)

since all yNi (t) ∈ [0, 1] and for t > 0 we can use the estimate Lemma 4.1. Again, f is
smooth on the compact space E so that all partial derivatives are bounded.

So the limiting process exists for all positive times t > 0 and concentrates on the
absorbing set A of the fast Wright-Fisher diffusion. The initial condition on A will be
given consistently by right limits of the sample paths which coincide with the absorption
probabilities of the Wright-Fisher diffusion, as we will see in the next subsections.

4.2 Slow-fast Markovian systems and projection of Markov processes

In the general case, the generator (2.6) still consists of a fast Wright-Fisher diffusion
part and a slow mutation drift part. The limiting process will take place on the absorbing
set A of the Wright-Fisher diffusion, which in the case of general p(i, j) is a richer set
than the set of corner points C = {ei : i ∈ S}.

We first describe the limit motion of a general two-scale Markovian system in greater
generality, following closely the results in [14]. Let us consider

(
X(t) : t ≥ 0

)
,
(
X ′(t) :

t ≥ 0
)

Markov processes on a compact metric space E with generators L, L′. Both gen-
erators should have a common core K (which is given by the smooth functions C∞(E)

in our case) and the corresponding semigroups etL and etL
′

are defined on the Banach
space C(E,R) of continuous functions with the supremum norm ‖.‖∞. Suppose X ′t has
a Borel measurable set of absorbing states A ⊂ E such that the hitting probabilities
from any point x ∈ E are well defined and given by the harmonic measure νx as defined
in (2.10). Recall also the definition (2.11) of the projection operator P on the set of L′-
harmonic functions H(E). Denote by Sκ(t) the semigroup of the two-scale process Xκ

with generator L + κL′. The following result describes the limiting process as κ → ∞
by a semigroup on the harmonic functions.

Theorem 4.3. Suppose that etL
′
f → Pf as t → ∞ for all f ∈ C(E,R) and that the

operator

A : C(E,R)→ H(E) where Af := PLf (4.9)

generates a Markov semigroup S(t) on H(E) (the range of P ). Then Sκ(t)f → S(t)f as
κ → ∞ for all f ∈ H(E) and t ≥ 0. The limiting process generated by A concentrates
on the absorbing set A and has initial condition given by the harmonic measure νx∗ if
Xκ(0)→ x∗ for some x∗ ∈ E.

Proof. Convergence of the semigroups to the semigroup with generator A follows from
[14], Theorem 2.1. The only condition to check is dom(A) ⊂ R(λ−A) for some λ > 0.
This condition is clearly satisfied if A generates a Markov process, because in that case
R(λ−A) equals C(A,R).

With Dyson’s formula ([17] p. 367) we have for all f in the core K

Sκ(t) f − eκtL
′
f =

∫ t

0

eκ(t−s)L
′
LSκ(s) f ds . (4.10)
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Using convergence of the semigroups Sκ(t) and eκtL
′

as κ→∞ we get

S(t) f − P f =

∫ t

0

AS(s) f ds . (4.11)

This shows that A generates S(t) and in particular that S(0) = P . For harmonic f ∈
H(E) we have S(0)f = Pf = f and S(t) is indeed a semigroup on H(E). This implies
that the limit process generated by A concentrates on the absorbing set A as explained
in more detail below, and that by the definition of the projection P (2.11) the initial
condition of the process is given by the harmonic measure νx.

Every L′-harmonic function on E is uniquely determined by its boundary values on
A (cf. (2.11)). So in addition to the projection P we can define the harmonic extension

P : C(A,R)→ H(E) where Pf(x) :=

∫
νx(da)f(a) . (4.12)

Notice that P and P are defined by the same formula, but act on different spaces. In
particular we have Pf = (P(f |A)), i.e., the harmonic projection is the same as the
harmonic extension of the restriction of f to A. With this notation we can define

A′ : C(A,R)→ C(A,R) where A′ f := (AP f)|A , (4.13)

which highlights the fact that the limit semigroup generated by A actually defines a
process on the absorbing set A. Via the identification of H(E) with C(A,R) the opera-
tors A and A′ both describe infinitesimal motion away from A due to L, instantaneously
followed by projection onto A. Formally, in order to define A′ on f ∈ C(A,R) and act
with L we first have to extend the function f to the whole configuration space E: there-
fore we first harmonically extend f (action of P), then apply L, then project (action of
P ) and restrict again to A.

In order to apply Theorem 4.3 we have to assure that the operator A′ generates a
Markov process. This will be done in the next Section and below, where we explicitly
compute A′ and recognize it as the generator of a process on A with a jump and a
diffusion part. The condition of convergence of the semigroup of the fast diffusive part
of the generator in our case is covered by the following result.

Proposition 4.4. Let L′ = 1
2

∑
i,j∈S p(i, j)yiyj∂

2
ij be the generator (2.7) of the Wright-

Fisher diffusion X ′ with absorbing states A (2.8). Then

‖etL
′
f − P f‖∞ → 0 as t→∞ . (4.14)

Proof. Using that P is the projection on the absorbing set we have

(etL
′
− P )f(x) = Ex

[
f(X ′(t))− f(X ′(∞))

]
.

Denoting by τ the time of absorption of the Wright-Fisher diffusion, we get

Ex
[
f(X ′(t))− f(X ′(∞))

]
= Ex

[(
f(X ′(t))− f(X ′(τ))

)
1l(τ > t)

]
≤ 2‖f‖∞Px

[
τ > t

]
. (4.15)

This converges to zero since f is bounded on the compact state space E, and the Wright-
Fisher diffusion gets absorbed almost surely in finite time with a uniformly bounded
mean absorption time (see e.g. [21]).
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To illustrate how the projected generatorA′ of (4.13) looks like in a concrete case, let
us look back at the example of two sites with E = [0, 1], studied in the previous section.
The X ′-process is the Wright-Fisher diffusion with generator L′ = 2x(1 − x)∂2x, with
absorbing states 0 and 1. The X process is the deterministic process with generator
L = −α2 (2x− 1)∂x. Since X ′(t) is a martingale, stopping at the time of absorption gives
that the harmonic measure equals

νx({1}) = 1− νx({0}) = x .

As a consequence, for a function f : {0, 1} → R, its harmonic extension is simply given
by linear interpolation: Pf(x) = xf(1) + (1− x)f(0) and therefore

(LPf)(x) = −α(2x−1)

2

d

dx
(xf(1) + (1− x)f(0)) = −α(2x−1)

2
(f(1)− f(0)) .

Thus
A′f(x) = (PLP)f(x) =

α

2

[
x(f(0)− f(1)) + (1− x)(f(1)− f(0))

]
which in the case of α

2 = 1 takes values

A′f(1) = f(0)− f(1) and A′f(0) = f(1)− f(0) .

So A is the generator of the process which flips at rate 1 between the states of the
absorbing setA = {0, 1}, as we found in Section 3.2 using a martingale characterization.

5 Computation of the generator A: the case of three sites

In the case of general connections p(i, j) and general finite sets S, the possible lim-
iting behaviors of the process is more complicated. Therefore we focus on the case of
Theorem 2.2 with p(i, j) ∈ {0, 1} and compute the generator A (4.13) using that

PL = P lim
h↘0

(
ehL − I

h

)
= lim
h↘0

P

(
ehL − I

h

)
(5.1)

by continuity of the projection P . Note that by Theorem 4.3 it suffices to compute A

rather A′ to characterize the limit process. We start here with a system of three sites
with closed boundaries and nearest neighbor connections. This case already contains
most of the interesting aspects of the limiting dynamics which now has both a diffusive
and a pure jump part.

5.1 Generator and absorbing set

We consider the three site case with p(1, 2) = p(2, 1) = p(2, 3) = p(3, 2) = 1 and
p(1, 3) = p(3, 1) = 0. The generator (2.6) is

LN = −a(x1 − x2)∂12 − a(x2 − x3)∂23

+
θN
2
x1x2∂

2
12 +

θN
2
x2x3∂

2
23 (5.2)

where we write a = α/4 in the following to simplify notation. Recall the notation from
(2.6) for this case: the “fast Wright-Fisher diffusion” has generator

L′ =
1

2
x1x2∂

2
12 +

1

2
x2x3∂

2
23 , (5.3)

whereas, the “slow deterministic” part has generator

L = −a(x1 − x2)∂12 − a(x2 − x3)∂23 . (5.4)
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The process x′(t) with generator L′ is a Wright-Fisher diffusion, for which, x′1(t), x′2(t), x′3(t)

and x′1(t)x′3(t) are martingales since L′x1 = L′x2 = L′x3 = L′(x1x3) = 0. Its absorbing
set is

A = (0, z, 0) ∪
{

(u, 0, w) : u+ w = z
}

(5.5)

given by a point and a line segment. Here we assume that the total mass in the system
is z ≤ 1, for our results to generalize more easily to larger systems.

5.2 Dynamics on the line segment: diffusion and jumps

We start with a point on the line segment x(0) = (u, 0, w) and need to compute (see
(5.1)):

Af(x(0)) = lim
h↘0

1

h

(
Ex(h)

[
f(x′(τ))

]
− f(u, 0, w)

)
(5.6)

where x(h) =
(
u(1 − ah), zah,w(1 − ah)

)
∈ E \ A is the initial condition for the Wright-

Fisher diffusion x′(t). This initial condition comes from starting from the point (u, 0, w)

from the absorbing set and evolving according to the deterministic part of the dynamics
a small amount of time h.

Then, since x′2(τ) ∈ {0, z} takes only two values, we have

Ex(h)
[
f(x′(τ))

]
= f(0, z, 0)Px(h)[x

′
2(τ) = z]

+Ex(h)
[
f(x′(τ)) 1l(x′2(τ) = 0)

]
. (5.7)

Since x′2(t) is a martingale on [0, z], the probability in the first line is given by ah and we
have

Ex(h)
[
f(x′(τ))

]
− f(u, 0, w) = ah

(
f(0, z, 0)− f(u, 0, w)

)
+Ex(h)

[(
f(x′(τ))− f(u, 0, w)

)
1l(x′2(τ) = 0)

]
. (5.8)

The first line corresponds to a jump part, where all the mass z ends up in site 2. The
second line has to be a continuous part, since the probability of the event x′2(τ) = 0 is
of order 1 + o(h). Since x′1(t) is a martingale we have

Ex(h)
[
x′1(τ)−u

]
= −uah = −uah+ Ex(h)

[
(x′1(τ)−u) 1l(x′2(τ) = 0)

]
,

where the second equality uses again Px(h)[x
′
2(τ) = z] = ah and the fact that x′2(τ) = z

implies x′1(τ) = 0. Therefore

Ex(h)
[
(x′1(τ)− u) 1l(x′2(τ) = 0)

]
= 0 (5.9)

and similarly for x′3(t), and the drift of the continuous part vanishes. It remains to
compute the diffusion part.

Ex(h)
[
(x′1(τ)− u)2

]
= Ex(h)

[
x′1(τ)2

]
− 2uEx(h)

[
x′1(τ)

]
+ u2

= Ex(h)
[
x′1(τ)(z − x′2(τ)− x′3(τ))

]
− 2u2(1− ah) + u2

= uz(1− ah)− 0− uw(1− ah)2 − 2u2(1− ah) + u2

= ahuz +O(h2) , (5.10)

where we have used that x′1(τ)x′2(τ) = 0 and that x′1(t)x′3(t) is a martingale. Again
splitting the expectation with respect to the value of x′2(τ) we get analogously to the
above

Ex(h)
[
(x′1(τ)− u)2 1l(x′2(τ) = 0)

]
= ahuz − ahu2 = ahuw . (5.11)
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The same holds for x′3(t), and obviously Ex(h)
[
x′2(τ)k 1l(x′2(τ) = 0)

]
= 0 for all k = 1, 2 . . ..

To get the covariances we compute

Ex(h)
[
(x′1(τ)−u)(x′3(τ)−w) 1l(x′2(τ) = 0)

]
=

= Ex(h)
[
x′1(τ)x′3(τ)) 1l(x′2(τ) = 0)

]
− uw = −2ahuw , (5.12)

where we used (5.9) and that x′1(t)x′3(t) is a martingale. Covariances with x′2(t) again
vanish.

Now, in (5.8) we have up to second order

f(x′(τ))− f(u, 0, w) =

3∑
i=1

∂xif(x(0))
(
xi(τ)− xi(0)

)
+

1

2

3∑
i,j=1

∂xi∂xjf(x(0))
(
xi(τ)− xi(0)

)(
xj(τ)− xj(0)

)
, (5.13)

where higher order terms are of order o(h) and not relevant. Taking expectations, the
first order terms vanish, and the second order diffusive terms can be written as (recall
that a = α/4)

Ex(h)

[(
f(x′(τ))− f(u, 0, w)

)
1l(x′2(τ) = 0)

]
=

1

2
αhuw∂213f(u, 0, v) + o(h)

using the same notation as in (2.5). Plugging this and (5.8) in (5.6) we obtain for the
limiting generator A:

Af(u, 0, w) = α
(
f(0, z, 0)− f(u, 0, w)

)
+

1

2
αuw∂213f(u, 0, w) , (5.14)

consisting of a jump part and a Wright-Fisher diffusive part with effective diffusivity
αuw. Notice that as soon as u or w = 0 the diffusive part vanishes, and the generator
consists purely of the jump part where the total mass z moves from site 1 or 3 onto site
2.

5.3 Dynamics of a single condensate: jump process

For the other possible initial condition x(0) = (0, z, 0) we have x(h) =
(
zah, z(1 −

2ah), zah)
)

as initial condition for the Wright-Fisher diffusion. Again we have

Ex(h)
[
f(x′(τ))

]
= f(0, z, 0)Px(h)[x

′
2(τ) = z]

+Ex(h)
[
f(x′(τ)) 1l(x′2(τ) = 0)

]
, (5.15)

where this time the probability in the first line is of order 1− 2ah. Since x′1(t)x′3(t) is a
martingale we have

Ex(h)
[
x′1(τ)x′3(τ)

]
= (zah)2 (5.16)

which implies that the probability to end up in a state (u, 0, w) with u,w > 0 is negligible.
Therefore

Ex(h)
[
f(x′(τ)) 1l(x′2(τ) = 0)

]
= 2ah

(1

2
f(z, 0, 0) +

1

2
f(0, 0, z)

)
, (5.17)

and the generator consists only of jump parts which can be written as

Af(0, z, 0) = a
(
f(z, 0, 0)− f(0, z, 0)

)
+ a
(
f(0, 0, z)− f(0, z, 0)

)
. (5.18)

Therefore, once all the mass concentrates on a single site this remains, and the corner
points C are absorbing for the limit process.
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The closure of the operator A defined by (5.18),(5.14) clearly is the generator of a
well-defined Markov process on the set A defined in (5.5). Furthermore, tightness of
the sequence of processes generated by LN (5.2) is proved in Lemma 4.2. Therefore,
we can conclude for the three site case, that the processes generated by (5.2) indeed
converge to the process generated by the projected generator A defined by (5.18),
(5.14). This concludes the proof of Theorems 2.1 and 2.2 for the case of three sites.

6 The general case continued

6.1 Motion of a single condensate

First we show that once a point ei ∈ C is hit in the limit process, i.e., the situation
physically corresponding to a single condensate, then the process becomes a pure jump
process on the corner set C = {ei : i ∈ S}. This in combination with Lemma 4.2 finishes
the proof of the first item in Theorem 2.1. Recall the decomposition LN = L + θNL

′ of
the generator of the auxiliary process given in (2.6).

Lemma 6.1. 1. For every Borel measurable subset K ⊂ E \ C we have for the func-
tion ν.(K) : x 7→ νx(K)

(Lν.(K))(ei) = 0 . (6.1)

As a consequence, Af(x) = 0 for all x ∈ E \ C and hence,

Af(ei) =
∑
j∈S

α

2
p(i, j)(f(ej)− f(ei))

i.e., the projected process is a pure jump process on C.

Proof. Fix K ⊂ E \ C. If p(i, j) > 0 then starting from a point x ∈ E such that xk = 0, k 6∈
{i, j}, the Wright-Fisher diffusion L′ remains in the plane Eij := {rei + sej : r, s ∈ R}
and hence is absorbed at ei or ej . As a consequence

νei+sej−sei(K) = 0

which implies
(∂ijν.(K))(ei) = 0 .

Since K was an arbitrary Borel measurable subset of E \ C, we conclude for every
bounded Borel measurable function f with support contained in E \ C that(

∂ij

∫
A
ν.(da)f(a)

)
(ei) = 0 .

Further, if i 6∈ {k, l} then obviously, for any smooth function f : A → R

((xk − xl)
(
∂kl

∫
A
ν.(da)f(a)

)
(ei) = 0 ,

because both xk and xl are zero when evaluated at x = ei.
Therefore, since L in (2.9) is a linear combination of terms of the form−α4 (xk−xl)∂kl,

we conclude that for any smooth function f : A → R with support contained in E \ C

L

(∫
A
νx(da)f(a)

)
(ei) = 0 .

Therefore, we obtain for all f ∈ C(A,R)

Af(ei) = L

(∫
A
ν.(da)f(a)

)
(ei) = L

(∫
C
ν.(da)f(a)

)
(ei) =

=
∑
j∈S

α

2
p(i, j)(f(ej)− f(ei)) , (6.2)
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since
∫
C νei(da)f(a) = f(ei).

6.2 The general case of Theorem 2.2

The proof of the general case is a combination of the arguments used in the three
site case discussed above, and we will be brief in this section avoiding a full treatment
with a lot of technical notation. Recall that p(i, j) ∈ {0, 1} and let x(0) ∈ A be a general
initial condition, for which xi(0)xj(0) = 0 whenever p(i, j) = p(j, i) = 1. Again, under
the Wright-Fisher process (x′(t) : t ≥ 0), with generator L′ = (1/2)

∑
ij p(, j)yiyj∂

2
ij ,

all x′i(t) and all products x′i(t)x
′
j(t) for which p(i, j) = 0 are martingales. Analogously

to the computations in Section 5, after the action of the deterministic drift generator
L =

∑
ij −ap(i, j)(yi− yj)∂ij for infinitesimal time h we have an initial condition x(h) for

the diffusion L′, and denote by τ the time of absorption.
The first observation is that at most one initially empty site can gain a macroscopic

amount of mass through a jump.

Lemma 6.2. xi(0) = 0 and x′i(τ) > 0 is possible for at most one i ∈ S, and in that case∑
j∈S p(i, j)x

′
j(τ) = 0.

Proof. Let i and j be two initially empty sites for which xi(h), xj(h) = O(h). Then, if
p(i, j) = 1 we have x′i(τ)x′j(τ) = 0 since τ is the hitting time of the absorbing set A,
so that at most one of them can take a positive value. Similarly, if p(i, j) = 0 we have
x′i(τ)x′j(τ) = O(h2) since the product is a martingale, and since we take the limit h→ 0

again at most one can be positive after the diffusion is absorbed. Since the pair i, j was
arbitrary, this implies that under the action of the generator A at most one empty site
in the system can gain mass. Then at the time of absorption in A all other connected
sites have to be empty.

Secondly, jumps of a macroscopic amount of mass occur only onto neighbouring
empty sites.

Lemma 6.3. If xi(0) = 0 and
∑
j∈S p(i, j)xj(0) = 0, then x′i(τ) = 0. If xi(0) > 0 then

x′i(τ) ≤ xi(0) +O(h).

Proof. By the condition site i has no direct neighbour with xj(0) > 0, and therefore if
xi(0) = 0 under the action of generator L in time h we get xi(h) = O(h2). Then since
x′i(t) is a martingale, its mass remains negligible after the Wright-Fisher diffusion L′

gets absorbed and x′i(τ) = xi(0) = 0.
If xi(0) > 0 we also have

∑
j∈S p(i, j)xj(0) = 0 and thus xi(h) ≤ xi(0) + O(h2). Then the

martingale property of x′i implies that absorption at x′i(τ) = xi(0) + O(1) has negligible
probability of order h2.

Thirdly, mass between two macroscopically occupied sites moves at most continu-
ously.

Lemma 6.4. If xi(0)xj(0) > 0, then either x′i(τ)x′j(τ) = 0 or x′i(τ)x′j(τ) = xi(0)xj(0) +

O(h).

Proof. xi(0)xj(0) > 0 implies p(i, j) = 0. In the first case the mass of one of the sites
jumped to another site. Now assume this is not the case and note that x′i(t), x

′
j(t) and

x′i(t)x
′
j(t) are martingales. Let f, g : [0, 1]→ R be two smooth functions, then

L′
(
f(xi)g(xj)

)
=
∑
k∈S

(
p(i, k)xixk∂

2
ikf(xi) + p(j, k)xjxk∂

2
ikg(xj)

)
. (6.3)
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Then xi(h)xj(h) = O(1) which implies that xk(h) = O(h) for all k connected to either i
or j and

L′
(
f(xi(h))g(xj(h))

)
= O(h) . (6.4)

So either a neighbour x′k(t) gains a macroscopic amount of mass during the Wright-
Fisher diffusion, which results in the first case of one of the piles jumping to k, or we
have

Ex(h)
[
f(x′i(τ))g(x′j(τ))

]
= f(xi(0))g(xj(0)) +O(h) . (6.5)

Since f and g are arbitrary, the latter case implies the second statement.

Lemma 6.5. If xi(0) = 0 and x′i(τ) > 0 then x′i(τ) =
∑
j∈S p(j, i)xj(0) +O(h).

Proof. This follows from Lemmas 6.2 and 6.4. i is the only site in the system where
a macroscopic amount of mass jumped to and its neighbours are empty at absorption,
therefore it has to absorb all the original mass of its neighbours up to amounts of order
h which have been shared with other sites.

This characterizes all the possible jump events under the generator A. We see that
mass can only jump onto a single empty site j which collects all the surrounding mass,
and the rate for this event can be computed analogously to the previous section to be
α
2

∑
i∈S p(i, j)xi(0). In parallel to jumps, mass can move continuously between macro-

scopically occupied sites, which we describe next. We will use the notation p̂(i, j) in-
troduced in (2.15) for the number of two-step connections between two sites i, j ∈ S.
The crucial ingredient to conclude is additivity of the jump rates of the Wright-Fisher
diffusion in each component, as is described below.

Lemma 6.6. Assume that p̂(i, j)xi(0)xj(0) > 0 then the generator A contains a term
ap̂(i, j)xi(0)xj(0)∂2ij and the continuous part of A is given by the sum of all such contri-
butions.

Proof. For i, j ∈ S as given, assume that x′i(τ)x′j(τ) > 0 so that none of the two piles
jumps and the total mass is conserved up to order h, which has O(1) probability. Then
the system on sites i, k, j with intermediate site k can be seen as an effective three site
system as studied in the previous section. If there is a unique intermediate site, the
diffusive part of the generator follows analogously to this case. If there are several
intermediate sites k, the different paths between i and j can be viewed as independent,
since the diffusion rates of the Wright-Fisher generator acting on sites i and k given by

L′ik = xixk∂
2
ik (6.6)

are proportional to xk (similarly between j and k). Therefore the total effective Wright-
Fisher diffusion rate between sites i and j is simply given by a sum over all connections,
as given by p̂(i, j) in (2.15). Since the above rates are also linear in xi (and xj , resp.), the
same additivity applies if i or j are connected to more different sites via two-step con-
nections. This leads to independent contributions for each such connection as claimed
in the Lemma, which are summed over to give the full continuous part of the generator.

It remains to show that there is no mass exchange over distances more than 2 steps.
This is most easily seen in a system with 4 sites S = {1, 2, 3, 4} with nearest neighbour
jumps and initial condition (u, 0, 0, w) and u + w = z. Analogous to the computation in
(5.10) for three sites we get

Ex(h)
[
(x′1(τ)− u)2

]
= ah(uz − uw) +O(h2) .

This implies analogously to (5.12) that

Ex(h)
[
(x′1(τ)− u)21l(x′2(τ) = 0)

]
= ah(uz − uw)− ahu2 +O(h2) = O(h2) ,
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so the change of x1 is not on a diffusive scale and negligible. The same holds for x4, and
this argument can be easily generalized to arbitrary S.
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