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Abstract We study condensation in several particle systems related to the inclusion process.
For an asymmetric one-dimensional version with closed boundary conditions and drift to the
right, we show that all but a finite number of particles condense on the right-most site. This
is extended to a general result for independent random variables with different tails, where
condensation occurs for the index (site) with the heaviest tail, generalizing also previous
results for zero-range processes. For inclusion processes with homogeneous stationary mea-
sures we establish condensation in the limit of vanishing diffusion strength in the dynamics,
and give several details about how the limit is approached for finite and infinite systems. Fi-
nally, we consider a continuous model dual to the inclusion process, the so-called Brownian
energy process, and prove similar condensation results.

Keywords Inclusion process · Condensation · Brownian energy process · Zero-range
process

1 Introduction

In [1, 2], an interacting particle system was introduced, where particles perform random
walks and interact by “inclusion”, i.e., every particle at site i can attract particles from a
site j to its site at rate p(i, j) = p(j, i). This particle system, the so-called symmetric inclu-
sion process (SIP), is “exactly solvable” by self-duality, and its ergodic stationary measures
are products of discrete gamma distributions, indexed by the density. The inclusion process
also turns out to be dual to a system of interacting diffusions, the so-called Brownian energy
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process (BEP). More details on duality, self-duality, and the precise relations between SIP
and BEP can be found in [1]. In the present paper we only need the explicit form of the
stationary measures of these models.

We prove existence of stationary product measures for inclusion processes under rather
general conditions, in analogy to classical results for exclusion processes [3]. We introduce
asymmetric versions of the SIP and the BEP, for simplicity focusing on a one-dimensional
context with N sites and closed boundary conditions. In this case both models have spatially
inhomogeneous product measures as reversible measures (to be compared with the blocking
measure of the asymmetric exclusion process). Conditioning on K particles in the system
(resp. total energy E), we prove that that in the limit K → ∞ “almost all” the particles
(resp. all the energy) are concentrated on a single site, where the marginal of the reversible
measure has the heaviest tail. The other sites contain a finite number of particles (resp. finite
amount of energy).

We further study condensation in inclusion processes with spatially homogeneous sta-
tionary measures, with the SIP as the main example. The strength of the diffusive part of
the dynamics in comparison to the attraction is controlled by a system parameter m > 0.
For fixed particle density ρ we study the limit m → 0 where attraction dominates, and show
that the single-site marginals converge to Dirac measures concentrated on zero mass. This
corresponds to the fact that a typical configuration consists of rare piles of typical size 2ρ/m

separated by empty sites. The distribution of pile sizes approaches a power law with expo-
nent −1 and becomes degenerate in the limit m → 0. This leads to a breakdown of the usual
law of large numbers which we illustrate in detail.

Our results for the asymmetric case also cover condensation phenomena in zero-range
processes, which have attracted a lot of recent research interest [4, 5]. For inhomogeneous
systems, these have been studied before mainly in the context of a quenched disorder in
the jump rates, which have to be non-decreasing functions of the number of particles [6–9].
For such systems, the use of coupling techniques allowed in special cases to also obtain
results on the dynamics of condensation. In contrast, our results cover only the stationary
behaviour but apply to a much larger class of jump rates with essentially no restriction. The
widely studied condensation in spatially homogeneous zero-range processes [10–14] has a
somewhat different origin than our homogeneous results for the SIP. This is discussed in
detail at the end of Sect. 4.2.

In the next section we describe the inclusion process and its stationary measures. In
Sects. 3 and 4 we study condensation in the asymmetric and spatially homogeneous case,
and discuss extensions and relations to zero-range processes. In Sect. 5 we introduce the
asymmetric Brownian energy process and discuss condensation in an example of a system
with continuous state space.

2 Inclusion Processes

The inclusion process on a general discrete set � has state space � = N
� and we denote

a configuration by η = (ηi : i ∈ �) where ηi is interpreted as the number of particles at
site i ∈ �. The dynamics is defined by the generator defined on the core of local functions
f : � → R:

Lf (η) =
∑

i,j∈�

p(i, j)ηi

(
m

2
+ ηj

)(
f (ηi,j ) − f (η)

)
, (1)
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where ηi,j is the configuration obtained from η by removing a particle from site i and putting
it to j . The p(i, j) ≥ 0 are jump rates of an irreducible random walk on � with p(i, i) = 0,
and the parameter m > 0 determines the rate of diffusion of the particles as compared to
the aggregation part given by the product ηiηj . We also assume the p(i, j) to be uniformly
bounded and of finite range, i.e. there exist C,R > 0 such that

sup
i,j∈�

p(i, j) < C and
∣∣{j ∈ � : p(i, j) > 0

}∣∣ < R for all i ∈ �. (2)

This ensures that the dynamics is well defined even on infinite lattices (for a large class of
‘reasonable’ initial conditions) and contains all generic examples we are interested in, such
as nearest-neighbour hopping on regular lattices.

If the p(i, j) are symmetric the inclusion process is also called symmetric (SIP), other-
wise asymmetric (ASIP).

2.1 Stationary Product Measures

For φ ≥ 0 and λi > 0, i ∈ �, define the product probability measure

νφ(dη) =
⊗

i∈�

νi
φ(dηi), (3)

where the marginals νi are probability measures on N given by

νi
φ(n) = (zi(φ))−1λn

i φ
n
	(m

2 + n)

n!	(m
2 )

(4)

with the normalizing constant

zi(φ) =
∞∑

n=0

λn
i φ

n
	(m

2 + n)

n!	(m
2 )

= (1 − λiφ)−m/2. (5)

The parameter φ ≥ 0 is called fugacity and controls the particle density, which is invariant
under the time evolution.

Theorem 2.1 For all φ < φc := (supi∈� λi)
−1, νφ is a stationary measure for the inclusion

process with generator (1), provided that one of the following conditions holds:

(a) The p(i, j) are doubly stochastic modulo a constant, i.e.

∑

j∈�

(
p(i, j) − p(j, k)

) = 0 for all i, k ∈ �, (6)

and λi = 1 for all i ∈ �.
(b) The λi are reversible w.r.t. the p(i, j), i.e.

λip(i, j) = λjp(j, i) for all i, j ∈ �, (7)

and in that case νφ is also a reversible measure.
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This is in direct analogy with well-known results for stationary measures for exclusion
processes (see e.g. [3], Theorem VIII.2.1). In both cases, the λi are special harmonic func-
tions solving

∑

j∈�

(
λip(i, j) − λjp(j, i)

) = 0 for all i ∈ �, (8)

i.e. they provide a (not necessarily normalized) stationary distribution for the underlying
random walk of a single particle. For the above product measures to be stationary, the p(i, j)

have to be such that they admit a constant solution (first case) or a detailed balance solution
(second case). It is not clear at this point whether these conditions are really necessary for
the existence of stationary product measures in general. Note also that on infinite lattices
φc = 0 is possible. But for finite � (which we mainly focus on in this paper), Theorem 2.1
guarantees the existence of a family of stationary measures.

Proof We have to show for expected values w.r.t. νφ that

νφ(Lf ) =
∑

η∈�

∑

i,j∈�

p(i, j)ηi

(
m

2
+ ηj

)
(f (ηi,j ) − f (η))νφ(η) = 0 (9)

for all local functions f . For fixed i, j we get after a change of variable

∑

η∈�

p(i, j)ηi

(
m

2
+ ηj

)
f (ηi,j )νφ(η)

=
∑

η∈�

p(i, j)(ηi + 1)

(
m

2
+ ηj − 1

)
f (η)νφ(ηj,i).

The form (4) of the marginals implies that for all i ∈ � and k ≥ 0

νi
φ(k + 1)

νi
φ(k)

= φ
m + 2k

2(k + 1)
λi .

Thus we get for each fixed pair i, j ∈ �

νi
φ(n+1)ν

j

φ(k−1)(n + 1)

(
m

2
+ k − 1

)
= νi

φ(n)ν
j

φ(k)k

(
m

2
+ n

)
λi

λj

for all n ≥ 0 and k ≥ 1. It is easy to check that boundary terms in the sums vanish consis-
tently, and we do not consider them in the following. Plugging this into (9) we get

νφ(Lf ) =
∑

η∈�

f (η)νφ(η)
∑

i,j∈�

p(i, j)

(
ηj

(
m

2
+ηi

)
λi

λj

−ηi

(
m

2
+ηj

))
, (10)

and exchanging the summation variables i ↔ j in the first part of the sum leads to

νφ(Lf ) =
∑

η∈�

f (η)νφ(η)
∑

i,j∈�

ηi(m/2 + ηj )

λi

(
p(j, i)λj − p(i, j)λi

)
. (11)
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This clearly vanishes under the reversibility condition (7) which implies stationarity under
assumption (b). In analogy to (10) we can derive

νφ(gLf ) =
∑

η∈�

f (η)νφ(η)

×
∑

i,j∈�

p(i, j)

(
ηj

(
m

2
+ηi

)
g(ηi,j ) − ηi

(
m

2
+ηj

)
g(η)

)
,

and after using (7) and the exchange of summation variables this implies

νφ(gLf ) =
∑

η∈�

f (η)νφ(η)
∑

i,j∈�

p(i, j)ηi

(
m

2
+ηj

)
λi

λj

(
g(ηj,i) − g(η)

)

= νφ(f Lg),

so νφ is also reversible.
Assuming (a), the λi and λj in (11) cancel, and we write the linear (diffusive) part as

∑

i∈�

ηi

m

2

∑

j∈�

(p(j, i) − p(i, j)) = 0,

which vanishes due to (6). For the quadratic aggregation part we get

∑

i,j∈�

ηiηj (p(j, i) − p(i, j)) =
∑

i,j∈�

ηiηj (p(j, i) − p(j, i)) = 0,

by another exchange of the summation variables in the second part, using that ηiηj is sym-
metric under i ↔ j . �

2.2 Canonical Measures for Finite Systems

Consider a finite lattice �N of size N with corresponding state space �N = N
�N . Starting

with a fixed number of K particles, the inclusion process with generator LN as given in (1)
is an irreducible continuous-time Markov chain on the finite set

AK =
{

η ∈ �N :
N∑

i=1

ηi = K

}
, (12)

and has a unique stationary measure, which we denote by μK .
By conservation of the number of particles, the conditional measure

νφ

(
dη

∣∣∣∣
N∑

i=1

ηi = K

)

is also invariant. Indeed for f : �N → R we have
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∫
LNf (η)νφ(dη|AK) =

∫
LNf (η)1AK

νφ(dη)

νφ(AK)

=
∫

f (η)(L∗
N (1AK

))(η)νφ(dη)

νφ(AK)
= 0, (13)

since it is easy to see that with the generator LN also its adjoint L∗
N conserves the number

of particles. In the case of reversible measures νφ , LN is self-adjoint and there is nothing to
check. By uniqueness of the stationary measure, we thus have

νφ(·|AK) = μK (14)

for all φ < φc and K ∈ N. So the conditioned product measures are actually independent
of φ, and this connection provides an explicit form for the canonical measures μK .

3 Condensation in the ASIP

A generic situation where Theorem 2.1 gives rise to spatially inhomogeneous reversible
measures is a one-dimensional lattice �N = {1, . . . ,N} with an underlying asymmetric
nearest-neighbour walk. We consider the ASIP with generator

LNf (η) =
N−1∑

i=1

pηi

(
m

2
+ ηi+1

)
(f (ηi,i+1) − f (η))

+
N−1∑

i=1

qηi+1

(
m

2
+ ηi

)
(f (ηi+1,i) − f (η)), (15)

where p > q > 0. In this case λi = (p/q)i fulfills condition (7) in Theorem 2.1. We will
now proceed towards showing that in the limit K → ∞, under the canonical measure μK ,
the typical situation will be that all but a finite number of particles condenses at the right site
i = N , whereas the other sites contain a number of particles distributed according to νi

φc
.

At first sight one could be tempted to think that this is just a consequence of the asym-
metry: particles are pushed to the right. This is, however, not the case. If we consider inde-
pendent random walkers, moving at rate p to the right and q to the left, then the reversible
profile measures are Poissonian and given by

⊗N

i=1 νi
φ(dηi) with

νi
φ(n) = 1

zi(φ)

(
p

q

)ni
φn

n!

with a normalizing constant zi(φ) = eφ(p/q)i which is now finite for all values of φ. As a con-
sequence, no condensation happens: if we condition on having K particles, and let K tend to
infinity, all sites will carry a diverging number of particles. The condensation phenomenon
is thus a combination of the asymmetry, together with the attractive interaction between the
particles in the inclusion process. Indeed, it is the interaction which is responsible for the
existence of a finite critical φc .
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3.1 Condensation

Before we formulate the main result of this section, we recall the marginals νi
φ for the ASIP

νi
φ(n) = 1

zi(φ)
φnλn

i wi(n), (16)

where we have now

λi = (p/q)i (17)

and write

wi(n) = 	(n + m
2 )

n!	(n)
. (18)

In the present case wi does not dependend on i, but in generalizations explained below we
will allow explicit dependence on i. The weights wi(n) have the asymptotic behavior

wi(n) ∼ n
m
2 −1, (19)

where an ∼ bn means that an/bn converges to a strictly positive constant.
We remind that the normalizing constants are

zi(φ) = (1 − λiφ)−m/2 =
(

1 −
(

p

q

)i

φ

)−m/2

. (20)

Therefore, in the context of Theorem 2.1 we have λ1 < λ2 < · · · < λN , φc = 1/λN ,
zi(φc) < ∞ for all 1 ≤ i ≤ N − 1, and zN (φ) < ∞ for all φ < φc . We then have the fol-
lowing result.

Theorem 3.1

(a) In the limit K → ∞, η1, . . . , ηN−1 are asymptotically independent and converge in dis-
tribution to the critical product measure, i.e. for all n1, . . . , nN−1 ∈ N

μK(η1 = n1, . . . , ηN−1 = nn−1) → ν1
φc

(n1) · · ·νN−1
φc

(nN−1), (21)

where φc = 1/λN = (q/p)N .
(b) In the limit K → ∞, the right edge contains “almost all” particles, i.e., for all δ ∈ (0,1)

μK
(
ηN ≤ (1 − δ)K

) → 0, (22)

and we have a strong law of large numbers, ηN/K → 1 a.s.

Proof We use that μK = νφ(·|AK) and write for �′ ⊆ �N

Z(�′,K) =
∑

{ni ,i∈�′:∑i∈�′ ni=K}

∏

i∈�′
wi(ni)λ

ni

i . (23)

We then have
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μK(η1 = n1, . . . , ηN−1 = nn−1)

= 1

Z(�N ,K)
wN

(
K −

N−1∑

i=1

ni

)
λK−∑N−1

i=1 ni

N−1∏

i=1

wi(ni)λ
ni

i . (24)

We first prove that

lim
K→∞

Z(�N ,K)

λK
NwN (K)

=
N−1∏

i=1

zi(φc). (25)

To see this, we choose an appropriate order of summation,

Z(�N ,K) =
K∑

n1=0

K−n1∑

n2=0

· · ·
K−(n1+···nN−2)∑

nN−1=0

(
N−1∏

j=1

wj (nj )λ
nj

j

)
wN

(
K −

N−1∑

j=1

nj

)
λ

K−∑N−1
j=1 nj

N

= λK
NwN (K)

∞∑

n1=0

. . .

∞∑

nN−1=0

�K(n1, . . . , nN−1)

N−1∏

j=1

wj (nj )

(
λj

λN

)nj

(26)

with

�K(· · · ) =
wN

(
K−∑N−1

j=1 nj

)

wN (K)
1n1≤K · · ·1nN−1≤K−n1−···−nN−2 . (27)

We see from (18) that �K ≤ 1. Therefore, by dominated convergence, using that φc = λ−1
N

and

zi(φc) =
∞∑

n=0

φn
c wi(n)λn

i =
∞∑

n=0

wi(n)

(
λi

λN

)n

< ∞,

we obtain (25). Combining (24) and (25) with the fact that

lim
K→∞

wN (K − n)

wN (K)
= 1 for all n ∈ N (28)

(which follows immediately from (19)), yields item (a) of Theorem 3.1.
To prove item (b), we start with

μK
(
ηN ≤ (1 − δ)K

) =
∑

n≤(1−δ)K wN (n)λn
NZ(�N \ {N},K − n)

Z(�N ,K)

and estimate, for n ≤ (1 − δ)K and a small enough ε′ > 0 to be chosen below:
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Z(�N \ {N},K − n) ≤ (λN−1(1 + ε ′))K−n

×
K−n∑

n1=0

. . .

K−n−(n1+···+nN−3)∑

nN−2=0

wN−1

(
K − n −

N−2∑

j=1

nj

)

×
(

N−2∏

j=1

wj (nj )

(
λj

λN−1(1 + ε ′)

)nj

)

≤ C(λN−1(1 + ε ′))K−n(1 + ε)K . (29)

Here we have used that (cf. (19))

wN−1

(
K − n −

N−2∑

j=1

nj

)
≤ C(1 + ε)K (30)

for some ε > 0 to be chosen below, and the fact that the remaining sums in the RHS of (29)
converge to a finite value as K → ∞. By (25) Z(�N ,K) is bounded below by C ′λK

NwN (K)

for K large enough. This then gives

μK(ηN ≤ (1−δ)K) ≤ C ′′
(

∑

n≤(1−δ)K

wN (n)

wN (K)

)(
(1+ε)1/δ(1+ε ′)λN−1

λN

)δK

,

since for the summation indices K − n ≥ δK . Choosing ε, ε′ > 0 small enough such that

0 <
(1 + ε)1/δ(1 + ε ′)λN−1

λN

< q < 1

and using that wN (n)

wN (K)
≤ 1, we obtain

μK(ηN ≤ (1 − δ)K) ≤ C ′′qδK . (31)

Choosing δ = δK = 1/
√

K → 0, we get a summable bound on the right-hand side. Since by
definition ηN ≤ K a.s. under the measure μK , this implies almost sure convergence and the
strong law ηN/K → 1 by Borel-Cantelli. �

3.2 Generalizations

Notice that in the proof of Theorem 3.1 we did not use the specific form of wi and λi . There-
fore, the same proof shows a condensation phenomenon for a general family of independent
random variables η1, . . . , ηN with

P(ηi = n) = 1

zi(φ)
wi(n)λn

i φ
n

under the following hypotheses on the wi, λi :

(a) The λi satisfy

λN >
N−1
max
i=1

λi, (32)



Condensation in the Inclusion Process and Related Models 961

(b) The weights wi(n) are subexponential in the following sense

lim
n→∞

wi(n + 1)

wi(n)
= 1 (33)

for all 1 ≤ i ≤ N .

From (33), (28) follows directly, and it further implies that for all α > 0 there exists Cα > 0
such that for all n ≥ 0

C−1
α e−αn ≤ wi(n) ≤ Cαe

αn.

From this bound we conclude that for all β > 0, there exists Cβ > 0 such that for all n, l ≥ 0,

C−1
β e−β(n+l) ≤ wi(n)

wi(l)
≤ Cβeβ(n+l).

This is all we need in the dominated convergence argument to bound �K of (27), and to
conclude (30), (31). Therefore, under the assumptions (a), (b) we conclude the statement of
Theorem 3.1 with

μK = P

(
·
∣∣∣∣

N∑

i=1

ηi = K

)
.

Example (Zero-range processes) Consider a general zero-range process on �N = N
{1,...,N}

with generator

LNf (η) =
∑

i,j

p(i, j)gi(ηi)
(
f (ηi,j ) − f (η)

)
, (34)

where p(i, j) are rates of an irreducible continuous-time random walk on {1, . . . ,N} and
where gi : N → [0,∞) with gi(n) = 0 if and only if n = 0. Moreover, we assume for the
moment that gi(n) → γi ∈ (0,∞) as n → ∞ for all i = 1, . . . ,N .

By irreducibility of p(i, j), up to multiplicative constants there exists a unique function
κ : {1, . . . ,N} → (0,∞) such that for all i,

N∑

i=1

(κjp(j, i) − κip(i, j)) = 0. (35)

Under these conditions it is well known [15] that the zero-range process has stationary prod-
uct measures with marginals

νi
φ(n) = 1

zi(φ)

φnκn
i∏n

k=1 gi(k)
, (36)

which are of the form (16) with

wi(n) = γ n
i∏n

k=1 gi(k)
and λi = κi

γi

.

So in order to apply the general result, we need

κN

γN

>
N−1
max
i=1

κi

γi

,
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and the subexponentiality condition on wi follows since

lim
n→∞

wi(n + 1)

wi(n)
= lim

n→∞
γi

gi(n + 1)
= 1.

Remark 3.1

1. The case γi = ∞ for some i 
= N can be included as well. In that case, zi(φ) < ∞ in (36)
for all φ > 0, in particular for φ = φc = 1/λN . Therefore the result of Theorem 3.1 still
holds.

2. If there are more sites i such that λi = λN , then (a) of Theorem 3.1 holds for all i where
λi < λN . Item (b) becomes that all but a finite amount of mass is concentrated on the sites
where λi = λN .

Note that we make no assumptions on the jump rates of the zero-range process except
a regular limiting behaviour, in particular there are no monotonicity assumptions. The lat-
ter have been in place in previous work on inhomogeneous zero-range condensation where
the gi are non-decreasing [6–9], which made it possible to make much stronger statements
including also the time evolution of the condensation. In that sense Theorem 3.1 is a gener-
alization of previous results regarding only the stationary distribution.

4 Condensation in Homogeneous Inclusion Processes

In this section we study condensation in spatially homogeneous systems. There are two nat-
ural situations where Theorem 2.1 leads to spatially homogeneous product measures νφ . If
the p(i, j) are symmetric, i.e. p(i, j) = p(j, i) for all i, j ∈ � then the reversibility condi-
tion (7) is fulfilled by taking a constant λi = 1 for all i ∈ � independent of the geometry of
the lattice. The same solution holds for translation invariant, asymmetric processes accord-
ing to condition (6), where

p(i, j) = q(j − i) for some q : � → [0,∞) with bounded support.

In the second case the lattice also has to be translation invariant, such as � = Z
d or a finite

subset with periodic boundary conditions. The measures νφ are then not reversible and the
system can support a non-zero stationary current of the form

J (ρ) = ρ

(
m

2
+ ρ

)∑

k∈�

kq(k).

4.1 Stationary Measures

In both cases discussed above the inclusion process has a family of homogeneous stationary
product measures with marginals

νi
φ(n) = 1

z(φ)
φn

	(m
2 + n)

n!	(m
2 )

, (37)

and the normalizing constant

z(φ) =
∞∑

n=0

φn
	(m

2 + n)

n!	(m
2 )

= (1 − φ)−m/2. (38)
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The measures are well defined for all positive φ < φc = 1, and the average number of parti-
cles per site is given by

ρm(φ) = φ∂φ log z(φ) = m

2

φ

1 − φ
. (39)

Inverting this relation φm(ρ) = ρ

m/2+ρ
allows us—with a slight abuse of notation—to index

the measures by the density,

ν(m)
ρ (n) = 1

z(φm(ρ))

(
ρ

m/2 + ρ

)n 	(m
2 + n)

n!	(m
2 )

. (40)

We also replace the superscript since the marginals are site-independent and we want to
stress the dependence on the parameter m. Since the density can take all values between 0
and ∞, we see that for fixed m > 0 the attraction between the particles is not strong enough
and the inclusion process does not exhibit condensation. However, if we increase the relative
strength of the attractive part in the generator (1) by taking m smaller and smaller at a fixed
density ρ, a condensation phenomenon occurs in the limit m → 0.

Theorem 4.1 As m → 0, we have for all ρ > 0

ν(m)
ρ (0) =

(
m

2ρ

)m/2(
1 + o(1)

) → 1 and

ν(m)
ρ (n) = m

2

(
m

2ρ

)m/2(
1 − m

2ρ

)n

nm/2−1
(
1 + o(1)

) → 0 (41)

for n ≥ 1, which implies

2

m
ν(m)

ρ (n) → 1

n
. (42)

Proof By direct computation we get that

z
(
φm(ρ)

) =
(

1 − ρ

m/2 + ρ

)−m/2

=
(

2ρ

m

)m/2(
1 + o(1)

) → 1 (43)

as m → 0, which directly implies the statement for ν(m)
ρ (0) = 1/z(φm(ρ)). For every fixed

n ≥ 1 we have
(

ρ

m/2 + ρ

)n

=
(

1 − m

2ρ

)n(
1 + o(1)

) → 1,

and using 	(x) ∼ 1
x

as x → 0 and (19) we obtain

	(m
2 + n)

n!	(m
2 )

= m

2
nm/2−1

(
1 + o(1)

) → 0,

which implies the second statement. The limit in (42) follows immediately from the asymp-
totic behaviour. �
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Fig. 1 (Color online) The scaled

marginal (2/m)ν
(m)
ρ for ρ = 1

and for several values of m (full
colored lines). The asymptotic
behaviour as given in (44) is
indicated by dotted lines

Therefore, for small diffusion rate m sites are either empty with very high probability,
or contain a large number of particles to match the fixed expected value ρ > 0. From Theo-
rem 4.1 we infer the following leading-order behaviour for small fixed m,

ν(m)
ρ (n) � m

2

{
n−1, 1 � n � 2ρ/m,

(1 − m
2ρ

)nnm/2−1, n � 2ρ/m,
(44)

where we have used
(

1 − m

2ρ

)n

�
(

1 − mn

2ρ

)
� 1 for n � 2ρ/m,

with the notation am � bm if am/bm → 1 as m → 0.
So the marginals show an approximate power law decay with exponent −1, until an

exponential cut-off sets in at the scale n ∼ 2ρ/m. This is illustrated in Fig. 1, where we see
that the asymptotic behaviour for large n fits very well also for smaller values of n. Despite
the small prefactor m/2 the density ρ > 0 is realized by the asymptotic heavy-tail behaviour,
and for each m > 0 the distribution is normalized due to the cut-off. Conditioned on a site
being non-empty, its distribution is given by ν(m)

ρ (n)/(1 − ν(m)
ρ (0)). Using that to leading

order

1 − ν(m)
ρ (0) � 1 −

(
m

2ρ

)m/2

� −m

2
logm,

we get with (44) for the conditional distributions

ν(m)
ρ (n)

1 − ν
(m)
ρ (0)

| logm| → 1

n
as m → 0. (45)

Like in (42), convergence is clearly non-uniform due to the cut-off, and the limit is not a
probability distribution. The interpretation of this result in terms of condensation depends
on the geometry and is different for finite and infinite lattices �, as discussed below.

4.2 Finite Systems

For finite lattices one can condition on the total number of particles in the system, defining
the canonical measures as in Sect. 2.2. The basic features of this approach can already be
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understood on a system with two sites and � = {1,2}. Let η1, η2 be two random variables
each distributed as ν(m)

ρ and consider their joint distribution μK
m conditioned on their sum

being equal to K ∈ N, i.e.

μK
m := νρ(·|η1 + η2 = K). (46)

For each K ∈ N and m > 0 the inclusion process is irreducible and μK
m is the unique station-

ary measure (cf. (13)). A first observation is that, as before, μK
m does in fact not depend on

ρ since due to cancellation

μK
m(η1 = n1, η2 = n2) = δn1+n2,Kν(m)

ρ (n1)ν
(m)
ρ (n2)

∑K

l=0 ν
(m)
ρ (l)ν

(m)
ρ (K − l)

= δn1+n2,K	(m/2 + n1)	(m/2 + n2)/(n1!n2!)∑K

l=0 	(m/2 + l)	(m/2 + K − l)/(l!(K − l)!) . (47)

Proposition 4.1 In the limit m → 0 we have for all K > 0

μK
m → 1

2
(δ(K,0) + δ(0,K)), (48)

i.e. all particles concentrate on one of the sites with equal probability.

Proof With η2 = K − η1 we have

μK
m(η1 = n,η2 = K − n) = 	(m

2 + n)	(m
2 + K − n)/(n!(K − n)!)

∑K

l=0 	(m
2 +l)	(m

2 +K−l)/(l!(K − l)!) . (49)

In the normalizing sum, as m → 0, the two terms for l = 0,K diverge like 	(m/2)/K ,
whereas the rest of the sum converges. Also the term in the numerator of μK

m(η1 = n) di-
verges like 	(m/2)/K if n = 0 or K and is finite otherwise. This implies the result. �

The interpretation is that as m → 0 aggregation dominates more and more over diffusion
and the particles tend to cluster on one of the lattice sites. The onset of condensation for
small m can be well illustrated in the limit of infinitely many particles.

Proposition 4.2 In the limit K → ∞ we have for all m > 0,

(
η1

K
,
η2

K

)
μK−→ (B,1 − B) in distribution, (50)

where B ∈ [0,1] is a continuous random variable with Beta(m
2 , m

2 ) distribution and PDF

fB(x) = 	(m/2)2

	(m)
xm/2−1(1 − x)m/2−1, x ∈ [0,1]. (51)

Proof Using (19) we get as K → ∞ and n/K → x ∈ [0,1] for the asymptotic form of the
numerator of (49)

Km−2xm/2−1(1 − x)m/2−1.
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Fig. 2 (Color online) The limit
distribution of η1/K as K → ∞,
given by the PDF of Beta(m

2 , m
2 )

(cf. (51)) for several values of m

For the denominator we get the integral

Km−2
∫ 1

0
ym/2−1(1 − y)m/2−1Kdy = Km−1 	(m)

	(m/2)2
,

using the representation B(r, s) = 	(r+s)

	(r)	(s)
for the Beta function. Thus we have that

KμK
m(η1 = n) → fB(x) converges to the PDF of the Beta(m

2 , m
2 ) distribution. �

We see that for m < 2 one site contains most of the particles while for m > 2 both sites
are likely to have around K/2 particles. The boundary case is m = 2, where the particles
are distributed uniformly among the two sites. This is a standard property of the symmetric
Beta distribution and is illustrated in Fig. 2. In the limit m → 0 we recover the degenerate
distribution (48).

Remark 4.1

(a) The result (48) can be immediately generalized to a finite set �N = {1, . . . ,N} of N ≥ 2
sites. In the limit m → 0 we have for all K ∈ N

μK
m → 1

N

N∑

i=1

δKei
, (52)

where ei = (. . . ,0,1,0, . . .) ∈ R
N is the standard unit vector in direction i.

(b) In the absence of diffusion for m = 0 the inclusion process has in general many absorb-
ing states which exhibit several isolated piles of particles. However, if the p(i, j) > 0 for
all i, j ∈ �N , then all absorbing states have exactly one pile containing all the particles.
The stationary measures are then all possible mixtures

N∑

i=1

αiδKei
with αi ∈ [0,1] and

∑

i

αi = 1. (53)

The limit result (52) leads only to the symmetric mixture, due to homogeneity and er-
godicity of the process for m > 0.
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Connection to Zero-Range Processes This result is slightly different from most previous
work on homogeneous zero-range condensation, which is mostly discussed in the limit of
infinitely many particles [12] or the thermodynamic limit [5, 10]. In this case, above a certain
density or particle number all sites have heavy-tailed distributions and condensation is a
consequence of large deviation properties of such random variables, as discussed in detail
in [13].

For the inclusion process we discuss the two extreme cases of a finite and an infinite
lattice (see next section), in the limit of a vanishing system parameter m → 0. The distribu-
tions of the occupation numbers always have exponential tails due to the cut-off (44), which
disappears in the limit in a non-uniform way. This is very similar to results in [16], where
a parameter was varied together with the system size in a joint limit. Analogous results are
phrased here in terms of the law of large numbers in the next section. Size-dependent system
parameters have also been studied in [17], which can lead to a cut-off similar to (44) and a
typical maximal cluster size also in zero-range processes.

As a further difference to zero-range condensation, there is no non-trivial critical density
ρc for the distribution of sites outside the maximum in the inclusion process. In fact, in the
limit m → 0 all N particles condense on a single site, which corresponds to ρc = 0 and
is an absorbing state for the dynamics with m = 0. This is related to results on zero-range
processes where the jump rates vanish in the limit of infinite occupation number, which has
been studied in [18] and more recently also in [19].

4.3 The Infinite-Volume Limit

For finite systems with a fixed number of particles the exponential part of the product mea-
sures that leads to a cut-off for large n (cf. (44)) did not play any role due to cancellation,
but will be of importance for infinite systems. For simplicity we consider stationary config-
urations of the symmetric inclusion process (SIP) on the infinite lattice � = N which leads
to a family of iid random variables η1, η2, . . . with distribution ν(m)

ρ (40). In this context the
condensation phenomenon for m → 0 can be formulated as a breakdown of the usual law of
large numbers.

For every m > 0 by definition E(ηi) = ρ and a usual law of large numbers holds, i.e.

SK := 1

K

K∑

i=1

ηi → ρ a.s. as K → ∞. (54)

On the other hand, ηi → 0 as m → 0 in distribution, and therefore we have for all K ∈ N

even for the unnormalized sums

K∑

i=1

ηi → 0 in distr. as m → 0.

This implies that the limiting behaviour of the empirical mean as K → ∞ and m → 0
depends on the order of limits. Thus we are interested in the joint limit Km → ∞ as m → 0
to identify the scale on which the law of large numbers changes behaviour. It turns out that
there are two interesting scales for Km.
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Proposition 4.3 Let κm = −1
m logm

. Then as m → 0 we have (in distr.)

�Km :=
Km∑

i=1

(1 − δ0,ηi
) −→

⎧
⎪⎨

⎪⎩

0, Km � κm,

Wδ, Km/κm → δ ∈ (0,∞),

∞, Km � κm,

(55)

where Wδ ∼ Poi(δ/2) is a Poisson random variable with mean δ/2. In the last case, �Km =
Km

2κm
(1 + o(1)).
Furthermore, on the larger scale 1/m � κm we have

SKm = 1

Km

Km∑

i=1

ηi −→

⎧
⎪⎨

⎪⎩

0, Km � 1/m,

Xγ , Kmm → γ ∈ (0,∞),

ρ, Km � 1/m,

(56)

where Xγ ∼ Gamma( γ

2 ,
2ρ

γ
) is a Gamma random variable with mean ρ.

Proof Denote the probability of ηi > 0 by

pm := 1 − ν(m)
ρ (0) = −m

2
logm

(
1 + o(1)

) = 1

2κm

(
1 + o(1)

)
, (57)

with asymptotics for m → 0. Then 1 − δ0,ηi
∼ Be(pm) are i.i.d. Bernoulli random variables

and therefore �Km ∼ Bi(Km,pm) is a Binomial with

P(�Km = n) =
(

Km

n

)
pn

m(1 − pm)Km−n,

counting the non-zero contributions to the sum SKm . pm → 0 as m → 0 with asymptotics
given in (57), and (55) is a well-known scaling result for Binomial r.v.s. Since the rescaled
random variables (1 − δ0,ηi

)/pm have mean 1, we have by the ususal law of large numbers

�Km

Kmpm

= 1

Km

Km∑

i=1

1

pm

(1 − δ0,ηi
) → 1.

This holds whenever Kmpm → ∞ or, equivalently, Km � κm since the sum will have infi-
nitely many non-zero contributions, and implies that �Km = Km

2κm
(1 + o(1)).

Analogous to (38) we get for the characteristic function of ηi

χη(t) = E
(
eitη1

) =
(

1 − φ

1 − eitφ

)m/2

.

For the rescaled sum SKm of Km independent r.v.s. we get

χS(t) = χη(t/Km)Km =
(

1 + 2ρ

m

(
1 − eit/Km

))−Kmm/2

,

where we used ρ = ρm(φ) = m
2

φ

1−φ
as in (39) to fix the density. As K → ∞ we have for all

complex z 
= 0

1 − z1/K = − 1

K
log z

(
1 + o(1)

)
. (58)
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This leads to the asymptotics

χS(t) =
(

1 − 2ρ

Kmm
it

)−Kmm/2(
1 + o(1)

)
,

since the correction terms from (58) are of order 1/Km � 1/(mKm). Therefore, as m → 0

χS(t) −→
{

1, mKm → 0,

eitρ, mKm → ∞,

which implies the weak law of large numbers in the two extreme cases of (56). In the inter-
mediate case mKm → γ we have

χS(t) →
(

1 − 2ρ

γ
it

)−γ /2

,

which is the characteristic function of a Gamma( γ

2 ,
2ρ

γ
) random variable. �

This result leads to the following interpretation for the limiting behaviour of SKm as
m → 0.

(a) Km � κm: There are no non-zero contributions to SKm and even the unnormalized sum
KmSKm → 0.

(b) Km ∼ κm: There is a finite (Poisson distributed) number of non-zero contributions to
SKm , but still SKm → 0. Since the law of these contributions becomes degenerate as
m → 0 (cf. (45)) we have no scaling law for KmSKm .

(c) κm � Km � 1/m: SKm has an infinite number of non-zero contributions, but still van-
ishes as m → 0.

(d) Km ∼ 1/m: SKm has a random limiting value (Gamma distributed) with mean ρ, and in-
finitely many non-zero contributions. This interpolates between the deterministic limits
0 and ρ, as shown in Fig. 3.

(e) Km � 1/m: The usual weak law of large numbers holds, i.e. SKm → ρ as m → 0.

If we interpret η1, η2, . . . as a configuration of the inclusion process, this result gives
detailed information about the structure of such configurations as m → 0. They are in direct
analogy to results in [16] on a particular zero-range process, which have just been formulated
in an inverted fashion corresponding to a parameter mK → 0 in the limit K → ∞.

Fig. 3 (Color online) The limit
distribution of SKm as m → 0
with mKm → γ , given by the

PDF of a Gamma( γ
2 ,

2ρ
γ )

random variable (56). In all cases
ρ = 1, and increasing γ (3 values
shown) interpolates between the
deterministic limits 0 and ρ
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5 The Brownian Energy Process

In [1] we introduced the Brownian energy process with parameter m > 0 (abbreviation
BEP(m)), and explained how, for integer values of m it is related to the Brownian mo-
mentum process with m momenta per site.

More precisely, the BEP(m) is an interacting diffusion process on �N = [0,∞)1,...,N

with generator

Lf (x) =
N−1∑

i=1

4xixi+1

(
∂

∂xi

− ∂

∂xi+1

)2

− 2m(xi − xi+1)

(
∂

∂xi

− ∂

∂xi+1

)
, (59)

where for a configuration of “energies” x ∈ �N , xi denotes the energy at site i ∈ {1, . . . ,N}.
In [20] we introduced an asymmetric version of the Brownian momentum process. This

model was later studied in [21]. Motivated by this asymmetric modification of the Brownian
momentum process, we now introduce an asymmetric version of BEP(m) via its generator

Lf (x) =
N−1∑

i=1

4xixi+1

(
∂

∂xi

− ∂

∂xi+1

)2

− 2m(xi − xi+1)

(
∂

∂xi

− ∂

∂xi+1

)

− 2Exixi+1

(
∂

∂xi

− ∂

∂xi+1

)
. (60)

We focus on a one-dimensional nearest-neighbour lattice as for the ASIP in Sect. 3, but the
definition could of course be generalized to arbitrary geometries. Obviously, the total energy
f (x) = ∑N

i=1 xi is conserved, and for E > 0 the process has a drift to the left, which can
most easily be seen from the stationary measures discussed in the next section.

5.1 Condensation in the ABEP

We first consider m = 2, E > 0, and two sites. This is the simplest case because the mar-
ginals of the stationary distribution are exponential, which makes explicit computations sim-
ple. The generalization to m > 0 and more sites is easy.

The generator, written in the variables (x1, x2) =: (u, v), then reads:

L = 4uv

(
∂

∂u
− ∂

∂v

)2

− 4(u − v)

(
∂

∂u
− ∂

∂v

)
+ 2Euv

(
∂

∂u
− ∂

∂v

)
.

The adjoint (in L2(R, dx)) is given by (the closure of the operator)

L∗ = 4uv

(
∂

∂u
− ∂

∂v

)2

− 4(u − v)

(
∂

∂u
− ∂

∂v

)
+ 2E(u − v) − 2Euv

(
∂

∂u
− ∂

∂v

)
.

As an ansatz for the density of the stationary distribution we put

f (u, v) = abe−aue−bv (61)

with a, b > 0. Plugging this in the equation for the stationary density L∗f = 0 gives

4uv(b − a)2 + 4(v − u)(b − a) + 2E(u − v) − 2Euv(b − a) = 0,
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which leads to

b = a + E

2
(62)

and

f (u, v) = a(a + E/2)e−aue−ave−Ev/2. (63)

In order to state our condensation result, denote by (UK ,VK) the pair (U,V ) with probabil-
ity density (63) conditioned on U +V = K . We then have the following result, which should
be thought of as the analogue of Theorem 3.1, but now in continuous state space setting.

Theorem 5.1

(a) As K → ∞, VK converges in distribution to a random variable with exponential distri-
bution with parameter E/2, i.e., with probability density (E/2)e−u(E/2).

(b) As K → ∞, UK/K → 1 almost surely.

Proof The proof is a direct computation. Put λ = a + E/2, λ′ = a, then λ > λ′, λ − λ′ =
E/2. First note that the distribution of U + V has probabily density λλ′

λ−λ′ (e−λ′x − e−λx).
Next, the conditional density of V given U + V = K is given by

λλ′(λ − λ′)e−λue−λ′(K−u)

λλ′(e−λ′K − e−λK)
= (λ − λ′)e−(λ−λ′)u

1 − e−(λ−λ′)K

which converges, as K → ∞ to (λ−λ′)e−(λ−λ′)u, implying statement (a) of the theorem. To
prove statement (b): choose 0 < δ < 1, then

P
(
U ≤ (1 − δ)K|U + V = K

) =
∫ (1−δ)K

0 λλ′(λ − λ′)e−xλ′
e−(K−x)λdx

λλ′(e−λ′K − e−λK)

= (λ − λ′)
∫ (1−δ)K

0 e−x(λ−λ′)dx

e(λ−λ′)K − 1
= e(λ−λ′)K(1−δ) − 1

e(λ−λ′)K − 1

= (
e−δ(λ−λ′))K 1 − e(λ′−λ)K

1 − e(λ′−λ)K
→ 0

as K → ∞. As in the proof of Theorem 3.1 the bound is summable in K if we choose
δ = 1/

√
K and UK/K ≤ 1 by definition, which implies almost sure convergence. �

To generalize the previous computation to the case of N sites and general parameter
m > 0, it is easy to check along the lines of the proof of Theorem 2.1 that the process
with generator (60) has a stationary measure which is a product of Gamma distributions
with identical shape parameter m and site-dependent location parameter. More precisely,
the PDF is given by

f (x1, . . . , xN ) =
N∏

i=1

a
m/2
i x

m/2−1
i e−aixi

	(m/2)
(64)

with

ai = a + (i − 1)E

2
(65)
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for i ∈ {1, . . . ,N}. After conditioning on the sum X1 + · · · + XN = K we find, again by
simple explicit computation, in the limit K → ∞ that X1/K converges to 1 almost surely,
and that for i = 2, . . . ,N , the law of Xi converges to a shifted Gamma distribution with
density

lim
K→∞

fXi |X1+···+XN =K(xi) = Cix
m
2 −1

i e− (i−1)Exi
2 , (66)

where Ci = ( i−1
2 e)

m
2 /	(m

2 ) is a normalization constant.
The interpretation of this result is the same as in the discrete case for the ASIP. Here

almost all energy concentrates on the lattice site with the heaviest tail in the stationary dis-
tribution.

5.2 Generalizations

Exactly as in the case of condensation in the ASIP (Sect. 3.2), we can formulate a more
general condensation result for independent random variables X1, . . . ,XN with values in
[0,∞) and marginal densities

fXi
(x) = 1

zi(μ)
e−λixwi(x)eμx, (67)

where 0 < λ1 < minN
j=2 λj . Here a notation with so-called chemical potentials μ ∈ R is

more convenient than the fugacity variable φ = eμ used for the SIP, and values −∞ < μ <

μc := λ1 are possible. The normalization

zi(μ) =
∫ ∞

0
e−λixwi(x)eμxdx

is finite for μ < μc , and for indices i < N also zi(μc) < ∞. The wi : [0,∞) → [0,∞) are
subexponential in the sense that for all y ∈ R

lim
x→∞

w(x + y)

w(x)
= 1. (68)

The proof of this result follows the same steps as the proof of the analogous discrete result,
except that we have to replace sums by integrals. As this is a straightforward extension, we
leave the proof to the reader.

Theorem 5.2 Denote by (Y K
1 , . . . , Y K

N ) the random variables (X1, . . . ,XN ) conditioned on
X1 + · · · + XN = K . Then under the above conditions (67) and (68) we have as K → ∞:

(a) Condensation on the site with the heaviest tail, i.e.

Y K
1

K
→ 1 almost surely.

(b) Convergence to the critical distribution with μ = μc for other sites, i.e.

(Y K
2 , . . . , Y K

N ) → (Y2, . . . , YN ) in distribution,

where the Yi are independent with densities

fYi
(y) = 1

zi(μc)
e−λiyeμcywi(y).
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Remark 5.1 In the limit m → 0, also for spatially homogeneous Brownian energy processes
there will be a condensation phenomenon as m → 0 completely analogous to the results
in Sect. 4 for the inclusion process. Indeed, for a fixed average energy ρ > 0 (taking ai =
m/(2ρ) in (64)), the marginal densities of the stationary product measure are

fXi
(xi) = 1

	(m/2)

(
m

2ρ

)m/2

x
m/2−1
i e−mxi/(2ρ).

Analogous to Theorem 4.1 one can easily show that this implies

P(Xi < δ) =
∫ δ

0
fXi

(xi)dxi → 1

for all δ > 0 as m → 0, so that Xi → 0 in probability. Further, all statements following from
Theorem 4.1 in Sect. 4 can be derived in an appropriate version for continuous variables.

6 Conclusion

We have studied condensation phenomena for random variables with exponential tails,
which arise in the inclusion process and related particle systems. In general, condensation
can be due to the presence of subexponential tails resulting from a strong particle attraction,
which has been studied in detail in the context of zero-range processes [4, 10–14]. For ex-
ponential tails considered in this work, the attraction between particles alone is not strong
enough and a second ingredient is needed for condensation.

One possibility are spatial inhomogeneities, which will lead to a non-zero fraction of the
particles to cluster on the sites with the heaviest tails in the limit of infinitely many particles.
Our result on this in Sect. 3 applies in great generality, extending also previous related work
on zero-range process [6–9]. For homogeneous systems, varying a system parameter can
induce condensation for fixed total particle density as studied in Sect. 4 for the inclusion
process. Previous results in that direction include [16, 17] for zero-range processes and also
[22] for a continuous mass model. The Brownian energy process studied in Sect. 5 provides
an interesting example where both versions of condensation can be studied in a system
with continuous state space and dynamics. Condensation for continuous variables has been
studied before in the random average process [22] and mass transport models [23, 24], all
of which use a discontinuous redistribution of mass (or energy) following a jump process.

To summarize, inclusion processes and related systems such as the BEP provide a rich
class of models that exhibit condensation phenomena of several kinds in the presence of
exponential tails, the description of which applies also in more general situations. For in-
homogeneous models we have focused on finite systems, and a further question would be
to consider thermodynamic limits where, for example, inhomogeneity is due to random dis-
order as studied in [6–9] for zero-range processes. In the homogeneous case it would be
of great interest to exploit duality in the SIP and BEP to get results on the dynamics of
condensation.
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