
1. Introduction
Water isotopologues, namely water molecules that contain an isotope of oxygen or hydrogen, are natural 
tracers that characterize the Earth's water cycle in the present and past days (Gat, 1996), which is the reason 
why their observation and modeling has been raising the interest of the scientific community for many dec-
ades (e.g., Dansgaard, 1954; Joussaume et al., 1984; Steen-Larsen et al., 2017). In this work, the focus is on 
modeling the isotopic fractionation processes in the coupled land-atmosphere regional water cycle. This is 
developed and achieved with the coupled atmospheric-hydrological regional modeling system WRF-Hydro 
(Gochis et al., 2018). The objective is to evaluate the benefit of using WRF-Hydro for representing water 
isotopologues.

The most abundant water molecule on Earth is 1 16
2H OE  , with an average abundance of 99.77%. The re-

maining water molecules mainly consist of the stable isotopologues 1 18
2H OE  and 1 2 16H H OE  , with respective 
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is simulated for 2003–2012, using ERA5 reanalyses as driving data. The boundary condition of isotopic 
variables is prescribed with mean values from a 10-year simulation with the Community Earth System 
Model Version 1. WRF-Hydro-iso realistically reproduces the climatological variations of the isotopic 
concentrations  18OPE  and  2 HPE  from the Global Network of Isotopes in Precipitation. In a sensitivity 
analysis, it is found that land surface evaporation fractionation increases the isotopic concentrations in 
the rootzone soil moisture and slightly decreases the isotopic concentrations in precipitation. Lateral 
terrestrial water flow minorly affects these isotopic concentrations through changes in evaporation-
transpiration partitioning.

Plain Language Summary Global climate models are limited by their coarse resolution, 
which may reduce their meaningfulness. This problem can be circumvented for a specific region 
with regional climate models, which provide, for example, a detailed description of clouds and land-
atmosphere interactions. But it remains a question: How realistic is the model representation of water 
transport through the different compartments of the hydrological cycle, the atmosphere, the land, and the 
sea? A unique way to assess modeled water transport is the comparison to natural tracers, such as water 
isotopologues, which requires to include the fate of these water isotopologues in the model. This is what 
we pursue here with the newly developed WRF-Hydro-iso model. A model description and a proof of 
concept are provided for two climate zones, using the Global Network of Isotopes in Precipitation data set 
as reference.
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average abundances of 0.20% and 0.03% (Dansgaard, 1964). Local departures from these average abundances 
are related to temperature-dependent isotopic fractionation processes occurring during water phase chang-
es involving the gaseous phase (Majoube, 1971a, 1971b; Merlivat & Nief, 1967), the depletion of 1 18

2H OE  and 
1 2 16H H OE  in the gaseous phase being enhanced with decreasing temperature. Such isotopic variations are 
usually evaluated as δ-values of isotopic concentration ratios  18OE  and  2 HE  :
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where the brackets indicate a concentration and subscript VSMOW stands for the Vienna Standard Mean 
Ocean Water. The δ-values of isotopic concentration ratios for precipitation, namely  18OPE  and  2 HPE  , have 
been measured worldwide since 1961 within the Global Network of Isotopes in Precipitation (GNIP) of 
the International Atomic Energy Agency and the World Meteorology Organization (IAEA/WMO, 2020). 
 18OPE  and  2 HPE  mostly decrease with the temperature, leading to the so-called “latitude effect” and “al-
titude effect,” but also with the distance to the coast, leading to the so-called “continental effect” (e.g., 
Dansgaard, 1964). In tropical regions, the “temperature effect” is replaced by a weaker relation between 
precipitation isotopic concentrations and the amount of precipitation, the so-called “amount effect” (e.g., 
Dansgaard, 1964).

The dependency of  18OE  and  2 HE  to temperature provides a unique way to evaluate past climate condi-
tions using paleo records (e.g., Dansgaard et al., 1969). However, the accuracy of the climatic interpreta-
tion of paleo records can be hampered by a lack of knowledge of the processes affecting water isotopo-
logues through the Earth's water cycle, such as during sub-cloud rain droplet evaporation (e.g., Friedman 
et al., 1962) and land surface evaporation (e.g., Jacob & Sonntag, 1991).

Global models have been enhanced with the description of  18OE  and  2 HE  to test their ability in reproducing 
isotopic climatic signals from the past and present days (e.g., Eckstein et al., 2018; Haese et al., 2013; Hoff-
mann et al., 1998; Joussaume et al., 1984; Nusbaumer et al., 2017; Risi, et al., 2010, 2016; Werner et al., 2016; 
Wong et al., 2017), and also to identify systematic model biases (e.g., Risi et al., 2012). Global models are 
limited by their relatively coarse resolutions and crude representation of clouds, which largely impact the 
simulation of isotopic concentrations (e.g., Nusbaumer et al., 2017). A more accurate matching between 
modeled and observed  18OE  and  2 HE  can be reached with a finer resolution of cloud processes using re-
gional models, as shown, for example, by Moore et al. (2016) with the Weather Research and Forecasting 
model (WRF, Skamarock & Klemp, 2008) and by Pfahl et al. (2012) and Aemisegger et al. (2015) with the 
Consortium for Small-scale Modeling (COSMO, Steppeler et al., 2003). In a sensitivity analysis with COS-
MOiso (Pfahl et al., 2012) for Europe, Christner et al. (2018) showed that  2 HPE  during summer is mainly 
related to the degree of rainout of air masses, with a smaller influence from rain droplet evaporation and 
land surface evaporation.

Recent developments in regional modeling have confirmed that coupling a sophisticated terrestrial hydrol-
ogy model with an atmospheric model modifies the simulated hydrological cycle (e.g., Anyah et al., 2008; 
Larsen et al., 2016; Maxwell et al., 2011; Sulis et al., 2018; Wagner et al., 2016). Using the hydrologically 
enhanced WRF model referred to as WRF-Hydro (Gochis et al., 2018), it has been shown that the consid-
eration of overland and subsurface water flow generally increases the soil water storage, land surface evap-
oration, and precipitation (e.g., Arnault et al., 2021, 2018; Arnault, Knoche, et al., 2016; Arnault, Wagner, 
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et al., 2016; Fersch et al., 2020; Rummler et al., 2019; Zhang et al., 2019). The question arises whether lateral 
terrestrial water flow also affects the concentration of water isotopologues through the Earth's water cycle. 
This is especially relevant for the interpretation of paleo records, which have potentially been altered by soil 
water transport (e.g., Konecky et al., 2020).

WRF-Hydro has recently been enhanced with a joint soil-vegetation-atmospheric water tagging proce-
dure (WRF-Hydro-tag, Arnault et al., 2019), which allows to trace precipitation water from a source region 
through the land water compartments and in the atmosphere for the evaporated part. Enhancing WRF-Hy-
dro-tag with isotopic fractionation processes during water phase changes allows now to also describe the 
fate of water isotopologues in the simulated land-atmosphere system.

This study presents the newly developed WRF-Hydro-iso modeling system, that is, a version of WRF-Hy-
dro-tag adapted to the description of water isotopologues. The aim is to assess the effect of lateral terrestrial 
water flow on modeled isotopic concentrations and evaluate the potential of WRF-Hydro-iso to improve 
the interpretation of paleo records. For the case-study application, we choose to simulate and compare two 
present-day climate cases: the first one for Europe where many GNIP station observations are available 
(IAEA/WMO, 2020) and the second one for Southern Africa. The second application case is chosen in order 
to further investigate the potential alteration of Southern African paleo records data by soil processes (e.g., 
Herrmann et al., 2017), and better understand past- and present-day climate variations in Southern Africa 
(e.g., Weldeab et al., 2013) with the help of water isotopologue modeling. Section 2 of the paper describes 
the implementation of WRF-Hydro-iso. The application case studies are presented in Section 3, and the cli-
mate and water isotopologue modeling results are detailed in Sections 4 and 5. A summary and perspectives 
are finally given in Section 6.

2. Water Isotopologue Modeling Procedure
2.1. About WRF-Hydro-Tag

WRF-Hydro-tag is a version of the coupled atmospheric-hydrological model WRF-Hydro from Gochis 
et al. (2018), which has been enhanced with a tagged water cycle (Arnault et al., 2019). This tagged water 
cycle is initialized to zero and a source of tagged water is defined for a given area and a given time period. 
During the model run, the fate of this water source is tracked using the tagged water cycle through the mod-
eled water compartments that are the atmosphere, snow cover, vegetation canopy, and soil.

As in Arnault et al. (2021), the version of WRF-Hydro-tag considered in this study is based on the WRF 
version 4.0 and the hydrological module of WRF-Hydro version 5.0, and the selected physics parameteriza-
tion options are the six-class WSM6 microphysics scheme of Hong and Lim (2006), the ACM2 atmospheric 
turbulence scheme of Pleim (2007), and the Noah-MP community Noah land surface model (LSM) with 
multi-parameterization options of Niu et al. (2011). WRF-Hydro-tag can be run with subsurface, overland, 
and channel flow routing, as well as a bucket model to estimate baseflow (Gochis et al., 2018). If no routing 
option is activated, the infiltration excess from Noah-MP represents the surface runoff. If a routing option 
is activated, the infiltration excess becomes a source of surface ponded water, and the routing of surface 
ponded water and liquid soil moisture is calculated on a subgrid coupled with the LSM. In this case, surface 
runoff happens when the surface ponded water reaches a river grid cell. The channel routing and bucket 
model are used to estimate river streamflow, although the water, which has entered a river does not interact 
with the LSM in this model version. In the following, channel routing and bucket model are not considered, 
and the focus is on the spatial redistribution of terrestrial water through overland and subsurface flow.

With this configuration, the water variables, which are duplicated for the description of the tagged water 
cycle are, (a) for the atmospheric part: the mixing ratios of water vapor, cloud water, cloud ice, rain water, 
snow, and graupel, and (b) for the terrestrial part: the snowpack equivalent water heights as solid and liquid 
phases, liquid and frozen canopy water heights, surface ponded water height, and liquid and frozen soil 
moisture volumetric ratios in a four-layer soil column of 2 m depth. The fate of the tagged water variables 
is resolved with additionally implemented tagged prognostic equations, as detailed by Arnault, Knoche, 
et al. (2016) and Arnault, Wagner, et al. (2016) for the atmospheric part, and by Arnault et al. (2019) for the 
terrestrial part.
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2.2. Adaptation of WRF-Hydro-Tag to WRF-Hydro-Iso

WRF-Hydro-iso is developed from WRF-Hydro-tag, by considering that the tagged water cycle represents 
the cycle of a water isotopologue. Following previous water isotopologue modeling developments (e.g., Nus-
baumer et al., 2017; Pfahl et al., 2012), the original water variables in the model are assumed to represent 
the fate of the most abundant water molecule 1 16

2H OE  . Two additional tagged water cycles are implemented 
in WRF-Hydro-iso, the first one for 1 18

2H OE  using tagged water variables labeled as iso1 variables, and the 
second one for 1 2 16H H OE  using tagged water variable labeled as iso2 variables.

A technical difference between WRF-Hydro-tag and WRF-Hydro-iso is that there is no source of traced wa-
ter to be defined for a specific area and period in WRF-Hydro-iso, but instead, the initial and lateral bound-
ary conditions of the isotopic water variables need to be prescribed from additional data source. Moreo-
ver, the iso1 variables implemented in WRF-Hydro-iso are normalized by the VSMOW concentration ratio 
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Accordingly, the δ-values of isotopic concentration ratios (1) and (2) can be post processed from WRF-Hy-
dro-iso outputs as:
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where E M stands for a water variable, and isoE M  stands for the corresponding isotopic variable. In the follow-
ing,  18OME  and  2 HME  are referred to as  iso

ME  .

2.3. Isotopic Fractionation Processes in WRF-Hydro-Iso

A realistic description of the fate of water isotopologues in WRF-Hydro-iso necessitates the considera-
tion of isotopic fractionation processes during water phase changes involving the gaseous phase (Ma-
joube, 1971a, 1971b; Merlivat & Nief, 1967). Water isotopologue models usually include the isotopic frac-
tionation occurring during sea surface evaporation and cloud formation, as originally documented by 
Merlivat and Jouzel (1979). A distinction between isotopic equilibrium fractionation occurring during the 
condensation of cloud droplets and instantaneous extraction fractionation during the generation of ice 
nuclei, is generally accounted for (e.g., Blossey et al., 2010; Hoffmann et al., 1998; Nusbaumer et al., 2017; 
Pfahl et al., 2012). The consideration of the isotopic fractionation occurring during rain droplet evaporation 
is also important to better match observed isotopic concentrations, as shown, for example, by Christner 
et al. (2018), Field et al. (2010), and Risi et al. (2008). Isotopic fractionation occurring during land surface 
evaporation recently raised particular interest (e.g., Christner et al., 2018; Haese et al., 2013), as this may 
affect precipitation isotopic concentrations in regions characterized by large moisture recycling (Aemiseg-
ger et al., 2014).

The following subsections detail how these isotopic fractionation processes are implemented in WRF-Hy-
dro-iso. It is highlighted that the model code lines involving fractionation calculations are featured with 
switches, which allows to turn on or off each specific fractionation process and facilitate a sensitivity anal-
ysis as in Christner et al. (2018).

2.4. Isotopic Fractionation With Sea Surface Evaporation

Assuming that the near-surface water vapor is in isotopic equilibrium with sea surface water, as in Merlivat 
and Jouzel (1979), the following bulk aerodynamic formula is applied for the computation of the isotopic 
evaporation flux at the sea surface iso

seaE E  in WRF-Hydro-iso:
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where kE  is the kinetic fractionation factor, seaE C  is the exchange coefficient at sea surface, iso
satE q  is the saturated 

mixing ratio of the isotopic water vapor at sea surface temperature seaE T  , and isoE q  is the mixing ratio of the 
isotopic water vapor at the first atmospheric level above the surface. iso

satE q  is defined as the saturated mixing 
ratio of water vapor satE q  weighted by the ratio between the isotopic ratio of sea surface water iso

seaE r  and the 
isotopic equilibrium fractionation factor for vapor-to-liquid water phase change  iso

/v lE  .

Concerning isotopic parameters in Equation 5, kE  is calculated as a function of wind velocity following the 
Merlivat and Jouzel's (1979) approach, as detailed in Nusbaumer et al. (2017); iso

seaE r  is set to the literature val-
ues mentioned, for example, in Hoffmann et al. (1998), that are 1.0005 for 1 18

2H OE  and 1.004 for 1 2 16H H OE  ; 
and the  iso

/v lE  coefficients for 1 18
2H OE  and 1 2 16H H OE  are obtained with the empirical functions of temperature 

from Majoube (1971b).

2.5. Isotopic Fractionation With Land Surface Evaporation

In Noah-MP (Niu et al., 2011), the land surface evaporation is divided into direct evaporation dirE E  from bare 
ground and vegetated ground, canopy evaporation canE E  from intercepted water at the canopy of the vegeta-
tion, and transpiration trE E  from plants and trees. Direct and canopy evaporation are usually assumed to frac-
tionate water isotopologues, but not transpiration (e.g., Gat, 1996). Isotopic fractionation occurring during 
direct and canopy evaporation can be assessed with a formula similar to that for sea surface evaporation in 
Equation 5, as done, for example, by Haese et al. (2013).

In the case of Noah-MP with WRF-Hydro-iso, the following bulk aerodynamic formulas are applied for the 
computation of the isotopic direct and canopy evaporation fluxes iso

dirE E  and iso
canE E  :
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where kE  is the above-mentioned kinetic fractionation factor from Merlivat and Jouzel (1979); ,g bE C  , ,g vE C  , and 
vE C  are the exchange coefficients at bare ground, vegetated ground, and in the canopy vegetation, respective-

ly; iso
satE e  is the saturated pressure of isotopic water vapor computed at bare ground temperature ,g bE T  , vegetated 

ground temperature ,g vE T  , and vegetation canopy temperature vE T  ; gE h  is the relative humidity of the air in the 
surface soil pore space; iso

airE e  and iso
acE e  are the isotopic water vapor pressures at the first atmospheric level and 

in the canopy air, respectively. In Equations 6 and 7, iso
satE e  is expressed as a function of the saturated pressure 

of water vapor satE q  , the isotopic ratio of either liquid soil moisture in the first soil layer 
iso
1E r  or liquid canopy 

water iso
Wcan,liqE r  , and the above-mentioned isotopic equilibrium fractionation factor  iso

/v lE  .

In the following, we introduce the variable evE E  computed as the sum of dirE E  and canE E  , which evaluates the 
fractionating land surface evaporation. The isotopic composition of evE E  is obtained with iso

evE E  , computed as 
the sum of iso

dirE E  and iso
canE E  . The nonfractionating component of land surface evaporation is obtained with the 
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transpiration trE E  . Finally, the sum of evE E  and trE E  constitutes the land surface evaporation E E , and the sum of 
iso
evE E  and iso

trE E  gives the isotopic land surface evaporation isoE E  .

2.6. Isotopic Fractionation With Cloud Droplet Condensation/Evaporation

Isotopic fractionation occurring during cloud droplet condensation/evaporation is usually considered to 
be in isotopic equilibrium, since condensed cloud droplets remain suspended in the air and stay in contact 
with the water vapor they originate from (e.g., Hoffmann et al., 1998). The isotopic equilibrium occurring 
between mixing ratios of water vapor E q , isotopic water vapor isoE q  , cloud water cloudE q  , and isotopic cloud water 

iso
cloudE q  is characterized as:

   


   /

iso iso iso iso
isocloud cond cond
v l

cloud cond cond

q q q q
q q q q

 (8)

where  condE q  and  iso
condE q  are the amounts of condensation of cloud water and of isotopic cloud water within 

a model time step, and  iso
/v lE  is the above-mentioned isotopic equilibrium fractionation factor. It is noted that 

Equation 8 is also valid for negative  condE q  , that is, when cloud droplets evaporate.

In the WSM6 microphysics scheme, the water variables are advanced each time step using water phase 
change amounts such as  condE q  . In WRF-Hydro-iso, it is chosen to advance the isotopic water variables in 
a similar manner as the water variables, which requires that the formulation of  iso

condE q  is given explicitly. 
Equation 8 yields the following expression for  iso

condE q  :
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The advantage of Equation 9 is that it allows a straightforward implementation of isotopic water phase 
changes in the WSM6 microphysics scheme of WRF-Hydro-iso. Furthermore, Equation  9 ensures that 
 condE q  and  iso

condE q  are equal when  iso
/v lE  is set to 1 and the isotopic water variables are equal to their corre-

sponding water variables, which is a useful property for testing the conservation of water isotopologues in 
WRF-Hydro-iso.

2.7. Isotopic Fractionation With Ice Nuclei Generation and Deposition

Isotopic fractionation occurring during ice nuclei generation as well as during ice, snow, or graupel depo-
sition is usually considered as instantaneous extraction, which means that neither ice nor snow or graupel 
stay in contact with the water vapor it originates from (e.g., Hoffmann et al., 1998). Referring to ice, snow, or 
graupel as solid hydrometeors, the relationship between mixing ratios of water vapor E q , isotopic water vapor 

isoE q  , solid hydrometeors solidE q  , and isotopic solid hydrometeors iso
solidE q  during an instantaneous extraction is 

expressed as:
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where  gen/depE q  and  iso
gen/depE q  are the amounts of generation/deposition of solid hydrometeors and of isotopic 

solid hydrometeors within a model time step, and  iso
kiE  is the isotopic fractionation factor including a kinetic 

effect caused by supersaturation during deposition (Jouzel & Merlivat, 1984). Following Jouzel and Merli-
vat (1984),  iso

kiE  is calculated as a function of the supersaturation ratio E S , the relative difference in isotopic 
molecular diffusivity DE  defined in Merlivat and Jouzel (1979), and the isotopic equilibrium fractionation 
factor associated with vapor-to-solid water phase change  iso

/v sE  , empirically obtained by Majoube (1971a) for 
1 18

2H OE  and by Merlivat and Nief (1967) for 1 2 16H H OE  . It is noted that Equation 10 is not valid when  gen/depE q  
is negative, as isotopic fractionation is generally assumed not to occur during the sublimation of solid hy-
drometeors (e.g., Pfahl et al., 2012).

From Equation 10, the following expression for  iso
gen/depE q  is derived:
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This formulation has the same advantages as Equation 9, which are identical  gen/depE q  and  iso
gen/depE q  when  iso

kiE  
is set to 1 and the isotopic water variables are equal to their corresponding water variables, and the fact that 
it allows implementing the isotopic water phase changes in a similar manner as the water phase changes in 
the WSM6 microphysics scheme of WRF-Hydro-iso.

2.8. Isotopic Fractionation With Rain Droplet Evaporation

Isotopic fractionation occurring during rain droplet evaporation is implemented following the innovative 
method of Nusbaumer et al. (2017). This method assumes that only a fraction of the evaporated rain water 
is in isotopic equilibrium such as that described by Equation 9, and that this equilibrated fraction is deter-
mined as a function of raindrop fall velocity. The remaining fraction of evaporated rain water is assumed to 
evaporate without isotopic fractionation. The detailed set of equations to compute this isotopic fractionation 
process can be found in Nusbaumer et al. (2017).

3. Application
3.1. Driving Data

The selected data set of 1 18
2H OE  and 1 2 16H H OE  to drive WRF-Hydro-iso is obtained with the isotope-ena-

bled version of the National Center for Atmospheric Research's Community Earth System Model Version 1 
(iCESM1, Brady et al., 2019), which describes the fate of 1 18

2H OE  and 1 2 16H H OE  within the isotope-enabled 
Community Atmosphere Model Version 5 (iCAM5, Nusbaumer et al., 2017) and the isotope-enabled Com-
munity Land Model Version 4 (iCLM4, Wong et al., 2017). For this study, iCESM1 has been run for a 10-
year period using the so-called FiC5 compset, which is the present-day iCAM/iCLM default run setup with 
prescribed sea-surface temperatures, isotopic ratio of sea surface water, and sea-ice extent (e.g., Nusbaumer 
et al., 2017), using a resolution of 0.9° in latitude and 1.25° in longitude, and 30 vertical levels up to 3 hPa.

The generated iCESM1 data set contains atmospheric and land surface variables at a six-hourly interval. Of 
particular interest are the iCESM1 isotopic water variables such as the atmospheric mixing ratios of isotopic 
water vapor, isotopic snow cover depth, and isotopic soil moisture, each of these isotopic water variables 
being normalized by the VSMOW concentration ratio as in WRF-Hydro-iso. The iCESM1 atmospheric vari-
ables have been saved on the 27 pressure levels of the ERA5 reanalyses (Hersbach et al., 2020), ranging from 
1,000 hPa at the bottom to 1 hPa at the top.

In order to reduce the impact of potential climate biases in iCESM1 and to improve the resolution of the 
driving data set, it is chosen not to directly drive WRF-Hydro-iso with the iCESM1 data set, but instead to 
set the initial and lateral boundary conditions of the usual land-atmospheric variables in WRF-Hydro-iso 
with the ERA5 reanalyses. The ERA5 reanalyses, which are provided at a six-hour interval on a regular lati-
tude-longitude grid with a resolution of 0.25° × 0.25°, allow to set the initial and lateral boundary condition 
of atmospheric-wind, temperature, pressure, and water vapor, and to set the initial condition of the snow 
cover height, soil moisture, and soil temperature.

The iCESM1 data set is used to derive climatological monthly δ-values of isotopic concentrations for the at-
mospheric water vapor, snow cover height, and soil moisture. The monthly iCESM1 climatological isotopic 
δ-values are combined with the six hourly ERA5 variables in order to generate a hybrid iCESM1/ERA5 data 
set of isotopic atmospheric water vapor, isotopic snow cover height, and isotopic soil moisture, which is suit-
able for setting the initial and lateral boundary conditions of the isotopic water variables in WRF-Hydro-iso.

3.2. Model Setup

The same WRF-Hydro-iso settings are used for the simulations for Europe and Southern Africa. An outer 
domain with a 10 km grid-spacing, covering an area of 3,600 × 5,000 km, is employed to downscale the 
hybrid iCESM1/ERA5 driving data. An inner domain with a 5 km grid-spacing and covering an area of 
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1,800 × 2,500 km is nested within this outer domain using a one-way nesting approach, as illustrated in 
Figure 1. The equations of motion are resolved with a time step of 50 s for the outer domain and 25 s for the 
inner domain, for a time period of 12 years extending from 2001 to 2012. The first 2 years are considered as 
model spin-up period for the terrestrial variables of the model, so that only the last 10 years are retained for 
the analysis. Model outputs are saved at a daily interval.

The same set of physics schemes is used for both domains, including the long and short-wave radiative 
fluxes schemes of Mlawer et al. (1997) and Dudhia (1989), the WSM6 microphysics scheme, the ACM2 at-
mospheric turbulence scheme, and the Noah-MP LSM. The choice of WSM6, ACM2, Noah-MP, and waiving 
of cumulus parameterization is a constraint of WRF-Hydro-iso in its current version. It is noted that this 
physics setup with a grid-spacing of 5 km proved to give reasonable results for summer precipitation in 
Europe and West Africa (Arnault et al., 2021).

The aim of the outer domain is to set the hybrid iCESM1/ERA5 lateral boundary forcing far from the study 
region, with the constraint to use the above-detailed WRF-Hydro-iso physics setup in order to correctly pre-
scribe the lateral boundary condition of the inner domain's isotopic water variables. The reason for choos-
ing a grid-spacing of 10 km for the outer domain is that it also gives reasonable results (not shown). In the 
following, all presented model results refer to the inner domain.

In WRF-Hydro-iso, the inner domain can be coupled with a subgrid to compute overland and subsurface 
water flow (Gochis et al., 2018). For both Europe and Southern Africa, the subgrid is generated with the 
WRF-Hydro Pre-processing Tool and using the digital elevation data from the hydrological data and maps 
based on Shuttle Elevation Derivatives at Multiple Scales (HydroSHEDS) data base (Lehner et al., 2008), 
with a 500 m grid spacing and a minimal number of pixels to define a stream set to 4. The locations of the 
main river channels obtained with this method are displayed in Figure 1. In case lateral terrestrial water 
flow is considered in the WRF-Hydro-iso setup, the surface ponded water and liquid soil moisture variables 

Figure 1. (a and b) Terrain elevation of the simulations' outer domain (a) and inner domain (b) for Europe, given in meters above sea level. The solid black 
lines delineate the political boundaries and the solid blue lines in (b) indicate the river channels with Strahler stream order equal to or above 6. (c and d) As in 
(a and b), except for Southern Africa.
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from the inner domain grid are disaggregated to the finer subgrid, routed 
at the surface and in the subsurface, and aggregated back to the inner 
domain grid at each time step.

3.3. Observational Data Sets

For assessing the realism of the simulated climate, station-based gridded 
data sets of land surface evaporation, precipitation, and temperature are 
employed. For the case of Europe, we use the FLUXNET Model Tree En-
semble (MTE, Jung et al., 2009, 2010) global data set of monthly sums of 
land surface evaporation at a spatial resolution of 0.5°, and the European 

Climate Assessment & Data set project (EOBS, Haylock et al., 2008) data set of daily precipitation sums and 
daily averaged temperature at a spatial resolution of 0.25°. For the case of Southern Africa, we also use the 
MTE land surface evaporation, as well as the climate hazards infrared precipitation with stations (Funk 
et al., 2015) data set of daily precipitation sums available within the latitudinal band between 50°S and 50°N 
at a spatial resolution of 0.05°, and the Climate Research Unit (CRU, Harris et al., 2014) global data set of 
monthly averaged temperature at a spatial resolution of 0.5°.

The realism of the simulated isotopic concentrations is assessed with the GNIP data set of precipitation and 
precipitation isotopic concentrations  18OPE  and  2 HPE  (IAEA/WMO, 2020). GNIP stations observations are 
monthly average. These monthly values are used to derive climatological values of  18OPE  and  2 HPE  for the 
entire period of observation at each station, which are compared to the simulated isotopic concentrations 
in precipitation at the nearest grid point. A list of the stations considered for Europe and Southern Africa 
is detailed in Tables 2 and 3. It is noted that the selected stations in Tables 2 and 3 have an altitude close to 
that in the model, with a difference smaller than ±500 m, to ensure a fair comparison between modeled and 
observed isotopic concentrations.

3.4. Sensitivity Analysis Strategy

In order to evaluate the benefit of using a coupled atmospheric-hydrological modeling system for repre-
senting water isotopologues, we compare two effects on isotopic concentrations, namely the effect of lateral 
terrestrial water flow and the effect of land surface evaporation fractionation. This sensitivity analysis is 
achieved by running the model three times each for Europe and for Southern Africa, using the following 
setups as summarized in Table 1: (sim1) Atmospheric fractionation processes, (sim2) Atmospheric fraction-
ation processes + Land surface evaporation fractionation processes, and (sim3) Atmospheric fractionation 
processes + Land surface evaporation fractionation processes + Lateral terrestrial water flow.

It is noted that sim1 and sim2 are identical in terms of land-atmospheric variables, with differences only in 
isotopic concentrations. Sim3, which includes lateral terrestrial water flow, provides a different realization 
of the land-atmosphere system. It is assumed that the study period is long enough to mostly smooth random 
fluctuations in the model, so that the study period-averaged differences between sim3 and the other simu-
lation results are mainly due to the consideration of lateral terrestrial water flow.

The comparison between simulation results from sim1 and sim2 allows to quantify the contribution of land 
surface evaporation fractionation on any model variable E X with:

     
2 1

Efrac
X sim sim

X X (12)

Similarly, the comparison between simulation results from sim2 and sim3 allows to quantify the contribu-
tion of lateral terrestrial water flow with:

     
3 2

Hydro
X sim sim

X X (13)

Specifically, the differences  fracE
XE  and Hydro

XE  are evaluated for precipitation E P , land surface evaporation E E , 
rootzone soil moisture volumetric ratios rE  , and for their respective isotopic concentration ratios  iso

PE  ,  iso
EE  , 

and 
iso
rE  . For clarification, rE  is the averaged soil moisture of the soil layers within the rootzone, and the 

sim1 sim2 sim3

Sea surface fractionation x x x

Atmospheric fractionations x x x

Surface evaporation fractionations x x

Overland and subsurface flow x

Table 1 
WRF-Hydro-Iso Setup Options Considered for the Sensitivity Analysis
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Country Station name Latitude, longitude Period of data availability

Austria Vienna 48.25°N, 16.36°E 1961–2018

Belgium Liege 50.70°N, 5.47°E 1966–1970

Croatia Zagreb 45.81°N, 15.97°E 1980–1995

Czechia Prague 50.12°N, 14.39°E 2012–2018

France Avignon 43.95°N, 4.82°E 1997–2013

France Brest-Plouzane 48.36°N, 4.57°W 1996–2002

France Cestas-Pierroton 44.74°N, 0.77°W 2007–2018

France Dax 43.68°N, 1.07°W 1999–2004

France Draix 44.13°N, 6.33°E 2004–2012

France Orleans-la-source 47.83°N, 1.94°E 1996–2008

Germany Artern 51.37°N, 11.29°E 1997–2013

Germany Bad Salzuflen 52.10°N, 8.75°E 1978–2011

Germany Berlin 52.47°N, 13.40°E 1978–2012

Germany Braunschweig 52.29°N, 10.45°E 1978–2012

Germany Cuxhaven 53.87°N, 8.71°E 1978–2012

Germany Emmerich 51.83°N, 6.25°E 1978–2012

Germany Fehmarn 54.53°N, 11.06°E 1997–2013

Germany Garmisch-Partenkirchen 47.48°N, 11.06°E 1978–2013

Germany Goerlitz 51.16°N, 14.95°E 1997–2013

Germany Hof-Hohensaas 50.31°N, 11.88°E 1983–2013

Germany Kahler Asten 51.18°N, 8.49°E 1997–2013

Germany Karlsruhe 49.04°N, 8.37°E 1981–2012

Germany Koblenz 50.34°N, 7.60°E 1981–2012

Germany Konstanz 47.68°N, 9.19°E 1978–2013

Germany Passau-Fuerstenzell 48.55°N, 13.36°E 1997–2013

Germany Regensburg 49.04°N, 12.10°E 1978–2013

Germany Schleswig 54.53°N, 9.55°E 1998–2013

Germany Trier 49.75°N, 6.66°E 1978–2013

Germany Wasserkuppe Rhoen 50.50°N, 9.94°E 1978–2013

Ireland Valentia Observatory 51.93°N, 10.25°W 1960–2015

Italy Brasimone 44.09°N, 11.08°E 1971–1976, 1985–1986

Italy Genoa 44.42°N, 8.85°E 1961–1965, 1973–2001

Netherlands Groningen 53.23°N, 6.55°E 1964–2012

Poland Krakow 50.06°N, 19.85°E 1975–2016

Slovakia Liptovsky Mikulas 49.10°N, 19.59°E 1992–2011, 2013–2016

Slovenia Ljubljana 46.10°N, 14.60°E 1984–2010

Spain A Coruna 43.37°N, 8.42°W 2000–2016

Spain Santander 43.49°N, 3.80°W 2000–2010, 2012–2015

Switzerland Bern 46.95°N, "7.44°E 1983–1992, 2002–2008

United Kingdom Keyworth 52.88°N, 1.08°W 1985–1996

United Kingdom Wallingford 51.60°N, 1.10°W 1981–2015

Table 2 
List of Global Network of Isotopes in Precipitation Stations of Stable Water Isotopologue Measurements in Precipitation 
for Europe
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depth of the rootzone is a distributed parameter prescribed as a function of land use classes from the mod-
erate resolution imaging spectroradiometer (MODIS) land cover map (Friedl et al., 2002).

Finally, it is highlighted that the reconstruction of paleo-precipitation from isotopic concentrations is based 
on proxy records such as plant wax deuterium concentrations  2

wax HE  measured in the sediments (e.g., Du-
pont et al., 2013; Herrmann et al., 2017; Schefuß et al., 2011). However, the relationship between  2 HPE  and 


wax
H

2  may be altered by processes having occurred in the rootzone, so that  2
wax HE  may be closer to 

2
r HE  

rather than  2 HPE  . In order to relate our study to the paleo-precipitation reconstruction with  2
wax HE  , it is 

chosen to focus our sensitivity analysis of isotopic concentrations to 


 frac
2 H

EE  and 


Hydro
2 H

E  , and to highlight the 

differences between  2 HPE  and 
2

r HE  . In particular, the overall contribution of the processes altering 
2

r HE  
after precipitation has reached the land surface, including land surface evaporation and soil water transport 
in the rootzone, is evaluated with:

   
   2 2

2 3 3
soil

PrH sim sim
H H (14)

4. Climate Modeling Results
4.1. Comparison to Observation—Land Averaged Time Series

Land surface evaporation, precipitation, and temperature results from the WRF-Hydro-iso simulations are 
evaluated with land-averaged climatological monthly time series in Figure 2. Europe and Southern Africa 
are characterized by an annual cycle of land surface evaporation and temperature with maxima in summer. 
In Southern Africa, precipitation follows a similar annual cycle, in contrast to Europe where precipitation 
remains relatively high all year long. On average, the European domain is characterized by a mean precipi-
tation of 2.1 mm/day and a mean temperature of 283 K, whereas the Southern African domain experiences 
a much drier and warmer climate with a mean precipitation of 1.1 mm/day and a mean temperature of 
293 K.

Figure 2 shows the good correspondence between modeled and observed climatological monthly variations. 
Concerning modeled land surface evaporation in Figures 2a and 2d, there is a general underestimation 
almost all year long, with a land surface evaporation mean bias of −15% for Europe and −25% for Southern 
Africa. Such negative mean biases could be related to inaccurate land use spatial information in Noah-MP, 
to a lack of modeled precipitation in the case of Southern Africa, and potential uncertainties in the observa-
tional data set as well (e.g., Jung et al., 2009).

Concerning the modeled precipitation in Europe displayed in Figure 2b, there is an overestimation from 
autumn to spring, leading to a precipitation mean bias of +15%. Such a cold season precipitation overesti-
mation was also found by Prein et al. (2016) with regional climate models employing a spatial resolution 
of ∼12.5 km. In Southern Africa, there is a precipitation underestimation from mid-summer to mid-au-
tumn, as shown in Figure 2e, leading to a precipitation mean bias of −10%. This is an opposite situation in 
comparison to other regional climate models employing spatial resolutions of ∼50 and 9 km, which gen-
erally simulate relatively high wet biases in the central and eastern part of Southern Africa (Kalognomou 
et al., 2013; Ratna et al., 2014). Crétat et al.  (2012) demonstrated the uncertainty in simulated Southern 
African precipitation with respect to modeled physics, which shows that the Southern African precipitation 
mean bias obtained in this study is in the range of state-of-the-art models' biases (e.g., Crétat et al., 2012).

Country Station name Latitude, longitude Period of data availability

Namibia Windhoek 22.95°S, 17.15°E 1961–1975

South Africa Pretoria 25.73°S, 28.18°E 1961–1875, 1996–2000

South Africa Cape Town Airport 33.97°S, 18.60°E 1961–1974, 1996–2001, 2009–2012

Table 3 
List of Global Network of Isotopes in Precipitation Stations of Stable Water Isotopologue Measurements in Precipitation 
for Southern Africa
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With respect to temperature in Figures 2c and 2f, there is a clear underestimation from late autumn to early 
spring, with a temperature mean bias of −1.4 K for Europe and −0.7 K for Southern Africa. According to 
the study of Haiden et al. (2018) for Europe, such a cold mean bias could be related to an underestimation 
of cloud cover during nighttime in winter, at least for Europe.

Figure 2 further displays the differences between model results from simulations with or without lateral 
terrestrial water flow. For Europe, lateral terrestrial water flow increases the mean land surface evaporation 
by +1.2% and mean precipitation by +0.5%, while it decreases the summer temperature by −0.1 K. For 
Southern Africa, lateral terrestrial water has a much larger effect as it increases the mean land surface evap-
oration by +10.7% and mean precipitation by +2.4%, while it decreases the summer temperature by −0.2 K. 
This wetting and cooling effect is related to the fact that the consideration of lateral terrestrial water flow 
generally increases the soil water storage and land surface evaporation (e.g., Fersch et al., 2020; Rummler 
et al., 2019; Zhang et al., 2019). However, these differences are much smaller than the biases-to-observa-
tions, except for the land surface evaporation in Southern Africa, which is much improved when the lateral 
terrestrial water flow is considered. This latter result suggests that the WRF model underestimation of land 
surface evaporation for Southern Africa is related to an underestimation of soil water storage, which can be 
partially mitigated with the consideration of lateral terrestrial water flow. The impact of lateral terrestrial 
water flow on model results is further discussed in Section 4.4.

4.2. Comparison to Observation—Multi-Year Averaged Maps

Land surface evaporation, precipitation, and temperature results from the WRF-Hydro-iso simulations are 
further evaluated with multi-year averaged maps in Figures 3–5, respectively.

Figure 2. (a and b) Climatological time series for Europe of modeled and observational (a) land surface evaporation, (b) precipitation, and (c) temperature, 
computed as a series of monthly mean values for the period 2003–2012 and spatially averaged over the inner domain. Observational data set details are provided 
in Section 3.3. The x-axis gives the time in months from January to December, each month being indicated with its first letter. The y-axis gives the water flux 
scale in mm/day for (a and b) and the temperature scale in K for (c). (d–f) As in (a–c), except for Southern Africa and with the x-axis indicating the months from 
July to June. The aim of visualizing Southern African results from July to June is to have an x-axis spawning from winter to autumn, as in the case of Europe.
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According to the observational data set in Figures 3a and 3d, the multi-year averaged land surface evapo-
ration is relatively homogeneously distributed over Europe with some lower values in the Alpine region, 
whereas in Southern Africa there is a well-defined west-east gradient similar to that in the precipitation 
map shown in Figure 4d. In comparison, WRF-Hydro-iso generates much less land surface evaporation in 
most regions, as shown in Figures 3b–3e and 3f, which indicates that the above-discussed negative mean 
bias in land surface evaporation concerns most areas of the simulations' domains. Nevertheless, at relatively 
high elevation, for example, above 1,500 m above sea level like in the Alpine region in Europe and near the 
East coast of Southern Africa, the land surface evaporation bias eventually becomes positive, which could 
be related to a radiation-elevation dependency (e.g., Blumthaler et al., 1997) not properly captured by the 
observational data set.

The spatial characteristics of the multi-year averaged precipitation are relatively well captured by WRF-
Hydro-iso, with enhanced precipitation in the mountainous regions of Europe in Figures 4a and 4b, and 
with enhanced precipitation in the eastern coastal region of Southern Africa in Figures 4d and 4e. The bias 
maps in Figures 4c and 4f reveal that the model generally overestimates these regions' enhanced precipita-
tion. Precipitation overestimation spreads almost all over the European domain, especially in the Southern 

Figure 3. (a and b) Maps for Europe of observational land surface evaporation OBSE E  and modeled land surface evaporation E E from sim1, temporally averaged 
for the period from 2003 to 2012 and given in mm/day. (c) Difference in % between OBSE E  and E E , computed as the percent difference relative to observation. 
(d–f) As in (a–c), except for Southern Africa. In all panels, the data have been resampled on a grid with a 25 km grid spacing for visualization purpose. This 
resampling is applied to all maps shown in the following figures.
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part of Italy where the observed precipitation amounts are relatively low. An opposite model behavior is 
obtained for Southern Africa, where the low precipitation amounts observed in the central and western re-
gions are underestimated, resulting in the negative mean bias in precipitation mentioned above. This model 
discrepancy indicates a potential limitation of using the microphysics scheme alone at a 5 km grid-spacing 
to fully resolve the atmospheric systems producing precipitation in the most arid parts of Southern Africa, 
since other simulations using a cumulus parameterization generated a wet bias in these regions (Kalogno-
mou et al., 2013; Ratna et al., 2014). Overall, the resemblance between precipitation bias maps in Figures 4c 
and 4f and land surface evaporation bias maps in Figures 3c and 3f suggests that the above-discussed pos-
itive biases in land surface evaporation at high elevations are also related to precipitation overestimations.

Finally, the spatial characteristics of the multi-year averaged temperature are also relatively well captured 
by WRF-Hydro-iso, with a well-defined temperature decrease with elevation, as shown for Europe in Fig-
ures 5a and 5b and for Southern Africa in Figures 5d and 5e. The bias maps in Figures 5c and 5f indicate 
that the above-discussed cold mean bias concerns almost all areas of the simulations' domains. The relative-
ly high cold biases at high elevations are probably related to modeled features, which are not captured by the 
observational data sets. Still, temperatures along the northwest coast of Southern Africa are overestimated 
to a large extent, which may be related to the inability of the model to generate precipitation in this area.

Figure 4. (a and b) Maps for Europe of observational precipitation OBSE P  and modeled precipitation E P from sim1, temporally averaged for the period from 2003 
to 2012 and given in mm/day. (c) Difference in % between OBSE P  and E P , computed as the percent difference relative to observation. (d–f) As in (a–c), except for 
Southern Africa.
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Nevertheless, it is argued that WRF-Hydro-iso is able to generate realistic climate characteristics in Europe 
and Southern Africa, which gives us confidence in using this model for water isotopologue modeling.

4.3. Multi-Year Averaged Terrestrial Water Fluxes

The simulated terrestrial water fluxes are further detailed with multi-year averaged maps of rootzone soil 
moisture rE  , fractionating surface evaporation evE E  , and transpiration trE E  in Figure 6.

In Europe, rE  and evE E  are relatively homogeneously distributed whereas trE E  displays much larger spatial 
disparities as shown in Figures 6a–6c. In particular, most areas of low trE E  correspond to cropland areas, 
which indicates that the above-discussed negative bias in land surface evaporation could be related to an 
overestimation of cropland areas in the MODIS-derived land cover map at 5 km resolution. On average, the 
European precipitation is partitioned into 36% of fractionating surface evaporation, 12% of transpiration, 
and 52% of runoff. Locally, the ratio between runoff and precipitation, that is, the runoff coefficient, ranges 
from 0.2 in plain regions receiving the lowest precipitation amounts to 0.8 in mountainous regions receiving 
the highest precipitation amounts (not shown). The relatively high values of simulated runoff coefficients, 

Figure 5. (a and b) Maps for Europe of observational temperature OBSE T  and modeled temperature E T  from sim1, temporally averaged for the period from 2003 to 
2012 and given in K. (c) Difference in K between OBSE T  and E T  . (d–f) As in (a–c), except for Southern Africa.
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in comparison to observations, for example, in the largest river basins in Germany (Zink et al., 2017), are 
assumed to be due to the precipitation overestimation in mountainous regions.

In Southern Africa, rE  , evE E  , and trE E  display the above-mentioned west-east gradient, with enhanced values 
near the eastern coast, as shown in Figures 6d–6f. In comparison to Europe, rE  displays much lower values. 
On average, the Southern African precipitation is partitioned into 48% of fractionating surface evaporation, 
34% of transpiration, and 18% of runoff. The drier soils and the fact that most of the precipitation evaporates 
back to the atmosphere are related to the much warmer and drier climate in Southern Africa in comparison 
to Europe as illustrated in Figures 2–5.

4.4. Role of Lateral Terrestrial Water Flow

The role of lateral terrestrial water flow on terrestrial water fluxes is evaluated with multi-year averaged 
maps of 

Hydro
r

E  , Hydro
evEE  , Hydro

trEE  , and Hydro
PE  in Figure 7, these HydroE  differences being defined according to 

Equation 13.

For Europe, Figure 7a confirms that the consideration of lateral terrestrial water flow generally increases 
soil water storage, except in regions with steep topography where the consideration of lateral terrestrial 

Figure 6. (a–c) Maps for Europe of modeled rootzone soil moisture rE  , fractionating surface evaporation evE E  , and transpiration trE E  from sim1, temporally 
averaged for the period from 2003 to 2012 and given in m3/m3 for rE  and in mm/day for evE E  and trE E  . (d–f) As in (a–c), except for Southern Africa.
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water flow rather enhances the generation of surface runoff and reduces the soil water storage (e.g., Ar-
nault et al., 2019). Figures 7b and 7c further show that the increase in land surface evaporation triggered by 
lateral terrestrial water flow is mainly supported by evE E  , which indicates that the direct evaporation is more 
soil moisture-limited than transpiration and therefore more sensitive to a soil moisture increase. Overall, 
the increase in land surface evaporation mostly increases precipitation through a land recycling process 

Figure 7. (a–d) Maps for Europe of the differences introduced by the consideration of lateral terrestrial water flow in rootzone soil moisture, fractionating 
surface evaporation, transpiration, and precipitation, namely 

Hydro
r

E  , Hydro
evEE  , Hydro

trEE  , and Hydro
PE  , temporally averaged for the period from 2003 to 2012. The HydroE  

differences are computed according to Equation 13. (e–h) As in (a–d), except for Southern Africa.
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as displayed in Figure 7d. Following Arnault et al. (2021), it is assumed that the scattered negative values 
of Hydro

PE  in Figure 7d are related to modeled atmospheric randomnesses not fully smoothed in the 10-year 
mean simulations' results. On average for Europe, the consideration of lateral terrestrial flow induces +1.0% 
of fractionating surface evaporation, +0.2% of transpiration, +0.5% of precipitation, and −0.7% of runoff.

For Southern Africa, the increase in rE  is much enhanced in comparison to Europe, especially in the eastern 
coastal region, which experiences the largest precipitation amounts. Figures 7f and 7g further show that the 
increase in land surface evaporation triggered by lateral terrestrial water flow is supported by both evE E  and 

trE E  , which indicates much drier soil conditions in Southern Africa and an enhanced sensitivity of transpi-
ration to a soil moisture increase. Indeed, the additional soil water storage brought by the lateral terrestrial 
water flow mostly evaporates, as Southern Africa experiences a soil moisture-limited evaporation regime 
(e.g., Dirmeyer et al., 2012). This relatively large increase in land surface evaporation mostly increases pre-
cipitation as displayed in Figure 7h, with some visible patterns of modeled atmospheric randomnesses not 
fully smoothed by the 10-year mean, as in the case of Europe. On average for Southern Africa, the consider-
ation of lateral terrestrial flow induces +3.6% of fractionating surface evaporation, +7.1% of transpiration, 
+2.4% of precipitation, and −8.3% of runoff.

5. Water Isotopologue Modeling Results
5.1. Comparison to Observation—Land Averaged Time Series

The model skill in reproducing the climatological precipitation isotopic concentrations  18OPE  and  2 HPE  
from the GNIP data set is evaluated with station-averaged climatological monthly time series in Figure 8. 
The deuterium excess   2 18H 8 OP P PE d  (e.g., Craig, 1961) is also shown in Figure 8, in order to more 
specifically assess the kinetic effect associated with surface evaporation fractionation (e.g., Risi et al., 2016). 
Figure 8 displays model results from sim1, sim2, and sim3, as well as the GNIP data set, which allows to 

Figure 8. (a–c) Climatological time series for Europe of modeled and observational precipitation isotopic concentrations  18OPE  and  2 HPE  and deuterium 
excess PE d  from sim1, sim2, sim3, and GNIP, computed as a series of monthly mean values for the period 2003–2012 and averaged for the locations of the 
European stations listed in Table 2. The y-axis gives the isotopic concentration scale in in ‰. (d–f) As in (a–c), except for the stations listed in Table 3 for 
Southern Africa. In all panels, the x-axis indicates the months of the year as in Figure 2.
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evaluate the effect of surface evaporation fractionation and lateral terrestrial water flow on  18OPE  ,  2 HPE  , 
and PE d  at the selected stations. Figure 8 confirms the good correspondence between modeled and observed 
climatological monthly variations, at least for  18OPE  and  2 HPE  in Europe, and displays small differences 
among simulation results. In Europe,  18OPE  and  2 HPE  follow a seasonal cycle with a maximum reached 
during summer, which is a well-known temperature effect (e.g., Dansgaard, 1964). In Southern Africa, the 
seasonal variations of  18OPE  and  2 HPE  are much smaller with a maximum during winter, which is the 
opposite situation in comparison to Europe. Indeed, lower precipitation amounts during winter for the 
entire Southern Africa are associated with larger isotopic concentrations, and this amount effect (e.g., Dans-
gaard, 1964) appears to overbalance the temperature effect in this case. However, these isotopic variations in 
Southern Africa are not well captured in the model, with a large negative bias most of the year.

For both Europe and Southern Africa, the largest difference in simulation results for  18OPE  and  2 HPE  occurs 
between sim1 and sim2, which represents the effect of surface evaporation fractionation. This confirms the 
small but noticeable impact of surface evaporation fractionation on precipitation isotopic concentrations, as 
discussed by Christner et al. (2018) for summer precipitation in Europe, and by Risi et al. (2016) at a global 
scale. Remarkably, for both Europe and Southern Africa, the consideration of surface evaporation fraction-
ation slightly worsens the negative biases of  18OPE  and  2 HPE  to observation. Reciprocally, Risi et al. (2016) 
found that this decreasing effect of surface evaporation fractionation on precipitation isotopic concentra-
tions ameliorated their positive model biases to observations, especially in boreal continental regions.

In the case of PE d  , the discrepancies between simulation results and observations are much larger, especially 
with respect to the seasonal cycle, as shown in Figures 8c and 8f. The lack of ability to simulate PE d  was also 
reported with other models (e.g., Brady et al., 2019; Risi et al., 2016). Still, it is found that the consideration 
of surface evaporation fractionation mostly increases PE d  as expected (e.g., Risi et al., 2016).

Quantitatively, in the case of Europe, the station-average GNIP mean values of (  18OPE  ,  2 HPE  , and PE d  ) are 
(−8.1‰, −55.9‰, and 9.1‰). These values are underestimated by (−0.2‰, −2.4‰, and −0.6‰) with sim1 
and by (−0.4‰, −4.1‰, and −0.4‰) with either sim2 or sim3. The underestimation of  18OPE  and  2 HPE  
mainly occurs from late autumn to spring, as can be seen in Figures 8a and 8b, and could be caused by the 
cold temperature bias discussed above. The negative biases in precipitation isotopic concentrations may also 
partly originate from the isotopic lateral boundary condition from the iCESM1/ERA5 forcing data set, as 
iCESM1 outputs display such negative biases as well (e.g., Brady et al., 2019).

In the case of Southern Africa, the station-average GNIP mean values of (  18OPE  ,  2 HPE  , and PE d  ) are (−4.0‰, 
−18.4‰, and 13.4‰), the higher values of  18OPE  and  2 HPE  in comparison to Europe being related to the 
well-known temperature effect (e.g., Dansgaard, 1964). The higher value of PE d  in comparison to Europe 
may indicate a more pronounced kinetic effect with land surface evaporation fractionation in Southern Af-
rica. These values are underestimated/overestimated by (−1.0‰, −7.1‰, and 0.7‰) with sim1, by (−1.2‰, 
−8.0‰, and 1.6‰) with sim2, and by (−1.1‰, −7.4‰, and 1.7‰) with sim3. In comparison to global mod-
eling literature results, Nusbaumer et al. (2017) and Brady et al. (2019) also found negative biases for  18OPE  
and  2 HPE  at Southern African GNIP stations, although a better matching was apparently met in Haese 
et al. (2013) and Risi et al. (2010).

The negative biases in precipitation isotopic concentrations may indicate that the rain droplet evaporation 
fractionation calculation from Nusbaumer et al. (2017), which is used here (see Section 2.8), overestimates 
the fraction of the rain water, which evaporates without fractionation, leading to more isotopically depleted 
precipitation at the ground especially during the cold season.

5.2. Comparison to Observation—Multi-Year Averaged Maps

The model skill in reproducing the climatological precipitation isotopic concentrations  18OPE  and  2 HPE  
and deuterium excess PE d  from the GNIP data set is further evaluated with multi-year averaged maps in Fig-
ure 9. This figure shows that the spatial characteristics of precipitation isotopic concentrations, as deduced 
from the GNIP stations, are generally well captured by WRF-Hydro-iso.

In the case of Europe in Figures 9a and 9b, there is a well-defined altitude effect (e.g., Dansgaard, 1964), 
that is, a decrease in  18OPE  and  2 HPE  with elevation, as well as a well-defined continental effect (e.g., 
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Dansgaard, 1964), that is, a decrease in  18OPE  and  2 HPE  from the Atlantic coast toward the east. These 
well-known altitude and continental effects are less clear in Figures 9d and 9e for Southern Africa. Indeed, 
Southern Africa is characterized by a high precipitation seasonality with a summer rainfall zone in the cen-
tral and eastern regions and a winter rainfall zone near the west coast (e.g., Roffe et al., 2019), which also 
contributes to regional differences in isotopic concentrations (e.g., Herrmann et al., 2017). But the scarcity 
of the GNIP stations in Southern Africa does not allow to fully validate the modeled spatial distribution of 
isotopic concentrations in this case.

The deuterium excess PE d  in Figures 9c and 9f reveals different spatial patterns in comparison to  18OPE  and 
 2 HPE  , which may be the effect of relative humidity (Pfahl & Sodemann, 2014). However, the simulated spa-
tial patterns of PE d  do not match well with the GNIP observations, as also reported in literature (e.g., Brady 
et al., 2019).

Overall, the discrepancies between observed and modeled precipitation isotopic concentrations in Figures 8 
and 9 are reasonably small, except for deuterium excess and comparable to what can be obtained with other 
regional models of water isotopologues (e.g., Christner et al., 2018). A detailed analysis of the impact of 

Figure 9. (a–c) Maps for Europe of modeled precipitation isotopic concentrations  18OPE  and  2 HPE  and deuterium excess PE d  for the period from 2003 to 2012, 
derived from sim1 and given in ‰. The circles indicate multi-year averaged observations at GNIP stations. (d–f) As in (a–c), except for Southern Africa.
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land surface evaporation fractionation and lateral terrestrial water on these spatial variabilities of isotopic 
concentrations is provided in the following subsections for the case of  2 HE  .

5.3. Role of Land Surface Evaporation Fractionation

The role of land surface evaporation fractionation on isotopic concentrations is evaluated with multi-year 
averaged maps of 


Efrac

2 Hr
E  , 


 frac

2 H
E

E
E  , and 


 frac

2 H
E

P
E  in Figure 10, these  fracEE  differences being computed as in 

Equation 12.

The consideration of surface evaporation fractionation generally increases the rootzone soil moisture iso-
topic concentration 

2
r HE  and decreases the land surface evaporation isotopic concentration  2 HEE  , as dis-

played in Figures 10a–10d and 10e with positive values of 


Efrac
2 Hr

E  and negative values of 


Efrac
2 HE

E  . The fact that 

the isotopic depletion of evaporation is less efficient for warmer temperatures (e.g., Majoube, 1971a, 1971b; 

Figure 10. (a–c) Maps for Europe of the differences in modeled isotopic concentration introduced by the consideration of land surface evaporation 
fractionation in the rootzone soil moisture, surface evaporation, and precipitation for the case of  2 HE  , namely 


 frac

2 Hr

EE  , 


 frac
2 H

E

E
E  , and 


 frac

2 H
E

P
E  . These differences are 

computed according to Equation 12 for averaged water quantities over the period from 2003 to 2012 and are given in ‰. (d–f) As in (a–c), except for Southern 
Africa.



Journal of Advances in Modeling Earth Systems

ARNAULT ET AL.

10.1029/2021MS002562

22 of 28

Merlivat & Nief, 1967) contributes to a smaller increase in 
2

r HE  and a smaller decrease in  2 HEE  in South-
ern Africa.

For the particular case of 
2

r HE  in Southern Africa, the warm temperature effect is counterbalanced by a 
low soil moisture amount effect, as the rootzone soil moisture isotopic enrichment through land surface 
evaporation fractionation is quicker for lower soil moisture amounts. As a result, the multi-year averaged 
values of 


Efrac

2 Hr
E  in Figures 10a and 10d are comparable. Additionally, the decrease in  2 HEE  in Southern 

Africa is reduced by the enhanced contribution of transpiration, which does not fractionate but instead 
experiences an isotopic concentration increase due to the increase in 

2
r HE  .

For both Europe and Southern Africa, the decrease in  2 HEE  shown in Figures 10b and 10e generally leads to 
a decrease in precipitation isotopic concentration  2 HPE  , as can be seen in Figures 10c and 10f with the nega-
tive values of 


Efrac

2 HP
E  , which is in agreement with the station-based results shown in Figure 9 and previously 

discussed at Section 5.1. In a sensitivity analysis conducted at a global scale, Haese et al. (2013) also found 
that the consideration of land surface evaporation fractionation mainly modifies the isotopic concentrations 
in soil moisture, and to a much smaller extent the isotopic concentrations in precipitation as well.

According to Figures 10c and 10f, the decrease in  2 HPE  caused by land surface evaporation fractionation 
is generally enhanced downwind of the summer precipitation's region, that is, toward the East in Europe 
and toward the West in Southern Africa. Indeed, land precipitation recycling increases while atmospheric 
air masses travel through the land (e.g., Risi et al., 2013), leading to an increased contribution of  2 HEE  to 
 2 HPE  and a larger decrease in  2 HPE  at the inland locations farthest from oceanic water sources. The fact 
that comparable values of 


 frac

2 H
E

P
E  are obtained in both regions, although Southern Africa experiences a 

much smaller decrease in  2 HEE  , suggest that the change in  2 HPE  is more sensitive to the component of E E 
characterized by lower isotopic concentrations, that is, the fractionating surface evaporation evE E  . This result 
corroborates previous findings that precipitation recycles more evaporation than transpiration (e.g., van der 
Ent et al., 2014; Wei et al., 2015).

5.4. Role of Lateral Terrestrial Water Flow

The role of lateral terrestrial water flow on isotopic concentrations is evaluated with multi-year averaged 
maps of 


Hydro

2 Hr
E  , 


Hydro

2 HE
E  , and 


Hydro

2 HP
E  in Figure 11, these HydroE  differences being computed as in Equation 13.

For Europe, as detailed in Section 4.4, the consideration of lateral terrestrial water flow largely increases 
evE E  in most areas and sparsely increases trE E  , in association with a slight enhancement in precipitation. The 

increase in evE E  enhances the isotopic enrichment of the rootzone soil moisture through land surface evapo-
ration fractionation, leading to the positive values of 


Hydro

2 Hr
E  in Figure 11a. The increase in evE E  also tends to 

reduce the land surface evaporation isotopic concentrations, although this effect is counterbalanced in the 
areas where the enhanced nonfractionating trE E  increases the transfer of isotopically enriched water from the 
rootzone toward the atmosphere, as displayed in Figure 11b. Overall, the changes in  2 HPE  resulting from 
the consideration of lateral terrestrial water flow in Europe are very small, with values of 


Hydro

2 HP
E  generally 

below 1‰ in Figure 11c.

In Southern Africa, as detailed in Section 4.4, the consideration of lateral terrestrial water flow largely in-
creases trE E  and to a lesser extent also increases evE E  near the East coast, in association with a precipitation 
enhancement. In comparison to Europe, the increase in 

2
r HE  through land surface evaporation fraction-

ation is weaker as shown by less positive values of 


Hydro
2 Hr

E  in Figure 11d, and the increase in  2 HEE  through 

nonfractionating transpiration is stronger as shown by more positive values of 


Hydro
2 HE

E  in Figure 11e. Overall, 

the changes in  2 HPE  resulting from the consideration of lateral terrestrial water flow in Southern Africa is 
not as small as in Europe, with values of 


Hydro

2 HP
E  reaching 2‰ near the eastern coastal region in Figure 11f.

For both Europe and Southern Africa, the effect of lateral terrestrial water flow on isotopic concentrations 
remains minor in comparison to the effect of land surface evaporation fractionation detailed in previous 
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section. Indeed, we find that it is the ratio between transpiration and direct evaporation, which matters for 
isotopic concentrations in the rootzone, and the lateral terrestrial water flow only induces minor changes 
to this ratio.

The scatteredness of positive and negative values of 


Hydro
2 Hr

E  , 


Hydro
2 HE

E  , and 


Hydro
2 HP

E  in Figures 11d–11f, respec-

tively, may be related to random fluctuations in the modeled relationship between transpiration, precipita-
tion, and soil moisture, which are not fully smoothed in the 10-year mean simulations' results. Nevertheless, 
the general increase in  2 HPE  is attributed to the increase in nonfractionating transpiration, which brings 
more isotopically enriched water in the atmosphere to be recycled as precipitation. Accordingly, specifically 
in the case of Southern Africa, the consideration of lateral terrestrial water flow increases the contribution 
of transpiration to precipitation (e.g., Wei et al., 2015).

Figure 11. (a–c) Maps for Europe of the differences in modeled isotopic concentration introduced by the consideration of lateral terrestrial water flow in the 
rootzone soil moisture, surface evaporation, and precipitation for the case of  2 HE  , namely 


Hydro

2 Hr
E  , 


Hydro

2 HE
E  , and 


Hydro

2 HP
E  . These differences are computed according 

to Equation 13 for averaged water quantities over the period from 2003 to 2012 and are given in ‰. (d–f) As in (a–c), except for Southern Africa.
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5.5. Difference Between Rootzone and Precipitation Isotopic Concentrations

The difference in isotopic concentrations between precipitation and rootzone soil moisture is evaluated 
with multi-year averaged maps of 


soil

2 H
E  in Figure 12, computed as in Equation 14. For both Europe and 

Southern Africa, Figure 12 displays much positive values of 


soil
2 H

E  . Quantitatively, Figure 12 indicates that 


2

r HE  is generally 10–20‰ above  2 HPE  , which is mainly due to the land surface evaporation fractionation 
discussed above in Section 5.3. Lateral terrestrial water flow may slightly enhance this land surface fraction-
ation effect in relatively wet regions like Europe, due to the preference of lateral terrestrial water flow to in-
crease direct evaporation rather than transpiration for wet soils. The knowledge of such processes affecting 


2
r HE  is certainly important for a quantitative paleo-precipitation reconstruction from organic sediments 

having transited through the rootzone, such as plant leaf waxes.

6. Summary and Perspectives
This study presents the newly developed WRF-Hydro-iso, which is a version of the coupled atmospher-
ic-hydrological modeling system WRF-Hydro from Gochis et al. (2018) enhanced with a joint description 
of soil-vegetation-atmospheric water isotopologues motions. WRF-Hydro-iso has been applied to two pres-
ent-climate cases, one in Europe and the other in Southern Africa. The boundary condition of the usu-
al land-atmospheric variables in WRF-Hydro-iso has been taken from the ERA5 reanalyses, whereas the 
boundary condition of the isotopic variables has been deduced from climatological values derived from 
a 10-year iCESM1 simulation. In both cases, the WRF-Hydro-iso model driven with this hybrid ERA5/
iCESM1 data set proved abilities in reproducing present-day climatological precipitation isotopic concen-
trations  18OPE  and  2 HPE  from GNIP. The model bias to isotopic observations was larger in Southern Africa, 
which shows that the model can still be improved for specific regions. Nevertheless, a sensitivity analysis 
was carried out to investigate the respective effect of land surface evaporation and lateral terrestrial water 
flow on the simulated isotopic concentrations with WRF-Hydro-iso, with the objective to evaluate the po-
tential benefit of using a coupled atmospheric-hydrological model for water isotopologue modeling.

The consideration of land surface evaporation fractionation strongly increased the isotopic concentrations 
in the rootzone soil moisture and slightly decreased the isotopic concentrations in precipitation, in agree-
ment with a previous study from Haese et al. (2013). In comparison, the consideration of lateral terrestrial 
water flow had a much lower impact on the isotopic concentrations in the rootzone soil moisture. Still, 
lateral terrestrial water flow clearly increased the land surface evaporation. In relatively wetter Europe, the 
increase in land surface evaporation mostly concerned the fractionating direct evaporation, so that in this 
case the lateral terrestrial water flow also enhanced the isotopic enrichment of the rootzone soil moisture 
through a larger land surface evaporation fractionation. In relatively drier Southern Africa, the increase in 
land surface evaporation concerned with a larger proportion of the nonfractionating transpiration, which 

Figure 12. (a) Map for Europe of the difference in modeled isotopic concentration between precipitation and the rootzone soil moisture for the case of  2 HE  , 
namely 


soil

2H
E  . 


soil

2H
E  is computed according to Equation 14 for averaged water quantities over the period from 2003 to 2012 and is given in ‰. (b) As in (a), 

except for Southern Africa.
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induced a larger transfer of isotopically enriched water from the rootzone toward the atmosphere that partly 
recycled as precipitation, thus slightly increased the precipitation isotopic concentrations.

This modest impact of lateral terrestrial water flow on isotopic concentrations indicates that this process is 
secondary for the interpretation of paleo records data. The effect of more dominant factors controlling the 
ratio between transpiration and direct evaporation, such as plant types (e.g., Hou et al., 2007), should be 
considered in a future sensitivity analysis. This is particularly relevant for the interpretation of paleo records 
associated with pronounced vegetation changes, such as in Southern Africa (e.g., Burdanowitz et al., 2018).

This first study with WRF-Hydro-iso shows the potential of this model for simulating isotopic concentra-
tions in each compartment of the soil-vegetation-atmosphere system at regional scale. Future applications 
could focus on assessing the WRF-Hydro-iso performances with respect to other water isotopologue data 
sets, such as water vapor isotopic concentrations deduced from remote-sensing techniques (e.g., Christner 
et al., 2018; Risi et al., 2013) and soil moisture isotopic concentrations from in-situ measurements (e.g., 
Gazis & Feng, 2004; Risi et al., 2016; Wong et al., 2017). As a coupled atmospheric-hydrological modeling 
system, WRF-Hydro-iso theoretically offers the possibility to estimate isotopic concentrations in stream-
flow, which could provide an innovative approach in the field of transit time research (e.g., Kirchner, 2019). 
Finally, as a regional model, WRF-Hydro-iso can be applied to the dynamical downscaling of global paleo-
climate simulations (Ludwig et al., 2019) in order to simulate isotopic concentrations in the rootzone, which 
can potentially enable a more direct comparison between model results and proxy data related to plants 
(e.g., Dupont et al., 2013), and might also alter the interpretation of paleoclimate proxy records.

Data Availability Statement
The WRF-Hydro-iso source code, which has been used in this study, together with a test application case 
can be downloaded at https://figshare.com/s/74257d1f6a508afa9334. The iCESM model is available at 
https://github.com/NCAR/iCESM1.2. The ERA5 data set has been generated using the Copernicus Cli-
mate Change Service Climate Data Store (CDS), https://cds.climate.copernicus.eu/cdsapp#!/home. Hydro-
SHEDS data can be found at: https://www.hydrosheds.org/downloads, and the WRF-Hydro preprocessing 
tool at: https://ral.ucar.edu/projects/wrf_hydro/pre-processing-tools. The observational data sets used in 
this study are available online, the Global Network of Isotopes in Precipitation data set of the International 
Atomic Energy Agency and the World Meteorology Organization at https://nucleus.iaea.org/wiser/index.
aspx, the precipitation and temperature data sets from the ECA&D project at http://www.ecad.eu, the pre-
cipitation data set from the Climate Hazard Center at https://www.chc.ucsb.edu/data/chirps/, and the tem-
perature data set from the Climate Research Unit at http://www.cru.uea.ac.uk/cru/data/hrg/.
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