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Abstract
Air pollution imposes great costs on productivity, safety and health of individ-
uals and dictates necessity of a proactive air pollution management. This, in
turn, requires powerful tools for air quality modeling. In this article we develop
a two-stage procedure for predicting exceedances of the EU legal limits for
PM10 and O3 concentrations using hourly data. Within the first stage we deploy
machine learning methods to produce accurate 24-h-ahead forecasts of hourly
pollutant concentrations at seven specific locations in the cities of Augsburg
and Munich, Germany. The best performance was shown by the Stochastic Gra-
dient Boosting Model—an ensemble tree-based method, especially convenient
because of its computational efficiency and robustness to overfitting. Its predic-
tive ability was largely superior to that reported by similar studies. In the second
stage, the hourly forecasts were used to predict the exceedances of the EU daily
limits for PM10 and O3 concentrations. For both pollutants we could achieve the
average probability of exceedances detection above 80%, while keeping the prob-
ability of false alarms at a reasonably low level. Such satisfactory results show
that our approach can be successfully applied to anticipate the shocks, which
would allow authorities to manage them in the most effective manner.
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1 INTRODUCTION

The effects of air pollution on human health have been the focus of many epidemiological studies since the early 1990s.
An abundance of evidence has been gathered in support of theory that the long-term exposure to atmospheric pollutants,
even in relatively small concentrations, substantially increases the risk of many illnesses including respiratory and car-
diovascular diseases as well as different types of cancer (Ayres, 2006; Künzli et al., 2000; Loomis et al., 2013). It has also
been proven that a statistically significant link exists between the daily mortality rates and the pollutant concentrations
observed during the same or the previous day (see, for instance, Gryparis et al., 2004; Pope & Dockery, 2006). In the recent
time the importance of the machine learning tools for modeling and monitoring environmental data was recognized by
the scientific community (see Represa et al. (2020)).

Among the variety of known pollutants, the particulate matter (PM), tropospheric ozone (O3), nitrogen oxides (NOx),
sulfur dioxide (SO2), carbon monoxide (CO) and lead (Pb) classify as the most dangerous to human health and, therefore,
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are seen as the main components determining the air quality in a specific area. The regions with higher concentrations
of these pollutants report significantly higher rates of morbidity and mortality, especially among the population with
existing preconditions, infants and children, as well as older age groups (Dockery et al., 1993; Pope & Dockery, 2006).

But the economic and societal costs of air pollution go far beyond the negative health effects. More recent studies,
in particular, have shown that an exposure to air pollution may also induce behavioral changes and impair cognitive
performance. For example, Ebenstein et al. (2016), Zivin and Neidell (2012) and Chang et al. (2016) found that indi-
viduals exposed to higher levels of pollution performed worse in their studies or at workplace. These effects can likely
be attributed to positive associations that were shown to exist between the higher long-term levels of pollution and the
increased reaction time, shorter attention span and lower concentration, decreased perceptual function, and worsened
short-term memory of individuals in the affected areas (Chen & Schwartz, 2009). Murphy et al. (2013) and Li et al. (2017),
on the other hand, link pollution exposure to the increased levels of serotonin as well as stress hormones—cortisol, corti-
sone, and epinephrine. This may result in the increased impatience, aggressive or unethical behavior (Lu et al., 2018) as
well as higher willingness to take risks (Murphy et al., 2013). All these factors combined help to explain how air pollution
may also be responsible for the elevated levels of criminal activity in society (Lu et al., 2018) and the increased number of
traffic accidents (Sager, 2019)—areas that were long overlooked by the traditional research on air quality.

Most countries attempt to tackle the pollution problem by defining a set of air quality standards, which impose restric-
tions on the allowed yearly, daily and hourly mean pollutant concentrations in certain area. In Europe, limits on allowed
pollutant concentrations are set by the European Parliament and the Council (EC) and are legally binding for all member
states of the European Union (EU). However, given the highly volatile nature of air pollutants and the variety of pollution
sources, complying with the legal requirements 100% of the time is not an easy task.

To be able to do so, the authorities need reliable forecasting models that would allow them to anticipate unfavor-
able situations some time in advance and take preventive action. Such actions may be of various nature. In some cases,
local authorities may possess the instruments to shut down plants or regulate the daily traffic volumes, for example, by
prohibiting certain types of vehicles to circulate on the road for one day. In cases where residential heating is primarily
responsible for peaks in pollution levels, restrictions on heating fuels could be issued for the coming night. Finally, even
in the absence of any such instruments, a warning conferred to the public may suffice to encourage people to stay indoors,
thus avoiding an exposure to unhealthy air.

Many air pollution models have already been developed and tested in the past. The majority of authors have been
focusing on forecasting some kind of daily measure (see, e.g., Chaloulakou et al., 2003; Corani, 2005; McKendry, 2002;
Perez & Reyes, 2006) with very few trying to predict the hourly concentrations. This is not surprising, since daily averages
are generally less difficult to forecast due to a much smoother behavior. Hourly pollutant concentrations, on the other
hand, exhibit substantial variation throughout the day, with peak concentrations being significantly higher than the daily
average. These peak concentrations, however, are what we are most interested in predicting since they constitute the real
danger to human productivity and health. The hourly forecasts provide the decision-maker with much more detailed
information and allow for better planning of the preventive actions. Hence, we consider them to be of a much bigger value.

It is also clear that for hourly forecasts to be of any use, they must be made available at least some time in advance.
Yet, among the papers with a focus on hourly instead of daily concentrations, the vast majority have been dealing with
the so-called “nowcasting”—that is, predicting concentrations for the coming hour only (see, i.e., Aldrin & Haff, 2005;
Arhami et al., 2013; Goulier et al., 2020; Ortiz-García et al., 2010; Schlink et al., 2003). Indeed, we could identify only a
few studies that extend their forecasting horizon beyond the next couple of hours (in particular, Ballester et al., 2002; Cai
et al., 2009; Fernando et al., 2012; Grivas & Chaloulakou, 2006; Hrust et al., 2009; Paschalidou et al., 2011; Peng et al., 2017).

The type of the models used for forecasting evolved dramatically over the recent years. Earlier the focus lied mainly
on classical statistical and econometric tools, such as regression and time series models. These models are flexible enough
to capture seasonality and the impact of exogenous variables, but still suffer from the strict functional relationships. In
the majority of the cases the impact of regressors is restricted to a linear one. The recent popularity of machine learning
tools gave rise to an increasing number of studies deploying such methods to environmental data. As pointed out in an
excellent review by Represa et al. (2020) “the data mining paradigm can assist in the study of air quality by providing a
structured work methodology that simplifies data analysis.” One stride of the paper attempts to predict the concentration
directly. Zhou et al. (2020a), Zhou et al. (2020b), and Valput et al. (2020) rely on artificial neural networks to predict PM2.5
concentraton whereas Masmoudi et al. (2020) use ensembles of regressor chains-guided feature ranking for predict-
ing several pollutants simultaneously. The other stride of papers attempts to predict the exceedances directly. However,
the number of results on limit exceedances is still very limited as noted by Gómez-Losada (2018). The few existing
papers attempt to predict the event of exceedance using various machine learning classifiers. Some, such as Yang
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et al. (2020) rely on more classical distriminant methods whereas others, for example, Gong and Ordieres-Meré (2016),
Gómez-Losada (2018), Yang et al. (2020) use ensemble models such as random forests.

The contributions of this paper are methodological in nature and can be summarized in the light of the above discus-
sion as follows. Generally, we develop a model capable of generating accurate predictions of hourly PM10 (particles with
an aerodynamic diameter of 10 μm or smaller) and O3 concentrations 24 h in advance. Additionally, we wanted to be able
to predict if the EU limits for both pollutant concentrations on the next day were going to be exceeded. A two-stage model
has been developed to satisfy both of our goals. The model takes hourly observations and provides the probability of the
limit exceedance at the output. In the first stage, the hourly pollutant concentrations for the next 24 h are predicted using
the past air quality measurements as well as the same-period meteorological and temporal data. For this purpose we con-
sider support vector regression, random forest, extremely randomized trees and stochastic gradient tree boosting. The last
three approaches are ensemble-type methods and they appear to be the leading machine learning techniques for forecast-
ing continuous targets. Thus we go beyond the classical modeling using linear regression or seasonal time series models.
In the second stage, these hourly forecasts are used to predict the incidents of legal limit exceedances on the coming day
using classification tools. The model was tested on a long data on several air quality stations in the cities of Augsburg and
Munich, but it may also be applied to other locations with similar climate and pollution sources. Note that the predictive
accuracy of the two-stage approach clearly dominates single-step models with temporal aggregation of data.

The rest of this work is organized as follows. Section 2 describes the study area and data used for analysis, the per-
formed data preparation steps and the forecasting model. Section 3 presents the results and compares them with those
obtained by similar studies for other regions. Section 5 concludes by summarizing the findings, pointing out limitations
and providing outlook for the real-life implementations of the model.

2 METHODOLOGY

2.1 Data and study area

The air quality data were obtained from the website of the Bavarian State Office for Environment (Bayerisches Landesamt
für Umwelt). It contains information on the mean hourly concentrations of PM10 and ozone for the period between
January 1 2008 and December 31 2018. Although, the analysis PM2.5 is potentially of greater interest, the data for this
pollutant is not available for the whole time span at the needed frequency. The measurements were taken at several sta-
tions located in Augsburg and Munich. Both cities lie in the province of Bavaria, south-eastern Germany. We provide the
descriptive statistics of these data in the Supplementary Material. We notice that stations that are more heavily affected by
traffic emissions (M/LandshuterAllee, M/Stachus, A/Karlstraße and A/Königsplatz) experience higher PM10 concentra-
tions than the rest. Traffic also causes higher volatility of PM10 concentrations. For ozone, however, the opposite seems
to be the case. The lowest mean O3 concentration is observed at M/Stachus and can probably be explained by a high nitro-
gen monoxide (NO) concentration at this station. During the night hours NO reacts with ozone, which results in ozone
depletion as O3 gets decomposed into nitrogen dioxide (NO2) and oxygen (O2) (Sharma et al., 2016). Consequently, the
ozone concentrations are usually lower in busy urban centres and higher in suburban and rural areas, where not as much
NO is emitted by traffic. Note, that the minimum concentration is exactly zero for the majority of the stations, implying
technical minimum detection limits.

In addition to the air quality data, hourly measurements of 13 different meteorological variables were used as input
to predictive model, including air (Ta) and soil temperature (Ts), relative humidity (RH), precipitation (Rf and Rf_bin),
cloud cover (CC), visibility (V), sunshine duration (SD), atmospheric pressure (P), and horizontal wind speed (WS) (see also
Table 1a for the description of each variable). The data were provided by the German Meteorological Service (Deutscher
Wetterdienst, DWD). In case of Augsburg, the data are collected at the local airport which is the only meteorological
station in Augsburg and is situated approx. Ten kilometer away from the city center and 9 km away from the nearest
air quality monitoring station (A/Karlstraße). The farthest-located station is A/LfU, which lies about 14 km away. In
Munich DWD operates several stations located in the different areas of the city. For our analysis we used the data col-
lected at the München-Stadt station as it is the nearest one to all air quality stations. The distance from this station to the
four air quality control stations in Munich varies from 1.5 km (M/Lothstraße) to ca. Ten kilometre (M/Johanneskirchen).
Obviously, the exceedances do depend on the intensity of the traffic and the models we use would clearly profit
from the traffic-related variables. This data is unfortunately not available at the needed frequency and at the given
locations.
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T A B L E 1 Additional variables used as input to the model

Name Description Measurement units

(a) Meteorological variables

CC Total cloud cover 1/8

Rf_bin Indicator variable for precipitation binary (0 or 1)

Rf Hourly precipitation height mm

Ta Air temperature 2 m above the ground ◦C

ΔTa Amplitude of daily air temperature ◦C

Ts Soil temperature in 5 cm depth ◦C

ΔTs Amplitude of daily soil temperature ◦C

RH Relative humidity 2 m above the ground %

SD Hourly sunshine duration min

P Mean sea level pressure hPA

V Average visibility m

WS Average wind speed m/s

Sin_WD sin(2𝜋 ⋅ WD∕360) -1 to 1

Cos_WD cos(2𝜋 ⋅ WD∕360) -1 to 1

Variable name Description Measurement units

(b) Temporal and persistence variables

t Observation number 1 to 95,904

HoD Hour of the day 0 to 23

DoW Day of the week 1 to 7

MoY Month of the year 1 to 12

PM10(t-1), …, PM10(t-24) Past PM10 concentrations (site-specific) μg∕m3

O3(t-1), …, O3(t-24) Past O3 concentrations (site-specific) μg∕m3

Trigonometric transformations were applied to the original wind direction variable (WD) measured in degrees,
resulting in two additional variables: Sin_WD and Cos_WD. ΔTa and ΔTs variables, representing the magnitude of daily
temperature fluctuations, were furthermore added to the model.

To capture the trend and various seasonalities present in the data, several temporal variables were introduced to the
model (see Table 1b). First of all, a variable t was created, which stands for observation number and is supposed to be
helpful in capturing the overall historical time trend (decreasing for PM10, increasing for ozone). To account for seasonal
effects, we added the categorical month-of-the-year (MoY) variable, which marks the month in which the measurement
was taken. The DoW variable was created to capture the special effects associated with the day of the week, whereas the
hour-of-the-day variable (HoD) was introduced to account for daily cycles in pollutant concentrations.

Finally, since the pollutant data show high degree of autocorrelation, predictive models are expected to benefit from
the inclusion of persistence information (Chaloulakou et al., 2003; Grivas & Chaloulakou, 2006; Peng et al., 2017).
Therefore, for each pollutant and each station a set of variables representing the past measurements of the pollutant
concentrations (with time lag varying between 1 and 24 h) was further added to the model.

2.2 Stage 1: Forecasting hourly pollutant concentrations 24 h in advance

In the first stage, the predictions are made iteratively for each next hour—that is, each predicted value is also used as
input in predictions for all of the following hours. For example, when predicting the value for t + 3, values predicted by
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the model for t + 1 and t + 2 are used as an input together with the actually observed past values: PM10(t) to PM10(t − 21).
Note that we always use the last 24 observations (or prediction) to forecast the concentration at the end of the next hour.
Such strategy has two main benefits. First, it results in much smoother estimates of hourly concentrations and, second, it
can substantially increase the accuracy of predictions for the later hours, for which no actual information on the preceding
observations is available.

In order to select the best model for our purpose, we, first, focused on the predictions of the next hour only and tested
a series of different machine learning techniques with respect to their ability to predict the next-hour pollutant con-
centrations at each station. Since the relationship between the independent and dependent variables would be different
depending on location and the chemical or physical properties of the respective pollutant, a separate model is required
for each station-pollutant combination, which in our case yielded 11 models in total. The following machine learning
methods were considered in particular, whereas the last three methods are ensemble-type approaches that rely on trees
as weak learners.

• Support vector machine/regression (SVM/SVR): a generalization of the maximal margin classifier which tries to
separate the data points belonging to different classes by constructing a set of hyperplanes in a high-dimensional space
(James et al., 2013). More precisely, the SVM classifier attempts to maximize the distance from the separating hyper-
plane and the nearest points in every class. Obviously, the classes in practice are not perfectly separable and one allows
for soft margins that penalize points assigned to wrong classes. The next step of generalization is to consider hyper-
surfaces instead of hyperplanes, that is, we separate the classes by nonlinear functions such as, for example, Radial
Basis Function (RBF). In the current study we use the SVM nor for classification but for prediction of concentration.
In order to do so use a variation of this method—the so-called support vector regression with 𝜖-insensitive loss func-
tion and l2 regularization—as implemented by Chang and Lin (2011) based on the general description of the method
provided in Vapnik (1998). The RBF was chosen as a kernel due to its ability to capture highly nonlinear patterns. The
mathematical formulation of it is given by: K(xi, xj) = exp(−𝛾||xi − xj||2), where xi, xj ∈ Rm are the feature vectors of
any two training samples i and j, with m standing for the total number of features. The 𝛾 parameter determines how
much influence a single training sample has on the solution and is typically determined via grid search.

• Random forest (RF) (Breiman, 2001; James et al., 2013): an ensemble method that utilizes decision trees as base
learners. Each tree consists of a set of splitting rules used to partition the space of all predictor variable values into
disjoint regions Rj, j = 1, 2,… , J, represented by the terminal nodes of the tree. The basic idea is to predict the target
variables by a single constant 𝛾j for the whole region Rj. The regions are typically chosen by minimizing the total MSE
with an optimal regularizing penalty. The splitting is done using a top-down, greedy approach, known as recursive
binary splitting, which aims at maximal possible variance reduction inside individual regions. A constant 𝛾j is then
assigned to each terminal node, calculated as the mean of the actual target values for all training observations in Rj,
and the predictions are made by the rule: if xi ∈ Rj ⇒ ŷi = 𝛾j.
A single tree is, however, not flexible enough. In RF multiple trees are grown and, in the end, the ensemble predictions
are obtained through averaging of the predictions produced by the individual base learners. Important characteristic
of this method is that each individual tree is built from a subsample drawn with replacement from the original training
set (a procedure known as bagging and aimed at decreasing the model variance at the expense of a slight increase in its
bias). We set the size of this bootstrap sample to only half of the training set size. Additionally, we limited the number
of features that are considered at each node of a tree when looking for the best split to

√
m, where m is the total

number of input features. This trick introduces additional randomness into each tree, making them less correlated
and, therefore, further reducing the danger of overfitting (James et al., 2013).

• Extremely randomized trees (ERT) (Geurts et al., 2006): a meta-learner, similar to random forest, that fits a number
of randomized trees (also called extra-trees) to different subsamples of data. The difference to random forest lies in
the fact that at each tree node not only the candidate features are drawn at random from the total number of features,
but also the thresholds for data splitting are determined completely randomly for each selected feature. The best of
these randomly-generated thresholds is finally used as the splitting rule for the node.

• Stochastic gradient tree boosting (SGTB) (Friedman, 2001; Friedman, 2002; Hastie et al., 2009): an implementa-
tion of a gradient boosting algorithm with trees used as weak learners. This approach solves the key disadvantage of
the RF, that the features and the observations are chosen randomly for each tree and independently of the previous
ones. The information from a tree with a good predictive power is not used to improve the next trees. SGTB is an exten-
sion of boosting and overcomes this problem. The trees are grown sequentially and not in parallel, like in RF, and the
predictions are calculated as the sum of the predictions of individual base learners: ŷ = FB(x) =

∑B
b=1hb(x), where B is
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the total number of trees, and hb(x) – the value predicted by a tree b. Since this method showed the best performance
in the application we provide some technical details on the implementation. A generalized SGTB algorithm consists
of the following steps:
1. Initialize the model. F0(x) is typically given by a single terminal node tree that always predicts some constant (since

we use the least absolute deviation as the loss function, our initial model is given by the median value of y).
2. Calculate the value of the loss function:

L0 =
n∑

i=1
L(yi,F0(xi)) (1)

3. For b = 1, 2,… ,B, repeat:

(a) Fit a tree hb to the training data so as to minimize the total sum of losses, given the model from the previous
step:

hb = argminhLb = argminh

n∑
i=1

L(yi,Fb−1(xi) + h(xi)). (2)

A first-order Taylor approximation is applied to approximate the value of L:

L(yi,Fb−1(xi) + hb(xi)) ≈ L(yi,Fb−1(xi)) + hb(xi)gi, (3)

where gi is the derivative of the loss with respect to its second parameter, evaluated at Fb−1(x) for the sample i:

gi =
[
𝛿L(yi,F(xi))

𝛿F(xi)

]
F=Fb−1

. (4)

For each sample in the training set, the negative gradient, −gi, marks the direction of the most rapid possible
decrease in the value of the loss function. Therefore, the most obvious way to reduce the total loss is by fitting
hb to predict a value that is proportional to the negative gradients of the samples. This strategy is called the
steepest descent.

(b) Update the model:

Fb(x) = Fb−1(x) + hb(x). (5)

4. Output the boosted model, FB(x).

The fashion in which the model is built forces each subsequent tree to focus more on samples that are not explained
well by the current model. Larger number of estimators, therefore, results in better accuracy of predictions—at least for
the training set. To avoid the danger of eventual overfitting on the test set, we apply regularization in form of shrinkage
and subsampling. Shrinkage scales the contribution of each individual tree to the model by a factor 0 < 𝜐 < 1, also
called the learning rate, thus slowing down the model training process: Fb(x) = Fb−1(x) + 𝜐 ⋅ hb(x). Subsampling, on
the other hand, combines boosting with the bootstrapping practices typical for forest-like methods. We make sure that
each tree is trained on a subsample of the size n∕2, drawn from the original training set without replacement, and set
the maximum number of features to be considered at each split to

√
m, same as in RF and ERT models.

For comparison purposes we also considered more classical predictive models such as the classical linear regression
with its extensions LASSO and ridge. Although, LASSO and ridge are not explicitly likelihood methods, they are regular-
ized extensions of the linear regression. The performance of the linear regression and of ridge/lasso was very weak, so that
we decided to exclude them from further analysis. The environmental data exhibits also a strong seasonal pattern and tem-
poral dependence that is typically modeled by an appropriate (seasonal) time series model, for example, SARFIMA. The
models applied here are not time series models and do not mimic the memory in the data directly. We include, however,
the lagged values of the variables as regressors and, therefore, model the temporal dependence indirectly using nonlinear
machine learning tools.
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T A B L E 2 Cross-validation scores for the 1-h-ahead forecasts of PM10 and O3 concentrations produced by
the four models, averaged across all stations

Method Best parameters selected by cross-validationa R2

(a) PM10

SVM Kernel = RBF
𝜖 = 0.1, C = 0.1

0.777

RFb Number of estimators = 750
Maximum tree depth = 32

0.818

ERTb Number of estimators = 1000
Number of estimators = 1500

0.791

SGTBb Learning rate = 0.025
Loss function = |y − ŷ| (least absolute deviation)

0.829

Method Best parameters selected by cross-validationa R2

(b) Ozone

SVM Kernel = RBF
𝜖 = 0.1, C = 0.1

0.941

RFb Number of estimators = 500
Maximum tree depth = 32

0.939

ERTb Number of estimators = 750
Number of estimators = 1500

0.928

SGTBb Learning rate = 0.05
Loss function = |y − ŷ| (least absolute deviation)

0.945

a Whenever the difference in R2 between 2 or more models was < 0.001, the simplest model was chosen.
b Fraction of the training set used to grow each tree = 0.5. Maximum number of features to be considered at each split =

√
m,

where m stands for the total number of features.

To compare the performance of different methods on training data we apply the 9-fold cross-validation. However, this
time the model tuning, or parametrization, was performed in parallel. The best parameter combination for each method
was determined as the one resulting in the highest mean cross-validation score—RMSE—from Section 2.4.1 obtained
for a given pollutant and method across all years and all stations. The use of cross-validation procedure at this point
ensures that our results are not dependent on the specific conditions observed in any given year, thus yielding much more
reliable estimates of model performance. The final estimates, corresponding to the best scores achieved by each of the
tested methods, are presented in Table 2. The best performance—both for ozone and for PM10—was shown by the SGTB
model. Subsequently, this model was retrained using all 9 years of training data and used to produce 24-h-ahead forecasts
of hourly PM10 and ozone concentrations—for the training (2008–2016) as well as for the testing (2016–2018) period see
also Section 2.2).

For each pollutant and each monitoring station we generate not one, but a total of 24 sets of such forecasts—one
at each hour of the day. The first set of forecasts includes those initiated at 12 a.m. for the time period between
1 a.m. of the same day and 12 a.m. of the following day. The second set consists of forecasts made at 1 a.m.
each day for hours between 2–1 a.m.+1 day, and so on. We do this, since we expect that forecasts initiated at
different hours throughout the day, for example, at nighttime, will follow slightly different patterns. Having 24
forecasts instead of just one will, furthermore, allow us to compute more representative estimates of model
performance.

2.3 Stage 2: Forecasting daily limit exceedances

In stage 2, the hourly forecasts produced in the stage 1 are used to identify episodes of high exposure. At first, hourly
values are aggregated into respective daily measures, following the guidelines provided in the Directive 2008/50/EC
“on ambient air quality and cleaner air for Europe” (EC, European Council (EC), 2008). For PM10 such measure is
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computed as a simple 24-h average of hourly concentrations, for ozone—as a maximum of the 24 8-h moving averages
computed throughout the day. Note, that the we always calculate the daily averages for the same 24-h periods for which
the stage-1 predictions were created. For example, if hourly forecasts were generated at 8 p.m. for the period between
9 p.m. of the same day and 8 p.m. of the following day, then we would also use the same time windows to calculate the
daily means. Next, obtained values for each day are compared to limit values set by the Directive, which are 50 μg∕m3

for PM10 and 120 μg∕m3 for ozone, to identify the days with norm exceedances (the direct approach for exceedances
detection).

Unfortunately, most statistical models tend to systematically underpredict the events of extremely high pollutant con-
centrations (McKendry, 2002). One way to improve the sensitivity of exceedances detection is to lower the threshold value.
For example, setting the daily limit to 40 μg∕m3 for PM10 and to 110 μg∕m3 for ozone would allow us to detect a larger
fraction of the observed high-concentration episodes. We shift the focus of our predictions and prioritize the true posi-
tives over the true negatives. We decide that in the context of our use case—producing early warnings to the population
and the responsible decision makers—the cost of false alarm is much smaller than that of an undetected exceedance.
We were also not the first ones to suggest this approach of using lower threshold and follow here the approach of
Corani (2005).

Another possibility to achieve better results in predicting incidents of standard violations is to build a second
model on top of the first one, that would take daily measures calculated from the stage-1 hourly forecasts as an
input and return probabilities of limit exceedance as its output. We have tried using logistic regression model for this
purpose.

Logistic regression is a linear model for classification where the probability of an observation belonging to a cer-
tain class is modeled using a logistic function. We used a scikit-learn python implementation with “liblinear” solver,
which employs a coordinate descent algorithm to solve the optimization problem (Fan et al., 2008; Yu et al., 2011). In
order to prevent overfitting, a regularization procedure with l2 penalty as in ridge and the regularization parameter C
chosen by the 9-fold cross validation was implemented. More precisely, we minimize the objective function as defined
below

n∑
i=1

(
v0yi log ŷi + v1(1 − yi) log(1 − ŷi)

)
+ C||w||2,

where ŷi = 1∕(1 + e−w′xi). Additionally, we set the class weights v0 and v1 to be inversely proportional to the observed class
frequencies in the input data.

Such approach is recommended for the unbalanced data sets such as ours. Since only a few exceedances of daily
limit are observed for each pollutant in each year, the model would normally tend to always predict the nonexceedance.
By adjusting the class weights, we can avoid this situation and push the model to try harder to predict the other class
as well.

We fit the logistic regression model on daily averages calculated from hourly forecasts of pollutant concentra-
tions in the training period as defined in Section 2.2. Subsequently, the model was applied to make predictions of
exceedances in train sample. Using the information about the actually observed exceedances, we constructed the model’s
precision-recall curve and used it to find an optimal cutoff probability. Two different approaches were developed for
this task:

1. Simply choose such cutoff that maximizes the recall while, at the same time, not allowing the model’s precision to fall
below a certain threshold (e.g., 50%, 60%, or 70%).

2. Maximize the F-measure (Hripcsak & Rothschild, 2005) which represents a weighted average between the preci-
sion and recall and is universally considered a good metric when looking for the best trade-off between the two:
F𝛽 = (1 + 𝛽2) ⋅ (precision ⋅ recall)∕(𝛽2 ⋅ precision + recall). Typically, 𝛽 is chosen such that the recall is considered 𝛽

times as important as the precision. We try 𝛽 values of 2 and 3 since we consider the model’s ability to detect criti-
cal cases at least twice as important as its capacity to avoid false alarms. Section 2.4.2 .contains more details on these
concepts.

In the end, the model is used to predict the probabilities of exceedances in the test sample. The cutoff determined on
the train set is then applied to the probabilities of the test set to turn them into final predictions. An algorithmic summary
of the Stages I and II is given in the Supplementary Material as Algorithms 1 and 2.
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2.4 Model evaluation

2.4.1 Evaluation of the hourly forecasts from stage 1

To evaluate the performance of the model in the stage 1, seven metrics were calculated. Additionally to R2 and RMSE we
soncider

MAE = 1
n

n−1∑
i=1

|yi − ŷi|, (6)

MedAE = median(|y1 − ŷ1|,… , |yn − ŷn|), (7)

MBE = 1
n

n∑
i=1

(yi − ŷi) = y − ŷ, (8)

Δ𝜎 =

√√√√ 1
n − 1

n∑
i=1

(yi − y)2 −

√√√√ 1
n − 1

n∑
i=1

(ŷi − ŷ)2 (9)

d2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(|yi − y| + |ŷi − y|)2

(10)

where yi is the actual and ŷi—the predicted value of ith generic observation and ŷ = 1
n

∑n
i=1ŷi.

Since the first four measures neglect the direction of the deviance, we calculate the statistic—the mean bias error
(MBE)—described by formula 8. To gain some insight on the distributional properties of both the actual and the predicted
values, we, furthermore, compute the difference in their standard deviations (Δ𝜎). Finally, we also introduce the index of
agreement (d2)—a measure first proposed by Willmott (1981). Whereas R2 just reflects how good the model can explain
the majority of observed values, d2 pays somewhat more attention to outliers. If the model is good at predicting the
middle-range values but fails to predict the peak concentrations, it will be penalized more by d2 than by R2. Considering
that in our case the correct prediction of high pollutant concentrations is much more important than that of moderate or
low values, the index of agreement is probably the most important indicator of performance that we have. It is described
by Equation 10 and can take values between 0 (worst) and 1 (best).

At first, the above-mentioned metrics were calculated separately for each station and for each of the 24 separate sets
of predictions (generated, as you remember, one at each hour of the day). Subsequently, the results were averaged across
all possible prediction starting points to produce a single set of performance indicators for each station. These averaged
statistics, should provide a robust estimate of model’s performance, independent of the specific time at which we choose
to generate the forecasts.

2.4.2 Evaluation of the exceedances predictions from stage 2

To evaluate the performance of the classification at stage 2, we compute the confusion matrix and a number of
performance measures for each setting.

A confusion matrix consists of four terms: true positives (TP) which marks the number of correctly forecasted
exceedances, true negatives (TN); correctly forecasted nonexceedances, false positives (FP); forecasted but not observed
exceedances or false alarm (also called “Type I error”), and false negatives (FN); missed exceedances (observed but not
forecasted, “Type II error”). A number of additional performance measures can be calculated from these terms. For
example, the overall model accuracy (ACC) is defined as a proportion of instances (both positives and negatives) that
were correctly classified by the model. The true positive rate (TPR), often referred to as probability of detection, sensi-
tivity, recall, or power of the model, represents the fraction of correctly identified positives. Another important indicator
of performance is the so-called positive predictive value (PPV) or precision of the model, calculated as a ratio of the pre-
dicted and observed exceedances to all the forecasted ones. All of the above-mentioned measures assume their best value
at 1, while the worst possible value is 0. We also reintroduce the F-measure (14), first mentioned in Section 2.3.

ACC = TP + TN
TP + FP + TN + FN

(11)
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TPR = TP
TP + FN

(12)

PPV = TP
TP + FP

(13)

F𝛽 = (1 + 𝛽2)(PPV × TPR)
(𝛽2 × PPV + TPR)

, with 𝛽 = 2 (14)

TSS = TP × TN − FP × FN
(TP + FN)(TN + FP)

(15)

The last measure that we compute is called the true skill statistic (TSS) and is given by Equation 15. Also known as the
Hanssen–Kuipers discriminant or Kuipers’ performance index, this metric makes additional adjustments for the correct
forecasts that were made by chance. Perfect forecasts receive a score of+1, random (classification by chance) and constant
(all observations to only one class) forecasts—a score of 0, and forecasts inferior to random forecasts receive a negative
score. The higher is the probability of event occurrence, the lower is the contribution to the skill score resulting from its
correct classification by the model. As the likelihood of the event decreases, the contribution of a correct prediction to
the skill score, on the contrary, increases. The TSS measure, therefore, has some desirable characteristics for evaluating
rare event forecasts. Together with the F-measure, it should play a key role in helping us to make a decision regarding the
final choice of the model.

3 RESULTS AND DISCUSSION

3.1 Data preparation

The proportion of missing observations in the original air quality data ranged between 0.16% and 4.41% for different
stations. The combined meteorological data of Augsburg and Munich contained ca. 4.33% of missing values. Since not all
models can handle the presence of missing values in the input data, we have applied an iterative procedure for multivariate
feature imputation to fill in the blanks. Such an imputer models each variable in turn as a function of all other variables.
In that way, the information contained in those variables can be used to predict the missing values of the target variable.
After all missing values have been imputed—that is, each variable has been predicted once—the whole cycle is repeated
several more times—either until the maximum number of iterations is reached or until the relative changes in predictions
after each round become smaller than some predefined threshold value.

In our case, a Bayesian ridge estimator—regularized linear regression technique (Tipping & Smola, 2001)—was used
for modeling, with the maximum number of iterations set to 10.

After the missing values imputation, the data have been split into two nonoverlapping samples. The first 9 years of
data (2008–2016) were classified as the training set and utilized for model selection and tuning, whereas the last 2 years of
data (2017 & 2018) were reserved for testing. All data collected on the December 31 and January 1 of each year have been
removed from the sample to eliminate the most extreme outliers (thanks to the German tradition of lighting fireworks
on New Year’s Eve, the PM10 values on these days are sometimes more than 70 times higher than the average observed
values). Variation of the splitting data between training and test data had no visible impact on the results. Moreover, two
years of test data is sufficient to capture annual trends in the data.

The final step of our data preparation process consisted of removing some of the redundant meteorological variables.
Two examples of the redundant variables in our data are the air and the soil temperature. Both variables correlate quite
strongly with the target variables (PM10 and ozone), but even more so with each other (Pearson correlation coefficient =
95%). This also applies to the ΔTa and the ΔTs variables which are the differences between the maxima and minima of
daily air and soil temperatures, respectively.

A simple nonlinear technique—the k-nearest neighbours algorithm (kNN)—was used in order to compare the pairs of
variables and choose the most relevant ones for analysis. We set k to 20 and used a 9-fold cross-validation (CV) to estimate
the model’s performance on training data (Stone, 1974). We opt for this specification, because the training data set we
use covers exactly 9 years. We justify the use of CV for time series data by the fact that since we work with hourly data,
the changes in the local intraday trends and autocorrelations are almost negligible if we switch from one year to another.
Alternatively, one can apply expanding or moving window CV, but due the size of the data set this has little impact on
the results, as the preliminary analysis has shown.
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At first, the model was trained using the full set of meteorological variables to obtain a baseline estimate of its
predictive power. Subsequently, the process was repeated 4 more times, each time excluding one of the tempera-
ture variables from the input. The results obtained with each set of variables suggest that for PM10 an exclusion
of the air temperature variable leads to the largest decrease in R2, as compared to the full model, and the loss of
ΔTa variable has greater impact than the loss of ΔTs. For ozone, on the other hand, the soil temperature holds
the most predictive power, but ΔTa still seems to be slightly more important than ΔTs. Therefore, we used the
Ta and ΔTa variables when predicting the PM10 levels, while the Ts and ΔTa variables were used as input for
O3 predictions.

3.2 Forecasts of the mean hourly PM10 concentrations

Table 3 shows the averaged statistics, obtained on the 24-h-ahead forecasts of hourly PM10 concentrations. We see that
our model was able to achieve an average R2 score of 0.68 across all stations, which signals good predictive power. The
best results were obtained for the M/Lothstraße station. Located in a residential area of Munich, this station is character-
ized by little traffic and low levels of PM10 pollution. It is also the closest station to the site where meteorological data
for Munich is collected. The worst results were achieved, on the contrary, for the M/LandshuterAllee and M/Stachus sta-
tions. Both of these stations are located in the immediate vicinity of large city roads and are thus associated with the
relatively high overall pollution levels and high amplitude of the observed daily and weekly fluctuations, caused primarily
by traffic.

From Table 3 we further notice that the forecasted values show good agreement with the actually observed values
(d2 values ranging between 0.85 and 0.94 across individual stations), however, the standard deviation of the predicted
values is lower than that of the actual ones, meaning that the model was not able to capture all of the variability in the
original data. The obtained values for RMSE, MAE, and MedAE, furthermore, suggest that the model is very good at
predicting the average values, but has difficulties predicting extreme concentrations. That is unfortunate, since extreme
concentrations are the ones we are particularly interested in predicting correctly, but, at the same time, understandable
since, essentially, all statistical models are aimed at an approximation of the average behavior and thus tend to ignore the
outliers. Finally, when looking at MBE values, we notice that most of them do not exceed 1 μg∕m3 in absolute terms. Only
at two stations—M/LandshuterAllee and M/Stachus—does our model seem to systematically underpredict the observed
concentrations.

Figure 1 illustrates how the accuracy of the produced forecasts is affected by choice of the forecasting period.
Recall that hourly predictions are made iteratively for each next hour—that is, each predicted value is also used as
input in predictions for all of the following hours. Nevertheless, as the number of actual past observations avail-
able to the model decreases, it becomes progressively more difficult to make predictions. As one can see from

T A B L E 3 Performance statistics for the 24-h-ahead forecasts of PM10 hourly concentrations produced by
the SGTB model

R2 RMSE MAE MedAE MBE 𝚫𝝈 d2

M/Johanneskirchen 0.66 7.95 4.94 3.20 0.03 2.60 0.89

M/LandshuterAllee 0.62 10.27 6.66 4.49 1.07 2.05 0.88

M/Lothstraße 0.77 6.19 4.03 2.61 0.52 0.76 0.94

M/Stachus 0.58 11.09 6.44 4.04 2.11 4.03 0.85

A/Karlstraße 0.73 8.47 5.58 3.78 0.08 2.33 0.92

A/Königsplatz 0.70 8.31 5.53 3.86 0.14 3.01 0.90

A/LfU 0.71 7.18 4.88 3.40 0.77 1.97 0.91

Average statistics 0.68 8.49 5.44 3.63 0.67 2.39 0.90

Note: The results presented in this table were computed as averages over the individual results obtained for each of the 24
separate 1-day-ahead forecasts produced at different hours throughout the day. This notion also applies to all of the following
tables in this article, unless explicitly stated otherwise.
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F I G U R E 1 Accuracy of the produced PM10 forecasts depending on choice of the forecasting period. The right figure shows the
forecast accuracy for averaged over the accuracies up to the corresponding horizon

Figure 1a, the R2 scores for the first predicted hour are very high, ranging between 0.86 and 0.95 for individual
stations.

After the first hour, the accuracy of hourly predictions drops exponentially for each subsequent hour. Yet, after the
first 7 to 10 h the curve becomes rather flat; so, theoretically, even if we did chose a longer forecasting period, the qual-
ity of the produced forecasts would not deteriorate that fast. Thanks to the effects of averaging, the accuracy of the
aggregate forecasts (see Figure 1b), in any case, decreases more slowly than that of the individual hourly predictions
(see Figure 1a).

Until now, we have only been looking at the aggregated results, averaged across all possible initiation points.
Yet, the quality of the produced forecasts also depends on the specific time at which they were generated. As
one can see from Figure 2, at most stations forecasts produced during the daylight hours tend to be more
accurate than those generated in the late evening or night hours. An explanation lies in the fact that the air
pollution data is highly autocorrelated, so that the last few actually observed values prior to the start of the
forecasting period would always have an unproportionally high impact on the produced forecasts. Since PM10
concentrations at night are typically much lower than during the day, the forecasts generated at night hours
might underestimate the overall daily pollution levels. On the other hand, the forecasts produced during the
evening rush hours may sometimes overestimate the daily pollution levels and lead to worse results in terms of
accuracy.

3.3 Forecasts of the daily limit exceedances (PM10)

Table 4 presents the results obtained for two different thresholds when using a direct approach to predicting episodes
of high exposure from the stage-1 hourly forecasts. 50 μg∕m3 is the actual daily limit set by the EU. However, as we
see from Table 4a, the probability of the exceedances detection with this threshold amounts to only 71% on average.
At the same time, using a threshold of 40 μg∕m3 allows us to detect about 89% of all exceedances, which is a very
good result. However, such increase in sensitivity happens at a cost of a substantial decrease in precision. At some sta-
tions the fraction of predicted positives that correspond to actually observed exceedances is only slightly above 0.5—that
is, almost half of the predicted episodes turned out to be a false alarm. That may sound like a lot of noise, yet, in
absolute terms such false alarms constitute a very small number of occurrences—between 5 and 9 per year (remember, the
test period is 2 years). Furthermore, in the context of our use case—producing early warnings to the population and the
responsible decision makers—the cost of false alarm is much smaller than that of an undetected exceedance. Therefore,
authorities will likely be willing to accept the higher probability of false alarm for the benefit of better health protection.
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F I G U R E 2 Forecast accuracy depending on prediction starting point (PM10)

The results produced by logistic regression are presented in Table 5. As you remember, we have tested two
approaches to determine an optimal cutoff probability used to transform the class probabilities returned by a clas-
sifier into the binary class predictions. Using the first approach, we select such cutoff that maximizes the prob-
ability of exceedances detection (i.e., TPR) in the training set, while, at the same time, not allowing the model’s
precision (PPV) to fall below a certain threshold. The best results were obtained with a threshold of 0.5 and are
reported in Table 5a. The PPV values now range between 0.59 and 0.71, meaning that the model produces fewer false
alarms. But its sensitivity to actual exceedances is also slightly decreased, resulting in the average TPR of 0.87 and
TSS of 0.85.

Quite similar results were obtained when using the logistic regression with cutoff selected by maximizing F-score with
𝛽 value set to 2. More interesting are, therefore, the results achieved with 𝛽 = 3 that are reported in Table 5b. The average
probability of exceedances detection using this method equals 91% and the proportion of correct forecasts amounts to
56%. This method, furthermore, results in high values for F𝛽 and the TSS and, therefore, seems to be the best choice
for the task at hand (although, a more cautious decision-maker may, of course, choose even higher 𝛽 to achieve greater
sensitivity at the cost of somewhat lower precision).

The model shows a nonuniform performance at different stations. The worst results are obtained for M/Stachus
station, which comes across naturally since already at stage 1 this station was among the hardest ones to make
predictions for. The best scores on average are achieved using the data from M/Johanneskirchen and A/Königsplatz
stations, followed by the M/Lothstraße, A/Karlstraße and A/LfU – which is, again, largely consistent with the results
seen at stage 1. When looking at the total number of correctly predicted limit exceedances in relation to the time of
the day when predictions were made (as depicted in Figure 3), we notice a substantial variability as well. In part, it is
too caused by the differing quality of the stage-1 hourly forecasts since those are used as basis for exceedances predic-
tions. So, for example, at the M/Lothstraße station both the hourly forecasts and the exceedances predictions generated
during the day tend to be more accurate than the ones produced at night hours. Same is true for M/LandshuterAllee
and M/Stachus, whereas at A/LfU, on the contrary, best results in both stages are achieved if predictions are generated
at night.

The perceived variability may be, of course, used as guidance when selecting the best initiation point. Yet, prac-
ticability is even more important criterion if we want forecasts to be used in the proactive air pollution manage-
ment. We must ensure that the responsible authorities have enough time to inform the population and, eventu-
ally, to implement the countermeasures. Based on these considerations, evening hours or the early morning seem
to be the most appropriate time for the generation of forecasts. For example, Table 6 presents the performance
statistics of forecasts created at 7 p.m. using logistic regression with a modified cutoff, selected by maximizing
the F𝛽=3.

Finally, we would like to compare our findings to those reported by similar studies at other locations around the
world. This is not an easy task since different authors use different target measures of PM10 concentrations and dif-
ferent thresholds, depending on properties of the analysed data and the existing country-specific air quality standards.
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T A B L E 4 Performance statistics for the forecasts of PM10 daily limit exceedances produced using the
direct approach

TN, FP, FN, TP ACC TPR PPV F𝜷 TSS

(a) Threshold value = 50 μg∕m3

M/Johanneskirchen (707, 2, 3, 11) 0.99 0.76 0.87 0.78 0.76

M/LandshuterAllee (645, 6, 11, 25) 0.97 0.69 0.81 0.71 0.68

M/Lothstraße (704, 3, 4, 13) 0.99 0.77 0.81 0.77 0.76

M/Stachus (664, 6, 12, 21) 0.97 0.63 0.77 0.66 0.62

A/Karlstraße (683, 4, 12, 19) 0.98 0.61 0.81 0.64 0.60

A/Königsplatz (698, 4, 6, 17) 0.99 0.75 0.80 0.76 0.74

A/LfU (705, 2, 4, 10) 0.99 0.74 0.83 0.75 0.74

Averaged statistics – 0.98 0.71 0.81 0.72 0.70

TN, FP, FN, TP ACC TPR PPV F𝜷 TSS

(b) Threshold value = 40 μg∕m3

M/Johanneskirchen (698, 11, 1, 13) 0.98 0.94 0.56 0.83 0.93

M/LandshuterAllee (632, 18, 5, 31) 0.97 0.86 0.63 0.80 0.83

M/Lothstraße (692, 16, 1, 16) 0.98 0.93 0.51 0.79 0.91

M/Stachus (654, 16, 8, 25) 0.97 0.76 0.60 0.72 0.73

A/Karlstraße (673, 14, 4, 27) 0.97 0.87 0.65 0.81 0.85

A/Königsplatz (686, 16, 1, 22) 0.98 0.96 0.57 0.85 0.94

A/LfU (698, 9, 1, 12) 0.99 0.92 0.58 0.82 0.91

Averaged statistics – 0.98 0.89 0.59 0.80 0.87

Note: Because of the rounding effects as well as due to the fact that the days on which more than 25% of the hourly
measurements were missing in the actual data are excluded from analysis, the total number of days in the confusion matrix
may differ between stations and/or between tables. This notion also applies to all of the following tables in this section and the
corresponding section for ozone (3.5), unless explicitly stated otherwise.

Moreover, different performance indicators are used to evaluate the models, which often makes a direct comparison
impossible. Nevertheless, we did our best to collect information on each study on PM10 exceedances forecasting that was
conducted in the last couple of decades and, for the purpose of better comparability, summarized the findings in terms of
the performance measures used in the current study, whenever such translation was possible. You can find an overview
of the results in Table 7.

In terms of TSS score, no other study was able to match our results. With respect to TPR and PPV values, however,
Chaloulakou et al. (2003) outperform our model by far. The reason for such outstanding performance may lie in the
fact that the mean PM10 concentration during the testing period of the respective study in Athens was, in fact, equal to
79 μg∕m3, which is higher than the applicable limit value for PM10. Such circumstance, of course, makes the prediction
task much easier since, as we have already pointed out, statistical models are better at predicting concentrations around
the mean. This could, at least partially, also explain the good results presented in the study of air quality in Milan, con-
ducted by Corani (2005), where the average daily PM10 concentration corresponds to around 45 μg∕m3 and the threshold
is set to 50 μg∕m3. Finally, we would also like to mention Perez and Reyes (2006), who used a linear model and an ANN
to produce forecasts of PM10 limit exceedances in Santiago, Chile, and managed to achieve quite satisfactory results in
terms of both TPR and PPV values.

3.4 Forecasts of the mean hourly ozone concentrations

The performance statistics calculated from the 24-h-ahead ozone predictions for each station are summarized in
Table 8. We notice that the accuracy of the produced forecasts is much higher for ozone than it was for PM10. The
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T A B L E 5 Performance statistics for the forecasts of PM10 daily limit exceedances produced by logistic regression

TN, FP, FN, TP ACC TPR PPV F𝜷 TSS

(a) Minimum threshold value for precision = 0.5

M/Johanneskirchen (703, 6, 1, 13) 0.99 0.91 0.71 0.86 0.91

M/LandshuterAllee (628, 23, 5, 32) 0.96 0.87 0.59 0.79 0.83

M/Lothstraße (698, 10, 2, 16) 0.98 0.90 0.61 0.82 0.88

M/Stachus (657, 14, 8, 24) 0.97 0.75 0.64 0.72 0.73

A/Karlstraße (674, 13, 5, 25) 0.97 0.83 0.66 0.79 0.81

A/Königsplatz (688, 15, 1, 22) 0.98 0.96 0.60 0.85 0.94

A/LfU (702, 5, 2, 11) 0.99 0.84 0.70 0.80 0.83

Averaged statistics – 0.98 0.87 0.64 0.81 0.85

TN, FP, FN, TP ACC TPR PPV F𝜷 TSS

(b)𝛽 = 3

M/Johanneskirchen (700, 8, 1, 13) 0.99 0.94 0.60 0.85 0.93

M/LandshuterAllee (616, 35, 3, 33) 0.94 0.91 0.50 0.78 0.85

M/Lothstraße (694, 13, 1, 16) 0.98 0.92 0.56 0.81 0.91

M/Stachus (653, 18, 8, 25) 0.96 0.77 0.59 0.72 0.74

A/Karlstraße (661, 26, 2, 29) 0.96 0.94 0.53 0.81 0.90

A/Königsplatz (684, 18, 1, 22) 0.97 0.97 0.55 0.84 0.95

A/LfU (697, 10, 1, 13) 0.99 0.94 0.59 0.83 0.93

Averaged statistics – 0.97 0.91 0.56 0.81 0.89

F I G U R E 3 Total number of correctly predicted limit exceedances depending on forecast initiation point (PM10, logistic regression)

coefficient of determination reaches values between 0.83 and 0.87, and at all four locations the predicted values show
good agreement with the observed ones, resulting in d2 values around 0.96. Such results are consistent to the ones
reported by Hrust et al. (2009) and are notably better than the results demonstrated by Ballester et al. (2002) and
Peng et al. (2017).

The relationship between the RMSE, MAE, and MedAE values, once again, suggests that the model can predict aver-
age concentrations better than the extremes. Furthermore, the MBE values indicate that the model tends to overestimate
the ozone levels at the A/LfU station and underestimate them at all three Munich stations. That is because the O3 concen-
trations at these stations have been rising at a much higher pace than at A/LfU station, resulting in hourly concentrations



16 of 23                 

T A B L E 6 Performance statistics for the next-day forecasts of PM10 daily limit exceedances
produced at 7 p.m. using logistic regression with a modified cutoff probability

TN, FP, FN, TP ACC TPR PPV F𝜷 TSS

M/Johanneskirchen (700, 8, 0, 13) 0.99 1.00 0.62 0.89 0.99

M/LandshuterAllee (618, 32, 4, 33) 0.95 0.89 0.51 0.77 0.84

M/Lothstraße (690, 18, 1, 16) 0.97 0.94 0.47 0.78 0.92

M/Stachus (657, 16, 5, 24) 0.97 0.83 0.60 0.77 0.80

A/Karlstraße (670, 19, 3, 26) 0.97 0.90 0.58 0.81 0.87

A/Königsplatz (686, 17, 0, 22) 0.98 1.00 0.56 0.87 0.98

A/LfU (697, 9, 2, 12) 0.98 0.86 0.57 0.78 0.84

Averaged statistics – 0.97 0.92 0.56 0.81 0.89

T A B L E 7 Summary of the results from recent studies on PM10 limit exceedances forecasting in urban
areas, using statistical models

Studya Target measure Threshold TPR PPV TSS

Current studyb daily mean 50 μg∕m3 0.91 0.56 0.89

Zickus et al. (2002) daily mean 50 μg∕m3 0.63 0.73 –

Chaloulakou et al. (2003) daily mean 75 μg∕m3 0.93 0.87 0.82

Corani (2005) daily mean 50 μg∕m3 0.82 0.84 0.76

Hooyberghs et al. (2005) daily mean 100 μg∕m3 0.73 0.46 0.66

Grivas and Chaloulakou (2006) hourly mean y + 2𝜎 c 0.58 0.68 0.55

Perez and Reyes (2006) max 24h MAd 150 μg∕m3 0.81 0.70 0.76

Paschalidou et al. (2011) hourly mean y + 2𝜎 c 0.70 – –

Perez (2012) max 24h MAd 195 μg∕m3 0.76 0.59 0.70

aThe results correspond to statistics obtained on testing set across all studied locations. In case several models were tested in
the paper, only statistics corresponding to the best-preforming model are reported.
bPresented numbers correspond to average statistics reported in the Table 5b.
c2 standard deviations above the average measured PM10 concentration levels at each site.
dMaximum value of the 24-h moving average PM10 concentration measured on any given day.

becoming on average 16% to 39% higher during the testing period as compared to the training period. Our model was able
to capture some of this increase but not all of it as changes happened too fast.

Similar as it was with the predictions of PM10, we observe an exponential decrease in the quality of the produced
forecasts as we extend the forecasting horizon further into the future (see Figure 4). For the first predicted hour the R2

values range between 0.92 and 0.95. These results were compared to the findings of multiple nowcasting studies and were
found to be superior in every single instance (see, for example, Ortiz-García et al., 2010; Arhami et al., 2013; Goulier
et al., 2020).

The quality of the produced forecasts (measured in terms of R2) also varies depending on the prediction starting point,
with forecasts produced in the morning and during the day showing worse performance than the ones generated at night
(see Figure 5). However, the fluctuations are of a much smaller magnitude than the ones observed for PM10 and can
generally be neglected.

3.5 Forecasts of the daily limit exceedances (O3)

Table 9a,b present the results obtained for two different thresholds when using the direct approach to predicting the daily
limit exceedances. Once again, we find the results produced with lower threshold to be more satisfactory. At the same
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T A B L E 8 Performance statistics for the produced 24-h-ahead forecasts of O3 hourly concentrations
averaged across all prediction starting points

R2 RMSE MAE MedAE MBE 𝚫𝝈 d2

M/Johanneskirchen 0.87 12.49 9.37 7.09 1.37 0.59 0.96

M/Lothstraße 0.85 12.76 9.59 7.38 1.90 1.35 0.96

M/Stachus 0.83 11.30 8.59 6.71 1.48 3.09 0.95

A/LfU 0.86 12.86 9.71 7.43 −2.19 −0.56 0.96

Average statistics 0.85 12.35 9.31 7.15 0.64 1.12 0.96

F I G U R E 4 Accuracy of the produced O3 forecasts depending on choice of the forecasting period

F I G U R E 5 Forecast accuracy depending on prediction starting point (O3)

time, we notice that these results are not as good as the ones obtained for PM10. That is somewhat surprising since the
quality of hourly forecasts produced at stage 1 was substantially better for ozone. Yet, such results are in line with the
findings of other comparable studies, as we should see later on.

The indirect approach to the prediction of daily limit exceedances for ozone is identical to the one we have used
for the prediction of PM10 exceedances. However, to attain a reasonable balance between the model’s sensitivity and
the PPV value achieved on test sample, we were forced to adopt a higher minimum threshold for precision and select
a lower 𝛽, when determining an optimal cutoff. A threshold of 0.6, for example, ensures probability of exceedances
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T A B L E 9 Performance statistics for the forecasts of O3 daily limit exceedances produced using the direct approach

TN, FP, FN, TP ACC TPR PPV F𝜷 TSS

(a) Threshold value = 120 μg∕m3

M/Johanneskirchen (639, 13, 15, 55) 0.96 0.79 0.81 0.79 0.77

M/Lothstraße (648, 11, 16, 44) 0.96 0.74 0.81 0.75 0.72

M/Stachus (604, 1, 8, 1) 0.99 0.13 0.65 0.16 0.13

A/LfU (617, 35, 9, 58) 0.94 0.86 0.62 0.80 0.81

Averaged statistics – 0.96 0.63 0.72 0.63 0.61

TN, FP, FN, TP ACC TPR PPV F𝜷 TSS

(b) Threshold value = 110 μg∕m3

M/Johanneskirchen (595, 57, 3, 67) 0.92 0.96 0.54 0.83 0.87

M/Lothstraße (626, 32, 6, 54) 0.95 0.91 0.63 0.83 0.86

M/Stachus (601, 3, 5, 4) 0.99 0.44 0.56 0.45 0.44

A/LfU (567, 85, 3, 64) 0.88 0.95 0.43 0.77 0.82

Averaged statistics – 0.93 0.81 0.54 0.72 0.75

T A B L E 10 Performance statistics for the forecasts of O3 daily limit exceedances produced by logistic regression

TN, FP, FN, TP ACC TPR PPV F𝜷 TSS

(a) Minimum threshold value for precision = 0.6

M/Johanneskirchen (604, 48, 4, 66) 0.93 0.94 0.58 0.83 0.86

M/Lothstraße (627, 31, 6, 54) 0.95 0.90 0.64 0.83 0.86

M/Stachus (603, 1, 8, 1) 0.99 0.15 0.62 0.17 0.14

A/LfU (574, 78, 4, 64) 0.89 0.94 0.45 0.77 0.83

Averaged statistics – 0.94 0.73 0.57 0.65 0.67

TN, FP, FN, TP ACC TPR PPV F𝜷 TSS

(b)𝛽 = 2

M/Johanneskirchen (609, 43, 5, 65) 0.93 0.93 0.61 0.84 0.86

M/Lothstraße (634, 24, 9, 51) 0.95 0.85 0.69 0.81 0.82

M/Stachus (603, 2, 7, 2) 0.99 0.23 0.56 0.26 0.23

A/LfU (573, 79, 4, 64) 0.88 0.94 0.45 0.77 0.82

Averaged statistics – 0.94 0.74 0.58 0.67 0.68

detection above 90% and TSS scores above 0.8 at 3 out of 4 stations. Similar results are obtained with 𝛽 set to
2 (see Table 10).

We notice, however, that none of the approaches is capable to predict the exceedances at M/Stachus station to any
satisfying degree. That is because this station is somewhat different from the rest examined in this study. Much lower
levels of ozone had been registered there, and during the whole study period only 16 cases of exceedances were docu-
mented in total—half of them found in the training and half in the testing data. Furthermore, even when exceedances
were reported, they were not substantial—in 5 out of 8 cases occurred during the testing period and in all cases of the
training period the corresponding O3 concentrations were found to be in range between 120–130 μg∕m3. Since already the
stage-1 model notably underestimates the hourly ozone concentrations, we cannot expect to detect many true exceedances
by means of simple comparison with the threshold. But also the logistic regression fails to recognize incidents of high
ozone exposure at this station. The only way to achieve a higher rate of exceedances detection would be to further
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F I G U R E 6 The quality of the O3 exceedances predictions depending on forecast initiation point (direct approach with a threshold of
110 μg∕m3)

T A B L E 11 Performance statistics for the forecasts of O3 daily limit exceedances generated at 7 p.m.
using the direct approach

TN, FP, FN, TP ACC TPR PPV F𝜷 TSS

M/Johanneskirchen (577, 63, 3, 78) 0.91 0.96 0.55 0.84 0.86

M/Lothstraße (611, 37, 10, 60) 0.93 0.86 0.62 0.80 0.80

M/Stachus (601, 3, 7, 3) 0.98 0.30 0.50 0.33 0.30

A/LfU (546, 94, 3, 76) 0.87 0.96 0.45 0.78 0.82

Averaged statistics – 0.92 0.77 0.53 0.69 0.69

Note: A threshold of 110 μg∕m3 was used to classify limit exceedances at all stations.

sacrifice model’s precision. This could be done by selecting a higher 𝛽 or by lowering the minimum threshold value for
precision.

Overall, after comparing the results presented in Tables 9 and 10, we come to a conclusion that, in case of ozone,
building an additional model for classification purposes was not justified. Simple comparison with the adjusted thresh-
old of 110 μg∕m3 allows us to correctly identify more than 90% of limit exceedances at 3 stations. Admittedly, the PPV
values are rather low at all stations except for M/Lothstraße. Yet, we should not forget that the only short-term pre-
ventive action that could be taken by authorities in view of the expected episodes of high ozone exposure is issuing
an early warning to alert the population. The cost of a false alarm under such circumstances (people changing their
plans and choosing to stay indoors for several hours, even if unnecessary) is indisputably lower than that of failing to
predict an episode of high exposure (and thus endangering the people’s health and even risking people’s lives). There-
fore, once again, we put more weight on model’s ability to predict exceedances than on its capacity to avoid false
alarms.

Figure 6 illustrates how the quality of the produced exceedances predictions varies depending on time when pre-
dictions were made. We notice that the forecasts produced during the day, when ozone concentration is at its highest,
tend to have higher accuracy, but the largest number of limit exceedances are detected by forecasts generated somewhere
between 4 and 8 p.m.—that is, in the hours immediately following the daily ozone peaks. Affected by the last few obser-
vations, the model tends to predict higher O3 concentrations around that time, thus capturing more actual exceedances.
However, this also results in higher number of false positives, leading to a sudden fall in the overall accuracy of the
forecasts.

Naturally, if the model was to be put in operational use, the forecasts would most likely not be generated at each hour
of the day but only once per day. In that case we would prefer an evening hour as initiation point. Table 11, for example,
reflects the performance statistics for the forecasts produced at 7 p.m.
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4 DISCUSSION AND COMPARISON

In this section we compare the results of this paper with those in the literature. Note that the results are not directly
comparable, since we different data, different time span and different methods than other authors. This the comparison
is very general.

The obtained results are similar to those achieved by Hrust et al. (2009) and are better than the results reported by
Fernando et al. (2012). Both teams apply methodology similar to ours but in combination with an ANN method and
achieve an R2 of 0.66–0.72 and 0.39 respectively. Cai et al. (2009), on the other hand, obtain an R2 of about 0.83 (𝜌 = 0.91)
on their more than 10-h-ahead forecasts for three stations in China, which is only comparable to the results we got for
M/Lothstraße and A/Karlstraße (if we would consider the same forecasting horizon, see Figure 1b). The better results
can be explained by shorter testing period and by the fact that, Cai et al. (2009) additionally use the traffic volume and
several geographical variables as input to their models. Inclusion of traffic data into the developed model would likely
substantially improve the quality of forecasts at traffic-impacted stations, such as M/LandshuterAllee and M/Stachus. Yet,
in the absence of access to such data, we had to rely on various temporal variables described in Section 2.1, which, at least
in part, may also be seen as proxies for the absent traffic variable.

Kukkonen (2003), Grivas and Chaloulakou (2006), as well as Paschalidou et al. (2011) use somewhat different method-
ology, by predicting each hour using only such persistence information that was available 24 h before the predicted time
(e.g., PM10(t-24), PM10(t-25) and PM10(t-26)) in addition to meteorological and temporal variables observed
at time for which predictions were made. Paschalidou et al. (2011) achieve an average R2 of 0.68 across four stations
on Cyprus, whereas Kukkonen (2003) and Grivas and Chaloulakou (2006) demonstrate substantially worse results, with
mean R2 amounting to 0.37 and 0.60 respectively and d2 values ranging between 0.73 and 0.89.

This result is comparable to the findings of Arhami et al. (2013), who report an R2 of 0.87 on their next-hour predictions
of PM10 concentrations in Tehran, Iran. The results published in other similar studies are not as convincing, with R2

taking values between 0.29 and 0.72 (see, e.g., Aldrin & Haff, 2005; Goulier et al., 2020).
With respect to ozone, We could identify nine studies in total, conducted between 2003–2010, that attempt forecasts

of high O3 concentrations in urban areas. Same as it was the case with PM10, we see a large variety of target measures
and thresholds adopted by the authors. Four studies in total (Corani, 2005; Hogrefe et al., 2007; Schlink et al., 2003; Tsai
et al., 2009) focus on the same forecasting target as us (the maximum 8-h moving average), but only Schlink et al. (2003)
also use the same threshold. The study by Tsai et al. (2009) is included in the table twice. That is because these authors,
similar to us, had several stations with a very small number of daily exceedances in their data. The developed model
produced much worse results at these stations than at other locations. Hence, we also report the average results calculated
without the contribution of such stations to avoid possible misrepresentation. Still, all of the above-mentioned papers
demonstrate worse results than we do, with Schlink et al. (2003) coming closest in terms of TSS value and Corani (2005)
in terms of TPR and PPV values.

Predicting daily maximum O3 concentration seems to be a more easy task than predicting the maximum 8-h moving
average since the results obtained by authors in the lower part of the table are generally better. Remarkably good results
are reported by Slini et al. (2002) and Kumar and de Ridder (2010). The best TPR and TSS values were achieved by Dutot
et al. (2007), who focus on hourly instead of daily concentrations and predict exceedances of hourly maximum O3 values
in Orléans, France (it is possible, however, that the authors meant daily maximum of hourly concentrations while using
the term “hourly maximum”).

5 CONCLUSIONS

A 2-stage model has been developed to produce short-term forecasts of PM10 and O3 concentrations and tested using the
data collected in the cities of Augsburg and Munich, Germany. In the first stage, the mean hourly pollutant concentrations
for each of the next 24 h were predicted from meteorological, temporal and persistence data, using Stochastic Gradient
Tree Boosting as the prediction algorithm. In the second stage, these predictions were used to forecast exceedances of
daily limit concentrations set by the EU. We were able to achieve very good results at both stages. Consistent with findings
in the literature, the accuracy of the hourly forecasts was substantially better for ozone, with average R2 of 0.85 and d2 of
0.96 computed across all stations. The R2 values obtained for PM10 vary between 0.58 and 0.77 depending on location,
with worst results achieved on data from traffic-impacted stations. An inclusion of traffic variables into the input data
could significantly improve the quality of the predictions for these stations.
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In terms of exceedances detection performed at stage 2, the better overall results were achieved for PM10. Using logistic
regression with a modified cutoff probability, we can predict ca. 91% of all limit exceedances occurred at seven stations
during the testing period. About 44% of episodes predicted by the model were false positives. Yet, in absolute terms less
than 18 false alarms per year were registered at each station. The TSS score of 0.89, unmatched by any of the compared
studies, is another powerful indicator of the outstanding model performance.

In case of ozone, satisfactory results were obtained also without the logistic regression model. Instead, hourly forecasts
from the stage 1 were used to calculate a set of daily measures, which were then compared to a specified threshold value
to identify the exceedances. Since all statistical models tend to underpredict the extreme values, we replaced the original
threshold of 120 μg∕m3 with a lower one to ensure better exceedances detection. Using a threshold of 110 μg∕m3 we could
identify more than 90% of actually occurred exceedances and achieve TSS values of above 0.8 at 3 stations out of 4. The
M/Stachus station turned out to be much more difficult to make predictions for due to the extremely small total number
of observed O3 exceedances. The average precision attained across all stations was only slightly above 50%. Yet, the cost
of issuing a false alarm is very small whereas the cost of an undetected exceedance, on the other hand, is arguably high.
Therefore, a public authority would likely be willing to trade a higher rate of false alarms for the benefit of better health
protection.

Overall, the good performance of the model proves that it can be a useful tool for the short-term air quality manage-
ment. An important advantage of our model lies in the very low requirements it puts on computational resources. Run on
a private computer, the algorithm can process more than a decade of hourly data and generate predictions in a matter of
minutes. Hence it can easily be adopted by a governmental agency without the need of any additional investment into the
hosting infrastructure. Still, there are some limitations. One of them lies in the fact that we constructed the model using
the actual meteorological data. And although numerical weather forecasts of all meteorological variables used as input
are available on routinely basis, their uncertainty would contribute to the total uncertainty of the model and may result
in slightly worse performance. There are also limitations in terms of time period and location. Because the relationship
between the independent and dependent variables at different locations around the world is never exactly the same, a
separate model should be developed for each measurement site to ensure the best possible performance. Moreover, since
the underlying patterns in data can change with time, the model needs to be periodically recalibrated and retrained using
several most recent years of observations. However, the general approach would always remain the same.

The model can be extended in many directions. First, the availability of traffic data is expected to improve the predictive
performance of the model at both stages. Second, it would be of interest to deploy machine learning classification tools
in place of logistic regression at the stage 2. Third, spatial models that take into account observations not only at a given
but also at the nearby stations may provide insights into the interconnectedness of the stations and further improve the
model’s predictive power. These issues are left for further research.
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