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Abstract— Zero-shot speech emotion recognition (SER) endows
machines with the ability of sensing unseen-emotional states in
speech, compared with conventional SER endeavors on super-
vised cases. On addressing the zero-shot SER task, auditory
affective descriptors (AADs) are typically employed to transfer
affective knowledge from seen- to unseen-emotional states. How-
ever, it remains unknown which types of AADs can well describe
emotional states in speech during the transfer. In this regard,
we define and research on three types of AADs, namely, per-
emotion semantic-embedding, per-emotion manually annotated,
and per-sample manually annotated AADs, through zero-shot
emotion recognition in speech. This leads to a systematic design
including prototype- and annotation-based zero-shot SER mod-
ules, relying on the input from per-emotion and per-sample
AADs, respectively. We then perform extensive experimental
comparisons between human and machines’ AADs on the French
emotional speech corpus CINEMO for positive-negative (PN) and
within-negative (WN) tasks. The experimental results indicate
that semantic-embedding prototypes from pretrained models can
outperform manually annotated emotional dimensions in zero-
shot SER. The results further demonstrate that it is possible
for machines to understand and describe affective information
in speech better than human beings, with the help of sufficient
pretrained models.

Index Terms— Auditory affective descriptors (AADs),
semantic-embedding prototypes, speech emotion recognition
(SER), zero-shot emotion recognition.
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I. INTRODUCTION

THE past two decades witnessed the rapid progressing in
paralinguistics of auditory affective computing [1]–[3],

consisting of emotion recognition in speech [4]–[6], music [7],
and multimodal conditions [8]. Typically, in the research of
speech emotion recognition (SER), machines learn to perceive
emotional information in speech with the learning procedures
appearing in certain settings [5]. Considering these settings’
differences, existing SER topics usually aim at exploring fully
supervised [6], [9], [10], semisupervised [11], and data-driven
transfer learning [12]–[14] as cases. Furthermore, on the basis
of these works, zero-shot learning (ZSL) in SER makes it pos-
sible to recognize samples from unheard respectively “unseen”
emotions, through information transfer between emotions [15].
This can help machines understand complex implicit inten-
tions or subtle and minor emotional states hidden in social
interactions and signals without seeing the corresponding
samples [15], [16].

However, these endeavors mainly shed light on exploring
the connection between acoustic descriptors (i.e., features
extracted from speech) and fixed emotional labels, without
investigating how to describe emotional states on the aspect
of auditory perception [17]–[19]. A showcase is that when an
SER pipeline makes use of acoustic features for categorical
emotion recognition, it only has to judge the emotional states
of an arbitrary speech utterance [10]. As a result, the samples
from all the emotional states will be treated equally, even if
some of these states tend to be much closer to each other
(e.g., depression and sadness). This makes it appear promising
to introduce and explore optimal auditory affective descrip-
tors (AADs) for describing each target emotion in speech.
Intuitively, it is usually impossible to evaluate high-level
descriptors for each emotional state presented in speech on
the aspect of auditory feeling. For example, we have to trust
the annotated emotional dimensions in previous research due
to the lack of evaluation methods [15], [20]–[22]. To this end,
we propose to induce zero-shot SER approaches to design
effective systems for investigating and evaluating the AADs.

Therefore, we focus on investigating AADs in this
article, following our previous research on zero-shot
SER. First, we define three types of AADs as per-
emotion semantic-embedding, per-emotion manually anno-
tated, and per-sample manually annotated AADs, considering
per-emotion/per-sample and semantic-embedding/manually
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Fig. 1. Diagrammatic overview of the methodology in this work for zero-shot emotion recognition in speech, considering the prototype- and annotation-based
cases.

annotated divisions, as shown in Fig. 1. The first type
employs prototypes from textual semantics for each emotional
state [23], while the second type sets its per-emotion proto-
types through manually annotating. In contrast, the third type
utilizes manual auditory annotations (i.e., emotional dimen-
sions) on samples to describe each emotion [15]. Afterward,
this work aims at answering two questions in relation to these
AADs: 1) which source of AADs performs better, manually
annotated or semantic embedding? and 2) can per-emotion
prototypes outperform manual per-sample-annotation model-
ing as AADs? To answer these questions, we here resort
to solving zero-shot SER tasks using the three AADs types
to connect seen- and unseen-emotional states. For the first
question, a prototype-based zero-shot SER model is set for
the semantic-embedding or manually annotated AADs, while
for the second question, we add an annotation-based model
for processing the per-sample AADs. Then, these two types
of models help to perform the AAD comparisons through
analyzing zero-shot SER results.

This work follows our early research on exploring by
further using semantic-embedding and manually annotated
prototypes for comparison, in order to investigate AADs
[15], [23]. Recent “conventional” SER approaches in this
direction mainly focus on data-driven transfer learning
[12]–[14] and few-shot learning [24], while this work is related
to zero-shot information transfer between emotional states.
Compared with the work of emotion embedding [25], [26],
we aim to research on the affective mediation in auditory
perception. In addition, the existing research of ZSL in image
processing and affective computing provides different strate-
gies to this work [27]–[30].

Our main contributions are highlighted as follows.
1) We define three AAD types of per-emotion semantic-

embedding, per-emotion manually annotated, and per-
sample manually annotated AADs for unifying emo-
tional representations in speech.

2) We investigate the AADs using prototype-based zero-
shot SER approaches, in order to analyze the manual
and semantic-embedding emotional representations.

3) We further investigate the AADs using annotation-based
zero-shot SER approaches, for the purpose of presenting
the performance for per-emotion and per-sample AADs.

The remainder of this article is organized as follows. The
basic concepts and notations are presented in Section II.

Afterward, we show the methodology for per-emotion pro-
totypes and per-sample annotations as AADs in Section III.
Then, Sections IV and V present the experimental results,
experimental analysis, and the conclusions.

II. PRELIMINARIES

A. Concepts

1) Auditory Affective Descriptors: Intuitively, AADs have
to be extracted from speech, related to feature extraction for
emotions in speech [31], [32]. Unfortunately, this type of
descriptors usually fails to represent emotional states due to
the variety of speech data, despite the previous endeavors
[6], [10]. Thus, most works resort to rating speech in emotional
spaces using limited numbers of dimensions to annotate speech
samples or emotional states [33]–[35]. This setup seems robust
and reasonable, yet none of these spaces can completely
describe every emotional state because of the complexity of
emotional expression [36]–[38].

Besides learning models using per-sample annotations on
emotional dimensions [15], the research of semantic embed-
ding provides a solution for the lack of critical information
when using low-dimensional spaces to describe emotions in
speech [39], [40]. Typically, the usage of semantic-embedding
prototypes AADs shows the feasibility on describing emo-
tions in speech through textual representations, where the
“prototype” refers to the most representative example of its
corresponding category [23], [41]. We induce three types
of AADs of per-emotion semantic-embedding, per-emotion
manually annotated, and per-sample manually annotated ones
in this article, divided by their different sources (semantic
embedding or manually annotated) and forms (per emotion
or per sample).

2) Semantic-Embedding Prototypes: The prototype of an
arbitrary sample set typically refers to the representative for
majority of the samples [42]–[44]. This implies that sample-
wise information is not strictly required in learning proce-
dures on a training set, possibly leading to the performance
improvement through using the form of prototypes for the
set. Built on mining semantic information from language,
semantic-embedding prototypes aim to represent concepts (i.e.,
class labels), typically through learning embedding models on
textual data conventionally used in natural language processing
(NLP) applications [23], [45]–[47].

                                                                                                                                               



                                                                                                                                                

                                                                                 

3) Zero-Shot SER: Conventional ZSL approaches make it
possible to recognize the samples from unseen classes only
with seen-class samples contained in training [48]–[50]. Note
that the samples from the unseen classes never appear in the
training set, which leads to cognitive differences between seen
and unseen classes [51], [52]. The learning procedures for
zero-shot SER rely on transferring related information from
seen to unseen emotions, both through the representations of
features from samples and the latent description from their
labels or prototypes in different modalities [15], [23], [29].
Within the zero-shot SER task, the seen-emotional samples
refer to the speech samples from the emotional states already
provided in training. In contrast, the unseen-emotional samples
indicate that for some emotions (unseen-emotional states), it is
unavailable to obtain any of the corresponding samples in the
training procedures [23].

Our original work sheds light on the possibility to per-
form SER in zero-shot settings [15], focusing on construct-
ing connections between paralinguistic features, emotional
dimensions, and emotional labels. The results prove that it is
feasible to perform zero-shot SER using empirical descriptions
on emotional labels. Furthermore, in view of the workload
for drawing the descriptions using additional annotations,
we successfully include semantic-embedding prototypes for
constructing the connection in zero-shot SER, relying on
knowledge transfer from the textual modality [23].

B. Notations

We define the label sets from seen and unseen-emotional
states as D(S) = {d(S)1 , d(S)2 , . . . , d(S)c(S)} and D(U) =
{d(U)1 , d(U)2 , . . . , d(U)c(U ) }, containing c(S) and c(U) classes, respec-
tively. Let D(S) ∩ D(U) = ∅, implying the nongener-
alized ZSL setting to simplify comparisons. Furthermore,
we represent the N (S) seen-emotional samples as X(S) =
[x(S)1 , x(S)2 , . . . , x(S)N (S) ] ∈ �nF ×N (S)

with nF -dimensional par-
alinguistic features. We also set the emotional labels for the
samples in X(S) as Y (S) = {y(S)1 , y(S)2 , . . . , y(S)N (S)} ⊂ D(S). For
an arbitrary sample x(U) ∈ �nF×1 in the unseen-emotional set,
the predicted emotional label is ŷ(U) ∈ D(U).

For the case of using per-emotion prototypes,
the n A-dimensional prototypes of D(S) and D(U)

are A(S) = [a(S)1 , a(S)2 , . . . , a(S)c(S) ] ∈ �n A×c(S) and
A(U) = [a(U)1 , a(U)2 , . . . , a(U)c(U ) ] ∈ �n A×c(U ) , respectively. Then,
we denote the samplewise prototypes for seen-emotional
sample as Z(S) = [z(S)1 , z(S)2 , . . . , z(S)N (S) ] ∈ �n A×N (S)

, containing
each of its column equal to the corresponding prototype from
A(S) to replace the emotional labels for Y (S). For the case of
emotion modeling using per-sample annotations, we still use
Z(S) with each of its column corresponding to a samplewise
annotation vector, where n A is the dimensionality of the
per-sample annotations. Note that we employ the same n A for
these two cases since the per-emotion prototypes can also be
represented as “Z(S)” through the prototypes’ duplication [23].
We also set Z(U) = [z(U)1 , z(U)2 , . . . , z(U)N (U ) ] ∈ �n A×N (U )

and
Y (U) = {y(U)1 , y(U)2 , . . . , y(U)N (U )} as the input and the target
to train classifiers, instead of directly using the prototypes,

where N (U) is the number of unseen-emotional samples in
simulating empirical procedures [15].

III. METHODOLOGY

We set two types of zero-shot SER models considering
prototype- and annotation-based cases using per-emotion pro-
totypes and per-sample annotations, respectively, as shown
in Fig. 1. Both the types employ AADs and seen-emotion
data in learning zero-shot SER models, in order to recognize
unseen-emotional samples. Note that the prototype-based case
directly employs per-emotion AADs to connect seen- and
unseen-emotional states, while the annotation-based case aims
to achieve the connection through modeling unseen-emotional
states using the per-sample annotations.

A. Types of AADs

The AADs can be categorized on two aspects of forms
and sources, leading to two binary division types of per-
emotion/per-sample and semantic-embedding/manually anno-
tated AADs. The first aspect focuses on representing each
emotional state using unique or multiple representations, while
the latter one considers which sources the AADs are obtained
from, the automatically generated textual-data sources or the
annotation sources from human annotators. This results in
the per-emotion semantic-embedding, per-emotion manually
annotated, and per-sample manually annotated AADs.

Following the per-emotion/per-sample division type,
we design prototype-based (Section III-B) and annotation-
based (Section III-C) zero-shot SER modeling types,
for processing the per-emotion and per-sample AADs,
respectively. For the prototype-based type, the per-emotion
AADs (including the per-emotion semantic-embedding and
per-emotion manually annotated AAD types) represented as
“A(S)” and “A(U)” are defined using each of their columns as
the prototype for the corresponding seen- or unseen-emotional
state. Within the AADs, the prototypes can be obtained from
either semantic-embedding or manually annotated sources.
For the semantic-embedding source, we typically employ the
presentations generated by the pretrained models from learned
on textual data, while the manually annotated source comes
from combining the per-sample annotations using multiple
dimensions to describe one’s auditory affective feeling.
In contrast, for the annotation-based type, the per-sample
AADs (including the per-sample manually annotated AAD
type) can be directly obtained from the auditory affective
per-sample annotations, which are represented as “Z(S)” and
“Z(U)” with their columns as the corresponding per-sample
annotation vectors.

B. Prototypes as AADs

First, we focus on the framework of using prototypes A(S)

and A(U) as AADs. Note that the prototypes include both
manual and semantic-embedding sources as in Fig. 1. Within
this framework, it is expected to build connection between
paralinguistic features X(S) and emotional-label information
{A(S),Y (S)} or its equivalent form Z(S), through training the

                                                                                                                                               



                                                                                                                                                

                                             

corresponding parameter set �(Pro) for the connection mod-
eling. Thus, the training procedure aims at optimizing the
objective function f (X(S),A(S),Y (S);�(Pro)) employing seen-
emotional information with the optimal parameter set

�̂(Pro) = arg max
�(Pro)

p
(
A(S),Y (S)|X(S);�(Pro)

)
. (1)

When obtaining the optimal parameters �̂(Pro), we start the
inference procedure to calculate the predicted label ŷ(U) for
an arbitrary unseen-emotional sample x(U). To this end, the
predicted emotional index ĵ in D(U) for x(U) is denoted as

ĵ = arg max
j

p
(

d(U)j ,A(U)|x(U); �̂(Pro)

)
(2)

where j = 1, 2, . . . , c(U). Using the predicted index ĵ , x(U)’s
predicted label is ŷ(U) = d(U)

ĵ
.

Within the framework, we present three ZSL strategies
of embarrassingly simple zero-shot learning (ESZSL) [28],
synthesized classifiers (SYNCs) [27], [53], and EXEMplar
synthesis (EXEM) [27], [52], with their parameter sets �s
represented as {W(ES)}, {V(SYNC)}, and {ψ(EXEM)}, respectively.
Then, we briefly introduce the three strategies in training and
inference procedures.

1) Training Procedure: The ESZSL strategy makes use
of combinations W(ES) to connect X(S), A(S), and Y (S)

in a discriminative form, where for the kernelled case
W(ES) ∈ �N (S)×n A and the Gram matrix K(X(S),X(S)) =
φT (X(S))φ(X(S)) using the reproducing kernel Hilbert space
(RKHS) [6], [10] mapping φ(·) on X(S)’s columns. Thus, the
optimal W(ES) is represented as

Ŵ(ES)

= arg min
W(ES)

f(ES)
(
X(S),A(S),Y (S); W(ES)

)
= arg min

W(ES)

(
L
(
K

(
X(S),X(S)

)
W(ES)A(S),Y (S)

) + R(W(ES))
)
(3)

jointly minimizing the regularization term R(W(ES)) and the
dissimilarity loss L(·, ·) with a measure of Frobenius norm
distance.

The fast SYNC strategy [27], [53] aims to learn optimal
linear phantom classifiers V(SYNC) ∈ �nF×c(P) for super-
vised seen-emotional samples, where c(P) represents the
number of the phantom classifiers. V(SYNC) connects seen-
emotional classifiers W = [w1,w2, . . . ,wc(S) ] ∈ �nF ×c(S)

and unseen-emotional classifiers using similarity matrices
S(S) ∈ �c(P)×c(S) and S(U) ∈ �c(P)×c(U ) , respectively. Note that
the (cP , c) element for the similarity matrices is equal to
(e−Dis(a(S)c ,bcP )/

∑c(P)

cP =1 e−Dis(a(S)c ,bcP )), with c = 1, 2, . . . , c(S) for
S(S) while c = 1, 2, . . . , c(U) for S(U), where Dis(a(S)c ,bcP ) =
σ 2||a(S)c − bcP ||2. Note that B = [b1,b2, . . . ,bc(P) ] ∈ �n A×c(P)

represents the phantom prototypes. Hence, the optimal phan-
tom classifiers

V̂(SYNC) = arg min
V(SYNC)

f(SYNC)(X(S),A(S),Y (S); V(SYNC))

= arg min
V(SYNC)

(
J (X(S),Y (S),W)+ τ

2
tr(WT W)

)
s.t. W = V(SYNC)S(S) (4)

with τ > 0 representing the weight of the regularization term.
We set the one-versus-other (OVO) loss as

J (X(S),Y (S),W)

=
c(S)∑
c=1

N (S)∑
i=1

(
max

(
0, 1 −�

(
y(S)i , d(S)c

)
wT

c x(S)i

))2
(5)

in which �(y(S)i , d(S)c ) is equal to 1 when y(S)i = d(S)c while
−1 when y(S)i �= d(S)c .

The EXEM strategy optimizes the relationship between
exemplars U(S) = [u(S)1 ,u(S)2 , . . . ,u(S)c(S) ] ∈ �nDR×c(S) and
prototypes A(S), where nDR represents the reduced dimen-
sionality for principal component analysis (PCA) on seen-
emotional samples. Thus, the optimal mapping ψ(EXEM)(·) can
be obtained through using ν-support vector regression (ν-SVR)
as

ψ̂(EXEM) = arg min
ψ(EXEM)

f(EXEM)
(
X(S),A(S),Y (S);ψ(EXEM)

)
= arg min

ψ(EXEM)

J0
(
ψ(EXEM)(A(S)),U(S)

)
s.t. uc = 	X(S)

c ec

N (S)
c

(6)

where J0(·, ·) represents the loss of ν-SVR and 	 ∈ �nDR×nF

is the linear mapping of the PCA processing. Note that N (S)
c

samples are contained in d(S)c with c = 1, 2, . . . , c(S) and all
the elements of ec ∈ �N (S)

c ×1 are equal to 1.
2) Inference Procedure: Using the optimal parameters in

the training procedure, we achieve the predicted index ĵ for
the three strategies. For ESZSL, the predicted j is

ĵ = arg max
j

(
K(X(S), x(U))T Ŵ(ES)a

(U)
j

)
(7)

in which K(X(S), x(U)) = φT (X(S))φ(x(U)). For SYNC, the
predicted emotional-state index

ĵ = arg max
j

((
V̂(SYNC)s

(U)
j

)T
x(U)

)
(8)

where s(U)j is S(U)’s j th column. Then, the predicted index for
EXEM can be achieved as

ĵ = arg min
j

Dis(	x(U), ψ̂(EXEM)(a
(U)
j ) (9)

where Dis(·, ·) represents a distance function.

C. Per-Sample Annotations as AADs

It is also applicable to employ per-sample annotations as
AADs for modeling emotional states when providing empirical
external information on describing these states [15].

1) Training Procedure: The training procedure, in this case,
includes two learning steps, to make emotional-state decisions
on paralinguistic features, through learning optimal parameters
of �(Ann)1 and �(Ann)2.

First, we expect to learn the emotion models with parame-
ters �(Ann)1 for unseen emotions using the annotations Z(U)

and their emotional labels Y (U) as

�̂(Ann)1 = arg max
�(Ann)1

p
(Y (U)|Z(U);�(Ann)1

)
(10)

                                                                                                                                               



                                                                                                                                                

                                                                                 

TABLE I

DESCRIPTION OF THE CINEMO CORPUS FOR THE PN AND WN TASKS,
INCLUDING SPEAKERS, SAMPLES, LABELS, AND ANNOTATIONS

for the optimization object g1(Y (U),Z(U);�(Ann)1). This learn-
ing step is equivalent to training emotional classifiers on the
intermediated descriptors.

Then, for the seen-emotional information of Z(S) and X(S),
the connection between paralinguistic features and annotations
is represented by optimizing the parameters �(Ann)2 as

�̂(Ann)2 = arg max
�(Ann)2

p
(
Z(S)|X(S);�(Ann)2

)
(11)

for the optimization object g2(Z(S),X(S);�(Ann)2). Note that
this step can be implemented through n A regressors on par-
alinguistic features.

2) Inference Procedure: Combining the optimized parame-
ters in the two steps, we obtain the index of the predicted
unseen-emotional label for an arbitrary sample x(U) as

ĵ = arg max
j

p
(

d(U)j |x(U); {�̂(Ann)1, �̂(Ann)2}
)

(12)

for the inference procedure, utilizing the optimal-parameter
sets {�̂(Ann)1, �̂(Ann)2} for the cascaded classifiers and
regressors.

IV. EXPERIMENTS

A. Experimental Preparation

1) Corpus and Features: As shown in Table I, we employ
the CINEMO corpus [16], [54]–[56] containing French emo-
tional speech in the experiments, consisting of 3992 French
segmentwise utterances recorded from 51 speakers (21 female)
in four age groups (−15 years, 15–25 years, 25–50 years, and
50+ years), with the sampling rate of 16 kHz. The corpus
considers dubbing 29 selected scenes from totally 12 French
movies by the speakers. Each of these scenes could consist
of one or two players at a time. The data collection para-
digm involved the speakers, none of whom had professional
acting experience [16]. Two persons (1 female) marked each
utterance as having a major and a minor emotion label,
taken from one of 16 states: “amusement (AMU),” “anger
(COL),” “disappointment (DEC),” “irritation (ENE),” “anxiety
(INQ),” “irony (IRO),” “joy (JOI),” “negativity (NEG),” “neu-
trality (NEU),” “fear (PEU),” “positivity (POS),” “satisfaction
(SAT),” “seduction (SED),” “stress (STR),” “surprise (SUR),”
and “sadness (TRI).” In addition, each sample was annotated
in six emotional dimensions, namely, “intensity,” “activation,”
“valence,” “control,” “suddenness,” and “naturalness,” using
the levels from 1 to 3. The first annotator is provided the
context in sequential order and manually segmented the audio

TABLE II

MEAN UAs AND THEIR STANDARD DEVIATIONS (%) FOR THE PN
AND WN TASKS IN THE SPC10 CASE WHEN USING DIFFERENT

AADs AND STRATEGIES FOR ZERO-SHOT SER

signals, whereas the second annotator is provided with single
instances after segmentation in random order for verifica-
tion [16], [56]. Note that the annotations are credible for the
experiments, in view of the procedures and assessments for
the annotations [54]. We choose a subset of 3591 utterances
(1380 female) in accordance with [15], only considering major
emotion labels. This yields 136, 373, 434, 1206, 443, 21, 140,
6, 13, 8, 41, 292, 45, 248, 51, and 134 samples corresponding
to these 16 major emotions for the first annotator, while 173,
384, 370, 1234, 565, 16, 101, 12, 43, 21, 16, 218, 34, 176,
17, and 211 samples are for the second annotator.

We investigate the positive–negative (PN) and within-
negative (WN) tasks from the view of valence using full-
agreement major-emotion labels as in [15]. The PN task
defines the positive emotions classes as “amusement” and “sat-
isfaction,” while the negative emotions classes were “anger,”
“stress,” and “sadness.” In the WN task, we aim to classify the
“anger” and “disappointment” states due to existing research
of social reactions [57]. Note that the remaining samples in
the corpus for the two tasks are both set as seen-emotional
samples, contained in the training sets.

The OPENSMILE toolkit [58], [59] is employed in the
experiments, for extracting 88-D (nF = 88) extended Geneva
minimalistic acoustic parameter set (eGeMAPS) (from func-
tionals on 25 time-smoothed low-level descriptors (LLDs),
temporal features, and equivalent sound level) [59] as the
paralinguistic features, which has been proven effective in SER
tasks when using support vector machines (SVMs). Note that
we perform a min–max normalization for each feature.

2) Per-Emotion Prototypes and Per-Sample Annotations:
For an arbitrary sample in the corpus, we choose the average-
level values of the two annotators on each of the six dimen-
sions (n A = 6) as the per-sample annotations. This simulates
the process of constructing emotion models and the connec-
tion between paralinguistic features and the annotations from
manual knowledge. Furthermore, we regard each combination
of the major emotions for the two annotators as an emotional
state, without considering the order of the annotators. For each

                                                                                                                                               



                                                                                                                                                

                                             

TABLE III

MEAN UAs AND THEIR STANDARD DEVIATIONS (%) FOR THE
THREE SUBTASKS WITHIN THE PN TASK AND THE SPC10

CASE, WHEN USING MANUAL AND SEMANTIC DESCRIPTORS

FOR DIFFERENT STRATEGIES

TABLE IV

PAIRWISE COMPARISONS OF UAs WHEN USING THE SYNC STRATEGY
ON THE FACTOR OF AADS USING Post Hoc TUKEY’S HSD, FOR PN
TASK (WITH PRIOR BINARY CLASSIFICATION, NOTED AS “BIN.”)

AND PN TASK (WITH LATE FUSION ON MULTIPLE EMO-
TIONS, NOTED AS “MUL.”) WITH SPC10 AND SPC1 CASES.

WE PRESENT THE MEAN DIFFERENCE (MEAN-UA
DIFFERENCE BETWEEN THE SEMANTIC-EMBEDDING

AND MANUALLY ANNOTATED AADs, NOTED AS
“MD”) AND THE p VALUE FOR

EACH COMPARISON

emotional state, we define the manual prototype of a state as
the average of the annotations from its samples.

When inducing the per-emotion semantic-embedding
prototypes of 300-D (n A = 300) English word-vector rep-
resentations in describing emotional states, we employ
semantic-embedding prototypes from pretrained textual mod-
els, considering the average values of the major emo-
tions between the two labelers. The sources of the
semantic-embedding prototypes include word2vec [60], [61],
GloVe [62], and fastText [63], [64] models. Note that we
employ these pretrained models to generate the semantic-
embedding prototypes since the models aim at producing the
representations for each emotional state in speech through
learning on textual data. The pretrained word2vec model
utilizes Google News corpus in training with 3 million words
(100 billion tokens) [30], [60], while the GloVe model consid-
ers 0.4 million vocabularies (6 billion tokens) as its training
set [62]. We choose two pretrained models using Common

TABLE V

PAIRWISE COMPARISONS OF UAs WHEN USING THE EXEM STRATEGY
ON THE FACTOR OF AADS USING Post Hoc TUKEY’S HSD, FOR

PN TASK (WITH PRIOR BINARY CLASSIFICATION, NOTED AS

“BIN.”) AND PN TASK (WITH LATE FUSION ON MULTIPLE

EMOTIONS, NOTED AS “MUL.”) WITH SPC10 AND SPC1
CASES, WHERE THE “*” INDICATES THE INSIGNIF-

ICANT RESULTS AT THE SIGNIFICANCE LEVEL

OF 0.05. WE PRESENT THE MEAN DIFFER-
ENCE (MEAN-UA DIFFERENCE BETWEEN THE

SEMANTIC-EMBEDDING AND MANUALLY

ANNOTATED AADS, NOTED AS “MD”)
AND THE p VALUE FOR

EACH COMPARISON

Crawl (noted as “fT-crawl”) and Wikipedia 2017 with UMBC
webbase corpus and the statmt.org news dataset (noted as “fT-
wiki”) [63], [64]. We also include the cases with and without
using the neighbors in SenticNet 5 [65], [66] (noted as “SN”)
to mine sentiment information for textual commonsense con-
cepts using a long short-term memory (LSTM)-based recurrent
neural network (RNN) [65]. The SenticNet 5 employs an
average combination for each word vector of a corresponding
emotional state’s five neighbors (if the neighboring words
exist) in order to extend the word-vector models. This results
in eight setups of the semantic-embedding prototypes.

3) Parametric Setups of ZSL Strategies: For the case
of using per-sample annotations, we perform speaker-
independent threefold cross validation (CV) considering
individual differences of speakers [67]–[69] for the unseen-
emotional samples as in [15], in order to connect the
manual per-sample annotations and the emotional states.
This procedure results in using two folds to learn unseen-
emotional models for each validation step, considering SVMs
as classifiers with the regularization parameter varying from
0.0001 to 10 000 and the Gaussian-kernel scaling parameter
in {0.01n A, 0.1n A, n A, 10n A} [15]. Hence, it is guaranteed
that there exists no overlapping between the steps of learn-
ing and test through employing this CV procedure. Note
that for the threefold CV, we collect all the test-sample
labels prior to evaluating for the purpose of fair compar-
isons. Then, the connection between features and annota-
tions is characterized by SVR with its scaling parameter in
{0.01nF , 0.1nF , nF , 10nF } and the same selections of regular-
ization parameter as in the SVMs. In addition, neural networks
are employed considering 12 selections of the hidden-layer

                                                                                                                                               



                                                                                                                                                

                                                                                 

neurons as: (32, 8), (32, 16), (64, 16), . . . , (1 024, 512), with
rectified linear unit (ReLU) activation [15].

For the prototype-based cases, we utilize emotion-
independent tenfold CV on the seen-emotional set using grid
searching to obtain optimal parameters for the prototype-
based models. Note that these tenfold CVs differ from
the CV setups in the existing works on setting constraints
for the fold splitting [70]–[72]. The strategies include
ESZSL [28], EXEM [27], [52], and SYNC [27], [53]. The
ESZSL strategy employs the weights of the regularization
term as {10−3, 10−2, . . . , 103}, with the scaling parameters
of the Gaussian kernels as {10−1nF , nF , 10nF }. The SYNC
strategy directly sets the phantom classifiers B = A(S). The
weight τ can be set to {2−24, 2−23, . . . , 2−9} and the scaling
parameter σ 2 can be chosen from {2−5, 2−4, . . . , 210}. The
EXEM strategy sets the regularization weight for ν-SVR as
{2−3, 2−2, . . . , 2−3}, the ν values as {2−8, 2−7, . . . , 20}, and the
scaling parameters for Gaussian kernels as {2−4, 2−3, . . . , 24}.
The dimensionality of features retained in the PCA processing
is chosen as {40, 60, 80}. The distance function in EXEM is set
to a 1-nearest neighbor (1NN) classifier using the Euclidean
distance.

B. Experimental Results: Manual Versus
Semantic-Embedding

First, we aim to employ manually annotated prototypes to
simulate AADs for human affective cognition while using the
semantic-embedding prototypes for knowledge representation.
In order to reduce the uncertainty of small-size emotional
classes, we set the lower bound for the number of per-
class samples as 10 (also noted as “SPC10” for this case
and “SPC1” for the original case), leading to 36 classes
with 2603 samples (for the PN task) and 39 classes with
2830 samples (for the WN task), in the seen-emotional set. For
each round in the tenfold CV, the unweighted accuracy (UA)
measure (i.e., added recall per class divided by a number of
classes to counter imbalance across classes) [2], [6] averaging
through repeating for five times is used for choosing optimal
parameters of the ZSL strategies, in order to reduce the
influence from the random splitting for the folds. To further
reduce the influence, we repeat the experiments ten times
for fair comparison, in view of the training–test division in
different CV rounds. Note that the PN task considers the early
fusion setup to combine the multiple emotional states, that is,
averaging the prototypes of the emotions for the positive and
negative sets.

We present the mean UAs and their standard deviations
in Table II for the two tasks considering the SPC10 case,
using the ESZSL, SYNC, and EXEM strategies. It is seen
from Table II that the best mean UA for manual descriptors is
66.5% and 72.7% for semantic-embedding AADs. The results
indicate that semantic-embedding-based AADs perform better
compared with the manual descriptors in most cases, despite
using ESZSL for the PN task. Thus, we shed light on inves-
tigating the subtasks of the PN task, aiming to recognize the
five unseen-emotional states contained in the task. We present
the UA results with their standard deviations for three subtasks

Fig. 2. Boxplots of UAs considering SPC10 [noted as “(10)”] and SPC1
[noted as “(1)”] cases with manual (noted as “Man.”) and semantic-embedding
(noted as “Sem.”) prototypes for (a) SYNC and PN task, (b) EXEM and PN
task, (c) SYNC and WN task, and (d) EXEM and WN task.

within the PN task in Table III for the SPC10 case, including
“PN task (Bin.)” (the current PN task, defining positive and
negative categories prior to zero-shot emotion recognition),
“PN Task (Mul.)” (using late fusion on multiple emotions
to generate positive and negative categories), and “Multiple
Emotions” (recognition on the original emotions for the PN
task). The results suggest that the semantic-embedding AADs
can achieve at least close UA performance with the manual
AADs for recognizing original emotions. In addition, the
inclusion of SenticNet 5 may lead to positive or negative
effects based on the comparison.

Then, in view of the better performance of the semantic-
embedding prototypes, we perform a one-way ANalysis
Of VAriance (ANOVA) on the SYNC and EXEM strate-
gies within the PN task (Bin.), PN task (Mul.), and
WN task, for the SPC10 and SPC1 settings. This leads
to (F(8, 81) = 199.69, p < 0.0001) (SYNC-SPC10),
(F(8, 81) = 8.72, p < 0.0001) (EXEM-SPC10), (F(8, 81) =
31.31, p < 0.0001) (SYNC-SPC1), and (F(8, 81) =
12.85, p < 0.0001) (EXEM-SPC1) for the PN task (Bin.),
while (F(8, 81) = 37.96, p < 0.0001) (SYNC-SPC10),
(F(8, 81) = 12.50, p < 0.0001) (EXEM-SPC10),
(F(8, 81) = 14.02, p < 0.0001) (SYNC-SPC1), and
(F(8, 81) = 1.52, p > 0.05) (EXEM-SPC1) for the PN
task (Mul.). The results for the WN task are (F(8, 81) =
51.79, p < 0.0001) (SYNC-SPC10), (F(8, 81) = 43.94,
p < 0.0001) (EXEM-SPC10), (F(8, 81) = 37.25, p <
0.0001) (SYNC-SPC1), and (F(8, 81) = 84.97, p < 0.0001)
(EXEM-SPC1). The significance ANOVA results imply the
performance gap between these types of AADs. Thus, we fur-
ther focus on a post hoc Tukey’s Honest Significant Dif-
ference (Tukey’s HSD) test [6] with respect to the AADs’
types, comparing the semantic-embedding prototypes with the
manual prototypes from dimensional annotations, as shown in
Table IV (when using the SYNC strategy) and Table V (when
using the EXEM strategy). It is learned from the table that
the semantic-embedding prototypes perform better compared
with the manual prototypes—especially for the SPC10 setting.

                                                                                                                                               



                                                                                                                                                

                                             

Fig. 3. Row charts of the UAs using manual (noted as “Man.”) and semantic-embedding (noted as “Sem.”) prototypes for (a) PN task and (b) WN task,
with the best UA results from the eGeMAPS and ComParE feature-sets using per-sample annotations (noted as “Man.-Ann.”).

This shows the ability for machines to describe auditory
emotions in the forms of AADs, exceeding human annotators
using emotional dimensions. In addition, further multiple com-
parisons with Bonferroni correction considering SPC1/SPC10
cases and SYNC/EXEM strategies show the significance at the
level of 0.05 between the semantic-embedding and manually
annotated UAs for the PN (Bin.) and WN tasks.

In order to further investigate the influence from the per-
class-sample limitation for seen-emotional states, we draw the
boxplots for PN task (Bin.) and the WN task using the SYNC
and EXEM strategies for comparison, considering the SPC10
and SPC1 settings, as shown in Fig. 2. It can be seen from
the figures that semantic-embedding prototypes perform better
compared with the manually annotated setups. The comparison
also indicates that the SPC10 limitation may result in diverse
effects on UA performance for the two tasks. This may be due
to the positive or negative emotional information contained in
the samples from rare seen-emotional classes.

C. Experimental Results: Prototypes Versus Annotations

Following the comparison between manual and semantic-
embedding AADs, we present experiments to answer the sec-
ond question on discussing the performances of per-emotion
prototypes and per-sample annotations. In this regard, we make
comparisons between the cases of using manual prototypes,
semantic-embedding prototypes, and per-sample annotations
as the AADs. Fig. 3 shows the mean UAs and their standard
deviations when using the manual and semantic-embedding
AADs, with the UA results when using the per-sample anno-
tations for eGeMAPS and ComParE feature sets, respectively.
The comparisons show that it is difficult for manual prototypes
to outperform per-sample annotations, partially due to the
loss of information in generating manual prototypes. However,
semantic-embedding prototypes make it possible to approach
the performance of per-sample manual annotations.

In order to further make a comparison on the perfor-
mances of per-emotion prototypes and per-sample annota-
tions, we show the best UAs for the cases of per-sample

TABLE VI

BEST UA RESULTS (%) FOR PER-SAMPLE MANUAL ANNOTATIONS

(EMPLOYING EGEMAPS, GEMAPS, AND COMPARE FEATURE-SETS),
MANUAL PROTOTYPES, AND SEMANTIC-EMBEDDING PROTOTYPES

(USING SPC10 AND SPC1 CASES WITH SYNC AND EXEM
STRATEGIES) FOR THE PN AND WN TASKS, WHERE

“BINARY” REFERS TO PRIOR BINARY CLASSIFICATION
AND “MULTIPLE” REFERS TO LATE FUSION

ON MULTIPLE EMOTIONS

annotations, manual prototypes, and semantic-embedding pro-
totypes in Table VI. The approaches for the manual per-
sample annotations include the usage of eGeMAPS, GeMAPS,
and ComParE (using the same classifiers and regressors as
in [15] including deep neural network (DNN) and deep kernel
learning (DKL) [73]) as the feature set, considering the same
speaker-independent CV setups as in [15]. In Table VI, one
finds that the semantic-embedding prototypes achieve the best

                                                                                                                                               



                                                                                                                                                

                                                                                 

Fig. 4. Confusion matrices of the best UA results achieved by (a) and
(b) semantic-embedding prototypes for the PN (positive and negative, noted
as “Pos.” and “Neg.”) and WN (anger and disappointment, noted as “Ang.”
and “Dis.”) tasks, respectively, (c) and (d) per-sample manual annotations
using the eGeMAPS feature set for the PN and WN tasks, respectively, and
(e) and (f) per-sample manual annotations using the ComParE feature set for
the PN and WN tasks, respectively.

UA results as 76.1% (PN task) and 76.6% (WN task), while
the UAs are 73.3% and 74.3% for the manual cases [15].
This implies that machines are able to understand emotions in
speech better than human annotators, through using pretrained
models from textual data as the AADs. In addition, one
also observes the significance between the best semantic-
embedding and the per-sample-annotation UA results for the
PN and WN tasks with eGeMAPS when using a one-tailed
z-test at the significance level of 0.05.

Then, we examine the confusion matrices (Fig. 4) for the
best UA results achieved by the per-sample manual anno-
tations (using eGeMAPS and ComParE feature sets) and
the semantic-embedding prototypes (EXEM-SPC1 (Multiple)),
when confronting the PN (positive and negative, noted as
“Pos.” and “Neg.”), and WN (anger and disappointment,
noted as “Ang.” and “Dis.”) tasks. The eGeMAPS feature
set comparison between the per-emotion semantic-embedding
and per-sample manually annotated AADs indicates that the
semantic-embedding prototypes make it more effective to
recognize emotional states for the PN and WN tasks, in view
of the much better recalls on “Pos.” and “Ang.” for these
two tasks despite the slightly unfavorable recalls on the other
emotions.

To this end, we induce macro F1-score evaluation to make
further accuracy-precision-balance comparisons as shown in
Table VII, using the best scores as in [23]. It is observed

TABLE VII

MACRO F1-SCORES (%) CORRESPONDING TO THE BEST UA RESULTS
FOR THE PER-SAMPLE MANUALLY ANNOTATED AND PER-EMOTION

SEMANTIC-EMBEDDING AADs ON THE PN AND WN TASKS,
CONSIDERING DIFFERENT SETUPS

from the results that the per-emotion semantic-embedding
prototypes achieve the best F1-score performance compared
with the per-sample manually annotated AADs. This indicates
the possibly better performance achieved by the per-emotion
AADs compared with the per-sample ones.

V. CONCLUSION

This article focused on investigating AADs to describe
emotional states in speech, through using ZSL frameworks.
The investigation contained two aspects: 1) exploring the man-
ually annotated and semantic-embedding sources of AADs and
2) exploring the performance of per-emotion prototypes and
per-sample annotations as AADs. To this end, we employed
zero-shot emotion recognition strategies and performed exper-
iments on the CINEMO corpus of French emotional speech.
The experimental results indicated that semantic-embedding
prototypes performed better compared with manual descriptors
from human annotators on both per-emotion and per-sample
setups. The results also revealed the possibility for machines to
replace human annotators on understanding auditory affective
information in certain cases with the help from transferring
external information, despite the need of further proof on other
corpora.

In view of these conclusions from this work, future research
may consider three topics as follows. First, one should aim to
extend the current work by further exploring effective AADs
from modalities other than manual and textual descriptors.
Second, it is worth researching on emotional transfer from
basic to complex emotional states using AADs. Furthermore,
it is still unknown how to accurately model the relationship
between spoken emotional expression and auditory affective
perception.
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