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Abstract— Human auscultation has been regarded as a cheap,
convenient and efficient method for the diagnosis of cardiovas-
cular diseases. Nevertheless, training professional auscultation
skills needs tremendous efforts and is time-consuming. Com-
puter audition (CA) that leverages the power of advanced
machine learning and signal processing technologies has in-
creasingly attracted contributions to the field of automatic
heart sound classification. While previous studies have shown
promising results in CA based heart sound classification with
the ‘shuffle split’ method, machine learning for heart sound clas-
sification decreases in accuracy with a cross-corpus test dataset.
We investigate this problem with a cross-corpus evaluation using
the PhysioNet CinC Challenge 2016 Dataset and propose a
new combination of data augmentation techniques that leads
to a CNN robust for such cross-corpus evaluation. Compared
with the baseline, which is given without augmentation, our
data augmentation techniques combined improve by 20.0 %
the sensitivity and by 7.9 % the specificity on average across
6 databases, which is a significant difference on 4 out of these
(p < .05 by one-tailed z-test).

I. INTRODUCTION

Computer audition (CA) has been increasingly applied to
the field of healthcare [1], e. g., for sleep disorder [2], and in
the ongoing COVID-19 pandemic [3], [4]. In particular, CA-
based methods can facilitate a possible alternative to human
auscultation. Auscultation is regarded as a cheap, convenient
and efficient method for diagnosis of cardiovascular diseases
(CVDs), the leading cause of human deaths [5].

To automatically and correctly classify abnormal heart
sounds from normal ones, a lot of machine learning techniques
are proposed in the previous literature [6]. Short-time Fourier
transform (STFT) and continuous wavelet transform (CWT)
are used to create handcrafted features with a variety of
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classifiers which includes support vector machines (SVM),
K-nearest neighbours (KNN), and artificial neural networks
(ANN) [7]. Without handcrafted features, feature distribution
leaning from the raw data or a ‘simple’ spectrogram with
convolutional neural networks (CNNs) is focused on these
days [8], [9], achieving high accuracy on the PhysioNet
CinC Challenge 2016 database (CinC DB) [10].

Pre-training on a large dataset increases the accuracy in
many tasks, e. g., in computer vision [11], natural language
processing [12], and speech recognition [13]. Also in heart
sound classification task, CNNs with pre-training on other
large datasets such as ImageNet [14] and AudioSet [15]
usually boosts the model accuracy by transfer learning [16],
[17]. Although CNNs have the large capability of fitting data
distributions with many learnable parameters; yet, they tend
to overfit and worsen on a test dataset particularly if the test
dataset is not similar to the training dataset. The test dataset
is chosen randomly in [17] and VGG [18] scored 93.7 %
for sensitivity on the CinC DB. In [16], the test dataset is
chosen from two databases within CinC DB coming from
two different hospitals, and training is conducted on other
databases except those two, and VGG scored 33.3 % for
sensitivity.

Though different hyperparameters and training methods, it
is highly possible that a CNN overfits to its training dataset
and performance deteriorates on a highly different-from-
training test dataset. Cross-corpus evaluation is mimicring
the situation of a real-world application for heart sound
classification in a ‘new’ hospital, as 6 databases included in
CinC DB are collected from different hospitals. Regardless
of many previous works for heart sound classification, it is
only a few of them which deploy proper ‘realistic’ evaluation
methods for a real-world application and propose accordingly
robust learning schemes.

To tackle cross-corpus heart sound classification, we
introduce new data augmentation techniques with a proper
cross-corpus evaluation approach. In addition to audio data
augmentations previously proposed, random trimming and
the effects of respiration on heart sound are reproduced and
evaluated in this paper. By excluding one database as a cross-
corpus test dataset from a collection of different recording
sites, a real-world situation is reproduced using 6 databases
within the CinC DB collection and overfitting of the CNN
learning model is revealed. We show that the this overfitting
of the CNN is attenuated by our data augmentation technique
and scores on the cross-corpus datasets are improved.

The rest of this work is structured as follows: Data
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augmentation and the transfer learning model are introduced
in Section II. The experimental setup and results are shown
in Section III, followed by discussion part in Section IV.

II. MATERIALS AND METHODS

A. Audio data augmentation

Audio data augmentation has been proposed as a method to
generate additional training data [19], [20]. SpecAugment [21]
is masking on a spectrogram which has a shape of a line with
some width in the time axis and/or the frequency axis. This
reproduces a malfunctioning recording system with a time
axis mask and machine noise with a frequency axis mask.
In heart sound data, hitting something onto the microphone
generates a pulse-like sound, which is similar to a time mask
on a spectrogram. Medical machines generating a sound in
some frequency bands appear in the spectrogram similar to
the frequency mask of SpecAugment. Random amplitude
change is to multiply a constant value to a sound and scale
the amplitude at each sample point. This is observed, if
the default setting value of the sensor is different, or the
position of the sensor in a body is different. Random erase
can be a reproduction of the situation that specific background
noise is observed, or the information an input spectrogram
contains is randomly dropped. This reproduction is conducted
by masking an input spectrogram with a rectangular mask of
a constant value.

B. Heart sound data augmentation

A heart sound signal, or more generally, a biological signal,
has some specific characteristics compared with general audio
sound, for example, a more periodic nature and a longer
period.

Respiration is a major factor to affect heart sound, but
is not related to heart sound abnormality. As you can see
in Figure 1, some sounds are marked by fluctuation which
is periodic at some period and contain background sounds
similar to breathing. This situation can be reproduced by
generating sinusoidal weights to be multiplied to an original
sound at each sample point. As respiration is periodic, and
a recording of a heart sound is irrelevant to a respiration
period, the phase of sinusoidal weights should be randomly
decided from 0 to 2×π . The amount of the respiration effect
on heart sound is not clear, and the respiration rate, which
corresponds to the frequency of sinusoidal weights, depends
on the subject. Due to the beats’ periodicity, normal as well
as abnormal sound is repeated in a recording and not found at
a constant position in a spectrogram, which leads to the idea
of random trimming with a constant length. By deciding the
length of trimming – 5 seconds in this paper – a sound can be
augmented from one long recording into many short segments.
It should be noted that non-periodic abnormal heart sound
such as arrhythmia can be ignored with this augmentation.

C. Transfer learning model

Many CNNs have by now been proposed for the heart
sound classification task. Such CNN allow for pre-training on
other large datasets to boost the accuracy of the model. The

TABLE I
OVERVIEW OF THE 6 DATABASES INCLUDED IN CINC DB.

Database Recordings Normal Abnormal Duration [s]

MIT 409 117 292 32.6
AAD 490 386 104 7.9
AUTH 31 7 24 49.4
UHA 55 27 28 15.1
DLUT 2 141 1 958 183 23.1
SUA 114 80 34 33.1

ImageNet dataset is a popular choice for pre-training in the
audio domain, but the AudioSet dataset is an alternative choice
for sound data, which contains a lot of recordings for sound
event classification and hence appears more suited. Based on
this data, pre-trained audio neural networks (PANNs) [22] are
introduced here for the task at hand, as they achieved state-of-
the-art on some audio pattern recognition tasks by pre-training
the model on the AudioSet dataset. CNN14, which is one of
the CNN structures proposed in PANNs and the one we use
in this paper, has 14 convolutional layers and other layers
in total to extract features from a spectrogram. The weights
in the network after pre-training on the AudioSet dataset are
publicly available. We initialise CNN14 with this weight and
start training on CinC DB. The number of output nodes of
the last fully connected layer is changed to two to suit the
heart sound classification task.

III. EXPERIMENTAL RESULTS

A. Dataset

To evaluate each data augmentation approach and transfer
learning model, as mentioned, we use six databases included
in CinC DB which is publicly distributed1. Each database has
different characteristics in terms of the number of recordings,
the number of labels in each class, and the mean length of the
sound, which are described in detail in Table I. The shortest
length of the recordings is 5.3 seconds in the “AAD” database
and the longest is 122.0 seconds in the “AUTH” database. It
should be noted that some databases have a small number of
recordings, and this can be a problem when that database is
chosen as a test dataset. We avoid this problem by averaging
the results with different seeds in the experiment.

B. Pre-processing

The raw heart sound is at first trimmed into a 5 second clip
by extracting the middle of a sound and then transformed into
a spectrogram, which results in a 2-dimensional feature map
with time and frequency axis. Standardisation of the spectro-
gram is not primarily considered as a data augmentation, but a
simple approach to ease the difference of the data distribution
by subtracting mean and dividing by the standard deviation.
Random amplitude change, random trimming, and respiratory
scaling are applied on the raw waveform; frequency masking,
time masking, standardisation, and random erase are applied
on the spectrogram. The 5 second clips of heart sounds
are transformed into a spectrogram with a 100 milliseconds

1https://physionet.org/content/challenge-2016/1.0.0/
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(a) Raw waveform (b) STFT (c) Random trimming (d) Respiratory scaling

Fig. 1. Simple STFT and two data augmentation techniques for heart sound classification. Raw heart sound is trimmed to 5 seconds before calculating a
spectrogram.

TABLE II
UAR [%] OF EACH TEST DATABASE (COLUMNS) WITH EACH DATA

AUGMENTATION APPROACH (LINES). REPORTED NUMBERS ARE

AVERAGES OVER FIVE DIFFERENT SEED VALUES. THE AUGMENTATION

TECHNIQUE DENOTED AS “ALL” RESEMBLES APPLICATION OF ALL

AUGMENTATION TECHNIQUES.

Augmentation AAD AUTH DLUT MIT SUA UHA

Baseline 58.6 64.5 49.3 55.4 50.6 57.7
Frequency mask 59.9 76.0 52.6 56.8 50.8 66.1
Time mask 59.3 75.8 49.2 57.7 50.6 60.0
Standardisation 60.3 71.4 55.8 56.9 52.3 59.2
Random amp. 59.3 68.5 52.1 55.0 51.7 60.0
Random erase 57.1 71.3 48.9 56.9 52.2 64.9
Random trim. 61.2 59.3 47.6 55.1 54.1 62.7
Resp. scaling 58.6 64.9 51.9 54.6 50.1 57.3
All 62.1 67.1 60.2 54.3 55.3 56.3

window, 25 milliseconds stride, and zero-padding to reach
200 milliseconds in each Fourier transform, generating 101
× 401 feature map. The CNN14 is trained with the following
hyperparameters: the batch size is 32 with 30 epochs; the
learning rate is 0.001 decreasing in each epoch by 0.99 times;
the weights are optimised with Adam [23].

C. Evaluation Method and Metrics

The evaluation of the robustness is conducted by the leave-
one-DB-out method, which chooses one database as a test
dataset and uses the other databases to train a model. As
stated, we conduct leave-one-DB-out with all 6 databases
included in the CinC DB, and 5 different seed values to avoid
outlying results due to a small number of instances in a test
dataset. 5 of the 6 databases (leaving out the test dataset)
are shuffled and split into a training dataset and a validation
dataset to train the model and decide when to stop training
to avoid overfitting. To deal with label imbalance in each
database, we sample instances of a training dataset repeatedly
to render the numbers of “normal” and “abnormal” instances
equal when training the model.

Following official score metrics of the PhysioNet CinC
Challenge 2016 [10], sensitivity and specificity are used as
evaluation metrics.

Unweighted average recall (UAR) [24] is also used as an
evaluation metric.

D. Results

The experimental results are shown in Table II and Table III
(in [%]). The augmentation denoted as “All” represents the

experimental condition in which all augmentation techniques
introduced in Section II are deployed at once – each with a
probability of 0.1. All of the results shown in Table II and
Table III again reflect the average of 5 different seed values.
The baseline results denoted as “Baseline” are 56.0 % UAR,
35.2 % sensitivity, and 60.2 % specificity as an average over
the 6 test databases. The highest sensitivity and specificity
are 51.6 % and 64.1 % – both with all augmentation methods
combined, which resembles improvements over the baseline
by 20.0 %, and 7.9 %, respectively. Of the 6 databases by
UAR, ‘All’ augmentation applied reaches the maximum on
3 databases: the AAD, DLUT, and SUA databases. “All”
augmentations combined further marks the best scores on
the AUTH, MIT, and UHA databases both for sensitivity and
specificity.

IV. DISCUSSION

Looking further at the results as to the individual methods,
random trimming reaches the second-best UAR, sensitivity,
and specificity on the AAD database, and the second-
best sensitivity on the UHA database. Compared with no
augmentation, respiratory scaling provides the second-best
sensitivity and specificity on the DLUT database, and the
first best sensitivity on the SUA database. As we list some
augmentation techniques and the scores in Section III-D,
specific augmentation methods are the most effective on
some databases. Frequency mask appears useful to achive
high robustness on the AUTH and UHA databases, Effective
data augmentation implies coping with how different train
databases and test database are from each other, e. g., the
AUTH and UHA databases contain some noise bands along
the frequency axis. Considering the small number of instances
in a test dataset, we conduct a one-tailed z-test on the results of
‘All’ augmentation on all of the 6 databases. The improvement
is significant on AAD, AUTH, DLUT, and UHA databases
(p < .05) for sensitivity, while it is only significant for the
DLUT database (p < .001) regarding UAR and specificity.
Assuming that real data from a hospital can be different
from all of the databases included in a training dataset,
the combination of all data augmentation methods appears
promising to obtain improved sensitivity, as we reproduced
those situations by CinC DB.

V. CONCLUSION

In this study, we investigated data augmentation techniques
for cross-corpus heart sound classification. We listed popular
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TABLE III
SENSITIVITY AND SPECIFICITY OF EACH TEST DATABASE WITH EACH DATA AUGMENTATION TECHNIQUE. REPORTED RESULTS ARE AVERAGES OVER

FIVE DIFFERENT SEED VALUES.

Augmentation Sensitivity Specificity

AAD AUTH DLUT MIT SUA UHA Mean±Std. AAD AUTH DLUT MIT SUA UHA Mean±Std.

Baseline 47.5 43.3 44.6 26.0 24.1 25.7 35.2±11.0 83.3 31.4 91.2 31.5 70.0 54.0 60.2±25.6
Freq. mask 58.1 63.3 45.8 30.6 35.3 49.3 47.1±12.7 84.8 42.4 92.3 32.6 69.7 62.0 64.0±23.3
Time mask 64.4 65.8 35.4 27.1 21.8 39.3 42.3±18.7 85.2 43.0 91.1 32.7 70.6 56.3 63.2±23.3
Standardise 52.3 60.0 85.9 26.1 35.3 24.3 47.3±23.7 83.9 39.0 95.2 32.3 68.5 54.7 62.3±24.9
Random amp. 52.9 48.3 46.0 20.5 25.9 37.9 38.6±13.0 83.7 34.9 92.0 31.2 72.5 56.7 61.9±25.3
Random erase 40.8 62.5 55.7 36.0 37.6 53.6 47.7±11.0 82.6 41.3 91.1 33.1 73.1 62.6 64.0±23.0
Random trim. 57.3 35.8 29.2 34.2 22.9 54.3 39.0±13.8 85.0 28.5 90.8 31.8 72.6 61.5 61.7±26.5
Resp. scaling 46.5 44.2 56.4 28.8 61.2 25.0 43.7±14.5 83.0 31.3 92.9 31.2 67.6 55.0 60.2±25.9
All 67.7 74.1 83.7 25.6 17.6 40.7 51.6±27.4 87.4 43.1 95.6 31.0 72.7 55.0 64.1±25.4

TABLE IV
CONFUSION MATRICES (NORMALISED: IN [%]) OF EACH TEST SET PREDICTED BY THE MODEL WITH THE COMBINATION OF AUGMENTATION METHODS.

CONFUSION MATRICES ARE SUMMED AND NORMALISED OVER FIVE SEEDS. N: NORMAL; A: ABNORMAL.

(a) AAD

N A

N 56.6 43.4
A 32.3 67.7

(b) AUTH

N A

N 60.0 40.0
A 25.8 74.2

(c) DLUT

N A

N 36.6 63.4
A 16.3 83.7

(d) MIT

N A

N 82.9 17.9
A 74.4 25.6

(e) SUA

N A

N 93.0 7.0
A 82.4 17.6

(f) UHA

N A

N 71.9 28.1
A 59.3 40.7

audio augmentation techniques and proposed further ones,
especially for heart sound data. To reproduce a real application
situation, where collected heart sound data will be different
in its characteristics from a training dataset, we evaluated a
transfer CNN model leaving out entire databases for testing.
We found that all augmentations combined improved by
20.0 % sensitivity and 7.9 % specificity, which resembles
a significant difference on 4 out of 6 databases (p < .05 by
one-tailed z-test), compared to no augmentation. Concluding,
all augmentation techniques combined are promising for cross-
corpus heart sound classification in terms of sensitivity and
encourage future consideration of further such.
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