System-level modelling and simulation of a multiphysical kick and catch actuator system

  • This paper presents a system-level model of a microsystem architecture deploying cooperating microactuators. An assembly of a piezoelectric kick-actuator and an electromagnetic catch-actuator manipulates a structurally unconnected, magnetized micromirror. The absence of mechanical connections allows for large deflections and multistability. Closed-loop feedback control allows this setup to achieve high accuracy, but requires fast and precise system-level models of each component. Such models can be generated directly from large-scale finite element (FE) models via mathematical methods of model order reduction (MOR). A special challenge lies in reducing a nonlinear multiphysical FE model of a piezoelectric kick-actuator and its mechanical contact to a micromirror, which is modeled as a rigid body. We propose to separate the actuator–micromirror system into two single-body systems. This step allows us to apply the contact-induced forces as inputs to each sub-system and, thus, avoid theThis paper presents a system-level model of a microsystem architecture deploying cooperating microactuators. An assembly of a piezoelectric kick-actuator and an electromagnetic catch-actuator manipulates a structurally unconnected, magnetized micromirror. The absence of mechanical connections allows for large deflections and multistability. Closed-loop feedback control allows this setup to achieve high accuracy, but requires fast and precise system-level models of each component. Such models can be generated directly from large-scale finite element (FE) models via mathematical methods of model order reduction (MOR). A special challenge lies in reducing a nonlinear multiphysical FE model of a piezoelectric kick-actuator and its mechanical contact to a micromirror, which is modeled as a rigid body. We propose to separate the actuator–micromirror system into two single-body systems. This step allows us to apply the contact-induced forces as inputs to each sub-system and, thus, avoid the nonlinear FE model. Rather, we have the linear model with nonlinear input, to which established linear MOR methods can be applied. Comparisons between the reference FE model and the reduced order model demonstrate the feasibility of the proposed methodology. Finally, a system-level simulation of the whole assembly, including two actuators, a micromirror and a simple control circuitry, is presented.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Arwed Schütz, Sönke Maeter, Tamara Bechtold
URN:urn:nbn:de:bvb:384-opus4-905857
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/90585
ISSN:2076-0825OPAC
Parent Title (English):Actuators
Publisher:MDPI
Type:Article
Language:English
Date of first Publication:2021/10/21
Publishing Institution:Universität Augsburg
Release Date:2021/11/09
Tag:finite element method; model order reduction; nonlinear; contact mechanics; multiphysics; piezoelectricity
Volume:10
Issue:11
First Page:279
DOI:https://doi.org/10.3390/act10110279
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Ingenieurinformatik mit Schwerpunkt Regelungstechnik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)