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“And one day it will be possible, by exploiting the power of nature, to create instru-
ments of navigation by which ships will proceed unico homine regente, and far more
rapid than those propelled by sails or oars; and there will be self-propelled wagons ‘and
�ying apparatuses of such form that a man seated in them, by turning a device, can
�ap arti�cial wings, ad modum avis volantis.’ And tiny machines will li huge weights
and vehicles will allow travel on the bottom of the sea.”

Umberto Eco, ¿e Name of the Rose

1 Introduction

1.1 Materials Properties and Technological Progress

In the last 50 years, life in western countries changed dramatically. It took less than a gener-
ation to turn our lives digital. ¿ere is hardly any business le , that doesn’t use computers in
some way. ¿ere is no science anymore without computers. Nearly everyone owns a com-
puter personally andworks on one in his or her job. Professionswith long traditions like type-
setting lost their importance because of the new possibilities that came with the computers.
¿e invention of computer games brought the new machines into our childrens playrooms.
Teenagers and students all over the world spend their spare time in new social networks like
myspace, which are built in the arti�cial parallel universe called world wide web.

Looking back only 60 years, none of these developments were to be foreseen. ¿e state
of the art computer was the ENIAC which came to life in 1946 and started the computing
revolution in science [1]. But ENIACwas of course nothing modern people would consider a
computer. It was 30m long, occupied an area of 167m2, weighed 27 t, and consumed 150 kW
of power. ¿is enormous dimensions and energy hunger was in large parts due to the more
than 17.000 vacuum tubes ENIAC was made of [2, 3]. A computer like this would never have
become a mainstream device. ¿e invention that changed everything in this �eld was the de-
velopment of the point contact transistor by Bardeen, Brattain and Schockley in December of
1947 [4]. ¿ese new transistors and their successors eventually replaced all the vacuum tubes
in computers. ¿is was the initial step to the still ongoing miniaturization in the electronic
business and the beginning of the digital age.

Bardeen and Brattain used germanium to realize the �rst transistor. ¿e understanding
of the physical properties of germanium and other semiconductors was the prerequisite for
building this impressive device. ¿e ingenious application of materials properties made it
possible to fabricate a tiny little novel device that eventually changed the lives of billions of
people.
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1 Introduction

Fig. 1.1: On the le is depicted a photograph of the ENIAC (or parts of it), a high performance computer of 1946
using vacuum tube technology. With a weight of 27 tons an area of 167m2 and a power consumption of 150 kW it
is not the kind of machine we are used to nowadays. On the right an image of the �rst commercially available hard
drive of 1956, the IBM 350, which had about the size of a closet and was able to store 5MB of data.

One of themost amazing facts about the digital revolution is the almost unbelievable rate of
progress. Over decades the silicon based technology has followed the famousMoore’s law [5].
In the original version of 1965 it made a forecast for the next ten years and predicted a dou-
bling of the “complexity” of chips about every 24 month (without specifying what “complex-
ity” means in this context ). But Moore’s law is still valid and in todays version it expects that
modern chips double the number of transistors every 18 month, even faster than the original
prediction. ¿e truth might be somewhere in between, but nevertheless it is very impressive
that it was possible to more or less follow an exponential law over four decades. And this
kind of long term exponential growth is not restricted to microchips.

¿e information density of magnetic hard drives is another �eld that has seen enormous
growth rates over the years. ¿e �rst commercially available hard drive was introduced in
1956. It was called the IBM 350 and was introduced as part of a new vacuum tube based
computer, the 305 RAMAC. ¿e IBM 350 was about the size of a closet, weighed a ton, had
a power consumption of 12 kW, and a capacity of 5MB [6]. ¿e areal bit density was about
0.002Mb~in.2 [7]. Of course there were many issues to be solved to get to nowadays hard
drives. But one of the most important �elds of innovation was the usage of new materials,
which suits the engineering needs. ¿e constant progress that was made with new materials
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1.1 Materials Properties and Technological Progress

allowed in 1981 for hard disks with areal bit densities higher than 12Mb~in.2 [7], in 2000
we were already at densities of about 104Mb~in.2 [8] and the latest o�erings of the industry
work with densities around 105Mb~in.2 [9]. In the same time the price for hard disk memory
dropped immensely. While it was not even possible to buy the IBM 350 (one could only have
it leased for 3.500 dollars per month), in 1980 one could buy a megabyte of hard disk storage
for about 200 dollars. ¿e same amount of storage was sold for 1 cent in 2000 [8] and today
we buy hard disk storage at rates of about 40 cents per gigabyte. ¿is fantastic progress over
the years makes it now possible to build amazing, very small mobile devices which hold ten
thousands of songs or pictures or several complete movies, to watch or listen to on the go.

By scaling down the dimensions of the area that de�nes a bit, it is unavoidable that the
magnetic signal of one bit is becoming smaller. One needs a read head that is as sensitive to
spatial changes in themagnetic �eld of themedium as possible. Beginning with the IBM 350,
until 1994 inductive pick-up read heads were used in hard drives. ¿is technique worked �ne
all the years but would not operate cost e�ective beyond several hundreds of Mb~in.2. ¿e
need for a new read head technology was solved by using the anisotropic magneto-resistance
e�ect (AMR) [10]. In materials that exploit the AMR e�ect one �nds that the di�erence
between the resistivity along the applied magnetic �eld and perpendicular to the magnetic
�eld changes with the absolute value of the �eld. In permalloy, which used to be the material
of choice in hard drives, this change is about 4% at room temperature [11, 12] and can be
used to electrically detect magnetic �elds. In 1988 a giant magneto resistance e�ect (GMR)
was found in multilayers of magnetic and nonmagnetic metals. In the original work a drop
of 50% in resistivity is reported [13]. With this huge resistivity changes these materials are
of course promising candidates for hard disk read heads. And indeed, modern read heads
are made of multilayered GMR materials. Equally high magneto resistance e�ects are found
in manganites and other perovskite related materials [14] which have an intrinsically layered
structure. To distinguish thesematerials from theGMR superlatticematerials, they are called
colossal magneto resistance (CMR) materials. Of course CMRmaterials would also be good
candidates for future hard disk read heads.

¿e development of high performance silicon based electronics and the amazing growth
of storage density on magnetic storage devices are only two examples of the enormous tech-
nological in�uence of materials properties. From these two examples it becomes clear that
modern technological development is driven by the creation, investigation, and understand-
ing of new materials and the exploration of their properties. ¿is is of course nothing new,
every technology, even the most primitive, is based on the special properties of certain ma-
terials, e.g., wood, stone, metals, or glass. But today we have the tools and the knowledge to
explore a much broader range of compounds then ever before. With every newly found and
understood material the space for future, yet unknown applications is becoming richer and
more promising.
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1 Introduction

1.2 A Very Special Compound – Ca3Co2O6

Although �rst synthesized already in 1969 [15], Ca3Co2O6 was not investigated further at that
time. Since it became obvious in the 1980’s that some perovskite materials show extraordi-
nary physical properties, this class of oxides has been in the center of physical and chemical
interest. With this revival of the perovskites, Ca3Co2O6 was rediscovered in 1996 by Fjellvåg
and Aasland [16, 17], 27 years a er its �rst appearance in literature.

Ca3Co2O6 is a hexagonal perovskite oxide, it is a member of a family of compounds with
the same or similar structure. A large number of members of this family have been exper-
imentally investigated [18], but the most investigated compound is Ca3Co2O6. ¿e interest
in this compound is due to its unusual magnetic and electric properties and spans the range
from basic research to actual applications.

From the point of view of basic research the most striking feature of Ca3Co2O6 is its highly
complex magnetic response. ¿e magnetic susceptibility above about 150K is that of a ferro-
magnet with a Curie temperature of 28 to 80K, depending on the experiment. ¿is simple
Curie picture breaks down at low temperatures. At around 24K the susceptibility shows a
steep increase pointing to a ferromagnetic transition [19]. Together with other experimental
results and the fact that Ca3Co2O6 is built of Co-O3 chains on a hexagonal lattice (see chap-
ter 2), this points to the formation of ferromagnetically ordered chains. Assuming the validity
of the results of Mermin and Wagner [20] and Bruno [21] in this case, there cannot be long
range ferromagnetic order at �nite temperatures along the chains. Nevertheless experimental
data clearly state the existence of long range order around 24K, which is then only possible
if we include correlations between the chains. Measurements suggest that the corresponding
interactions are rather of the antiferromagnetic type [17]. In this temperature range the mag-
netic properties of Ca3Co2O6 seem to be controlled by a close competition of ferromagnetic
interactions along the chains and weaker antiferromagnetic interactions between the chains.

Cooling down to temperatures below 10 to 12 K reveals another phase transition into a short
range ordered state with several properties of conventional spin glasses. But again Ca3Co2O6

does not perfectly match this picture as an unusually strong frequency dependence of the
ac-susceptibility has been observed. In this temperature regime the �eld dependence of the
magnetization also changes drastically. Above 12 K there exists a very pronounced step in the
magnetizationwith a height of about 13 of the saturationmagnetizationwithout any hysteresis.
Going to lower temperatures more andmore steps in the magnetization curve are observable
and a hysteresis starts to be visible, becoming more and more distinct with lower tempera-
tures. ¿e magnetic response is very anisotropic and generally higher along the chains. ¿is
anisotropy is also observed in the resistivity data. ¿e resistance is, by a factor of 104, higher
perpendicular to the chains then along the chains. ¿e temperature dependence of the resis-
tance is that of an insulator but the absolute value of the resistance is not very high, especially
along the chains.
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1.2 A Very Special Compound – Ca3Co2O6

¿e large number of experimental results make this compound also very attractive for the-
oretical investigations, particularly because some of the results appear to be ambiguous and
lack theoretical interpretation. Although the experimental data are not always conclusive
many properties of Ca3Co2O6 seem to be settled:

• ¿e crystal structure is built by Co-O chains on a triangular two dimensional lattice.

• ¿e chains are made of alternating, face sharing trigonal prisms and octahedra of oxy-
gen atoms with a Co atom in their centers.

• ¿e Ca atoms are found to have no signi�cant in�uence on the system but act mainly
as spacers between the chains.

• Both Co atoms are in the oxidation state 3+. ¿e Co atom centered in the octahedron
is in a low spin con�guration with a total spin of 0. ¿e other Co atom is in a high spin
con�guration with a total spin of 2.

• ¿e magnetic moments on the high spin Co atoms couple ferromagnetically along the
chain.

• Between the chains an antiferromagnetic coupling is present. It is weaker than the
ferromagnetic intrachain coupling.

• ¿e magnetic and the electric response is highly anisotropic.

• ¿e system is a Mott insulator.

• Below 24K the �eld dependence of the magnetization shows steps. Between 24K and
about 12 K only a step at 1

3 of the saturation magnetization is observed. Below this
temperature range more steps are visible, the lower the temperature the more steps can
be resolved. Below 12K the steps are accompanied by a hysteresis.

• ¿e spin relaxation time below 12K is very slow but becomes faster at magnetic �elds
in the vicinity of the magnetization steps.

¿e above list is far from being complete. A much more detailed look into the known
properties of Ca3Co2O6 can be found in chapter 2. Nonetheless the presented facts about
Ca3Co2O6 already raise some very interesting theoretical questions:

How can the steps in the magnetization be explained?
Two very di�erent attempts have already been made to resolve this issue, both making se-
vere simpli�cation and exploring the problem from opposite limiting cases. One approach
considers the system as a two-dimensional triangular lattice of antiferromagnetically cou-
pled Ising spins, emphasizing the frustration e�ects on a triangular lattice. ¿is formulation
assumes, that the ferromagnetic coupling along the chains is much stronger than the anti-
ferromagnetic coupling between the chains [22]. ¿e other approach starts with uncoupled
anisotropic magnetic moments and explains the magnetization steps with quantum tunnel-
ing of the magnetization [23] in analogy to the situation in molecular magnets [24, 25]. If
this latter interpretation is correct, it would make Ca3Co2O6 the �rst known realization of
this physics on the microscopic scale. Both ideas shown above are based on strong approx-
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1 Introduction

imations, but the complexity of the compound might demand more realistic models. ¿is
immediately leads to the next question.

How would an approximate Heisenberg or Ising Hamiltonian, which describes the low
energy physics of the system, look like?
Of course we know that an isotropic Hamiltonian would not be appropriate. Nevertheless,
it is not clear what kind of anisotropic Hamiltonian would be the right choice. Most of the
arguments found in literature are in favor of a perfect Ising anisotropy. But the validity of this
assumption is a matter of ongoing discussion.

What is the origin of the ferromagnetic intrachain coupling?
Ferromagnetism is an extraordinary phenomenon. Materials showing spontaneousmagneti-
zation have been known for more than 2500 years. Despite its long history this phenomenon
has withstood a thorough understanding for more than two millennia. Only with the advent
of modern physics at the beginning of the last century the understanding of ferromagnetism
made a major leap forward. ¿e reason why ferromagnetism was so hard to conceive is that
the modern physical theories are essential for an understanding. It is a relativistic, quantum
mechanical, many-body phenomenon. Even nowadays ferromagnetism has not lost its fas-
cination, as it is still not completely understood. ¿at is because ferromagnetic behavior is
ruled by an interplay of the Coulomb interaction of the electrons and the Pauli principle, as
was already pointed out by Heisenberg in 1928 [26]. So electron correlations are at the heart
of ferromagnetism, making it a topic of interest in current research. One of the simplest
models including electron-electron interactions is the Hubbard model [27]. ¿is model is
indeed able to explain ferromagnetism under certain conditions, both in metals [28–30] and
insulators [31–33]. ¿e assumption of a su�ciently strong on-site interaction U leads to the
formation of an insulating phase, that otherwise could not be understood. Such insulators are
denoted as Mott insulators. How this transition occurs is the topic of many theoretical works
in solid state physics (several excellent reviews onMott insulators are available [34–37]). Re-
cent investigation extends the scope of the abstract one band Hubbard model towards real
systems [38–40]. In the case of insulating materials like Ca3Co2O6 there are only a few sit-
uations known that lead to ferromagnetic coupling. ¿e most prominent of these situations
is described by one of the so called Goodenough-Kanamori-Anderson (GKA) rules. Using
these rules in the case of Ca3Co2O6 predicts antiferromagnetic coupling along the chain,
which is in disagreement with the experimental results. As the electronic con�guration in
Ca3Co2O6 is much more complicated than assumed in the formulation of the GKA rules a
deeper investigation is needed to understand this issue.

From a theoretical perspective, as is visible from the above considerations, Ca3Co2O6 is
a very fruitful and possibly unique �eld of research. But it is even more than that, some of
its properties make it a potentially useful compound for certain applications. As discussed
in section 1.1 a very interesting material property is the dependence of the resistance on the
magnetic �eld. A strong dependance of the conductivity on the magnetic �eld could be used
to build a sensitive electrical sensor for magnetic �elds, which is, for example, needed as read
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1.2 A Very Special Compound – Ca3Co2O6

heads in hard drives. Several perovskite oxides, e.g., somemanganites [41] are known to show
an extremely strong variation of the resistance with an applied magnetic �eld. Ca3Co2O6

shows a similar behavior at low temperatures. At about 2 K the resistivity drops nearly 80%
at a �eld of 20 T [42,43]. Ca3Co2O6 could therefore be used to build special low temperature
magnetic �eld sensors.

Another promising area of application for Ca3Co2O6 is the transformation of thermal into
electrical energy. A crucial topic for the future development of our societies is the production
and use of energy. As nowadays energy generation is primarily based on �nite resources it is
obvious that sooner or later these resources will be exhausted. A way to save energy is to use
the present resources as e�ectively as possible. A lot of energy is used to drive combustion
engines, most prominent examples are of course the millions or even billions of cars on our
streets. One idea tomake better use of the burned fuel in a car engine is to use the temperature
di�erence of the hot exhaust fumes and the colder environment. A device that could be
used to meet this goal has to ful�ll some preconditions. It has to transfer heat into an easily
storable or usable energy form, most preferably electricity, and it has to do it as e�ciently
as possible. It must be able to operate at relatively high temperatures. And of course it has
to be cheaply producable in a mass production process. ¿e state of the art thermoelectric
materials like Bi2Te3 cannot be used under these circumstances, because they are neither
stable nor e�cient at the operating temperatures in an exhaust pipe. Ca3Co2O6 on the other
hand is a very promising candidate for this kind of application. It is stable in air up to more
than 1300K [15] and most importantly has a high Seebeck coe�cient combined with a low
thermal- and a high electric conductivity [44–47]. ¿ese three physical values namely the
Seebeck coe�cient S, the thermal conductivity κ and the electrical resistivity ρ are combined
to a key �gure Z = S2~ρκ, called the �gure of merit, which characterizes the e�ciency of the
transformation of heat into electric energy. ¿is �gure of merit, already high for Ca3Co2O6,
can even be enlarged by doping with rare earth atoms [48].

¿e main concern of the present thesis is to clarify some of the theoretical questions, that
are yet unanswered for Ca3Co2O6. In chapter 2 we review the current knowledge of the com-
pounds properties. Our particular interest is in explaining the ferromagnetic coupling be-
tween the cobalt moments along the chains. In order to investigate this issue we performed a
perturbation calculation up to � h order. Technically there are two major challenges in this
calculation. One is the sheer amount of possible perturbation paths in the rigorous treatment.
A reduction of the complexity can be achieved by utilizing the symmetry of the problem. An-
other technical issue is the treatment of degenerate or nearly degenerate states in higher order
of perturbation theory. ¿is question will be discussed in detail in section 3. ¿e high order
is necessary to include both the superexchange terms in fourth order and cyclic terms, that
are evolving in the � h order. ¿e basic ideas behind superexchange and cyclic exchange are
examined in chapter 4. In order to investigate the puzzling magnetic properties of Ca3Co2O6

we developed several e�ective models. ¿e de�nition of the models and a analysis of the
corresponding physical properties is given in chapter 6. ¿e perturbative analysis of the mi-
croscopic ferromagnetic interaction is presented in chapter 7.
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“A normal family down here has as much as � y tablets of land.”
“How much is a tablet?”
“Four square trabucchi, of course.”
“Square trabucchi? How much are they?.”
“¿irty-six square feet is a square trabuccho. Or, if you prefer,
eight hundred linear trabucchi make a Piedmont mile.”

Umberto Eco, ¿e Name of the Rose

2 A Closer Look at Ca3Co2O6

In order to provide a starting point for the investigation of the oxides of trivalent Co, Woer-
mann and Muan synthesized in 1969 two stable phases of CaO – CoO.¿ese two phases are
Ca3Co2O6 and Ca3Co4O9, which are stable in air up to 1026 XC and 926 XC respectively [15].
Since Bednorz andMüller found high temperature superconductivity in the perovskite com-
pound BaLa4Cu3O5(3-y) in 1986 [49], a big e�ort has been made in the physical and chem-
ical community to investigate perovskites and perovskite related compounds. On the ba-
sis of these e�orts Fjellvåg and Aasland again investigated the hexagonal perovskite oxide
Ca3Co2O6 in 1996 and 1997. ¿ey characterized for the �rst time the structure [16] of this
compound and investigated themagnetic properties [17]. ¿iswork initiated considerable ex-
perimental and theoretical interest inCa3Co2O6 and isostructural compounds likeCa3CoRhO6

and Ca3FeRhO6.

2.1 Crystal Structure

Ca3Co2O6 is a member of a whole family of oxides with hexagonal 2H-perovskite structure
and the general formula A3n+3mA’nB3m+nO9m+6n ( A = alkaline earth, A’, B = metallic ions). A
prominent feature of this structure is the presence of chains in c-direction with face sharing
octahedra and trigonal prisms. ¿e ratio of octahedral coordinated B cations and A’ cations,
which are surrounded by a trigonal prism of oxygen atoms, is n

3m+n [18]. By far the most
investigated subclass of this family is the one with m = 0 and n = 1 resulting in the general
formula A3A’BO6. An impressive list of known and investigated compounds can be found
in [18]. In this class of compounds the ratio of octahedral to trigonal prismatic sites is 1:1 and
the chains are built from alternating face sharing octahedra and trigonal prisms (see e.g. [16,
19, 50–52]). Ca3Co2O6 belongs to this subclass and is the only known member thereof with
identical atoms on the octahedral and the trigonal prismatic coordinated sites. Although A’
and B sites are both occupied by Co the di�erent local environments require a di�erentiation
of the two. It is common to call the Co atom on the B sites Co1 and the Co atom the A’ sites
Co2.
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2 A Closer Look at Ca3Co2O6

Fig. 2.1: Structure of Ca3Co2O6. ¿e upper part of the �gure shows a view on the ab-plane of Ca3Co2O6. ¿e
yellow and red spheres are Co1 and Co2 atoms. Together with the blue spheres, which denote the oxygen atoms,
they build chains running along the c-axis. ¿e chains are arranged in a hexagonal lattice. ¿e non-connected
spheres show calcium atoms that act as spacers between the chains. ¿e lower part of the �gure shows a cut along
a row of chains. All cobalt atoms are exactly on the cut plane. ¿e dark colored oxygen and calcium atoms are
nearer to the viewer, the light colored ones are further away.

¿e structure of Ca3Co2O6 was determined by powder neutron di�raction for tempera-
tures of 298K [16] and 10K [17]. ¿e space group of the structure is R3̄c. Looking at the
ab-plane in �gure 2.1 we can see that the cobalt atoms align perfectly along the c-axis and
build the center of a circular arrangement of oxygen atoms, that seems to have six-fold sym-
metry. We see 12 oxygen atoms projected onto the ab-plane per CoO-chain. If we would
have a chain of perfect prisms and octahedra we would only see 6 oxygen atoms. But neither
the prisms nor the octahedra are perfect. ¿e two triangles that build a prism are rotated by
about 13.9X against each other. In the octahedra the angles between the Co-O bonds di�er by
about 4.1X from the perfect 90X of a real octahedron. Despite these imperfections there are
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2.2 Physical Properties

still some properties that remain ideal. First and foremost the chain as awhole is still perfectly
three-fold symmetric about the cobalt axis. Both oxygen environments remainD3 symmetric
and the not quite octahedral environment in addition retains the inversion symmetry.

¿e CoO chains are arranged in a hexagonal lattice. A unit cell contains three chains. ¿e
height of a unit cell is exactly four Co-Co distances along the chain. ¿at is because each two
consecutive Co1 environments are rotated against each other by 180X. Parallel to the c-axis
rows of Ca atoms �ll the space between the Co-O chains. Using the low temperature data [17]
we �nd a distance between the chains of about 5.23Å. ¿e distance from one Co2 to another
one of the six nearest chains is at least 5.51 Å. ¿e di�erence is best explained by the lower
part of �gure 2.1, which shows a row of chains. One �nds that two equivalent Co atoms on
neighboring chains are shi ed against each other along the c-axis by one third of the height
of the unit cell. ¿e shortest Co-Co distance between to Co atoms on next neighbor chains
is 5.30Å, whereas the Co1-Co2 distance along the chains is 2.59Å [17], which is close to the
atomic radius of Co of 2.51 Å. ¿e interchain distance is more than twice the Co-Co distance
along the c-direction. ¿is emphasizes the quasi one-dimensional nature of the compound.
¿e Co1-O bond length is 1.91 Å and thus shorter than the bond length of Co2-O of about
2.06Å. ¿is suggests a stronger crystal �eld splitting on Co1 than on Co2. A single chain
together with some of the intrachain distances is shown in �gure 2.2.

Fig. 2.2: Single CoO chain. Some distances are emphasized. All distances are calculated using the low temperature
neutron di�raction results measured by Aasland et al. [17]. ¿ey are given in Ångstroem. ¿e color code of �gure 2.1
is used. Both the octahedral and the prismatic environments are highlighted by drawing in the O-O bonds. ¿e
distortion in the trigonal prism is clearly visible.

2.2 Physical Properties

¿e physical properties of Ca3Co2O6 have been the focus of considerable experimental and
theoretical e�ort since 1997. ¿e quasi one-dimensional structure together with the hexago-
nal lattice of chains leads to very interesting and non trivial properties. ¿ese include such
intriguing features as frustration, spin glass behavior, colossal magneto resistance, correla-
tion physics, very high �gure of merit, and possible quantum tunneling of magnetization. A
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2 A Closer Look at Ca3Co2O6

Fig. 2.3:Magnetic susceptibility: a) magnetic susceptibility with two prominent features. A steep increase at 25 K
(Tc1) and a bifurcation of zero �eld cooled (zfc) and �eld cooled (fc) data, with a saturation for fc and a maximum
at 10 K for zfc data. b) Inverse susceptibility shows good agreement with the Curie-Weiss law above 150 K. Both
plots are taken from [19].

great deal of the research e�orts are going into the exploration and theoretical explanation of
the complex and fascinating magnetic properties of Ca3Co2O6.

Measurements of the static magnetic susceptibility both in powders [17, 53, 54] and single
crystal samples [19, 23] reveal Curie-Weiss behavior down to 150K (see �g. 2.3). Fitting the
Curie-Weiss law χ(T) = C

T−θ one �nds a relatively broad range of values for both θ and the
e�ective magnetization µe� . ¿e values for θ range from 28K [17] to 80K [19]. ¿e e�ective
magnetization µe� was found to be between 2.85 µB per Co [17] and 3.88 µB per Co [19, 53].
Kageyama et al. pointed out that the discrepancy in the values is due to di�erences of the
powder samples. ¿at is whywe rather focus on the values given for the single crystal analysis
by Maignan et al. [19] which give a value of θ of about 80K and µe� of 3.88 µB per Co. All
authors report a positive Curie temperature which points towards a ferromagnetic ordering.

Below 150K the magnetic susceptibility begins to deviate from the Curie-Weiss behavior.
At about 25K a steep increase in the susceptibility arises, another indicator for the existence of
ferromagnetic order. ¿is feature of the susceptibility was interpreted as a signature of ferro-
magnetic ordering along the chains. Speci�c heat measurements on the other hand revealed
a pronounced peak at 25 K, a clear signal for the transition to long range order [55]. ¿is
result implies that the ordering process has to involve three dimensions as long range order
is suppressed at �nite temperatures in lower dimensions due to strong quantum �uctuations.
Indications for 1D short range order were already found at temperatures of about 100K. ¿e
25K peak in the speci�c heat vanishes for magnetic �elds larger than 5 T, which is again con-
sistent with ferromagnetic order. ¿e latter result could not be veri�ed by Sampathkumaran
et al., who also performed speci�c heat measurements but in higher �elds [56]. Instead they
found a pronounced peak even in �elds up to 14 T. Aasland et al. reported the occurrence of
neutron di�raction Bragg peaks that indicate antiferromagnetic order at temperatures below
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2.2 Physical Properties

Fig. 2.4:Magnetization data: a) Above 25K a linear dependence on the �eld is found. Below Tc1 a step with a hight
of 13 of the saturation magnetization develops. b) Going to temperatures below 10K reveals hysteretic behavior and
the existence of several additional steps in the magnetization. ¿e plots are taken from [19].

25K [17]. All these results are consistent with the existence of a long range ordered phase be-
low 25K; we will call this temperature Tc1. Above Tc1 short range ferromagnetic order seems
to be present in the chains until at 100 to 150K the pure Curie-Weiss behavior is observed.

Additional information is provided by magnetization measurements. Above Tc1 the mag-
netization is a linear function of �eld (when su�ciently lower than the saturation �eld). ¿e
situation changes below Tc1. ¿ere is a steep increase of the magnetization for low �elds fol-
lowed by a pronounced plateau at 1

3 of the saturation magnetization Msat, that �nally evolves
into another steep increase up to Msat [17, 19, 23, 53] (see �g. 2.3 a)). ¿is step becomes more
and more prominent from 25K down to about 10 K (Tc2). In the temperature range between
Tc1 and Tc2 no hysteresis is observed. Below Tc2 the magnetization gets more and more hys-
teretic and the 1

3 step vanishes in favor of several other more or less equally spaced steps
as shown in �g. 2.3 b) [19, 23]. A magnetization step of 1

3 in the intermediate temperature
range can easily be understood in terms of a triangular two-dimensional lattice formed of
Ising spins. A �rst approximation to the ground state of this scenario is a partially disor-
dered antiferromagnetic (PDA) state. In a PDA state 2

3 of the sites are antiferromagnetically
ordered in a honeycomb lattice, 1

3 of the sites are centered in the honeycomb hexagons and
have arbitrary spin projections. ¿e total energy of the lattice is independent of the spin pro-
jections of the spins on the centers of the honeycomb lattice. ¿erefore any small magnetic
�eld orders the honeycomb centers along the �eld resulting in a magnetization of 1

3 of Msat.
¿is scenario has been investigated lately both analytically [22] and numerically [57] �nding
not only the 1

3 step in themagnetization but also other step structures for lower temperatures.
¿ese latter steps are also observed experimentally. ¿emeasuredmagnetization in the inter-
mediate temperature range between Tc1 and Tc2 points towards a situation where we basically
have giant Ising-like spins in ferromagnetically ordered chains, which themselves are anti-
ferromagnetically ordered on a hexagonal 2D lattice. ¿is modeling of a two-dimensional
antiferromagnetic interaction �nds further con�rmation by muon spin rotation and relax-
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2 A Closer Look at Ca3Co2O6

Fig. 2.5: Conductivity and speci�c heat: a) Conductivity measurements [42] showing a negative slope and two
di�erent exponents for the exponential variable range hopping �t. b) Speci�c heat measurements [55] with a clear
λ like peak at Tc1 and a broad feature above this temperature.

ation measurements [58]. ¿e authors also found evidence for the onset of the intrachain
short range ferromagnetic ordering already at temperatures as high as 200K.

¿is picture involves a strongly anisotropic magnetic coupling. It is supported by experi-
mental work on oriented powders and single crystals [19,53], which show strong anisotropic
magnetic behavior (see �g 2.6). ¿e analysis of neutron di�raction data revealed that the
magnetic moments in Ca3Co2O6 are nearly exclusively located on Co2 and are parallel to the
c-axis [17]. Strong anisotropy was also found in the conductivity data [42,43]. ¿ese conduc-
tivity measurements identify Ca3Co2O6 to be an insulator. ¿e conductivity can be described
at temperatures below Tc1 with one-dimensional variable range hopping (VHR) [59]. It was
found that the exponent is consistent with a gap due to Coulomb interaction between the
localized electrons [60]. At temperatures above 70 to 80K the conductivity behavior is still
insulating and of the VHR type, but the exponent changes to re�ect the 3D nature of the
paramagnetic phase.

Going to temperatures lower than Tc2 reveals a di�erence in the dc susceptibility for �eld
cooled (fc) and zero �eld cooled (zfc) samples. In the case of fc samples the susceptibility
seems to saturate reaching a constant value towards lower temperatures, zfc samples instead
show a pronounced maximum at Tc2 [19]. ¿is behavior is typical for spin glass phases and
is frequently called a frozen spin phase. Such a spin glass phase is characterized by slow
spin response, which is indeed found in ac-susceptibility measurements [19, 23, 61, 62]. But
Ca3Co2O6 seems to be a very unusual spin glass material as the peak position in the real part
of the temperature-dependent ac-susceptibility curve varies strongly with the frequency [19,
23,61]which is not observed in usual spin glassmaterials. A spin glass phase has no long range
order which is again consistent with the absence of any particular feature in the speci�c heat
for temperatures close to Tc2 [55, 56]. As already mentioned the magnetization also shows
unusual behavior in the low temperature regime. It was argued that the equally spaced step
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2.2 Physical Properties

Fig. 2.6: Anisotropic magnetic properties: a) Magnetization data taken from oriented powder samples [53] show
a clear di�erence between the directions Y and Ù to the c-axis. ¿e curve Mr was measured for an intermediate
direction. b) ¿e same e�ect is also seen in the susceptibility data.

structure of the magnetization could be due to quantum tunneling of the magnetization [23,
62]. Other theoretical approaches try to explain the phenomenon with antiferromagnetic 2D
Ising like models [22, 57]. ¿is is still an area of intense discussion.

Another topic of controversy were the oxidation states of the Co atoms together with their
magnetic con�guration. ¿e formal average oxidation state of Co in Ca3Co2O6 is 3+ but this
could be realized either with one Co2+ and another Co4+ or both Co atoms in the oxidation
state 3+. susceptibility and magnetization measurements were not able to sort this out. Sev-
eral DFT calculations were in favor of the 3+ scenario [63–65], but others claimed to have
evidence for 2+/4+ [66]. ¿e Co3+ arrangement is also supported by NMRmeasurements, at
least at temperatures below 10K [67]. We therefore regard this topic as settled and use Co3+

in our calculations.

In the 3+ oxidation state Co can be found in three spin states, namely a high spin state (HS)
with a total spin of 2, an intermediate spin state with a total spin of 1, and a low spin state (LS)
with a total spin of 0. From the magnetic and structural measurements it was not clear what
spin states the cobalt atoms are in. Aasland et al. found by means of neutron di�raction a
magnetic moment of about 3 µB on Co2 and a nearly vanishing moment on Co1 [17]. As al-
ready mentioned, by �tting high temperature susceptibility data to the Curie-Weiss behavior,
Ca3Co2O6 was found to have e�ective moments per formula unit of 5.7 to 7.8 µB [17, 19, 53].
Early reports on magnetization measurements revealed saturation magnetizations of about
4 µB [17, 19]. But from recent measurements going to higher �elds up to 9 T the saturation
magnetization seems to bemuchmore likely in the region of 4.8 µB [23]. Altogether this gives
no simple picture for the spin states. ¿eoretical work suggests [64, 65, 68] the spin states to
be HS on Co2 sites and LS on Co1 sites.

Several other quantities have been investigated. Pressure e�ects on themagnetic properties
have been explored by Martinez, Hernando, and Goko [69–71]. It is found, that both Tc1 and

21



2 A Closer Look at Ca3Co2O6

Fig. 2.7:Magnetic properties of Ca3CoRhO6: a) Magnetic susceptibility versus temperature; ¿e data show a steep
increase below 90K. Zero �eld cooled (zfc) and �eld cooled (fc) samples behave di�erently below 35K. ¿e inset
shows the inverse susceptibility, which is almost linear in T above 200K. b) Magnetization versus �eld: No steps
are found at any temperature (�gures are taken from [50]).

the spin �ip �eldHSF aboveTc2 increaseswith the pressure. HSF aboveTc2 is de�ned as the �eld
strength necessary to overcome the 1

3 step in the magnetization bringing the system towards
Msat. ¿ese e�ects are explained by the authors with interchain bond length compression.
Conductivity measurements at temperatures below Tc2 revealed a strong dependence of the
conductance on the magnetic �eld. At 2 K the resistance is lowered by 80%. ¿ese e�ects
nearly disappear above Tc1 [42, 43].

A property that is very promising for applications is a high �gure ofmerit, meaning a strong
Seebeck e�ect combined with a small resistance. Ca3Co2O6 was investigated in that respect
and a strong Seebeck e�ect was indeed found [44]. Due to quality issues with the single crys-
tal samples themeasured resistance was two orders of magnitude too high. ¿e high absolute
value of the resistance would reduce the �gure ofmerit, which is inversely proportional to the
resistance. ¿is would disqualify Ca3Co2O6 for real world applications. Redoing the resis-
tance measurements on better single crystal samples yields absolute values of the resistance
that make Ca3Co2O6 a very promising candidate for high temperature applications [45–47],
due to its high thermal stability [15] . ¿e already very good values for the �gure of merit of
Ca3Co2O6 could even be improved by rare earth doping [48].

¿e in�uence of doping has also been investigated by several groups. In principle there are
three di�erent approaches in doping Ca3Co2O6. ¿e �rst one consists in substituting Ca by
a trivalent cation, in order to obtain a metallic compound. Unfortunately, at the moment,
none of the attempts in this direction have been successful [72]. ¿e second one would be
to replace parts of the Ca by another divalent cation. ¿is has been done with Y as sub-
stituent in Ca3-xYxCo2O6 [73]. By raising the content of Y the lattice elongates mostly along
the direction parallel to the chains. ¿is should mainly suppress the ferromagnetic coupling
along the chains. ¿e experimental outcome is a downshi of both transition temperatures
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Tc1 and Tc2, another sign that the increasing susceptibility at Tc1 is connected to the one-
dimensional inter-chain interaction. Another interesting result is that the Y substitution sig-
ni�cantly changes the behavior of the conductivity at low temperatures, namely from the 1D
to the 3D variable-range hoping type.

Another doping scheme replaces Co with transition metals. ¿is has been done, e.g., with
Ru, Ir [52], Mn [74, 75], Cr [76] and Fe [77, 78] as substituent. For Ru and Ir it is possible to
synthesize a whole series Ca3Co1+xM1-xO6 (M = Ru, Ir), with 0 B x B 1. At x = 0 both com-
pounds behave very di�erently fromCa3Co2O6. In Ca3CoIrO6 the Ir-ions seem to occupy the
trigonal prismatic sites but the oxidation states are most likely Ir+4 and Co+2. ¿e high tem-
perature behavior of the susceptibility points towards ferromagnetic inter-chain interactions.
No long range order can be established and nomagnetization steps exist at low temperatures.
¿e missing long range order as well as the divergence of the zfc and fc susceptibilities below
30K, and the dc susceptibility data show clear signs of a spin glass transition [61]. Neverthe-
less, in the case of Ca3CoIrO6 it is di�cult to draw �nal conclusions due tomaterial problems,
as there seems to be a sizeable fraction of vacancies in the Ir site, which is hardly documented
in the literature [79]. Ca3CoRuO6 on the other hand behaves completely di�erently, as its
magnetic properties are consistent with conventional antiferromagnetic behavior [77]. For
0 < x < 1 in both of the series the magnetic properties pretty much interpolate between the
x = 0 compounds and Ca3Co2O6.

Doping with Mn drives the Ca3Co2O6 system into a long-range antiferromagnetic order,
which is surprising as one would expect more pronounced spin glass behavior due to the
additional disorder from the substituted Mn atoms [75]. ¿e Mn atoms occupy the octahe-
dral positions. ¿e compound Ca3CoMnO6 shows no steps in the magnetization and much
weaker spin glass behavior at low temperatures. ¿e antiferromagnetic order temperature is
about 13 K [74]. In the case of Cr doped Ca3Co2O6, it is not possible to synthesize a whole
series of compounds, as the solubility of Cr in Ca3Co2O6 is very limited. Cr seems to prefer
the octahedral positions as Cr3+. ¿is means that Co3+ with total spin S = 0 is replaced by
Cr3+ with S = 3~2. ¿e ferromagnetic coupling is weakened by the Cr atoms and the suscep-
tibility is suppressed below the antiferromagnetic ordering temperature even by very small
Cr doping [76].

¿e investigations of doping Ca3Co2O6 with Fe are somewhat special because 57Fe can be
used for Mössbauer spectroscopy. ¿e Fe cations could be identi�ed as Fe3+ in the high spin
state, which most likely occupy the trigonal prismatic sites of the lattice. For temperatures
lower thanTc1 it is possible to resolve the hyper�ne structure of 57Fe3+. ¿is is attributed to the
di�erent character of Heisenberg-like Fe spins and strongly anisotropic Co spins [77,78,80].
¿ese measurements again support the assumption of a strong anisotropic nature of the Co2
spins.

¿e unusual magnetic properties of Ca3Co2O6 motivated a whole bunch of experimen-
tal and theoretical work on isostructural compounds [44, 50, 52, 63, 81–89]. Two prominent
examples are Ca3CoRhO6 and Ca3FeRhO6. In both cases Rh occupies the octahedral sites
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2 A Closer Look at Ca3Co2O6

whereas Fe and Co are on the trigonal prismatic sites, respectively. Especially interesting is
Ca3CoRhO6 because here not only the structure is similar to Ca3Co2O6 but also the mag-
netic moments are distributed in the same way. Co stays in the oxidation state 3+ and in the
high spin state on the trigonal prismatic sites and Rh is also 3+ and in the low spin state with
S = 0 [90]. ¿emagnetic condition is equivalent to the one in Ca3Co2O6. So it is not surpris-
ing that both share similarities in the magnetic response. ¿e susceptibility of Ca3CoRhO6

shows pretty much the same features as the susceptibility data of Ca3Co2O6. A positive Curie
temperature, a steep increase of the susceptibility below 90K, zfc samples showing a sudden
drop in the susceptibility below 35K whereas fc samples converge to a constant susceptibility
at this temperature [50] (�g. 2.7 a)). But in Ca3CoRhO6 magnetization steps do not appear
clearly. Still, the derivative ∂M~∂H shows a strong magnetic �eld dependence in the tem-
perature range of 30-70 K, which is reminiscent of the behavior of Ca3Co2O6 below Tc1. In
contrast to Ca3Co2O6 and Ca3CoRhO6 the compound Ca3FeRhO6 is found to be a 3D anti-
ferromagnet [84].

¿e whole class of compounds shows a rich variety of physical properties. Nevertheless
Ca3Co2O6 is in some respects a special member of this class. With the competition of ferro-
magnetic order along the chains and antiferromagnetic order perpendicular to the chains, the
complicated step structure of the magnetization versus �eld curves at low temperatures, the
spin glass behavior below Tc2, and the unusual dynamical susceptibility it is sort of the most
complex compound in the tribe. Hardy et al. found only recently, that at low temperature
Sr3HoCrO6 shows a behavior very similar to Ca3Co2O6 [88].

2.3 ¿eoretical Findings

¿e experimental investigation of Ca3Co2O6 raised some interesting questions for theoreti-
cal considerations. ¿e interplay of anisotropy, correlations, low dimensionality and complex
structure is responsible for some remarkable physical properties. In order to gain theoreti-
cal insight into the physics of such a complex material, it is necessary to perform density
functional theory (DFT) calculations as a �rst step [63, 64, 66, 91]. ¿e hexagonal unit cell
of Ca3Co2O6 contains six formula units in the form of three chains that are built from two
formula units respectively. In total this sums up to 66 atoms in the hexagonal unit cell. ¿is
unit cell can become even bigger, when one considers magnetic unit cells. ¿at is why all cal-
culations are done for simple magnetic order not altering the size of the unit cell. Whangbo’s
group took a totally ferromagnetically ordered unit cell for its spin polarized DFT calcula-
tions [63]. Using this con�guration helps to reduce the complexity of the unit cell tremen-
dously, as it is possible to use the trigonal unit cell with only 22 atoms in this case. ¿ey found
Co in the 3+ oxidation state to be in a high spin con�guration on the trigonal sites. For the
octahedral sites the calculation yields an oxidation state 3+ and a low spin con�guration on
the Co. ¿is result is in good agreement with experimental �ndings [17, 67]. ¿e local spin
densitiy approximation (LSDA) in this case fails to predict the insulating behavior as it �nds
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Fig. 2.8: Spin degenerate LDA: a) Band structure depicted in the hexagonal unit cell. ¿e dispersion is strongest
along Γ - A, indicating the one-dimensionality of the compound. b) Corresponding total density of states. (�gures
taken from [64]).

Ca3Co2O6 to be a half metal. It is a well known shortcoming of the DFT in conjunction with
the LSDA that it underestimates the optical band gap. ¿e reason for this systematic failure
is the incomplete treatment of electron-electron correlations [92] in the LSDA.

Eyert in cooperation with Kopp, Frésard and myself also performed an LSDA calcula-
tion [64], extending the scope of the work of Whangbo. We also found Ca3Co2O6 to be half
metallic, which is a strong indicator for the importance of electron-electron correlations. In
many cases the strongest e�ect of the correlations is the increase of the band gap size. If one
is aware of this central problem LSDA gives still valuable insight into the physics of the com-
pound. ¿e afore mentioned group performed three calculations for Ca3Co2O6 [64]. In the
�rst one spin degeneracy is enforced. ¿e second one, similar to Whangbo, uses the trigonal
unit cell, e�ectively assuming total ferromagnetic order. A third calculation actually applies
the hexagonal unit cell in the ferrimagnetic order, where themagneticmoments of two chains
point in c direction and the third chain has a magnetic moment in opposite direction.

¿e spin degenerate calculation re�ects clearly the one-dimensionality of the compound.
¿e bands show the most distinct dispersion along the chains. ¿e chain direction corre-
sponds to the part of the band structure between the Γ- and the A-point in �gure 2.8 a).
Another �nding of this calculation is a clearly identi�able crystal �eld splitting in the partial
DOS for Co1 and Co2 (see �g. 2.9 a and b). ¿e labelling of the orbitals is relative to a global
coordinate system with the z-axis along the chain direction. For this reason, the crystal �eld
split bands are not formed from the dxy, dxz, dyz and dx2−y2 , d3z2−r2 orbitals, respectively, as
they would be in the standard orientation with the Cartesian axes pointing along the metal-
ligand bonds but rather from admixtures of these orbitals. Only a er a transformation into
a symmetry adapted coordinate system for Co1, a nearly perfect t2g-eg splitting can be seen.

Performing the LSDA calculation for a lattice of ferromagnetically ordered chains con�rms
the low-spin and high-spin states for Co1 and Co2, respectively, and magnetizations close to
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measured values [17]. It is found that the oxygen atoms carry almost 1 µB per unit cell. ¿is
is due to a rather strong hybridization between Co1 d-states and O p-states. ¿e magnetic
moments are still localized but spread on the oxygens of the prism. Such a situation has been
previously observed in copper oxides. It is known as extended moment formation [93, 94].
Along the chains a strong metal-metal overlap is found, mostly of dz2−r2 orbitals of Co1 and
Co2. Extending the calculation to ferrimagnetic order does not change the results signi�-
cantly. All qualitative �ndings remain unchanged [64].

¿e strong anisotropy of the magnetic response found in the experiments [54] suggests,
that spin-orbit coupling is an important interaction in this material. Spin-orbit coupling can
be treated in the LSDA framework which has been done for Ca3Co2O6 [66,91]. ¿ese calcu-
lations predict the insulating character of Ca3Co2O6 correctly. But both of these calculations
have problems of their own. ¿e group of An [91] et al. found, e.g., that the mobility of the
electrons in Ca3Co2O6 is much lower along the chains than perpendicular to the chains, in
marked contrast to experimental results [43]. ¿e group of Vidya predicts in its calculations

Fig. 2.9: Partial density of states: a) and b) spin degenerate results for Co1 and Co2, respectively. ¿e crystal �eld
splitting is in both cases clearly visible. In the Co1 case it is necessary to transform the data into the ‘natural’
coordinate system de�ned by the octahedral environment to observe the t2g – eg splitting. c) and d) shows the
corresponding data in the spin resolved ferromagnetic case.
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Fig. 2.10: Illustration of quantum tunneling: the system is in the metastable state m = S. If the magnetic �eld is
tuned such that the system state is degenerate with an exited state on the other side of the barrier m = −S + n, the
system can overcome the barrier by tunneling into the state m = −S + n. ¿e tunneling is then followed by a rapid
relaxation into the ground state [25].)

that cobalt should be 2+ and 4+, which can not be con�rmed by experimental �ndings [67]
and is in contradiction to several other theoretical works [63–65, 68].

¿e failure of the LSDA calculations to produce the experimental gap is most likely due
to electron-electron correlations in Ca3Co2O6. A way to introduce local electron interac-
tions in a LDA like calculation is provided by the LSDA + U scheme. Wu et al. performed
such calculations for Ca3Co2O6, also including spin-orbit coupling [65]. ¿e incorporation
of local electron interactions indeed leads to an insulating ground state. ¿e system becomes
insulating for any reasonable value of U. ¿is result suggests that Ca3Co2O6 is a Mott insu-
lator, which emphasizes the importance of correlations in the compound. ¿e addition of
spin-orbit coupling together with the unusual crystal �eld splitting of the local energy levels
on the trigonal prismatic sites serves as an explanation for the strong anisotropy. ¿e above
calculation also supports the assumption of Co being in a 3+ oxidation state on both the
octahedral and prismatic sites.

An interesting question, which is outside the scope of LSDA in this system, is the occur-
rence of a series of steps in the magnetization at temperatures below Tc2. Two explanations
are proposed by di�erent groups. Kudasov [22] maps the structure of Ca3Co2O6 on a 2D tri-
angular lattice being formed of Ising spins. One chain is represented by one Ising spin in this
formulation. Starting from a partially disordered antiferromagnetic (PDA) state it is possi-
ble to analytically construct a sequence of exited states approaching the ground state of the
system [95, 96]. Any of these states results in a di�erent set of magnetization steps. Assum-
ing that the system is going through these states during the cooling process, this sequence of
states could explain the observed steps in the magnetization curve.

¿e basis for the mapping of the magnetic structure of Ca3Co2O6 onto a triangular lattice
of Ising spins is the assumption of rigid, ferromagnetically coupled chains. A complemen-
tary idea is that the steps are related to a quantum tunneling e�ect phenomenon [23, 62].
In this formulation the Ising like spins on the Co2 atoms are in a �rst approximation not
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coupled to each other. ¿e steps in the magnetization come from resonant tunneling ef-
fects. ¿e phenomenon of quantum tunneling is widely discussed in the context of molecular
magnets [25, 97]. ¿e magnetic properties of these systems are dominated by large, highly
anisotropic magnetic moments, that are relatively far apart and therefore only weakly cou-
pled to each other. ¿e large moments are typically formed by mesoscopic ferromagnetic
particles or molecular clusters, e.g., Mn12 [24, 98]. Several observations support the idea of
quantum tunneling in Ca3Co2O6: �rst of all the strong anisotropy of the magnetic response,
which is a crucial precondition. A second �nding, that supports this picture is that the mag-
netization steps occur at constant magnetic �eld intervals, independent of the sweep rate of
the �eld. Along with the measurements of faster magnetic relaxation in the vicinity of the
steps [23, 62], this behavior is consistent with the results in molecular magnets [25]. Nev-
ertheless the situation in Ca3Co2O6 is much more complex, as the coupling of the magnetic
moments cannot be neglected. ¿erefore it might not be unexpected that the agreement with
�ndings in molecular magnets are far from perfect. One striking di�erence is that the steps
in Mn12 only occur during the up sweep of the �eld towards saturation. On the back sweep
to zero �eld no steps are visible, but in Ca3Co2O6 steps are clearly visible in both directions.
Another unclear matter is the appearance and freezing of steps dependent on sweep rate and
temperature, where additional experiments might bring new insights. Whether the di�er-
ences between the magnetic features of Ca3Co2O6 andmolecular magnets are a consequence
of the spin-spin interactions or of an inadequate analogy is still heavily discussed.
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“As we came closer, we realized that the quadrangular form included, at each of its
corners, a heptagonal tower, �ve sides of which were visible on the outside - four of the
eight sides, then, of the greater octagon producing four minor heptagons, which from
the outside appeared as pentagons.”

Umberto Eco, ¿e Name of the Rose

3 High Order Perturbation¿eory

For Ca3Co2O6 experimental and theoretical investigations �nd a Mott-Hubbard gap at low
temperatures [42, 65]. We will therefore assume that the local Coulomb interactions dom-
inate the low energy physics in this system. Using perturbation expansion in the hopping
terms should give at least a qualitatively correct description of the system. It should be pos-
sible to �nd a reasonably good approximation to the lowest eigenstate within a few orders of
perturbation theory. ¿e problem we are discussing demands perturbation theory to fourth
and � h order.

We divide the Hamiltonian H into one part H0, which we assume to de�ne a solvable or
already solved problem, and another part H1, the perturbation, with H = H0 + H1. Using
the reasoning described in quantum mechanics books (e.g., [99]) it is tedious but straight-
forward to derive the formulae for higher orders in the Rayleigh-Schrödinger formalism.
Table 3.1 lists all expressions up to � h order. Especially the higher order corrections are
quite complicated. ¿e formulae become much simpler if the �rst order correction E(1)n van-
ishes. For a typical hopping Hamiltonian it is usually possible to choose a basis such that the
perturbation Hamilton matrix contains only o� diagonal elements.

3.1 Perturbative Treatment of Degenerate States in Second
and¿ird Order

¿e formulae in table 3.1 are valid only if the following condition is full�lled:

S`nSH1SµeS  S∆EµS = SEn − EµS . (3.1)

In a zeroth order estimation the value ofHnµ is typically of the order of the hopping energy t,
and the energy di�erence of two eigenstates of the Hubbard Hamiltonian is of the order ofU.
In the weak coupling limit we have indeed t  U. But with a multi-orbital Hamiltonian, U
is not the only energy scale. We cannot be a priori sure that we actually meet the criterion 3.1
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3 High Order Perturbation ¿eory

E(1)n = `nSHtSne = Hnn

E(2)n = Q
µ

HnµHµn

∆Eµ

E(3)n = Q
µν

HnµHµνHνn

∆Eµ∆Eν
− E(1)n Q

µ

HnµHµn

(∆Eµ)2

E(4)n = Q
µνλ

HnµHµνHνλHλn

∆Eµ∆Eν∆Eλ
− E(2)n Q

µ

HnµHµn

(∆Eµ)2

−E(1)n Q
µν

HnµHµνHνn

∆Eµ∆Eν
�

1
∆Eµ
+

1
∆Eν
� + �E(1)n �

2
Q
µ

HnµHµn

(∆Eµ)3

E(5)n = Q
µνλδ

HnµHµνHνλHλδHδn

∆Eµ∆Eν∆Eλ∆Eδ
−Q
µνλ

HnµHµνHνnHnλHλn

∆Eµ∆Eν∆Eλ
�

1
∆Eµ
+

1
∆Eν
+

1
∆Eλ
�

−E(1)n Q
µνλ

HnµHµνHνλHλn

∆Eµ∆Eν∆Eλ
�

1
∆Eµ
+

1
∆Eν
+

1
∆Eλ
�

+E(1)n Q
µν

HnµHµnHnνHνn

∆Eµ∆Eν
�

1
(∆Eµ)2

+
1

∆Eµ∆Eν
+

1
(∆Eν)2

�

+�E(1)n �
2
Q
µν

HnµHµνHνn

∆Eµ∆Eν
�

1
(∆Eµ)2

+
1

∆Eµ∆Eν
+

1
(∆Eν)2

� − �E(1)n �
3
Q
µ

HnµHµn

(∆Eµ)4

Table 3.1: Energy corrections up to � h order of perturbation theory for non degenerate states. ¿e unperturbed
states are labl ed µ, ν, λ, and σ. A state µ is eigenstate of the unperturbedHamiltonianH0 with the eigenvalue E

(0)
µ .

¿e energy corrections are calculated for the state n, that is excluded in all summations. We use the abbreviations
∆Eµ = E

(0)
n − E

(0)
µ and Hµν

= `µSH1Sνe, whereH1 is the Hamiltonian of the perturbation.

in any case. Further problems arise for unperturbed states that are degenerate with state Sne.
In case of degenerate states the inequality 3.1 breaks down completely.

To avoid problems with troublesome intermediate states we have to make sure that there
is no way to reach such a state in the considered order of the perturbation. ¿at is already
the basic idea for the necessary modi�cations for degenerate perturbation theory. First let us
focus on all states that are exactly degenerate with the state n. ¿ese unperturbed states span
a subspaceD of the total Hilbert spaceH. Furthermore we de�ne a projector P = Pn>D Sne`nS,
which performs a projection into D. As all n > D are eigenstates to the same eigenvalue of
H0, we can choose any linear combination of these states as the basis of the perturbation
expansion. In particular we can choose them to be eigenstates of PH1 P. We will call these
new states n′, they are still eigenstates ofH0. But for two statesm′ and n′ the matrix element
`m′SH1Sn′e now vanishes. ¿ere is no hoppingmatrix element between these two states up to

30



3.2 Nearly Degenerate States

�rst order. With this property we can correct the energy up to third order without running
into degeneracy problems.

3.2 Nearly Degenerate States

For nearly degenerate states the basic idea is the same, but we have to treat the problem a little
bit more formal. ¿e subspace D is now spanned by both degenerate and nearly degenerate
states with respect to the state n. In this situation an additional problem arises. If we simply
diagonalize PH1 P the resulting states will no longer be eigenstates ofH0, which is a precon-
dition of the perturbation theory that lead us to the formulae of table 3.1. In order to solve
this issue we will transform the original Hamiltonian. ¿is transformation has to be done
in a way, that we are able to put the problematic terms in that part of the Hamiltonian that
can be diagonalized exactly, leaving the rest of the Hamiltonian for the now unproblematic
perturbative treatment. To achieve this goal we introduce an additional projection operator
Q = 1 − P, which projects a general state into the complement of D. A ket state Sµe can then
be written as:

Sµe = P Sµe +Q Sµe . (3.2)

We can also rewrite the Hamiltonian:

H = H0 + (P +Q)H1(P +Q) = H0 + PH1 P +QH1 P + PH1 Q +QH1 Q . (3.3)

At this point we will simply rede�ne the unperturbed part of the Hamiltonian and the per-
turbation. With the de�nitions:

H′
0 � H0 + PH1 P , (3.4)

H′
1 � PH1Q +QH1 P +QH1Q ,

the perturbative problem is restated in an adequate fashion. Now we have to diagonalize
H′

0 resulting in new eigenstates Sµ′e and formulate the perturbation theory with H′
t and

the states Sµ′e. ¿is looks like we would have to redo the diagonalization completely but
actually the eigenstates of H0 that are not in D are unaltered because the Hamiltonian has
not changed in the complement of D. ¿e diagonalization can be limited to the subspace D.
¿is reformulation of the problem has two bene�cial e�ects. First, the additional term inH′

0

typically li s the degeneracy at least partly. Second, even if there are still degenerate states le ,
they will not harm, because terms comprising these states in second order vanish. All matrix
elements of H′

1 conneting two states in D are zero by construction, therefore only states in
the complement H~D can be intermediate states in the perturbation expansion. A bene�t of
this construction is that we can use the formulae of the non degenerate perturbation theory
and simply use the new perturbation HamiltonianH′

1. Using the formula in 3.1 we calculate
the �rst order energy correction for a state n′ > D:
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3 High Order Perturbation ¿eory

E(1)n′ = `n
′SH′

1Sn′e = `n′SPH1Q +QH1 P +QH1QSn′e = 0 . (3.5)

¿e �rst order energy correction vanishes for the state n′. ¿e �rst order correction is ob-
viously already included by the way the nearly degenerate states are treated. If the energy
degeneracy is li ed by this procedure we are done and can calculate the higher order en-
ergy correction accordingly. Unfortunately this is not the case in our problem, because in
our hopping expansion the �rst order corrections vanish already from the beginning. ¿e
degeneracy can therefore not be li ed by the above technique. If the degeneracy is not li ed
one can easily see from table 3.1 that it is nevertheless save to calculate energy corrections up
to third order.

3.3 Degeneracy in Fourth Order and Above

Beginningwith the fourth order we are again facedwith problems due to degenerate or nearly
degenerate states. ¿is originates in the fact that the above treatment eliminates only direct
matrix elements of two degenerate states with the perturbation Hamiltonian. ¿e fourth or-
der energy correction contains terms that lead to indirect matrix elements between two de-
generate states. We assume the state n′ > D to be already corrected with the above illustrated
method. One of the terms of the energy correction in fourth order looks like this:

δE(4)n′ =
`n′SPH1QSµ′e`µ′SQH1 P +QH1QSν′e

(E(0)n′ − E
(0)
µ′ )(E

(0)
n′ − E

(0)
ν′ )

(3.6)

�
`ν′SPH1Q +QH1QSγ′e`γ′SQH1 PSn′e

(E(0)n′ − E
(0)
γ′ )

=
`n′SPH1QSµ′e`µ′SQH1QSν′e`ν′SQH1QSγ′e`γ′SQH1 PSn′e

(E(0)n′ − E
(0)
µ′ )(E

(0)
n′ − E

(0)
ν′ )(E

(0)
n′ − E

(0)
γ′ )

(3.7)

+
`n′SPH1QSµ′e`µ′SQH1 PSν′e`ν′SPH1QSγ′e`γ′SQH1 PSn′e

(E(0)n′ − E
(0)
µ′ )(E

(0)
n′ − E

(0)
ν′ )(E

(0)
n′ − E

(0)
γ′ )

¿e numerator of the second term of equation 3.7 has a �nite value if the states ν′ are
degenerate or nearly degenerate with the state n′. With an energy denominator that is zero
or close to zero this whole term will cause the perturbation expansion to break down. In
order to deal with such terms up to � h order we introduce the following operators:
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3.3 Degeneracy in Fourth Order and Above

VL � `l′SVL = Q
µ′

`l′SPH1QSµ′e`µ′SQH1 P
E(0)l′ − E

(0)
µ′

+Q
µ′ν′

`l′SPH1QSµ′e`µ′SQH1QSν′e`ν′SQH1 P
(E(0)l′ − E

(0)
µ′ ) (E

(0)
n′ − E

(0)
µ′ )

, (3.8)

VR � VRSl′e = Q
µ′

PH1QSµ′e`µ′SQH1 PSl′e
E(0)l′ − E

(0)
µ′

+Q
µ′ν′

PH1QSµ′e`µ′SQH1QSν′e`ν′SQH1 PSl′e
(E(0)l′ − E

(0)
µ′ ) (E

(0)
n′ − E

(0)
µ′ )

. (3.9)

¿is de�nition uses states l′ > D and the reference state n′ which we want to correct. ¿e
operator VL is de�ned in the dual space whereas VR is acting on ket vectors. Generally both
operators are not hermitian but in spaces of energetically degenerate states they are hermitian.
In the latter case they have the same matrix representation. In general one is the adjoint
operator of the other,V†

L = VR. We want to investigate the case of nearly degenerate states. In
a similar way as before we want to rede�ne the perturbation problem. We can neither useVL

nor VR for this task, because they do not represent observables due to their non hermitian
nature. Nevertheless we can de�ne hermitian and antihermitian combinations of the two
operators:

V+ �
1
2
(VL +VR) , (3.10)

V− �
1
2
(VL −VR) . (3.11)

From these de�nitionswe get of course the inverse relationsVL = V++V− andVR = V+−V−.
Now we are able to restate the original problem in the following form:

H = H0 + PH1 P +V+ +QH1 P + PH1 Q +QH1 Q −V+ . (3.12)

From the de�nition of VL and VR it is obvious that these two operators are in second and
third order in H1 and so is V+. Moreover V+ has only �nite matrix elements for states in D.
Like before we de�ne a modi�ed unperturbed Hamiltonian H̃0. ¿e new perturbation term
can be split into a term which is �rst order and another which is second and third order in
H1:

H = H̃0 + H̃1 + H̃2 (3.13)
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3 High Order Perturbation ¿eory

with

H̃0 = H0 + PH1 P +V+ , (3.14)
H̃1 = QH1 P + PH1 Q +QH1 Q , (3.15)
H̃2 = −V+ . (3.16)

We now perform the diagonalization of H̃0. As H̃0 is not di�erent from H0 outside of D
all states of the complement H~D are still eigenstates and stay unaltered. Only the states in
D have to be diagonalized again with the new Hamiltonian. A state ñ is an eigenstate of H̃0

with the eigenvalue Ẽ(0)ñ . To calculate the energy corrections we can still use the formulae in
table 3.1 but with some caution. Due to the fact that we have to deal with a perturbation that
already contains higher order terms we have to rearrange the terms according to their order
inH1. ¿erefore we distinguish between the energy corrections given by the formulae for the
unperturbed case E(i)ñ in order i with respect to pertubation H̃1 + H̃2 and energy corrections
Ẽ(i)ñ in order i with respect to the pertubationH′

1 for the states ñ. To illustrate this procedure,
we perform the �rst order energy correction to a state ñ:

E(1)ñ = `ñSH̃1 + H̃2Sñe = `ñSH̃1Sñe − `ñSV+Sñe . (3.17)

¿e term `ñS V+ Sñe is already at least of second order and does not belong to a �rst order
correction. But this term has to be taken into account for the second order energy correction.
¿is means:

Ẽ(1)ñ = `ñSH̃1Sñe = `ñSH′
1Sñe = 0. (3.18)

¿e chosen construction of H̃0 does still lead to a vanishing �rst order correction. Bringing
together all second order terms shows that Ẽ(2)ñ is also vanishes by construction and the same
is true for Ẽ(3)ñ .

All energy corrections up to � h order are shown in table 3.2. It appears that there are
still terms in 3.2 that have very small or even vanishing denominators. ¿ese terms include
factors of V−. So let us have a closer look on V− in second order, with the states ñ, m̃ > D :

`ñSV−Sm̃e = Q
µ̃

`ñSPH1QSµ̃e`µ̃SQH1 PSm̃e
2(E(0)ñ − E

(0)
µ̃ )

−Q
µ̃

`ñSPH1QSµ̃e`µ̃SQH1 PSm̃e
2(E(0)m̃ − E

(0)
µ̃ )

(3.19)

= Q
µ̃
`ñSPH1QSµ̃e`µ̃SQH1 PSm̃e

�

�

E(0)m̃ − E
(0)
ñ

(E(0)ñ − E
(0)
µ̃ )(E

(0)
m̃ − E

(0)
µ̃ ) .

�

�
(3.20)

¿e matrix elements `ñS V− Sm̃e are proportional to the energy di�erence of the states m̃
and ñ. ¿is same energy di�erence also enters the denominator of the energy correction
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3.3 Degeneracy in Fourth Order and Above

Ẽ(1)ñ = Ẽ(2)ñ = 0

Ẽ(3)ñ = 0

Ẽ(4)ñ + Ẽ
(5)
ñ = −Q

µ̃>D

`ñSV−Sµ̃e`µ̃SV−Sñe
∆Eµ̃

Table 3.2: Energy corrections up to � h order of perturbation theory for degenerate states. ¿e eigenstates of H̃0

are labelled µ̃. ¿e state ñ > D is eigenstate of H̃0 with eigenvalue E
(0)
ñ . D is the linear space that is spanned by

all states that are degenerate or nearly degenerate with the state n, an eigenstate to H0. ¿e operator P projects
in D and Q into the complement of D in the total Hilbert space H. We use the abbreviation ∆Eµ̃ = E

(0)
ñ − E

(0)
µ̃ .

Compare with table 3.1.

terms that contain matrix elements ofV−. Exactly this energy di�erence causes the problems
because it is an energy di�erence of states in D. But as both numerator and denominator
contain these di�erences they cancel out and the fraction stays �nite. ¿ematrix elements of
the third order parts of V− can be evaluated correspondingly.

If the states are exactly degenerate, then the above treatment is not necessary. In this case a
much simpler standard treatment exists. We already noted that in a degenerate subspace VL

equals VR and both are hermitian. So the construction of V+ and V− is not needed. Further-
more it is possible to diagonalize an hermitian operator in a degenerate subspace of another
hermitian operator without loosing the diagonality of the latter operator. ¿is means that
we can diagonalizeVL in the degenerate subspace and the resulting eigenstates ofVL are still
eigenstates ofH0. Using these states for the perturbation expansion assures that the nomina-
tor in the expansion stays �nite.
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“¿erefore you don’t have a single answer to your questions?”
“Adso, if I did I would teach theology in Paris.”
“In Paris do they always have the true answer?”
“Never”, William said, “but they are very sure of their errors.”

Umberto Eco, ¿e Name of the Rose

4 Magnetic Models

One challenge of this work is to obtain an explanation for the ferromagnetic coupling be-
tween the Co2 sites in Ca3Co2O6. Since Ca3Co2O6 is not a metal [42, 65], it is unlikely that
the magnetic coupling is due to itinerant magnetism. ¿erefore we favor a local explana-
tion for the ferromagnetic coupling. Such local interactions arise in many cases from direct
exchange [26,100] or superexchange [101–104]. In our case superexchange, involving the non-
magnetic Co1 sites, is what we would expect to be the most important contribution. Direct
exchange should be very small because the direct overlap of theCo2wavefunctions is strongly
suppressed due to the long distance between the sites. Using the well known Goodenough-
Kanamori-Anderson rules (GKA) in this situation tells us that we should rather �nd antifer-
romagnetic coupling [28, 33, 103]. While this is the case for some isostructural compounds
like Ca3FeRhO6, experiments reveal ferromagnetic intrachain coupling for Ca3Co2O6 and
Ca3CoRhO6 [17, 50, 81]. In many cases the GKA rules yield results in agreement with the
experiments. But they are not applicable in certain distinct cases [105]. One example is the
two-band Hubbard model at quarter-�lling, where strong coupling and weak coupling ap-
proaches yield contradicting answers, resulting into a rich phase diagram [106–108]. Never-
theless, assuming that GKA provides the correct qualitative signature of the superexchange,
there has to be a competing mechanism favoring ferromagnetic interaction. One of the po-
tential competing interactions is the cyclic exchange interaction [109–111]. Cyclic exchange is
possible in Ca3Co2O6 by paths involving oxygen states. As we will see, cyclic exchange leads
to ferromagnetic coupling under certain preconditions and for this reason it could explain
the ferromagnetic coupling observed in Ca3Co2O6.

Exchangemodels are o en su�cient to describe magnetism in systems with localized elec-
trons. ¿ese models are based on a perturbative treatment of the Hubbard model with the
assumption of a local electron-electron interaction that is much larger than the kinetic over-
lap between the sites. ¿is picture is particularly successful for transition metals in the in-
sulating phase. ¿ere the d-orbitals are typically strongly localized, making the Coulomb
repulsion an important energy scale of the system. Inmany cases there will be no direct over-
lap between the magnetic sites, instead the transition metal ions will be separated by anions
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4 Magnetic Models

Fig. 4.1: Toy model for superexchange: Two d-sites are connected over one p-site. In this simple model we have only
one orbital per site. ¿e ground state for this con�guration is a singlet state.

like oxygen. Perturbation theory to fourth order results in an e�ective coupling between the
transition metal sites known as superexchange [101–103]. ¿is e�ective coupling can either
be ferromagnetic or antiferromagnetic depending on the symmetry relations between the
orbitals that mediate the interaction [31, 33]. Another exchange mechanism possibly leading
to ferromagnetic coupling is the ring exchange, where the electrons are moving on a cyclic
path [111–113]. It can lead to both ferromagnetic and antiferromagnetic coupling depending
on the sign of the hopping parameter that closes the cycle by directly connecting themagnetic
sites.

4.1 Superexchange

We will discuss two simple albeit instructive examples to illustrate the possible exchange
mechanisms leading to ferromagnetic or antiferromagnetic coupling. First let us consider
two transition metal sites with one 3z2 − r2-orbital on each site, which are connected to an
oxygen site through a pz orbital (see �gure 4.1). Wewill denote the oxygen p-state with spin σ
by Spσe. ¿e corresponding energy level and Hubbard energy are denoted єp andUp, respec-
tively. ¿e d-states are labelled Sd1~2 σewith energy єd and Coulomb repulsionUd. An electron
is created in the state Spσe with the operator p†σ and in a d-state with d†1~2 σ. ¿e number op-
erators n are indexed accordingly. With these conventions we have the Hamiltonian:

HS = Q
σ
(єp np σ + єd nd1 σ + єd nd2 σ) +Up np � np � +Ud nd1 � nd1 � +Ud nd2 � nd2 � , (4.1)

−tQ
σ
(c†p σcd1 σ + c†p σcd2 σ + c†d1 σcp σ + c

†
d2 σcp σ) .

To simplify this Hamiltonian we will use the freedom to choose a zero point for the energy
scale and set єd to zero. ¿e largest energy scale in the problem isUd, therefore we will mea-
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4.1 Superexchange

sure all energies in units of Ud and denote all quantities using this energy scale with a hat.
Using this convention with ĤS = HS~Ud, є̂ = єp~Ud, Û = Up~Ud, and t̂ = t~Ud we have:

ĤS = Q
σ
є̂np σ + Ûnp � np � + nd1 � nd1 � + nd2 � nd2 � , (4.2)

−t̂Q
σ
(c†p σcd1 σ + c†p σcd2 σ + c†d1 σcp σ + c

†
d2 σcp σ) .

In particular this Hamiltonian conserves the particle number and the z-component of the
total spinmz. ¿us it is possible to work in subspaces with a �xed number of particles per spin
direction. Suppose we wish to calculate the energy di�erence between an “antiferromagnetic
state” (mz = 0) and the corresponding “ferromagnetic state” (mz = 1) with the same total
number of particles. To that aim we choose the antiferromagnetic state to have two up spins
and two down spins, the ferromagnetic state has three up spins and one down spin. In the
regime of t̂  1 we can treat the problem with perturbation theory, where we call the local
part of the Hamiltonian ĤD

loc and the perturbative hopping part ĤD
hop, with ĤD = ĤD

loc + ĤD
hop

and:

ĤD
loc = Q

σ
є̂np σ + Ûnp � np � + nd1 � nd1 � + nd2 � nd2 � , (4.3)

ĤD
hop = −t̂Q

σ
(c†p σcd1 σ + c†p σcd2 σ + c†d1 σcp σ + c

†
d2 σcp σ). (4.4)

As we are only interested in the question which spin con�guration has the lowest energy
we have to regard the lowest order in t̂ that makes a di�erence between the con�gurations.
To second order there is no di�erence between the ferromagnetic and the antiferromagnetic
con�guration. ¿e lowest order that contributes to an energy di�erence is the fourth order.
¿erefore we have to calculate the fourth order terms of the perturbation expansion in t̂.
With only one orbital on each site no explicit diagonalization of ĤD

loc is necessary.

¿e Hilbert space of the antiferromagnetic con�guration is spanned by nine basis vectors.
Table 4.1 shows all eigenvectors of ĤD

loc together with the notation and the eigenvalues. In the
strong coupling regime, є̂+ Û < 1, the ground states are S �- �� -�e and S-� �� �-e; they build
a twofold degenerate subspace. All eigenstates are distributed over four energy subspaces,
three of which have a dimension higher than one. ¿e reason for the degenerate eigenstates
is that the Hamiltonian ĤD

loc is invariant under two symmetry operations, namely the spin
�ip of the z-component of the total spin and the permutation of the sites d1 and d2. To make
use of the symmetries we introduce the symmetry adapted eigenstates of ĤD

loc, meaning the
respective symmetric and antisymmetric combinations (see table 4.1). For the de�nition of
symmetric and antisymmetric states one has to be careful to get the right phase due to the
anticommutation of the fermionic operators. Although the lowest energy states are degener-
ate we are allowed to proceed with standard perturbation theory. ¿is has two reasons: First,
there are no corrections in second order degenerate perturbation theory, because all hopping
matrix element between the degenerate ground states are zero. Second, none of the excited
states has a �nite hopping amplitude with both of the degenerate ground states, a fact that as-
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sures the validity of the fourth order expansion (for a discussion of high-order perturbation
theory see section 3).

With the use of the symmetrized eigenstates of ĤD
loc, the hoppingmatrixHmn = `mSĤD

hopSne
is signi�cantly simpli�ed. It is now block diagonal (see table 4.2) and we can use the sub
blocks that contain the degenerate ground states to build the corresponding fourth order
expansion. Using the formulae derived in section 3 and the tables 4.1 and 4.2 we get:

Ê(4)D,1′f
=

4t̂4

(є̂+ Û − 1)2
�

2
2(є̂− 1) + Û

− 1� , (4.5)

Ê(4)D2′f
= 0 . (4.6)

A detailed analysis of the perturbation expansion shows that there is an additional term for
both energy corrections. It originates from the repetition of second order processes, and is
not considered as a genuine fourth order process. In the calculation for the ferromagnetic
states we will again �nd the same term, which allows us to omit this term, as it does not
contribute to an energy di�erence. For the state S2′ae there is no genuine fourth order process.
We assumed є +U < 1 which means that the fourth order energy correction to the state S1′ae
is negative and therefore S1′ae is the lowest state in the antiferromagnetic case.

¿e calculation for the ferromagnetic case is equivalent, so we do not describe it in detail.
Only three states span the Hilbert space in this case, making the evaluation much easier.
Performing the same steps as abovewe �nd that the lowest state S1fe has the same unperturbed
energy and the same second order corrections as S1′ae. ¿e abovementioned non-genuine

Fig. 4.2: Orthogonal superexchange: Two d-sites are connected over two orthogonal p-orbitals. ¿ehoppingHamil-
tonian does not couple the two d-sites in any order of perturbation theory. ¿e energy di�erence between singlet
and triplet is due to Hund’s rule on the p-site. ¿en the ferromagnetic state is the ground state.
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4.1 Superexchange

Direct Superexchange: De�nition of Antiferromagnetic Eigenstates and Ket Notation
d1 p d2 eigenval. ket notation symmetric eigenstates
� � � � � � units: Ud nr symbolic de�nition

� − � � − � 2є̂+ Û S1ae S �- �� -�e S1′ae = 1º
2
(S1ae − S2ae)

− � � � � − 2є̂+ Û S2ae S-� �� �-e S2′ae = 1º
2
(S1ae + S2ae)

� � − � � − є̂+ 1 S3ae S �� -� �-e S3′ae = 1
2(S3ae − S4ae + S5ae − S6ae)

� � � − − � є̂+ 1 S4ae S �� �- -�e S4′ae = 1
2(S3ae + S4ae + S5ae + S6ae)

− � � − � � є̂+ 1 S5ae S-� �- ��e S5′ae = 1
2(S3ae − S4ae − S5ae + S6ae)

� − − � � � є̂+ 1 S6ae S �- -� ��e S6′ae = 1
2(S3ae + S4ae − S5ae − S6ae)

� � � � − − 2є̂+ Û + 1 S7ae S �� �� --e S7′ae = 1º
2
(S7ae + S8ae)

− − � � � � 2є̂+ Û + 1 S8ae S-- �� ��e S8′ae = 1º
2
(S7ae − S8ae)

� � − − � � 2 S9ae S �� -- ��e S9′ae = S9ae

Direct Superexchange: De�nition of Ferromagnetic Eigenstates and Ket Notation
d1 p d2 eigenval. ket notation symmetric eigenstates
� � � � � � units: Ud nr symbolic de�nition

� − � � � − 2є̂+ Û S1fe S �- �� �-e S1′fe = S1fe

� � � − � − є̂+ 1 S2fe S �� �- �-e S2′fe =
1º
2
(S2fe − S3fe)

� − � − � � є̂+ 1 S3fe S �- �- ��e S3′fe =
1º
2
(S2fe + S3fe)

Table 4.1: Direct superexchange: all nine eigenstates of ĤD
loc with Sz = 0 and the three eigenstates with Sz = 1. ¿e

eigenvalues are given in units of Ud with єd = 0. ¿e column “ket notation” presents the nomenclature we use in
the text. ¿e symmetry adapted eigenstates are de�ned in the last column. For є̂+ Û < 1 the ground states are S1ae,
S2ae, and S1fe or alternatively S1′ae, S2′ae, and S1′fe.

fourth order term is obviously also the same for S1′ae and S1fe. A genuine fourth order term,
which correlates d1 and d2 does not exist, in contrary to the case of S2′ae. ¿ismakes the singlet
state S1′ae the ground state and the energy di�erence between singlet and the triplet states is:

∆ÊD = Esinglet − Etriplet =
4t̂4

(є̂+ Û − 1)2
�

2
2(є̂− 1) + Û

− 1� < 0 . (4.7)

If we assume є̂, Û  1 and rewrite the result in standard energy units we get: ∆ED =

−8t4~U3
d. If hopping is mediated over a single orbital, the Pauli principle imposes strong

restrictions on possible hopping paths in the ferromagnetic arrangement. ¿is ultimately
leads to an e�ective antiferromagnetic coupling.
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4 Magnetic Models

Direct Superexchange: Evaluation of ĤD
hop in the Antiferromagnetic Hilbert Space

ĤD
hop S1ae = t̂ S4ae + t̂ S6ae ĤD

hopS1′ae = −
º
2 t̂ S3′ae

ĤD
hop S2ae = t̂ S3ae + t̂ S5ae ĤD

hopS3′ae =
º
2 t̂ (−S1′ae + S7′ae + S9′ae)

ĤD
hop S3ae = t̂ S2ae + t̂ S7ae + t̂ S9ae ĤD

hopS7′ae =
º
2 t̂ S3′ae

ĤD
hop S4ae = t̂ S1ae − t̂ S7ae − t̂ S9ae ĤD

hopS9′ae =
º
2 t̂ S3′ae

ĤD
hop S5ae = t̂ S2ae + t̂ S8ae + t̂ S9ae ĤD

hopS2′ae =
º
2 t̂ S4′ae

ĤD
hop S6ae = t̂ S1ae − t̂ S8ae − t̂ S9ae ĤD

hopS4′ae =
º
2 t̂ S2′ae

ĤD
hop S7ae = t̂ S3ae − t̂ S4ae ĤD

hopS5′ae =
º
2 t̂ S8′ae

ĤD
hop S8ae = t̂ S5ae − t̂ S6ae ĤD

hopS8′ae =
º
2 t̂ S5′ae

ĤD
hop S9ae = t̂ S3ae − t̂ S4ae + t̂ S5ae − t̂ S6ae ĤD

hopS6′ae = 0

Direct Superexchange: Evaluation of ĤD
hop in the Ferromagnetic Hilbert Space

ĤD
hop S1fe = t̂ S2fe + t̂ S2fe ĤD

hopS1
′
fe =

º
2 t̂ S3′fe

ĤD
hop S2fe = t̂ S1fe ĤD

hopS3
′
fe =

º
2 t̂ S1′fe

ĤD
hop S3fe = t̂ S1fe ĤD

hopS2
′
fe = 0

Table 4.2: Direct superexchange: ĤD
hop acting on Hilbert space vectors. ¿e le column shows the results for the

usual direct product states whereas in the right column the results for the symmetry adapted eigenstates of ĤD
loc

are listed. De�nitions of the states can be found in table 4.1. ¿e hopping matrix for the symmetry adapted states
decomposes in four subspaces, they are indicated by the horizontal lines in the right column.

4.2 Hopping via Orthogonal Orbitals

A completely di�erent situation arises if we introduce two p-orbitals on the central atom, as
is depicted in �gure 4.2. ¿e main di�erence in this setup is that one of the central orbitals
is only accessible by the electrons on d1 and the other one only by electrons on d2. ¿ere is
no hopping path for an electron from d1 to d2. In this con�guration the singlet state is not
favored by a higher number of accessible paths, in contrast to the previous example. Indeed,
in the border case Ud = 0, singlet and triplet states are degenerate. Another two-particle en-
ergy scale plays an important role for p-orbitals, namely the Hund’s coupling J. ¿is local
interaction couples electrons on di�erent orbitals on the same site. It lowers the energy of
high spin states of an atom, favoring the formation of a magnetic moment. A thorough in-
vestigation shows that generically the ferromagnetic coupling, that results from orthogonal
superexchange is signi�cantly weaker than the antiferromagnetic coupling due to direct su-
perexchange. ¿emodi�edHamiltonian for the orthogonal superexchange is of the following
form:
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4.2 Hopping via Orthogonal Orbitals

Orthogonal Superexchange: De�nition of Antiferromagnetic Eigenstates
d1 px py d2 eigenvalues ket notation
� � � � � � � � in units of Ud nr symbolic

� − � � � � − � 4є̂+ 2(Û + Ĵ) S1ae S �- �� S �� -�e

− � � � � � � − 4є̂+ 2(Û + Ĵ) S2ae S-� �� S �� �-e

� � � − � � − � 3є̂+ Û + Ĵ + 1 S3ae S �� �-S �� -�e

� � − � � � � − 3є̂+ Û + Ĵ + 1 S4ae S �� -� S �� �-e

� − � � − � � � 3є̂+ Û + Ĵ + 1 S5ae S �- �� S-� ��e

− � � � � − � � 3є̂+ Û + Ĵ + 1 S6ae S-� �� S �- ��e

� � � − − � � � 2є̂+ Ĵ + 2 S7ae S �� �-S-� ��e

� � − � � − � � 2є̂+ Ĵ + 2 S8ae S �� -� S �- ��e

Orthogonal Superexchange: De�nition of Ferromagnetic Eigenstates
d1 px py d2 eigenvalues ket notation
� � � � � � � � in units of Ud nr symbolic

� − � � � � � − 4є̂+ 2(Û + Ĵ) S1fe S �- �� S �� �-e

� � � − � � � − 3є̂+ Û + Ĵ + 1 S2fe S �� �-S �� �-e

� − � � � − � � 3є̂+ Û + Ĵ + 1 S3fe S �- �� S �- ��e

� � � − � − � � 2є̂+ 2 S4fe S �� �-S �- ��e

Table 4.3: Orthogonal superexchange: all eigenstates of ĤO
loc with Sz = 0 and Sz = 1 are listed. ¿e eigenvalues

are given in units of Ud with єd = 0. ¿e column “ket notation” presents the nomenclature we use in the text. ¿e
symmetry adapted eigenstates are de�ned in analogy to the de�nitions given in table 4.1.

ĤO = ĤO
loc + ĤO

hop (4.8)

with

ĤO
loc = є̂Q

σ
(npy σ + npx σ) + Û (npx � npx � + npy � npy �)

+ ĴQ
σ
c†py σ c

†
px σ̄ cpy σ̄ cpx σ + nd1 � nd1 � + nd2 � nd2 � , (4.9)

ĤO
hop = −t̂Q

σ
(c†px σcd1 σ + c

†
py σcd2 σ + c

†
d1 σcpx σ + c

†
d2 σcpy σ) . (4.10)

We chose the same conventions as in table 4.2, where all energies are measured with respect
to єd and in units of Ud. ¿e Hund’s coupling Ĵ = J~Ud is a positive real number, which
usually ful�lls the condition Ĵ  1. ¿e calculation is again equivalent to the one for the
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4 Magnetic Models

antiferromagnetic direct superexchange, so we will not discuss the details of the calculation.
A de�nition of the states we used is given in table 4.3. Under the condition є̂ + Û + Ĵ < 1 the
result is:

∆ÊO = Êsinglet − Etriplet =
2t̂4

(є̂+ Û + Ĵ − 1)3
Ĵ

(2(є̂+ Û + Ĵ − 1) − Ĵ)
A 0. (4.11)

If we again assume 1Q Ĵ, Û, and є̂, and reintroduce the standard units, we get: ∆EO = J t4~U4
d .

We can compare this to the equivalently approximated result for ∆ED and �nd:

lim
є̂,Ĵ,Û�0

V
∆ED
∆EO
V �

8Ud

J
Q 1. (4.12)

In Ca3Co2O6 the intermediate states are not p-states, but d-states. ¿erefore Û can not be
neglected, as it is comparable to 1. We will now assume that it is exactly 1. Under these
circumstances the energy corrections in fourth order become:

lim
Û�1

∆ÊD � −
4t̂4(3 − 2є̂)
є̂2(1 − 2є̂)

, (4.13)

lim
Û�1

∆ÊO �
2t̂4 Ĵ

(є̂+ Ĵ)3(2(є̂+ Ĵ) − Ĵ)
. (4.14)

In order to develop a more realistic model one would have to introduce more than one level
on the sites d1 and d2. But the simplest model already shows the trend: direct superexchange
favors antiferromagnetic coupling and orthogonal superexchange brings an energy advantage
for the ferromagnetic case. ¿ese results are known in the literature as the Goodenough-
Kanamori-Anderson rules [31, 33]. ¿ese rules are not strict. Nevertheless in many cases
they give at least a qualitatively correct description. But there are examples when these rules
fail, e.g., due to the suppression of the antiferromagnetic paths as a consequence of quantum
interference e�ects [105, 114].

4.3 Ring Exchange

In the previous discussion only even orders of perturbation theory contributed to the e�ec-
tive interaction between the total spins on the sites d1 and d2. ¿is is a consequence of the
fact that the Hamiltonian did not support cyclic paths. Let us now investigate a very simple
situation which, to a large extend, is equivalent to the problem we already discussed as direct
superexchange. ¿e only di�erence to the direct superexchange is that the hopping part of
the Hamiltonian contains additional terms allowing an electron to hop directly from d1 to
d2 and vice versa. Again we write the total Hamiltonian as a sum of a local and a hopping
contributions:

44



4.3 Ring Exchange

ĤC = ĤC
loc + ĤC

hop (4.15)

with

ĤC
loc = ĤD

loc = Q
σ
є̂np σ + Ûnp � np � + nd1 � nd1 � + nd2 � nd2 � , (4.16)

ĤC
hop = −t̂1 Q

σ
(c†p σcd1 σ + c†p σcd2 σ + c†d1 σcp σ + c

†
d2 σcp σ)

−t̂2 Q
σ
(c†d1 σcd2 σ + c

†
d2 σcd1 σ) . (4.17)

We want to discuss an example with a four-electron occupation. Because the local Hamilto-
nian is the same as in the case of direct superexchange and also the occupation is identical we
can use the results of table 4.1. ¿e evaluation of the hopping Hamiltonian is straight forward
and similar to previous results. A di�erence is that the hopping is now governed by two dif-
ferent hopping parameters t̂1 and t̂2. In contrast to the situations in the previous perturbation
expansions, there exists now a �nite third order term. Due to the direct overlap between the
sites d1 and d2 there is also an important second order contribution. Again we assume the
condition Û + є̂ < 1 that makes the singlet and triplet states the degenerate ground states of
the unperturbed problem. ¿e expansion yields the following energy corrections for singlet
and triplet states:

E(2)C,singlet =
2t̂21

є̂+ Û − 1
− 4t̂22 , (4.18)

E(3)C,singlet =
2t̂21 t̂2

(є̂+ Û − 1)2
−

8t̂21 t̂2
є̂+ Û − 1

, (4.19)

E(2)C,triplet =
2t̂21

є̂+ Û − 1
, (4.20)

E(3)C,triplet =
−2t̂21 t̂1

(є̂+ Û − 1)2
. (4.21)

¿ese corrections li the degeneracy of singlet and triplet states. ¿e energy splitting is:

∆E(2)C = E(2)C,singlet − E
(2)
C,triplet = −4t̂

2
2 < 0 , (4.22)

∆E(3)C = E(3)C,singlet − E
(3)
C,triplet =

4t̂21 t̂2
є̂+ Û − 1

�
1

є̂+ Û − 1
− 2� . (4.23)

¿e second order energy splitting is independent of t̂1 and unambiguously negative, favoring
the singlet state. ¿e sign of the third order splitting depends on the sign of t̂2. If t̂2 is posi-
tive, the third order correction lowers the energy of the triplet compared to the singlet. ¿e
nature of the ground state in the case t̂2 A 0, is the result of a competition between second
and third order terms. Indeed a ferromagnetic ground state is stable within a �nite param-
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eter regime [109–111]. A more detailed discussion of cyclic exchange is given in Fazekas’
book [115]. ¿e important point of this discussion for our calculation is that cyclic paths
are able to stabilize a ferromagnetic ground state. In the compound Ca3Co2O6 the compe-
tition between ferro- and antiferromagnetic order is more complicated, because many more
orbitals are involved. In Ca3Co2O6 the third order processes exist but will not make a di�er-
ence for ferro- and antiferromagnetic order. ¿e �rst cyclic paths involving both magnetic
Co2 sites occur in the � h order. So the ground state is the result of the competition between
fourth and � h order in that case. ¿e complex structure of Ca3Co2O6 results in many pos-
sible hopping paths and therefore quantum interference plays an important role [105] in the
theoretical understanding of this material.
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5 Matrix Elements of the Coulomb
Potential

¿e standard textbook Hubbardmodel deals with one orbital per site. If this orbital is doubly
occupied the two electrons “feel” each other because of the Coulomb repulsion between the
two negative electric charges. For a second electron on the orbital the system has to pay an
extra energyU, the Hubbard on-site interactionU. In the more realistic case of three or �ve
orbitals the situation becomes more involved. With exactly the same reasoning as before one
would of course expect that there is also an interaction between electrons on di�erent orbitals
on the same site. ¿is interaction is usually calledU′. At �rst sight it looks like one will have
to deal with many parameters to handle all the di�erent interactions between the electrons
in the various orbitals. Writing the problem in second quantization, one gets the following
expression for a general two particle interaction:

Htwo = Q
αβγδ
`ΨαΨβSV(Ñr,Ñr′)SΨγΨδec†αc†βcδcγ. (5.1)

Here Htwo is used to indicate a two particle contribution to the Hamiltonian. Greek sym-
bols number the single particle states involved in the problem. Ψα denotes a wave function
for a speci�c state α, which includes spatial and spin degrees of freedom. SΨαΨβe is a simple
direct product of the wave function Ψα for particle one and Ψβ for particle two. All the di�er-
ent interaction energies in the multiband Hubbard model are now given by the two-particle
matrix elements of the Coulomb potential.
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5 Matrix Elements of the Coulomb Potential

5.1 Evaluation of the Matrix Elements

In the following we focus on the cases where there either are only electrons in a d-shell or
only in a p-shell. ¿e matrix elements to evaluate have the form:

Vmm′nn′
νl,σσ′ρρ′ = `Ψm

νl,σΨ
m′
νl,σ′ S

e2

4πє0SÑr − Ñr′S
SΨn

νl,ρΨ
n′
νl,ρ′e , (5.2)

= `Rν(r)Yml (Ω)Rν(r
′)Ym

′

l (Ω
′)S

e2

4πє0SÑr − Ñr′S
SRν(r)Ynl (Ω)Rν(r

′)Yn
′

l (Ω
′)e

� `σσ′Sρρ′e . (5.3)

In this equation l is the angular momentum, and ν the main quantum number of the or-
bitals. ¿e values n andm refer to the z-projection of l, σ and ρ denote spin degrees of free-
dom, and Ω is the solid angle. Primed variables are related to the second electron whereas
non primed variables refer to the �rst electron (we can di�erentiate between the two electrons
because we explicitly evaluate a non symmetrized matrix element). ¿e Coulomb potential
does not operate on the spin degrees of freedom. ¿e scalar product of the orthonormalized
spin vectors then gives Kronecker deltas. Nowwe concentrate on the spatial part of the above
equation

Vmm′nn′
νl,σσ′ρρ′ = V

mm′nn′
νl δσρδσ′ρ′ , (5.4)

where

Vmm′nn′
νl = `Rν(r)Yml (Ω)Rν(r

′)Ym
′

l (Ω
′)S

e2

4πє0SÑr − Ñr′S
SRν(r)Ynl (Ω)Rν(r

′)Yn
′

l (Ω
′)e. (5.5)

¿e wave functions are written in spherical coordinates. It is also possible to express the
Coulomb potential in spherical coordinates:

e2

4πє0SÑr − Ñr′S
=
e2

є0

ª

Q
l=0

l

Q
m=−l

rl<
(2l + 1) rl+1A

Ym
�

l (Ω
′)Yml (Ω) . (5.6)

With r< = min(r,r′) and rA = max(r,r′). In the following formulae we use the abbreviation
vl(r,r′) = rl< ċ(2l+1)−1 r−l−1A . Inserting the expansion in the expression for thematrix elements
yields:

Vmm′nn′
νl =

e2

є0

ª

Q
k=0

k

Q
mk=−k

�S drS dr′ vk(r,r′) SRν(r)S2SRν(r′)S2 r2 r′2� (5.7)

� S dΩYmk
k (Ω)Y

m�
l (Ω)Y

n
l (Ω) S dΩ′Ym

�

k
k (Ω

′)Ym
′�

l (Ω
′)Yn

′

l (Ω
′) .

¿e integration over r and r′ gives a number that is only dependent on the main quantum
number ν and the angular momentum k. We will call this number ak, dropping ν because
it is a �xed number for a given atom in our problem and it is of no further relevance in the
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5.1 Evaluation of the Matrix Elements

following considerations. Given the simple exponential form of the azimuthal dependence in
the spherical harmonics we can perform the azimuth integration of the remaining integrals
at once. ¿is integration yields a product of Kronecker functions δmk−m+n δmk−n′+m′ , which
immediately leads to the conditionm +m′ = n + n′. At this point we are le with

Vmm′nn′
l =

e2

є04π

ª

Q
k=0

ak
k

Q
mk=−k

δmk,n−m δmk,m′−n′ C
mm′nn′
lkmk

(5.8)

� S

1

−1
dξPmk

k (ξ)P
m
l (ξ)P

n
l (ξ)S

1

−1
dξ′ Pmk

k (ξ
′)Pm

′

l (ξ
′)Pn

′

l (ξ
′),

where

Cmm′nn′
lkmk

= (2l + 1)2(2k + 1)
(k −mk)!
(k +mk)!

¿
Á
ÁÀ(l −m)!
(l +m)!

ċ
(l − n)!
(l + n)!

ċ
(l −m′)!
(l +m′)!

ċ
(l − n′)!
(l + n′)!

. (5.9)

We made the common substitution cos(θ) = ξ. For further simpli�cations we can use some
properties of the associated Legendre functions Pml (ξ). ¿e �rst fact we notice is that the
integrand of both integrals has odd parity for odd k, which means that both integrals vanish
in this case. It can easily be proven by using the relation Pml (−ξ) = (−1)lP

m
l (ξ). Next we

focus on one of the integrals in equation 5.8

Imnlkmk
= S

1

−1
dξPmk

k (ξ)P
m
l (ξ)P

n
l (ξ). (5.10)

We can restrict ourselves to the cases with mk = m − n, which is the condition of the
Kronecker delta in equation 5.8. From the condition it follows in particular that mk and the
summ+n are always either both odd or both even. Ifm+n is a multiple of two, the product
Pml (ξ)P

n
l (ξ) is a polynomial p2l(ξ) of degree 2l. In this case the P

mk
s (ξ) build a complete set

of orthogonal polynomials. Now we can expand p2l(ξ) in terms of the Pmk
s (ξ), which yield a

series with the highest order term Pmk
2l (ξ). We analyze the integral using this expansion and

the orthogonality relation

S

1

−1
dξPmk

k (ξ)P
mk
s (ξ) =

2(k +mk)!
(2k + 1)(k −mk)!

δks. (5.11)

In the case ofm+ n being odd we follow the exact same reasoning but the details are slightly
di�erent because then Pml (ξ)P

n
l (ξ) is no longer a polynomial but a product of a polynomial

of degree 2l − 1 and a factor
»
1 − ξ2. As the same structure applies to Pmk

s (ξ) we can again
expand the product of associated Legendre functions in the sameway as above. Nowwe again
apply equation 5.11 and �nd for all possible values of n +m that Imnlkmk

vanishes for k A 2l.
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5 Matrix Elements of the Coulomb Potential

5.2 ¿e Racah Parameters

¿emost important result of the last section is that we were able to reduce the number of pa-
rameters which are needed to describe themultiorbital Hamiltonian. In the case of d-orbitals
we can construct all matrix elements with only three parameters, namely a0, a2, and a4. For
p-orbitals only the �rst two of them are �nite. ¿e rest is now simply a matter of convention.
We introduce the abbreviations

η = e2~4πє0 (5.12)

and

p-wave: F0 = a0 , F2 =
1
5
a2 , (5.13)

d-wave: F0 = a0 , F2 =
5
49
a2 , F4 =

1
49
a4 . (5.14)

Using the fact that all matrix elements Vmm′nn′
l are real numbers and the equation

P−1l (ξ) = (−1)
m (l −m)!
(l +m)!

Pml (ξ), (5.15)

it is easy to verify the following relations:

Vmm′nn′
l = Vnn′mm′

l = V−m−m′ −n−n′
l = (−1)m+nV−nm′ −mn′

l = Vm′mn′n
l . (5.16)

It is therefore su�cient to calculate only a small number ofmatrix components and construct
the remaining elements with equations 5.16. In table 5.1 all relevant matrix elements for p-
and d-orbitals are listed. We can rewrite the matrix elements in terms of the so called Racah
parameters [116, 117], they are de�ned in the following way:

p-wave: A= F0 + F2 , B = 3F2 , (5.17)
d-wave: A= F0 − 49F4 , B = F2 − 5F4 , C = 35F4 . (5.18)

In table 5.1 the matrix elements are written in both parameter systems. We can distinguish
several classes of matrix elements:

• Um: Matrix elements only involving one orbital in the form Vmmmm
l . ¿ese terms give

the Coulomb energy due to the Coulomb repulsion of two electrons in the orbitalm.

• U′
mn: Matrix elements involving two orbitals in the formVmnmn

l . ¿ese terms represent
the Coulomb energy due to the Coulomb repulsion of one electron in the orbitalm and
the other in the orbital n. ¿ey are called direct terms.

• Jmn: Matrix elements involving two orbitals in the form Vmnnm
l . ¿ese terms give the

energy needed to exchange two particles in the orbitals m and n. ¿ey are called ex-
change terms.
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5.2 ¿e Racah Parameters

m m’ n n’ V1
mm’nn’~η V1

mm’nn’~η

0 0 0 0 F0 + 4F2 A+ B F0 + 4F2 + 36F4 A+ 4B+ 3C

1 1 1 1 F0 + F2 A F0 + F2 + 16F4 A+ B+ 2C Um

2 2 2 2 — — F0 − 4F2 + F4 A− 4B+ 2C

1 0 1 0 F0 − 2F2 A− B F0 − 2F2 − 24F4 A− 2B+ C

2 0 2 0 — — F0 − 4F2 + 6F4 A− 4B+ C U′
mn

2 1 2 1 — — F0 − 2F2 − 4F4 A− 2B+ C

-2 2 2 -2 — — 70F4 2C

-1 1 1 -1 6F2 2B 6F2 + 40F4 6B+ 2C

-1 2 2 -1 — — 35F4 C
Jmn

1 0 0 1 3F2 B F2 + 30F4 B+ C

2 0 0 2 — — 4F2 + 15F4 4B+ C

2 1 1 2 — — 6F2 + 5F4 6B+ C

0 1 2 -1 — — 2
º
6F2 − 10

º
6F4 2

º
6B

2 0 1 1 — —
º
6F2 − 5

º
6F4

º
6B

Table 5.1:Matrix elements of the Coulomb potential for p- and d-orbitals. All other components either vanish or
can be constructed from equations 5.16. ¿e matrix elements are expressed by the parameters F0, F2, F4 and the
Racah parameters A, B, C.

¿epresented form of thematrix elements is completely rotational invariant, meaning that
we are free to rotate our reference system without changing the values for the Coulomb ma-
trix elements. Values for the Racah parameters are discussed in the literature [118–122]. ¿ey
are typically taken from a comparison of experimentally obtained photoemission spectra and
theoretical results. By �tting the parameters to experimental data they do no longer describe
the pure electromagnetic repulsion of two electrons, but rather incorporate screening e�ects
by the remaining electrons. ¿e whole treatment of the Coulomb matrix elements relies ex-
clusively on the symmetry of theCoulomb interaction. If we can assume that screening e�ects
do not alter this symmetry, as we will do, this treatment does not imply any further approxi-
mation.
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¿e fascinating magnetic properties of Ca3Co2O6 and the desire to �nd their explanation in-
spired and drove this work. Especially two questions are at the center of this thesis: What is
the reason for the ferromagnetic intrachain coupling, and how can a proper e�ective mag-
netic model be designed for this compound? To answer the second question we started to
investigate the smallest characteristic entity of Ca3Co2O6, namely the Co – O3 chains. In or-
der to account for the observed anisotropy, two approaches will be discussed: �rst, Ising an-
isotropy, which is assumed in most experimental works on Ca3Co2O6. ¿e second approach
using a Heisenberg interaction with an on site anisotropy term will enable us to discuss the
magnetic properties with varying anisotropy strength. A next step is to include the antifer-
romagnetic coupling between the chains. ¿is is done by exploring models, which describe a
triangle of chains. ¿e basis for the complex magnetic response in Ca3Co2O6 is the existence
of two competing magnetic interactions together with a geometric frustration due to the tri-
angular structure and the strong anisotropy. ¿e ferromagnetic coupling of Co2 moments
along the chains plays a crucial role in this scenario. To clarify the origin of this interaction,
the e�ective coupling of two Co2 moments is examined by means of perturbation theory.

6.1 Coordinate Systems and Notation

We have already seen the rather complicated structure of the unit cell of Ca3Co2O6. In the
following discussion we �rst focus on a few sites on one chain. ¿e only atoms of interest for
the rest of this chapter are two neighboring Co2-atoms, the Co1-atom in between, and the
six O-atoms, which build the octahedral environment of the Co1-site, see �g. 6.1. ¿is adds
up to a total of nine atoms with 33 local levels. In order to de�ne and describe this reduced
problem we have to clarify some basic aspects of the physical characterization.

We choose the complex spherical harmonics as the one-particle basis. It is straightforward
to rotate these functions around their z-axis. ¿is property is useful in order to exploit the
threefold symmetry of theCa3Co2O6-chain. ¿edisadvantage of using the spherical harmon-
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Fig. 6.1: Two Co2 (red), one Co1 (yellow), and six O (blue) atoms are the smallest cluster which is possibly su�cient
to explain ferromagnetic coupling along the chain in a model that involves both superexchange and ring exchange
processes.

ics is that we have to deal with complexmatrix elements. But implementing the C3-symmetry
in this system leads us to use complex characters anyway.

An obvious choice for a global coordinate system is to take the z-axis along the chain-
axis and the point of origin on the Co1-site. We will call this global system Σglob. To de�ne
the x-axis of Σglob we use the direction vector to one of the oxygen atoms with positive z-
coordinate. ¿e projection of this vector on the plane perpendicular to z de�nes the x-axis.
Σglob is our reference system for the di�erent local systems. It will be useful for the calculation
of the overlap integrals and the hopping matrix elements. On the other hand we need local
systems in which the one-particle wave functions are de�ned.

A naming scheme for the oxygens is helpful for the de�nition of the local systems. ¿e
oxygen atoms are numbered counterclockwise starting with the one we used to de�ne the
global x-axis. Oxygen atom number four is the inversion of O1. We name a local system
according to the atom it is attached to, e.g., ΣCo1 or ΣO1. Of course all the local systems are
centered at their respective atom site. For the Co2-atoms the choice is natural. One system
will be parallel to the global system and the other rotated by an angle of 180° around the global
z-axis. ¿e local Co2-system is de�ned by the octahedral oxygen environment of the atom.
Unfortunately this system is not aligned with the global system. Another problem arising
in this local system is that the octahedral environment, as well as the trigonal prismatic, is
distorted. It is therefore not possible to take exactly the oxygen positions to de�ne the local
system. We would like to cover the exact C3-symmetry of the single chain and be as close to
the oxygen positions as possible. To achieve these goals we construct the unit vector Ño1 from
Co1 to O1. ¿e unit vector in the local system x′ is then a weighted sum of the global z-vector
and Ño1, Ñex′ = α(Ño1 + βÑez). ¿is construction pattern can be used again for y′ with Ño2, and z′

with Ño3. Because the result has to be threefold symmetric, the α and β values have to be the
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Fig. 6.2: Coordinate systems (colors as in 6.1) : a) Global coordinate system with the z-axis along the chain. ¿e O
atoms are numbered as explained in the text. b) Local O coordinate system with the x′-axis pointing towards the
global z-axis. c) View in positive y-direction.

same for all three combinations. Cartesian coordinate vectors are orthonormal, which leads
to the conditions:

Ñex′ ċ Ñey′ = α2 (Ño1 ċ Ño2 + β2 + 2βoz) = 0 , (6.1)
Ñe2x′ = α2 (1 + β2 + 2βoz) = 1 . (6.2)

In the above equations we take advantage of the threefold symmetry, that makes Ñez ċ Ñoi
independent of i, this value is called oz. ¿ese equations yield α = 1~

º
1 − Ño1 ċ Ño2 together

with β =
»
o2z − Ño1 ċ Ño2 − oz. ¿ere is also no unique choice for the local coordinate systems

of the oxygen atoms. A reasonable choice should again re�ect the threefold symmetry of the
global structure. ¿is can be attained in taking the z-axis of all oxygen systems parallel to
the global z-axis and the local x-axis pointing to the global z-axis. Figure 6.2 gives a visual
impression of all these de�nitions.

For the unperturbed Hloc it is of no relevance that we use local coordinate systems which
are rotated against each other. ¿is becomes important when introducing the perturbation
in the problem. ¿en we have to consider hopping processes which occur because of the
�nite overlap of the local wave functions on di�erent sites. ¿e overlap integrals have to
be evaluated with the rotated wave functions. We will not do this exactly. Instead we use
an approximation which was introduced by Koster and Slater. To use this approximation we
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need to have a unique basis system for all sites and we have to express all local wave functions
in terms of the global ones.

¿is turns out to be easy for most of our local systems. All local coordinate systems but
that of Co1 share the z-axis with Σglob. To bring the local and global system in parallel it is
su�cient to rotate the system about this z-axis. For the spherical harmonics this is equivalent
to a simple multiplication with a complex number:

Yml (θ,ϕ+ α) = c(l,m)P
m
l (θ) exp(i m(ϕ+ α)) = Y

m
l (θ,ϕ) exp(i mα). (6.3)

In the above equation Yml (θ,ϕ) is a spherical harmonic function, P
m
l (θ,ϕ) is the associated

Legendre polynomial. c(l,m) is a constant only depending on l andm. In a physical context
l is then typically the angular momentum and m the projection of the angular momentum
on the z-axis.

For ΣCo1 we have to do the full expansion of the wave functions in ΣCo1 in terms of the
wave functions in Σglob. Using the completeness of the spherical harmonics and the fact that
a rotation does not change the total angular momentum, we get

SYm
′

l (θ
′,ϕ′)e � SΨ(θ,ϕ)e =

l

Q
m=−l
`Yml (θ,ϕ)SΨ(θ,ϕ)e SY

m
l (θ,ϕ)e. (6.4)

Where primed quantities are de�ned in the local system. Ψ(θ,ϕ) is the function one gener-
ates by expressing the local angles in terms of the global angles and inserting this in the local
spherical harmonic. Doing this exercise for ΣCo1 yields a 5 � 5 transformation matrix MOct,
which connects the wave functions of the Co1-system with the wave functions of the global
system.

6.2 Anisotropic Spin Chains – Models

¿e basic building blocks for an e�ective magnetic model of Ca3Co2O6 are chains of ferro-
magnetically coupled angular momenta. ¿e simplest model Hamiltonian for an anisotropic
magnetic interaction is the Ising model [123,124]. We will use this approach to get a �rst idea
of the magnetic properties of the anisotropic high-spin chains in Ca3Co2O6. For an extended
study of the e�ects of the anisotropy, the Isingmodel will be compared to aHeisenbergmodel
with an on-site anisotropy D. In these magnetic models the chains are only built of the sites,
which carry a magnetic moment. Only ferromagnetic next-neighbor interaction is included,
every magnetic site carries a spin S. ¿e corresponding Ising Hamiltonian of a chain with
length N has the form:

HSC,Is = −JF
NSC
Q
i=1
Szi Szi+1 − g µBHz

NSC
Q
i=1
Szi . (6.5)
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¿e positive value JF is the ferromagnetic coupling constant, Szi is a z-component of a local
spin operator at site i, g is the Landé factor. ¿e Bohr magneton is de�ned as µB = eħ~2me,
with the absolute value of the electron charge e and the electron mass me. Periodic bound-
ary conditions are assumed in equation 6.5. ¿e chain is NSC sites long, where the subscript
SC stands for “single chain”. ¿e Ising Hamiltonian commutes with the individual spin op-
erators Szi . Of course the z-component of the total spin Sz = P

N
i=1 Szi is conserved as well.

A direct product of local Szi eigenstates is therefore an eigenstate of the Ising Hamiltonian.
¿e one-dimensional Ising Hamiltonian can be solved analytically for an arbitrary number
of sites N, for example with the transfer matrix method. ¿is is a well understood textbook
example [125]. In the present context the Ising model serves mainly as a reference system.
¿erefore we will restrict the analysis to appropriate system sizes, in order to compare results
of the Ising chain with those of more complex spin models.

¿e Heisenberg chain, on the other hand, represents a much harder problem than a chain
of Ising spins. An important di�erence is that the z-projection of an individual spin in the
chain is no longer a conserved quantity for a Heisenberg Hamiltonian. As a consequence,
there is in general neither an easy way to construct eigenstates of this Hamiltonian, besides
the fully polarized ferromagnetic state, nor eigenvalues and the partition function. Despite
of these complications it is still possible to �nd exact eigenstates and eigenenergies of the
Heisenberg chain by using a special parameterization of the eigenstates, the famous Bethe
ansatz [126] (for a nice introduction of the Bethe ansatz see [127, 128]). Like the Ising chain
the Heisenberg chain serves as a reference system in the context of this work. We therefore
restrict the discussion to chain lengths comparable to results of more complex situations. We
will use the Heisenberg model with an additional on-site anisotropyD in the following form:

HSC,Hb = −JF
NSC
Q
i=1

ÑSi ÑSi+1 −D
NSC
Q
i=1
(Szi)2 − g µBHz

NCh
Q
i=1
Szi . (6.6)

Again periodic boundary conditions are used. ¿e anisotropy term favors high Szi states
for D A 0. Spin chains with S larger than 1

2 are not integrable models, the Bethe ansatz is not
applicable. We solved both the Ising and the Heisenberg Hamiltonian for �nite chain length
with exact diagonalization. ¿e exponential growth of the number of states with growing
chain length NSC restricts this method to small systems. A chain with 9 sites and S = 2 is
characterized by (2S + 1)9 = 1 953 125 states. To diagonalize a matrix of these dimensions is
completely out of reach, even on the most advanced systems available today. It would need
about 100 TB of memory and a prohibitively long computational time.

Fortunately it is possible to bring the Hamiltonian matrix in block diagonal form by em-
ploying the symmetries of the Hamiltonian. In the present case we have three symmetries
that can be used: the rotational invariance for rotations about the z-axis leads to the conser-
vation of the z-component of the total spin. ¿is symmetry yields a decomposition of the
Hamiltonian matrix into 37 blocks, the block with Sz = 0 having the highest dimension of
180 325, closely followed by the blocks with Sz = �1 with a size of 175 725 states each. In the
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subspace with Sz = 0 the Hamiltonian is invariant under the transformation Szi � −Szi at all
sites simultaneously. ¿erefore we can use symmetric and antisymmetric states with respect
to this transformation and split the biggest subspace into two smaller ones with 90 162 and
accordingly 90 163 states. Finally the use of the translational symmetry brings another re-
duction of about a factor of 9. In the end the Hamiltonian matrix is block-diagonal with 363
blocks. ¿e 12 blocks with Sz = �1 have the highest block dimension of 19 525, a reduction of
a factor of 100. For the calculation a computer with 16GB of main memory was used. ¿is
amount of memory restricts the calculation to 9 sites for spin 2 chains. Although it is possi-
ble to handle such an amount of states for this system size, the computation time is too long
to be able to scan the parameter space, so we are e�ectively restricted to a chain length of 8
sites. In order to be able to discuss longer chains, systems with spin 1 have been additionally
investigated. In this case it is possible to go up to a chain length of 12 sites.

6.3 Anisotropic Spin Chains – Results

¿e magnetic susceptibility, the speci�c heat and the magnetization of a single Ising chain
and accordingly a single Heisenberg chain have been calculated. ¿e results for the suscep-
tibility of the Ising chain are depicted in �gure 6.3. In the high temperature regime the in-
verse magnetic susceptibility shows a linear dependence in the temperature, in agreement
with the Curie-Weiss law. ¿e low temperature deviation from the pure linearity becomes
more pronounced with increasing chain length, although the di�erence between the 12 and
15 site chains is already small. Both spin 1 and spin 2 chains show the Curie-Weiss behavior,
however with two notable di�erences: �rst, the susceptibility for spin 2 deviates from Curie-
Weiss at temperatures about four times higher than in the spin 1 case. ¿e T−1 behavior of the
susceptibility is approached if the spins are able to rotate nearly freely, undisturbed by their
neighbors. ¿e energy necessary to �ip a spin completely scales with S2, thus explaining the
factor four. Second, the slope of the straight line at high temperatures is lower in the spin
2 case. ¿e inverse of this slope is the Curie-Weiss constant CCW, which is proportional to
µe� = g µB

»
S(S + 1). ¿erefore a lower slope is expected for larger spins.

¿e magnetic susceptibility results for the Heisenberg chain in �gure 6.4 show the same
qualitative behavior as the Ising chain. With the anisotropy energy D a second energy scale
is present in the discussed Heisenberg Hamiltonian. If D is smaller or comparable to JF, the
main e�ect of the local anisotropy is to favor subspaces with high total SSzS. As the magnetic
susceptibility (at zero �eld) is proportional to the thermal average over (Sz)2, the magnetic
susceptibility grows with increasing anisotropy. ¿e system behaves very di�erently for DQ

JF. In this case a regime exists, where the temperature is smaller or comparable to D and
considerably larger than JF. ¿en it is easier to �ip a single spin completely than to reduce
its z-component only by one. Flipping a spin completely implies a stronger reduction of SSzS.
¿erefore states with lower SSzS can be energetically more favorable than states with higher
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Fig. 6.3: Inverse magnetic susceptibility of the Ising chain. Le panel: several chain lengths are compared for a spin
1 chain. A Curie-Weiss behavior can be seen in all cases. Right panel: spin 1 and spin 2 data are compared. ¿e
higher e�ective magnetic moment in the spin 2 case is observed in the smaller slope.

Fig. 6.4: Le panel: the curves show the inverse magnetic susceptibility for the Heisenberg chain with di�erent on-
site anisotropies D. Right panel: a direct comparison of the Ising chain with di�erent anisotropies to the Heisenberg
chain.
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Sz. ¿is analysis suggests that the susceptibility is signi�cantly suppressed for temperatures
above the energy of a total local spin �ip (compare with the curve for D = 10 in �gure 6.4).

Besides we can directly compare the susceptibilities of the anisotropicHeisenberg and Ising
Hamiltonians 6.4. ¿is reveals that these two anisotropic models behave very di�erently,
even for large D-values. In this limit the intermediate Szi states are suppressed, with the con-
sequence that the anisotropic Heisenberg chain with largeD is similar to a spin 1

2 Ising chain.

Fig. 6.5:Magnetization curves for the Ising chain with a g-factor of two. Le panel: the magnetization is plot-
ted versus �eld for several numbers of sites and di�erent spins. Right panel: the magnetization curves at various
temperatures. ¿ermal �uctuations drive the system out of saturation.

Fig. 6.6: Le panel: A high anisotropy stabilizes fully polarized states against thermal �uctuations. Right panel: the
Ising chain is compared to di�erent values of D for the Heisenberg chain. ¿e Ising case falls into the intermediate
anisotropy regime.

Figures 6.5 and 6.6 show magnetization data for the Ising and the Heisenberg case respec-
tively. ¿e symmetry of bothHamiltonians demands a vanishingmagnetization at zero �elds.
For high �elds the magnetization will eventually reach saturation. ¿e two degenerate fer-
romagnetic ground states at H = 0 are both fully polarized, so at zero temperature applying
an arbitrary small �eld results into full saturation. At higher temperatures the �eld has to
overcome the thermal �uctuations in order to reach saturation. Longer chains are “more”
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ferromagnetic in the sense that they show a steeper slope than shorter chains. ¿e saturation
magnetization is of course larger for chains with higher spins. In the �gures a g-factor of 2 is
assumed, thus the saturationmagnetization is 2 µB for spin 1 chains and 4 µB for spin 2 chains.
For higher spins the saturation is reached with smaller �elds , because the energy to change a
single spin from Szmax to Szmax − 1 scales linearly with S. ¿erefore the thermal �uctuations ef-
fect fewer excited states for larger spins. A higher anisotropy D has the same consequence as
it lowers the energy of the fully polarized states compared to the excited states. In terms of the
magnetization, the Ising chain compares to some intermediate anisotropy of the Heisenberg
case.

Fig. 6.7: Speci�c heat for the Ising chain. Le panel: ¿e speci�c heat is plotted for di�erent system sizes. ¿e
exponential growth at low temperatures is due to the gapped spectrum of the Ising chain. At high temperatures the
speci�c heat vanishes like 1~T2. Right panel: the gap is more pronounced for spin 2.

Fig. 6.8: Speci�c heat of the anisotropic Heisenberg chain. Le panel: the anisotropy a�ects the gap size. At low
anisotropies the gap closes. Right panel: at intermediate anisotropies the overall behavior of the speci�c heat is
comparable to the Ising case.

¿e speci�c heat data for the Ising chain shown in �gure 6.7 result from a continuous
crossover from the high temperature to the low temperature limit. For low temperatures the
gappednature of the spectrum leads to an exponential decrease. ¿ewidth of this exponential
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area depends on the size of the gap. ¿e gap value is independent of the system size, hence
the curves in the le plot of �gure 6.7 exactly coincide at low temperatures. On the other
hand the gap scales with the spin, which explains the wider exponential region for the spin 2
curve, compared to spin 1. For high temperatures the speci�c heat has to vanish as the entropy
reaches a constant value (2S+1)NSC , where all states of the system can be accessed equally. ¿e
speci�c heat decays with 1~T2 in the high temperature limit. For intermediate anisotropies
the shape of the speci�c anomaly is similar in the Heisenberg case (compare �gures 6.7 and
6.8, right panels). ¿e le side of �gure 6.8 shows the dependence on the anisotropy. ¿e gap
closes with vanishing anisotropy term, and the isotropic Heisenberg model is gapless. For
very high D-values, again an intermediate temperature region can be identi�ed, showing a
second maximum in the speci�c heat. ¿is maximum occurs at energies of a complete �ip of
a single spin—compare the discussion at the beginning of this section—which is about 4JF
for a spin 1 chain.

Two lessons can be drawn from the above discussion: all results are consistent with known
features of these systems. ¿is assures the accuracy of the numerics. Second, the two types of
anisotropy are rather di�erent. In the range of intermediate on-site anisotropy both show
similar physical properties but the Ising chain is not the limiting case of the Heisenberg
Hamiltonian with high on-site anisotropies. ¿is would only be true for the spin 1

2 chain.
Especially for anisotropies higher than the energy needed for a total �ip of a single spin the
di�erences become more pronounced.

6.4 Interacting Chains

A next step towards the understanding of the magnetic properties of Ca3Co2O6 is to include
more than one chain into the calculation. We need to include at least three chains in order to
account for the frustration of the antiferromagnetic coupling. Again we will formulate an ef-
fectivemagneticmodel, with next-neighbor interactions only. As in the case of a single chain,
exclusively Co2 sites and the adjacent magnetic moments are relevant for the formulation of
the problem. For the ferromagnetic interaction along the chain a next neighbor is uniquely
de�ned, but to �nd the next neighbor of a Co2 site on another chain one has to examine the
structure in more detail. If the criterion is just the shortest distance to the next Co2 site on
a neighboring chain, then the situation is clear. Using the notation of �gure 6.9, the distance
A – B1 is the shortest interchain Co2 distance. Nonetheless the antiferromagnetic interaction
is most likely a result of exchange processes involving the oxygen environments of the Co2
sites. ¿is means that the strongest coupling is probably rather related to the shortest O – O
distance, than to the shortest Co2– Co2 distance.

Which next neighbor we choose has a strong impact on the topology of the model. ¿e
model is designed on an equilateral triangle of chains. Selecting B1 as the next neighbor of
site A results in a single helix (SH) structure, whereas choosing B2 leads to a double helix
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Fig. 6.9: Oxygen distances between two chains. ¿e shortest Co2– Co2 distance is from A to B1, but the shortest
O – O distance occurs along A – B2. All distances are given in Ångström. ¿e brightness of the color indicates the
distance to the viewer. Brighter blue spheres are further away.

(DH) geometry of the model. ¿e single helix arrangement is depicted in �gure 6.10. If one
numbers the sites along the helix, a Heisenberg Hamiltonian can be formulated as:

HSH,iso = JAF
3NSH−1

Q
j=0

ÑSjÑSj+1 − JF
3NSH−1

Q
j=0

2

Q
n=0

ÑS3j+n ÑS3(j+1)+n . (6.7)

¿e system size is 3NSH, JAF A 0 is the antiferromagnetic inter-chain coupling, and JF A 0
the ferromagnetic intra-chain coupling. In this formulation the model is isotropic in spin
space, which is denoted with the subscript “iso”. With cyclic boundary conditions the site
3NSH is equivalent to the site 0. ¿is boundary condition makes the Hamiltonian invariant
under the transformation ÑSk � ÑSk+1. Repeating this cyclic permutation 3NSH times results in
the identity operation. ¿erefore the cyclic groupC3NSH can be used to describe the symmetry
of the Hamiltonian. A schematic drawing emphasizing the symmetry of HSH,iso is given in
�gure 6.12 b).

For the double helix geometry the sites on one helix are indexed with odd numbers and
the sites on the other helix are counted with even numbers. With this naming convention we
present a Heisenberg Hamiltonian of the form:

HDH,iso = JAF
3NDH−1

Q
j=0

1

Q
n=0

ÑS2j+n ÑS2(j+1)+n − JF
3NDH−1

Q
j=0

1

Q
n=0

ÑS2j+n ÑS2(j+2n)+1+n . (6.8)

An illustration of this structure is displayed in �gure 6.11. ¿e total Hamiltonian includes
6NDH sites. Again, with cyclic boundary conditions the site 6NDH is equivalent to the site 0.
¿e symmetry of this Hamiltonian can also be described by a cyclic group but with reduced
order. HDH,iso is C3NDH symmetric, so the order of the group is half the system size, in contrast
to the case of the single helix, where the order of the group was the total number of sites. ¿e
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Fig. 6.10: Single helix: As the chains are shi ed against each other in z-direction the antiferromagnetic coupling
acts on a spiral. All sites (green spheres) are located on one helix, depicted as a blue ribbon. ¿e ferromagnetic
coupling is symbolized as yellow bars.

Fig. 6.11: Double helix: In this case the sites are located at two distinct spirals. Sites on one helix are antiferromag-
netically coupled, whereas both helices are coupled ferromagnetically.
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Fig. 6.12:¿e single and double helix Hamiltonian in a schematic drawing emphasizing the symmetry. ¿e color
code is the same as in �gures 6.10 and 6.11. a) ¿e double helix structure is disentangled and redrawn as two dis-
tinct circles. ¿e sites on one circle interact antiferromagnetically. All connections between the two circles depict
the ferromagnetic coupling JF. ¿e di�erent shades of yellow are meant to emphasize the closed subsets of ferro-
magnetically coupled sites. ¿e total number of sites is 18, NDH = 3 and the symmetry group is C9. b) ¿e single
helix structure can be transformed into a circle of antiferromagnetically coupled sites. ¿e connections in the area
of the circle are again colored in di�erent shades of yellow to show the groups of sites that are ferromagnetically
connected, but they depict all the same ferromagnetic coupling. ¿is example shows 12 sites with the symmetry C12
and NSH = 4.

double helix structure grows in units of six sites. ¿is property restricts the calculation for
a spin 2 system to only one such unit, which is too short to build up real helices and hence
is regarded as a pathologic case. ¿e unfortunate consequence is that we have to restrict our
discussion mainly to spin 1 chains.

For the calculations we will not use the isotropic Hamiltonians 6.7 and 6.8, but rather in-
clude an anisotropy term to them. For the Ising Hamiltonians all ÑSi are replaced by Szi and
for the anisotropic Heisenberg Hamiltonians the term −DPi(Szi)2 is simply added to the
equations 6.8 and 6.7.

¿e magnetic susceptibility for the SH and DH structures in the Ising case is depicted in
�gure 6.13. A increasing antiferromagnetic coupling constant JAF reduces the susceptibility.
¿is is due to the fact that JAF tends to anti-align neighboring spins and therefore favors states
with low values of SSzS. ¿e very same behavior is also seen for the anisotropic Heisenberg
Hamiltonian (compare �gure 6.14, right panel). At high temperatures the helices show the
Curie-Weiss behavior as expected. ¿e results for the Ising Hamiltonian of the SH and DH
structure are surprisingly similar. In the Ising case we were able to calculate the physical
properties for helices up to a length of 15 sites. ¿e results for the 12 site helices are already
close to the 15 sites for the SH structure, again indicating that �nite size e�ects are moderate
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Fig. 6.13:Magnetic susceptibility for the Ising anisotropy. Le panel: the magnetic susceptibility of the single helix
(SH) and double helix (DH) structure are compared for the Ising anisotropy. ¿ere is virtually no di�erence between
SH and DH in this case. Right Panel: the susceptibility is depicted for several system lengths and for spin 1 and spin
2 helices.

Fig. 6.14: Le panel: the picture shows the inverse magnetic susceptibility for various anisotropies including the
Ising anisotropy. For the Heisenberg type Hamiltonian the SH and DH structure are compared at di�erent
anisotropies.Right Panel: the e�ect of a rising antiferromagnetic coupling is shown in the case of a Heisenberg
Hamiltonian with intermediate anisotropy for the DH structure.
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in this case. ¿e discrepancies between spin 1 and spin 2 helices originate from the same
physical properties as in the case of the single chain, namely the higher excitation energy and
the higher e�ective magnetic moment for larger spins (compare �gure 6.14, right side).

In contrast to the results for the Ising Hamiltonians, the evaluations for the Heisenberg
models show a noticeable di�erence in the magnetic susceptibility for the SH and the DH
structure. Figure 6.14 presents on the le panel the �ndings for the inverse susceptibility of
the SH and DH con�guration at di�erent anisotropies. As in the case of the single chain, a
moderate anisotropy tends to enhance the susceptibility. ¿e DH structure shows a system-
atically higher susceptibility compared to the SH structure for the same D-values. A possible
explanation for this behavior is provided by �gure 6.12. ¿e two structures show di�erent
mechanisms of frustration. For the SH structure on the right side of the �gure the sites 1
and 4 are connected directly ferromagnetically. ¿ese two sites are on the other hand indi-
rectly connected antiferromagnetically via the sites 2 and 3. In the DH con�guration two
directly ferromagnetically coupled sites, for example the sites 0 and 1, are not connected an-
tiferromagnetically. ¿e frustration is more complex in this case, e.g., the sites 0 and 6 are
indirectly antiferromagnetically coupled via the sites 2 and 4 and are also indirectly coupled
ferromagnetically via the site 1. One can expect this more indirect frustration to be weaker
than the frustration in the single helix. A stronger frustration results into less pronounced
ferromagnetic order, which in turn lowers the susceptibility.

Fig. 6.15:Magnetization of the Heisenberg double helix. Le Panel: Magnetization curves for various tempera-
tures. Right Panel: In�uence of the antiferromagnetic coupling strength on the magnetization.

¿e magnetization of both helix structures shows steps at 1
3 of the saturation magnetiza-

tion (see �gures 6.15 and 6.16). At temperatures well below JF it is a sharp step that becomes
less pronounced for higher temperatures. ¿e magnetic �eld strength that is necessary to
reach the saturation is of the order of the antiferromagnetic coupling. A simple picture that
can explain these steps, for antiferromagnetic couplings weaker than the ferromagnetic cou-
pling, is the following: the sites along the chains will order ferromagnetically at low �elds and
the chains as a whole will allow for the frustration by ordering antiferromagnetically, two of
them up and the third down. ¿e magnetization for this con�guration is 1

3 of the saturation
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Fig. 6.16: Le Panel: the Dependence of the magnetization versus �eld curves on di�erent anisotropy strengths,
including the Ising anisotropy, is shown. Right Panel: at low temperatures the �nite size e�ects become obvious in
the magnetization.

magnetization. If the �eld is higher than JAF, it can overcome the antiferromagnetic coupling
energy and align all three chains. ¿is argumentation implies some form of anisotropy as
otherwise the strongly ferromagnetically coupled chains would act like a classical spin, as in
the classical limit the spin can avoid frustration by gradually tilting. ¿is is con�rmed in the
le panel of �gure 6.16, where themagnetization step becomesmore pronounced for stronger
anisotropies.

By going to very low temperatures the magnetization depends more strongly on the size of
the system. On the right panel of �gure 6.16 the magnetization is depicted for 9 and 12 sites
at a temperature of 0.01SJFS. ¿e magnetization rises in 9 and 12 steps, the respective number
of total Sz subspaces.

Fig. 6.17: Speci�c Heat of the Helices. Le Panel: the Heisenberg single helix shows a small additional feature at
low temperatures and strong antiferromagnetic couplings. Right Panel: SH and DH structure curves di�er slightly
for various anisotropies. ¿e additional feature becomes most pronounced for the isotropic case.

¿e speci�c heat for the Heisenberg helices shows an additional small low temperature fea-
ture due to the antiferromagnetic coupling, (see �gure 6.17). For vanishing antiferromagnetic
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6.4 Interacting Chains

coupling both helices evolve into three separate ferromagnetically coupled chains. ¿erefore
the behavior for low JAF is close to the case of the single chain. With rising antiferromagnetic
coupling two notable changes occur: �rst, in the low energy regime the number of states be-
comes larger due to the antiferromagnetic coupling. ¿is explains the small maximum of the
speci�c heat at low temperatures and high antiferromagnetic coupling constants. Second,
the total energy region, where energy levels occur, is broadened by the additional energy
scale and therefore the main anomaly becomes less pronounced. For a �xed JAF the low tem-
perature feature gains weight for lower anisotropies, as the energy D shi s the exited states
energetically away from the ground state. ¿e di�erence between the SH and the DH results
for the speci�c heat are shown in the right panel of �gure 6.17. ¿e general behavior is very
similar and only slight di�erences are obtained.
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7 Microscopic Ferromagnetic Coupling

¿e basis for the previous discussion of the e�ective magnetic models in section 6.4 was the
experimentally determined magnetic interaction in Ca3Co2O6. ¿e magnetic moments on
the Co2 atoms are coupled ferromagnetically along the chain direction and antiferromag-
netically perpendicular to the chains. ¿e resulting interplay of these two competing energy
scales leads to a number of fascinating magnetic properties (a detailed discussion was given
in chapter 2). However, the microscopic origin of precisely the ferromagnetic coupling re-
mained a mystery. ¿e common explanations for this type of e�ective interaction do not
suite the problem, in particular because the complexity of the situation is immense. In order
to gain a deeper understanding it is unavoidable to meet the challenge of the intricacy of the
microscopic structure of Ca3Co2O6.

7.1 Perturbative Treatment

In order to identify an e�ective coupling between next-neighbor magnetic moments, it is
necessary to know the energy di�erence of the parallel and the anti-parallel orientation of the
two magnetic moments. If the strong coupling limit is applicable, this goal can be achieved
by a perturbation expansion in the hopping t. ¿e lowest order of such an expansion that
can possibly create an energy di�erence between singlet and triplet con�gurations has to
correlate the two atoms that carry the magnetic moments. For Ca3Co2O6 the �rst order that
correlates two Co2 atoms is the fourth order. ¿e topology of the Co – O3 chains prohibit
circular paths for even perturbation orders. To include circular paths in the discussion it is
necessary to extend the discussion to the � h order.

¿e principle approach is the following: the local Hamiltonians of Co1, Co2 and O are
diagonalized exactly. ¿e local description includes �ve d-orbitals on Co1 and Co2 and three
p-orbitals on oxygen. ¿e electron – electron interactions are taken into account via the
Racah parameters A, B, and C (see Chapter 5). In addition the local Hamiltonian of Co1 and
Co2 also include the spin-orbit coupling λ, and the crystal �eld splitting, in order to account
for the observed anisotropies of themagnetic response. ¿e largest local energy scale isAwith
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7 Microscopic Ferromagnetic Coupling

typical values of several electronvolt. ¿e size of the crystal �eld splitting obviously varies
strongly with the environment of an atom, in our case it varies between 1.3 eV on Co2 and
2.5 eV on Co1. ¿e Racah parameters B and C are typically smaller than 1 eV. In the usually
studied case C is several times larger than B. ¿e smallest on-site energy scale is the energy
scale of the spin-orbit coupling λ, for the Co atoms in Ca3Co2O6 it is somewhere between 60
and 90 meV. ¿e occupation of the local sites obviously changes with each hopping process.
¿erefore the diagonalization has to be performed in all necessary occupation subspaces for
a � h order expansion.

¿e total unperturbed Hamiltonian H0 is given by the sum of all local Hamiltonians, de-
�ned on the sites. H0 is diagonal in the basis of direct products of local solutions. ¿ese
states are the basis for the perturbation expansion. A total of 9 atoms with 33 orbitals and 54
electrons (or 12 holes) is involved in this process. Only the conservation of the total number
of electrons and the threefold symmetry of the chain can be used to reduce the size of the
Hilbert space. Due to the inclusion of the spin-orbit coupling the number of up and down
electrons is not conserved separately. Neither is the local total angular momentum, as the
rotational invariance is broken by the crystal �eld splitting. Not even the z-component of the
total angularmomentum is a conserved quantumnumber, because of the hopping terms. But
the latter can at least be used to classify the local and the global symmetry adapted eigenstates.

¿e number of states in the smallest subspace, namely the one with an occupation of six
electrons on each atom, is (210)3 = 9 261 000. ¿e use of symmetry adapted eigenfunc-
tions [129, 130] in order to exploit the threefold symmetry reduces the number of states by
a factor of 3. Another observation can signi�cantly lower the number of states that have
to be taken into account. A � h order process, that actually correlates the two Co2 sites
never involves two intermediate-state holes on oxygen sites. ¿is allows us to constrain the
number of used occupation spaces signi�cantly. Even then it is unavoidable to introduce an
energy cut o� in order to handle the Hilbert space. ¿e presented results include 200000 to
500000 states. A naive implementation of the perturbation expansion would contain sums
over more than 2000004 = 16 � 1020 intermediate states. With clock speeds of several GHz
on modern processors this summation would still take more than 1010 seconds. Some care
has to be taken in the implementation of the perturbation expansion in order to calculate the
expansion terms as e�ciently as possible [131].

¿e existence of a local energy scale such as λ, which ismuch smaller than the perturbation,
additionally complicates the perturbative treatment. It li s exact degeneracies and creates
large subspaces of nearly degenerate states. ¿e method to include nearly degenerate states
in high-order perturbation theory was presented in chapter 3.

In general the problem is dominated by an overwhelming number of hopping paths. In
order to treat the interference of all these paths correctly it is extremely important to take
make shure that the fermionic commutation relations are treated exactly.
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7.2 Determination of the Parameter Space

7.2 Determination of the Parameter Space

For an extended model calculation like the one presented in this work, the determination
of the parameter space is an important task. We can di�erentiate two groups of parameters:
�rst the local parameters, including the Racah parameters, the spin-orbit coupling, and the
crystal �eld splitting. Second, the hopping parameters connecting the local orbitals of two
nearest-neighbor atoms.

We obtain the hopping parameters from an approach developed by Koster and Slater [132].
¿is method is based on the LCAO description of molecular orbitals and uses the two-center
approximation. A comprehensive discussion of the Koster-Slater hopping matrix elements
and a semi-empirical extension to real systems is presented in Harrison’s book [133]. ¿e
absolute value is �nally adjusted by one overall constant that we take from our LDAdata [64].

From the same LDAevaluationwe obtain estimated values for the local orbital energies and
the crystal �eld splittings. ¿e LDA analysis of Eyert et al. is based on the augmented spher-
ical wave method, which uses a set of basis functions that can be well interpreted in terms
of local atomic wave functions. A spin-orbit coupling value of about 70 meV for Ca3Co2O6

has been proposed by Wu et al. [65]. ¿e local Racah parameters are well documented in
the literature [118–122]. ¿e solid state environment a�ects mainly the parameter A [119].
¿erefore we will use the same values for the parameters B and C on Co1 and Co2.

7.3 Results for the E�ective Coupling

Although we were able to �x most of the parameters in the problem, the parameter space
is still spanned by several values: the Racah parameters A and B on the oxygen atoms (we
assume them to be equal on all oxygen atoms), the Racah parameters Aon Co1 and Co2 and
the parameters B and C, that are both taken equal on the Co atoms. ¿e parameter space is
by our physical requirements necessarily very large, for which reason it is an extremely time
consuming job to accomplish large scans over the parameter space. ¿erefore we concen-
trated on the Racah parameters A and C on the Co atoms.

Even in a physically reasonable range, the determined ground state will not adequately
represent known experimental facts for a random choice of parameters. Especially if the state
carries a signi�cant magnetic moment on the Co1 site, it is not consistent with experimental
�ndings. We will call such states “nasty” states. ¿ey are not allowed as ground states for
the physical Ca3Co2O6 system. On the other hand, states that conform with the condition
of vanishing Co1 moment will be called “nice” states as they are welcome as possible ground
states.

¿e le panel of �gure 7.1 illustrates the dependence of the three lowest states on the Racah
parameter A of the Co atoms. ¿e three lowest states can be identi�ed as a “nice” antifer-
romagnetic state, a “nice” ferromagnetic state and a “nasty” ferromagnetic state. At a value
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7 Microscopic Ferromagnetic Coupling

Fig. 7.1: Trend of the lowes energy states for varying Racah parameters Aand C. Common parameters: Co1, Co2:
B = 0 eV, λ = 0.08 eV, crystal �eld: Co1:∆cf = 2.5 eV; Co2:∆cf = 1.3 eV. Le panel: C = 0.7 eV; ¿e lowest states of
the hopping expansion are illustrated. Increasing values of A favor the ferromagnetic states but the “nasty” state,
a state that does not have the desired property of vanishing moment on the Co1 site, gaines more energy than the
appropriate ferromagnetic state. Right panel: A= 3.0 eV; If the parameter C is lowered on the Co atoms the system
realizes eventually the ferromagnetic ground state.

“nice”, Ferro “nice”, Antiferro “nasty”, Ferro
Co2 1 Co1 Co2 2 Co2 1 Co1 Co2 2 Co2 1 Co1 Co2 2

Sz -2 0 -2 -2 0 2 -2 -0.7 - 2
Lz -2 0 -2 -2 0 2 -2 -0.3 - 2

Table 7.1:¿e expectation values of the z-components of local L and S on the cobalt atoms. ¿e states are char-
acterized by the term with the highest weight. ¿e dominating terms of the presented states are direct products of
fully polarized local Co2 eigenstates.

of 2.8 eV for A, the antiferromagnetic state is the ground state. Its energy is �xed at zero for
all data sets in this �gure. For increasing values of A, both the “nice” and the “nasty” ferro-
magnetic state are still excited states, but with signi�cantly reduced excitation energies. For
higher values of A the “nasty” state becomes the ground state. But even though the “nice”
ferromagnetic state does not win the total competition, it outperforms the antiferromagnetic
state. On the right panel of �gure 7.1 the lowest states are shown for two values of the Racah
C parameter on the Co atoms. In this case the ferromagnetic state becomes the real ground
state of the system, hereby inducing an e�ective ferromagnetic coupling.

An estimate of the e�ect of the fourth order terms can be obtained, if we neglect the hop-
ping paths over oxygens and neglect the eg orbitals on Co1 because of the high crystal �eld
splitting. It is then possible to rotate the remaining t2g orbitals onCo1 in away that only one of
them has a signi�cant overlap with the Co2 orbitals. With only one intermediate-state orbital
on Co1 this scenario is very close to the superexchange of section 4.1 and should therefore
create antiferromagnetic coupling. However this picture does not include the e�ects of the
spin-orbit coupling.
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7.3 Results for the E�ective Coupling

At this point we identi�ed a ferromagnetic regime in the con�guration space, but the sys-
tematic analysis of the parameter space remains only at the beginning. ¿e exact role of
interfering � h order cyclic paths has yet to be determined but there is already good evi-
dence that these paths are able to stabilize a ferromagnetic ground state. To our knowledge
Ca3Co2O6 is the �rst system that realizes a ferromagnetic coupling due to cyclic exchange.
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8 Summary and Outlook

¿is work is concerned with two important aspects of a theoretical understanding of the
quasi one-dimensional compound Ca3Co2O6. First, we developed and investigated e�ective
magnetic models to describe the magnetic properties of Ca3Co2O6. Second, we studied a
possible theoretical explanation of the experimentally observed ferromagnetic coupling of
Co2 moments along the chain.

In order to �nd an appropriate description for the complex magnetic structure of the com-
pound we derived two magnetic models for a triangle of Co – O3 chains. In one model the
three chains are coupled antiferromagnetically by a single helix, that connects all sites on sin-
gle line (single helix). In the other case two such helices, each connecting half of the sites anti-
ferromagnetically are mediating the antiferromagnetic coupling between the chains (double
helix). To incorporate the anisotropy in the designwe investigated both an IsingHamiltonian
and an extension of the Heisenberg Hamiltonian with an on-site anisotropy term −D(Szi)2.
We used diagonolized theHamiltonians exactly to obtain the eigenenergies of themodels and
analyzed the magnetic susceptibility, the magnetization and the speci�c heat of the systems.

¿e analysis of the physical properties of the single helix and the double helix structure yield
characteristic di�erences to the case of a single chain. ¿e magnetic susceptibility showed a
sizable suppression of the susceptibility at the temperatures around the antiferromagnetic
coupling energy. A similar feature was reported in experimental results [19]. For tempera-
tures below the ferromagnetic coupling energy a prominent step occurs in the magnetization
curve for anisotropic single helix and double helix systems. ¿e antiferromagnetic coupling
generates an additional small peak at low temperatures for strong antiferromagnetic cou-
plings and low anisotropies. Overall, the general behavior and the dependence on the pa-
rameters is very similar for the single helox and double helix structure. Indeed, there are
virtually no di�erences in the case of an Ising anisotropy. ¿e Ising anisotropy and the on-
site Heisenberg anisotropy are very di�erent in nature. ¿e former is an anisotropy in the
interaction of two spins, whereas the latter is a purely local anisotropy. Despite these con-
ceptional di�erences their general e�ect on the investigated physical properties seems to be
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comparable at intermediate strengths of the on-site anisotropy. But the di�erences in the
details are signi�cant even in the intermediate anisotropy range.

In order to investigate the ferromagnetic intrachain couplingweperformed aDensity Func-
tional ¿eory calculation in a Local Density Approximation jointly with Volker Eyert [64].
¿is work gave us valuable insight in the local energy parameters and revealed a strong Co –
O binding, which eventually led us to the extension of the superexchange scenario by cyclic
exchange via the oxygen ligands. ¿is class of spin-exchange processes is �rst generated in
the � h order of perturbation theory. Correspondingly, the next step was to setup a hopping
expansion in order to identify the microscopic mechanisms that lead to the ferromagnetic
coupling. It proved to be a much harder task than initially expected. ¿ere are two main rea-
sons for the encountered complications. First, the structure of Ca3Co2O6 is rather complex
and the oxygen environments play obviously a crucial role [64]. Second, it is necessary to
include an onsite spin-orbit coupling to account for the anisotropy of the magnetic response.
From this low energy scale, large groups of nearly degenerate states emerge. ¿e standard
degenerate perturbation theory is not applicable in this case. To our knowledge such a sit-
uation is not investigated in the literature. We therefore had to develop a scheme to handle
nearly degenerate states in a perturbation expansion to fourth order and above.

¿is scheme was adopted for the description of Ca3Co2O6. ¿e numerical implementation
includes the full local hubbardmodel with all relevant energy scales, the construction of sym-
metry adapted eigenstates in order to utilize the discrete rotational symmetry of the chains,
the phase correct treatment of all paths up to � h order, and the e�cient accomplishment of
the perturbation expansion. A �rst promising result of these e�orts is the identi�cation of a
region in the physical con�guration space that has a ferromagnetic ground state. ¿is result
suggests that, to our knowledge, Ca3Co2O6 is the �rst realization of ferromagnetism that is
stabilized through cyclic exchange.

With a deeper analysis of the parameter space for Ca3Co2O6 it will be instructive to con-
sider isostructural compounds like Ca3FeRhO6 or Ca3CoRhO6 that we already investigated
by means of LDA Ḋespite their structural identity the magnetic response of the three dif-
fer signi�cantly. Ca3Co2O6 and Ca3CoRhO6 order ferromangetically along the chains with
Ca3CoRhO6 showing the higher ordering temperatures, whereas the intra-chain coupling
along the chains in Ca3FeRhO6 is antiferromagnetic. ¿e presented perturbation scheme
could be of great importance to understand the di�erent microscopic interactions in these
compounds. ¿is very same technique could also be applied to derive a more complete ef-
fective magnetic model of Ca3Co2O6 through the investigation of the interaction paths and
strengths between the chains.

¿emagnetic response of the single helix and the double helix structures shows anomalies
with certain similarities to the experimental results. Nevertheless it is desirable to expand
the models in order to overcome �nite size e�ects. Speci�cally the explanation of the com-
plex magnetic response of Ca3Co2O6 at low temperatures and in particular the magnetiza-
tion steps might demand the inclusion of more chains in the models. But this immediately
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prohibits the use of exact diagonalization, due to the large system sizes needed for a compre-
hensive study of those systems. A more advanced technique that is possibly able to handle
appropriate system sizes is the Density Matrix Renormalization Group (DMRG) method.
Preliminary studies in cooperation with Peter Schmitteckert at the University of Karlsruhe
con�rmed the principle applicability of the method to these systems.

Finally a possible extension to the present discussion of Ca3Co2O6 is the observation that
Ca atoms can act as impurities in these systems and e�ectively cut the chains in shorter pieces.
¿e �nite size nature of the chain pieces of the induced disorder would add a new perspective
to the understanding of Ca3Co2O6.
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“... at every title he discovered he let out exclamations of happiness, either because he
knew the work, or because he had been seeking it for a long time, or �nally because he
had never heard it mentioned and was highly excited and titillated. In short, for him
every book was like a fabulous animal that he was meeting in a strange land.”

Umberto Eco, ¿e Name of the Rose
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