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Abstract 
In this thesis a number of novel perovskite-type oxynitrides (LaxCa1-xTiO3-xNx  

(x = 0 – 0.7), LaNbON2, SrMo(O,N)3, CaMo(O,N)3, BaMo(O,N)3) were synthesized and 

their structure, microstructure, physical properties and thermal stability were investigated. 

Simultaneous substitution of Ca2+ with La3+ and O2- with N3- in CaTiO3 leads to the 

oxynitride solid solutions of general formula LaxCa1-xTiO3-xNx. All these materials 

crystallize in a distorted perovskite unit cell. Their optical band gap varies linearly with 

Ca/N-content. 

The crystal structure, thermal stability, optical and photocatalytic properties of perovskite 

type oxynitride LaNbON2 were investigated. The material crystallizes in the distorted 

GdFeO3 structure type (space group: Pnma ). It shows the smallest optical band gap among 

the early transition metal oxynitride-perovskites and high photocatalytic activity for 

hydrogen reforming from methanol among the reported oxynitride-perovskites. 

A number of novel conductive oxynitrides were synthesized. Oxynitrides of the general 

composition SrMoO3-xNx (x > 1) were synthesized by thermal ammonolysis of crystalline 

SrMoO4. According to the neutron and x-ray diffraction experiments the materials 

crystallize in the cubic perovskite structure (space group mPm
−

3 ). X-ray absorption 

spectroscopy shows evidence of local distortions of the Mo(O,N)6 octahedra. The oxidation 

states of Mo determined by x-ray absorption near edge structure spectroscopy are lower 

than calculated from the oxygen/nitrogen (O/N) content. The disagreement arises from the 

higher covalence of the Mo-N bonding when compared to the Mo-O bonding (“chemical 

shift”). The electrical transport properties of SrMoO3-xNx (x > 1) are different from 

SrMoO3. It was found that the conductivity of the samples decreases with the increase of 

nitrogen content. The Seebeck coefficient values are up to 3 times higher than those of 

SrMoO3. 

Reactions of AMoO4 and AMoO3 (A = Ca2+, Ba2+) with ammonia were investigated at 

T = 873 K– 1123 K with the particular intention to synthesize novel oxynitride-perovskites 
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of the composition AMo(O,N)3 and to study their crystal structure. CaMo(O,N)3 and 

BaMo(O,N)3 were prepared by thermal ammonolysis of the corresponding CaMoO3 and 

BaMoO3 precursors at T = 898 K and T = 998 K, respectively. The structural parameters of 

the oxynitrides were obtained from Rietveld refinements of x-ray and neutron powder 

diffraction data. CaMo(O,N)3 crystallizes in the distorted GdFeO3 structure type with 

orthorhombic space group Pbnm  and a = 5.5029(1) Å, b = 5.5546(1) Å, c = 7.8248(1) Å 

as determined by x-ray powder diffraction. Its O/N content refined from the neutron 

diffraction data corresponds to the composition CaMoO1.7(1)N1.3(1). BaMo(O,N)3 crystallizes 

in the cubic perovskite structure with space group mPm
−

3  and a = 4.0657(1) Å as 

determined by x-ray powder diffraction. Transmission electron microscopy reveals a 

complex microstructure for both CaMoO3 and CaMoO1.7(1)N1.3(1) represented by twin-

domains of different orientation. 
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Zusammenfassung 
In der vorliegenden Arbeit wurden eine Reihe neuer, perowskit-artiger Oxidnitride  

(LaxCa1-xTiO3-xNx (x = 0 – 0.7), LaNbON2, SrMo(O,N)3, CaMo(O,N)3 und BaMo(O,N)3) 

hergestellt und diese auf ihre Struktur, Mikrostruktur, physikalischen Eigenschaften und 

ihre thermische Stabilität hin untersucht. 

Die gleichzeitige Substitution von Ca2+ mit La3+ und O2- mit N3- in CaTiO3 führt zu 

Oxidnitriden der allgemeinen Form LaxCa1-xTiO3-xNx. Diese Materialien kristallisieren in 

einer verzerrten Perowskit Elementarzelle wobei sich ihre optische Bandlücke linear mit 

dem Ca/N-Gehalt ändert.  

Es wurde weiterhin die Kristallstruktur, thermische Stabilität sowie die optischen und 

photokatalytischen Eigenschaften der perowskit-artigen Oxidnitride vom Typ LaNbON2 

untersucht. Diese Proben kristallisieren in einem verzerrten GdFeO3 Strukturtyp 

(Raumgruppe Pnma) und zeigten von den genannten Oxidnitrid-Perowskiten die kleinste 

optische Bandlücke bei gleichzeitig beachtlicher photokatalytischer Aktivität, während der 

Wasserstoff Reformierung aus Methanol. 

Des Weiteren wurde eine Reihe neuer leitfähiger Oxidnitride der allgemeinen Form 

SrMoO3-xNx (x > 1) durch thermische Ammonolyse von kristallinem SrMoO4 hergestellt. 

Neutronen- und röntgendiffraktometrische Untersuchungen belegen eine kubische 

Perowskitstruktur (Raumgruppe mPm
−

3 ). Mittels Röntgenabsorption-Spektroskopie (XAS) 

konnten Hinweise auf lokale Verzerrung des Mo(O,N)6-Okteaders gefunden werden. Die 

durch XANES ermittelte Oxidationszustände von Mo waren niedriger als die aus dem 

Sauerstoff/Stickstoff (O/N)–Gehalt berechneten Werte. Dieser Unterschied kann durch die 

höhere Kovalenz der Mo-N Bindung im Vergleich zur Mo-O Bindung (“chemische 

Verschiebung”) beschrieben werden. Die elektrischen Transporteigenschaften von  

SrMoO3-xNx (x > 1) unterscheiden sich stark von SrMoO3. Es konnte gezeigt werden, dass 

die Leitfähigkeit der Proben mit dem Anstieg des Stickstoff-Gehaltes abnahm. Die Werte 

für den Seebeck-Koeffizienten waren bis zu dreimal höher als die von SrMoO3. 
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Es wurden Reaktionen von AMoO4 und AMoO3 (A = Ca2+, Ba2+) mit Ammoniak im 

Temperaturbereich T = 873 K– 1123 K untersucht, mit der Absicht, neue Oxidnitrid-

Perowskite der Zusammensetzung AMo(O,N)3 zu synthetisieren und deren Kristallstruktur 

zu untersuchen. Weiterhin wurde CaMo(O,N)3 und BaMo(O,N)3 durch thermische 

Ammonolyse aus CaMoO3 und BaMoO3 bei Temperaturen von T = 898 K und T = 998 K 

hergestellt.  

Die Kristallstrukturen der Oxidnitride wurden durch Rietveld-Verfeinerungen der Röntgen- 

und Neutronen-Pulverdiffraktometrie Datensätze erhalten. CaMo(O,N)3 kristallisiert in 

verzerrter GdFeO3-Struktur mit orthorhombischer Raumgruppe Pbnm  und a = 5.5029(1) 

Å, b = 5.5546(1) Å, c = 7.8248(1) Å, wie bereits durch Röntgen-Pulverdiffraktometrie 

gezeigt werden konnte. Der durch neutronendiffraktometrische Messungen bestimmte O/N-

Gehalt entspricht der Zusammensetzung CaMoO1.7(1)N1.3(1). BaMo(O,N)3 kristallisiert in 

kubischer Perowskitstruktur mit der Raumgruppe mPm
−

3  und a = 4.0657(1) Å (bestimmt 

mittels Röntgenpulverdiffraktometrie). TEM-Untersuchungen zeigten sowohl für CaMoO3 

und CaMoO1.7(1)N1.3(1) eine komplexe Mikrostruktur die sich durch Zwillingsdomänen 

verschiedener Orientierung auszeichnete. 
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1. Introduction 

1.1. Perovskite structure 
The original mineral perovskite (CaTiO3) was discovered in the Ural mountains of Russia 

by the german mineralogist Gustav Rose in 1834. Its structure is represented by the cage of 

corner-shared TiO6-octahedra with Ca2+-ions filling the formed interstitials. Although, the 

crystal structure of the mineral is orthorhombic (space group, S.G. Pnma), there are plenty 

of other materials (ABX3), belonging to the same structure type but showing different 

symmetry, which (as it will be discussed below) arises mainly from the octahedral tilting 

and B-site cation displacement. 

 

Figure 1.1. A. Crystal structure of cubic perovskite of general formula ABX3 B. Twelve-fold 

coordination of the A-site cation. 

The ideal perovskite is formed by a cubic ABCABC stacking of close-packed AX3 planes 

with B-cations occupying the octahedral interstices coordinated by six X-anions. The A- and 

the X-site ions are correspondingly 12- and 6- fold coordinated (Fig. 1.1) [1]. For 
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perovskites the measure of the mismatch between the average equilibrium A-X and B-X 

bond lengths is expressed by the so-called tolerance factor (t) [2]: 

XB
XA

t
−

−
=

2
       (1.1) 

where 

XA −  is the average equilibrium A-X bond, 

XB −  is the average equilibrium B-X bond. 

The value of t is equal to 1 for the ideal cubic perovskite structure and it is simply derived 

from the equation relating length of the cube’s face diagonal with that of the edge of the 

cube shown in Figure 1.1. For most perovskites t deviates from one. 

When t < 1 (the B-site cation is large) the B-X bonds are under compression, whereas the A-

X bonds are under tension. The resulting stress is partly revealed by a cooperative rotation 

of the BX6 – octahedra (angle B-X-B < 180°). Hence, the crystallographic symmetry is 

lowered. The most common types of the octahedra rotations are [3]: 

1. Around a cubic [001] axis (S.G., I4/mcm if rotations of successive (001) planes are 

out of phase (Fig. 1.2A); S.G. P4/mbm if rotations of successive (001) planes are in-

phase); 

2. Around a cubic [111] diagonal (S.G. cR
−

3  if rotations of successive (111) planes are 

out of phase; S.G. I
−

3m  if rotations of successive (001) planes are in-phase); 

3. Around a cubic [110] axis (S.G. Pnma or its nonstandard setting Pbnm). 

The most recent study of Howard and Stokes based on group-theoretical analysis yields in 

15 possible space groups, which describe different types of octahedra rotations in simple 

perovskites [4]. 

When t > 1 (the B-site cation is small) the B-X bonds are under tension, whereas the A-X 

bonds are under compression. The resulting stress is partly revealed either by the 

displacement of the B-site cation within the BX6 – octahedra or the formation of the 

hexagonal ABABAB stacking sequence of AX6 planes, where the BX6 octahedra share 
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faces, forming columns, and A-site cations occupy the place between the columns (Fig. 

1.2B) [1-3]. 

 

 

Figure 1.2. A. An example of the tetragonally distorted simple perovskite structure (low 

temperature modification of SrTiO3, S.G. I4/mcm). B. An example of the hexagonal perovskite 

structure (2H-BaCoO3, S.G. P63/mmc). C. An example of double perovskite (La2TiMgO6, S.G. 

P21/n). D. An example of the intergrowth perovskite-related structure (La2CoO4, S.G. I4/mmm) 



 

    11

Moreover, cation ordering leading to double perovskites (Fig. 1.2C) can occur on the A- or 

the B-site. Conditions for the cationic ordering are charge difference (typically, more than 

2e) and/or size and electronegativity difference between two ions located in the same 

sublattice [1]. 

Beside simple and double perovskites a number of intergrowth perovskite-related structures 

can be formed. One of the most common intergrowth is formed by the insertion of the 

additional AX (001) plane structure, which leads to the formation of a rock-salt layer A2X2. 

The members of the formed Ruddlesden-Popper family (AX(ABX3)n with t < 1) contain an 

ordered arrangement of rock-salt and perovskite layers (Fig. 1.2D). 

1.2. Electronic structure and optical properties of perovskite-

type oxides. 

 

Figure 1.3. Schematic band structure of the perovskite-oxide. 

The electronic structure of simple perovskite-type oxides near the Fermi level is formed 

mainly by mixing of frontier d-orbitals of the transition metal and 2p-orbitals of oxygen. 
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The top of the valence band is represented mainly by oxygen non-bonding 2p-orbitals, 

whereas the bottom of the conduction band is formed by the anti-bonding 2p-nd orbitals 

(Fig. 1.3). 

 

Figure 1.4. Schematic band diagrams showing the influence of A. the electronegativity and B. 

the B-O-B- angle on the band gap of oxides. 

Computational and experimental studies using linear muffin tin orbital (LMTO) methods 

and UV-diffuse reflectance spectroscopy were done to establish the relationships between 

composition, crystal structure and the electronic structure of oxides containing octahedrally 

coordinated d0 transition metal ions (Mo6+, W6+, Nb5+, Ti4+, Ta5+) [5]. It was discovered 

that for isostructural compounds the band gap increases with the increase of the effective 

electronegativity of the transition metal ion (Fig. 1.4A). The effective electronegativity of 

the investigated transition metal ions were found to decrease in the following order: 

Mo6+>W6+>Nb5+~Ti4+>Ta5+. Moreover, the band gap is sensitive to changes in the 

conduction band width, which is maximized for the structures possessing linear B-O-B 

bonds, such as the cubic perovskite structure. As this bond angle decreases (e.g., via 
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octahedral tilting distortions, e.g. when t < 1) the conduction band narrows and the band 

gap increases (Fig. 1.4B). Decrease in the dimensionality from 3-D (simple perovskite) to 

2-D (K2NiF4) doesn’t alter the band gap significantly, whereas complete isolation of the 

BO6 octahedra (double perovskite structure) narrows the conduction band dramatically and 

leads to a significant increase in the band gap. The inductive effect [6] has a minor 

influence on the band gap width. 

Table 1.1. Crystal structures and optical band gaps of selected oxides 

Compound Structure Band gap, eV Reference 

TiO2 Rutile (P42/mnm) 3.0 [7] 

CaTiO3 Perovskite (Pnma) 3.3 [5, 8] 

SrTiO3 Perovskite (Pm3m) 3.1 [5] 

BaTiO3 Perovskite (P4/mmm) 3.3 [9, 10] 

La2Ti2O7 (110) layered perovskite 3.9 [11] 

Ta2O5 - 3.8 [12] 

LiTaO3 Perovskite (R3c) 4.7 [13, 14] 

NaTaO3 Perovskite (Pbnm) 4 [13, 15] 

KTaO3 Perovskite (Pm3m) 3.7 [13] 

LaTaO4 P21/c 3.9 [16, 17] 

h-Nb2O5 P2/m 3.13 [18, 19] 

LiNbO3
 Perovskite (R3c) 3.6 [14, 20] 

NaNbO3 Perovskite (Pbma) 3.08 [21, 22] 

KNbO3 Perovskite (Amm2) 3.14 [21, 23] 

WO3 P21/n 2.4 [5, 24] 

ZrO2 Baddeleyite (P21/a) 5.0-5.7 [25, 26] 

 

The established relations between the electronegativity, crystal structure and electronic 

structure of d0-perovskite-oxides allow a qualitative prediction of optical properties for new 

perovskite-type oxides, which is very useful for designing materials for photochemical 

applications. Band gaps of selected d0-oxides are collected in Table 1.1. As it can be seen 

the most of oxides absorb light of the UV- or near-Vis-regions and hence, are colorless. 
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Normally, the band gap of d0-oxides is tuned by the cationic substitution. Typically, to 

reduce the optical band gap, cations of an oxide are substituted by cations with lower 

electronegativity. This method allows to obtain materials with the optical band gap as small 

as 2.4 eV [5]. Since nitrogen has lower electronegativity than oxygen, a partial substitution 

of oxygen with nitrogen can be used as an alternative approach to tune the optical band gap 

[27]. As it will be discussed below, such an anionic substitution allows to reduce the optical 

band gap of d0-oxides down to 1.8 eV. 

1.3. Photocatalytic properties of oxides. 
Photocatalytically active materials should satisfy the following criteria: 

1. Stability under operating conditions; 

2. Good electron-hole pair capacitance [5]; 

3. Suitable positions of the conduction and the valence bands to facilitate electron-hole 

transfer on the adsorbed molecules; 

4. Suitable band gap value. 

First water oxidation has been carried out over n-type TiO2 (rutile) irradiated with UV-light 

(λ < 415 nm) [7]. The quantum efficiency (QE) of that process (~ 10 %) was further 

increased (up to ~ 29 %) by using the concept of “photochemical diodes” (n-type TiO2 

which surface is impregnated with a noble metal, like Pt, Au, Pd) for more effective 

electron-hole separation [28]. 

Today over 130 different materials, mainly oxides, are known either to catalyze water 

splitting into H2 and O2, oxidation (to produce O2) or reduction (to produce H2) [29]. 

Perovskite- and perovskite-related oxides containing Ti, Ta, and Nb in d0-electronic 

configuration are among the most effective photocatalysts known nowadays, due to the 

suitable position of their conduction and/or valence bands and good chemical and 

photochemical stability. 

It has been shown that NiO-modified SrTiO3 is able to split water vapor stoichiometrically 

under UV irradiation, while SrTiO3 alone didn’t show any photocatalytic activity [30]. For 

a large band gap La2Ti2O7 (3.8-3.9 eV), which is a member of (110) layered perovskites 

(AmBmX3m+x with m = 2), QE of 12 % was reported. Doping this catalyst with BaO and 
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adding NaOH into the catalyst suspension led to QE = 50 % [31]. Doping of La4CaTi5O17 

(3.8 eV) with NiO led to QE = 20 % under UV light [32]. 

Tantalates ATaO3 (A = Li+, Na+, K+) with band gaps 3.7-4.7 eV have shown remarkable 

photocatalytic activity [13]. NaTaO3 with NiO as a co-catalyst was able to decompose pure 

water on H2 and O2 with QE up to 28 %. Doping it additionally with 2 at % of La led to the 

highest QE (56 %) over water splitting photocatalysts [33]. 

Among the niobates NiO co-loaded Sr2Nb2O7 (3.9 eV) showed remarkable QE during the 

overall water splitting (23 %) [32]. Another isostructural niobate Ca2Nb2O7 achieves QE of 

7 % for the H2 –production, when co-loaded with NiO [32]. 

However, the main serious disadvantage of oxide catalysts is their relatively large band 

gaps activated only by UV-radiation. The sunlight which reaches the earth surface contains 

only 5 % of UV-radiation. Thus, oxide catalysts are rather ineffective to convert solar 

energy. 

1.4. Anionic substitution. 
Nowadays cationic substitution is the most common way to change physical properties of 

perovskite-oxides. Due to its flexibility, the perovskite structure can adopt a large number 

of cationic substitutions, which allows fine tuning of the electronic structure, charge carrier 

concentration and consequently electronic and optical properties of the materials [3, 34]. 

That is why perovskite and perovskite-related oxides can be found in a number of diverse 

applications such as superconductors (Bi2Sr2CaxCux+1O2x+6), capacitors (BaTiO3), catalysts 

(LaCoO3, LaMnO3), ionic conductors (La(Sr)Ga(Ni)O3-x), sensors (Zr1-xYxO2-x/2), etc. 

Currently, anionic substitution is considered as a prospective alternative to the cationic 

substitution to change physical properties of perovskites. 

To maintain the perovskite-type structure the suitable candidate for the oxygen substitution 

should possess similar ionic radius, electronic configuration and electronegativity. Among 

the elements, which are situated around oxygen in the Periodic Table fluorine and nitrogen 

have ionic radii, electronegativities and electronic configurations similar to those of 

oxygen. Currently, most of the known anion-substituted perovskite-type oxides are either 

oxynitrides or oxyfluorides. Perovskite-related oxychlorides and oxysulfides are rare 
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mainly due to the significant difference in the ionic radii of O2- (1.40 Å) and those of S2- 

(1.84 Å) and Cl- (1.81 Å). 

Perspectives of the O2- substitution with N3- can be better understood if the differences 

between these ions are emphasized. They are as follows: 
1. Different Pauling’s electronegativity (3.50 for O and 3.07 for N) 

2. Different formal oxidation state (O2-, N3-) 

3. Different ionic radii (r (O2-) = 1.40 Å, r (N3-) = 1.50 Å for the coordination number 

equal to 6) [35, 36]. 

From the difference in electronegativity follows that bonding in oxynitrides should be more 

covalent than in oxides. Consequently, smaller band gaps for oxynitrides can be expected 

[37]. Indeed, band gap values published for oxynitrides fall into the interval 1.8-3.3 eV. 

The band gap overlap with the solar spectrum makes this class of materials interesting for 

applications as pigments and visible-light driven photocatalysts. 

Due to the similarity in electronic structure of d0-oxides and oxynitrides, the relation 

between the electronegativity, crystal structure and electronic structure, established for 

oxides [5], is valid also for d0-perovskite-type oxynitrides. This allows a qualitative 

prediction of optical properties for new perovskite-type oxynitrides and allows to design 

new visible-light activated materials for various applications. 

Additionally, due to its larger ionic radii and lower formal oxidation state, the N3--ion is 

more polarizable than the O2--ion. Hence, oxynitrides may possess polarization properties 

different to those of oxides [38]. 

From the difference in the oxidation states it follows that partial substitution of oxygen with 

nitrogen can be used to change the oxidation state of the cations according to the charge 

compensating mechanism (as it will be discussed below). This can be used to change 

charge carriers concentration and consequently electronic and magnetic properties of 

materials [39-41]. If oxygen is substituted for nitrogen in ternary oxides three possible 

mechanisms can compensate the additional negative charge caused by the N3-- ion to keep 

the total electroneutrality: 
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1. Change of the oxidation state of the B-site cation LaV3+O3 => LaV4+O2N or B- sites 

substitution with cations of higher valence (cross-substitution): K+Ta5+O3 => 

Sr2+Ta5+O2N 

2. Replacement of 3 O2--ions by 2 N3--ions: La2Ti2O7 => LaTiO2N 

3. Oxygen vacancy formation: BaTi4+O3 => BaTi4+O3-3x/2Nx 

These charge compensating mechanisms can be used to control the amount of nitrogen in 

the oxide sublattice and, consequently, physical chemical properties of oxynitrides. 

The electronegativity of fluorine (4.10), is higher than that of oxygen. Therefore, bigger 

optical band gaps can be predicted for oxyfluorides. Besides, due to the lower formal 

charge of F- compared to that of O2-, a partial substitution of oxygen with fluorine can lead 

to the decrease in the formal oxidation state of the B-site cation. 

1.5. Synthesis of oxynitrides 
To synthesize oxynitrides from oxides a suitable nitriding agent is required. Molecular 

nitrogen (N2) would be an ideal candidate. However, its triple bond (N≡N) is one of the 

strongest in nature ( O
dissHΔ  = 946 kJ mole-1). Therefore, in most of cases the direct reaction 

between N2 and oxides requires high activation energy. It was also proven experimentally 

that the H2/N2–mixtures do not promote effective nitridation either [40]. 

Currently ammonia NH3 is a widely used nitriding source. The corresponding reaction 

between a suitable solid precursor and gaseous ammonia is often referred to as “thermal 

ammonolysis”. Oxides (A2B2O7, ABO4 with a B-site cation being in its stable oxidation 

state) and oxides-carbonates mixtures (ACO3–BxOy) are among the most often used 

precursors for the perovskite-type oxynitrides synthesis [40, 41]. The reaction between a 

precursor and ammonia is normally carried out at atmospheric pressure in the temperature 

region of T = 900–1273 K. 

Ammonia decomposition reactions on oxides surfaces are not well studied. However, it is 

suggested that ammonia dissociates at the surface, forming active nitriding species (N, NH, 

NH2) and molecular hydrogen [42, 43]. The latter reacts with the lattice oxygen to form 

water, while nitrogen is introduced into the lattice, e.g.: 
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Sr2Nb2O7(s) + 2NH3(s) ⇄ 2SrNbO2N(s) + 3H2O(g)   (1.2) 

2SrCO3(s) + Nb2O5(s) +2NH3(g) ⇄ 2SrNbO2N(g) + 2CO2(g) + 3H2O(g)  (1.3) 

The formation of thermodynamically stable molecules such as water ( )1000(O
fGΔ  = 

192.603 kJ mole-1) and carbon dioxide ( )1000(O
fGΔ  = -395.865 kJ mole-1) as well as the 

overall entropy increase are the main driving forces of the ammonolysis. Molecules of H2O 

and CO2 are removed from the system by means of the ammonia flow, thus preventing the 

possible back reactions. At ambient pressure and if the components of the H2/N2/NH3 

mixture have reached their equilibrium partial pressures before contacting the sample 

(equilibrium case), the composition of the reacted sample depends upon temperature and 

water partial pressure in the system (p (H2O)). A lower limit to p (H2O) is determined by 

the water in the ammonia source (if not using moisture absorbers) [44].  

Ammonia dissociation proceeds according to the equation: 

NH3(g) ⇄ 1/2N 2(g) + 3/2H2(g)     (1.4) 

The temperature dependence of the ammonia formation equilibrium constant 0
fK  is shown 

on Figure 1.5. 
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Figure 1.5. Temperature dependence of the ammonia formation equilibrium constant (Kf
0) and 

dissociation rate (α). 

At equilibrium conditions, 0
fK  can be expressed by partial pressures (p) or mole fractions 

of N2, H2 and NH3: 
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where 

x  – mole fraction of dissociated NH3. 

The solution of this equation allows obtaining a temperature dependence of partial 

pressures of N2, H2 and NH3 as well as a temperature dependence of the NH3 dissociation 

constant (α): 
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Figure 1. 6. Temperature dependence of equilibrium partial pressure of gaseous NH3, H2 and N2. 

At T > 573 K (the temperature region, where the most of the oxynitrides have been 

synthesized) ammonia is mostly dissociated into N2 and H2 (Figure 1.6), which are not an 

effective nitriding sources. That is why it is important to increase ammonia flow with 

temperature [40]. Additionally, increasing ammonia flow promotes faster water removal 

[44, 45] and the renewal of active nitriding species over the sample. 

So far, the formation of the perovskite type oxynitrides of the general formula AB(O,N)3 

have been reported for A = rare-earth (RE), alkaline-earth (AE) and B = Zr, Ti, Ta, Nb, Mo, 

V, W (Table 1.2). The effective electronegativity of the transition-element ions in their air 

stable oxidation states decreases in the following order: Mo6+>W6+>Nb5+~Ti4+>Ta5+>Zr4+. 

Hence, the reducibility of these ions decreases in the same order and the formation of 

mixed-valent oxynitrides becomes less favorable. Indeed, thermal ammonolysis of oxide 

precursors containing Ta5+ and Zr4+ does not affect the oxidation state of these ions [45, 

46], whereas thermal ammonolysis of Mo6+ and W6+ containing oxide precursors always 

yields in mixed-valent oxynitrides [47-49]. 

Binary nitrides formation is a problem when oxide/carbonate mixtures are used as starting 

precursors [50]. In that case a mineralizer (typically KCl, NaCl, CaCl2, which melts at the 
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temperature of the oxynitride phase formation) can be added into the starting mixture. 

Mineralizers help to overcome the diffusion barrier between the ions. This allows to 

achieve single-phase oxynitrides. The mineralizer can be afterwards leached with water. 

The electronegativity of the A-site cation can also influence the reducibility of the B-site 

cation. This influence is normally discussed in terms of the so-called positive inductive 

effect [6]. Within one group of the Periodic Table the strength of the positive inductive 

effect decreases with the decrease of the ionic radius of the element. Thus, for e.g. Ca2+, 

Sr2+ and Ba2+ the strength of the positive inductive effect decreases in the following order 

Ba2+ > Sr2+ > Ca2+. The reducibility of the B-ions decreases in the same order [6]. The 

influence of the A-site cation electronegativity on the phase purity of the formed 

oxynitrides was observed during the synthesis of Nb5+–based oxynitride perovskites. 

Whereas single-phase BaNbO2N and SrNbO2N are easily formed during the thermal 

ammonolysis of the corresponding oxide-carbonate mixtures [38, 51, 52] and oxide 

precursors at T = 1173-1373 K, it was very difficult to prepare a single phase CaNbO2N 

[38, 50]. To synthesize this material phase-pure the temperature should be significantly 

lowered (down to T = 1003 K) and preferably soft chemistry produced oxide precursor has 

to be used (see below). The weak positive inductive effect of Ca2+ can be also be the reason 

why mixed-valent Mo-, V-, W- based oxynitride-perovskites with Ca2+ on the A-site are 

still not known. 

The N3- diffusion rate is lower at lower T. In that case to decrease the time of the oxynitride 

phase formation, soft chemistry produced precursors (Chapter 3) with small particle size 

and high surface area can be used. Thus, the synthesis of a single phase LaZrO2N was only 

possible with the citrate method produced oxide precursor of low crystallinity. Using the 

precursor, produced by the standard ceramic method led to a noncomplete transformation 

of La2Zr2O7 to LaZrO2N [46]. 
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Table 1.2. Perovskite and perovskite related oxynitrides, their structures and synthesis methods 

reported in the ICSD and Scopus databases 

Compound Space group Synthesis method Ref. 

LaZrO2N Pnma La2Zr2O7 (citrate);NH3; 1273 K [46] 

LnTiO2N (Ln = La3+, Nd3+) −

1I  (La3+), 

Pnma (Nd3+) 

Ln2Ti2O7, NH3, 1223 K  [46, 53] 

Sr1-xLaxTiO3-xNx mPm
−

3  – 
−

1I  
Sr1-xLaxTiOy, NH3, 1223 K [54] 

Ba1-xLaxTiO3-xNx - Ba1-xLaxTiOy, NH3, 1223 K [54] 

LaVO3-xNx (x = 0-0.9) - LaVO4, NH3, 1973-1073 K [39] 

LaNbON2 - La2Nb2O8, NH3, 1223 K [53] 

CaNbO2N Pnma Ca2Nb2O7 (citrate), NH3, 1003 K [50] 

SrNbO2N I4/mcm SrCO3-Nb2O5-flux, NH3, 1223 K [52] 

Sr2NbO3N I4/mmm SrCO3-Nb2O5, NH3, 1173-1323 K [55] 

Sr3Nb2O5N2 - SrCO3-Nb2O5, 1173-1323 K [55] 

BaNbO2N 
mPm

−

3  
BaCO3 + Nb2O5, NH3, 1273 K [56] 

Ba1-xSrxTaO2N 
mPm

−

3  
BaTaO2N-SrTaO2N, NH3, 1123 K [51] 

LnTaON2 (Ln = La3+→Dy3+) - Ln2Ta2O8, NH3, 1223 K [53, 57] 

LaTaON2 C2/m La2Ta2O8-flux, NH3, 1173-1273 K [58] 

Ca1-xLaxTaO2-xN1+x Pnma – C2/m CaCO3-La2O3-Ta2O5-flux, NH3, 

1123K 

[27] 

CaTaO2N Pnma CaCO3-Ta2O5-flux, NH3, 1173-

1273 K 

[58] 

SrTaO2N I4/mcm SrCO3-Ta2O5-flux, NH3, 1173-1273 

K / SrO-TaON, N2, 1773 K 

[38, 45] 

Sr2TaO3N I4/mmm SrCO3-Ta2O5, NH3, 1173-1223 K / 

SrO-TaON, N2, 1773 K 

[45, 59] 

BaTaO2N 
mPm

−

3  
BaCO3-Ta2O5, NH3, 1173-1223 / 

TaON+BaO, N2, 1773 K 

[45, 56] 

Ba2TaO3N I4/mmm BaCO3-Ta2O5, NH3, 1173-1223 K / [45] 
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BaO-TaON, N2, 1773 K 

LaWO0.4N2.6 −

4I  
La2W2O9, NH3, 973-1173 [60] 

EuWO1.58N1.42 mPm
−

3  
Eu2W2O9, NH3, 1073-1173 [61] 

SrWO1.7N1.3 mPm
−

3  
SrWO4, NH3, 1223 K [62] 

SrWO2N 
mPm

−

3  
SrWO4, NH3, 1173 K [49] 

SrMoO2.6N0.4 mPm
−

3  
SrMoO4, NH3, 1073 K [48] 

SrMoO2.5N0.5 mPm
−

3  
SrMoO4, NH3, 1123 K [49] 

AZrxTa1−xO2+xN1−x (A = Ba2+, 

Sr2+, Ca2+) 
mPm

−

3 , Pcmn 
A-Ta-Zr sol, NH3, 1273 K  [63] 

A0.5La0.5TaO1.5N1.5 (A = Ca2+, 

Sr2+, Ba2+) 
Pnma La2O3 ACO3, Ta2O5, NH3, 1273 K [64] 

BaSc1/3Ta2/3O8/3N1/3 P21/n BaCO3-Sc2O3-Ta2O5, NH3, 1273 K [65] 

LaMg1/3Ta2/3O2N, 

LaMg1/2Ta1/2O5/2N1/2 
P21/n La2O3-MgO-Ta2O3, NH3, 1143 K [65] 

Ln2AlO3N (Ln = La3+, Nd3+, 

Sm3+) 

I4mm (La3+) Ln2O3-AlN, N2, 1623 K [66, 67] 

1.6. Thermal stability of perovskite-type oxynitrides. 
Perovskite-type oxynitrides undergo thermal reoxidation when heated in the synthetic air. 

The reaction often proceeds via the formation of a reoxidation intermediate phase (Figure 

1.7). Thermal reoxidation intermediates were discovered for oxynitrides of various 

structural types (Table 1.3) [68, 69]. The main features of these phases are: 

1. Higher weight than the oxide phase; 

2. Amorphous or partly amorphous; 

3. High thermal stability, up to T = 1200 K (Chapter 3); 

4. Presence of N2- entities bonded to the transition metal. 
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Figure 1.7. A typical thermal reoxidation curve of the perovskite-type oxynitride. The solid line 

represents the weight difference measured during the thermal reoxidation experiment. The dashed 

line represents the expected weight difference. 

Table 1.3. Thermal reoxidation intermediates of selected oxynitrides 

Starting oxide Structural type Reoxidation intermediate Reference 

LaTiO2N Perovskite LaTiO3.5(N2)0.32 [68] 

La0.91W0.91O1.37N1.63 Perovskite LaWO4.5(N2)0.23 [68] 

TaON Baddeleyite TaO2(N2)0.10 [70] 

Zr2N2O Bixbyite ZrO2(N2)0.028 [71] 

Sr2NbO2.8N Huddleston-Popper Sr2NbO4.5(N2)0.20 [72] 

La0.9Ba0.1TiO2.1N0.9 Perovskite La0.9Ba0.1TiO3.45(N2)0.31 [73] 

La0.7Ba0.3TiO2.3N0.7 Perovskite La0.7Ba0.3TiO3.35(N2)0.26 [73] 

La0.5Ba0.5TiO2.5N0.5 Perovskite La0.5Ba0.5TiO3.25(N2)0.23 [73] 

Y4Si2O7N2 Cuspidine Y4Si2O10(N2)0.75 [74] 

Y5(SiO4)3N Apatite Y10Si7O29(N2)0.335 [75] 

Y2.67W1.33O3.79N2.80 Fluorite Y2WO6(N2)0.20 [68] 

Ti0.67O0.42N0.58 rock-salt TiO2(N2)0.06 [68] 

Nb0.56O0.40N0.60 rock-salt Nb2O5(N2)0.43 [68] 
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Early studies reveal that formation and decomposition of the intermediate phase are 

accompanied by molecular nitrogen evolution. Initially it was believed that nitrogen in the 

intermediate phase is represented only by N2-species, which are weakly bonded to the oxide 

matrix, forming binuclear complexes, which contain the fragment Me…N≡N…Me. This 

weak bonding would not seriously affect the electron density distribution of the dinitrogen 

molecule. Hence, it stays symmetric and IR-inactive. Therefore the methods applied to 

prove the presence of dinitrogen species in the intermediates are XPS and Raman 

spectroscopy [68, 69]. However, the formation of the weakly bonded binuclear complexes 

of dinitrogen can not explain a high thermal stability of intermediates. Raman studies of 

Rachel et al. [50] reveal Me≡N type of bonding for the Ta- containing intermediates. 

Although previously only N2 molecules were claimed to be evolved during the 

intermediates formation stage, a recent study of Aguiar et. al reveals an additional NO and 

NO2 retention during the intermediate formation step [76]. 

1.7. Optical properties of perovskite-type oxynitrides. Pigments. 
As it was already mentioned in Chapter 1.4, optical band gaps of d0-perovskite-type 

oxynitrides overlap with the solar spectrum, which makes these materials attractive for 

pigments and visible light driven photocatalysts applications. Therefore, understanding the 

relation between the composition and the band gap values of perovskite-type oxynitrides 

and designing new oxynitrides with small optical band gaps are of great interest. 

Optical band gap values of a number of d0-perovskite-type oxynitrides, containing e.g. Zr4+, 

Ti4+, Ta5+ and Nb5+ are given in Table 1.4. 

For oxynitrides of the general formula ABO2N (A = Ca2+, Sr2+, Ba2+, B = Ta5+, Nb5+) the 

band gap decreases with the increasing A-cationic radius. The average band gap value of 

the Nb5+-containing oxynitrides was found to be lower than that of Ta5+-containing 

oxynitrides (Table 1.4). This finding is in accordance with the established relation between 

the electronegativity of the B-site cation and the optical band gap for d0-perovskite-type 

oxides, which was discussed above (Chapter 1.2). 
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Table 1.4. Optical band gaps and colors of ternary perovskite-type oxynitrides (selected from the 

database Scopus) 

Compound Band gap, eV Color Ref. 

LaZrO2N - White [46] 

LaTiO2N 2.0–2.1 Brown [54, 77, 78] 

CaTaO2N 2.4, 2.75 Yellow [27, 38] 

SrTaO2N 2.1 Orange [38] 

BaTaO2N 1.8 Red [38] 

LaTaO2N 2.0–2.1 Red [27, 79] 

CaNbO2N 2.1 Ochre [38, 50] 

SrNbO2N 1.9 Brown [38] 

BaNbO2N 1.8 Dark-brown [38] 

The cross-substitution was employed to vary the nitrogen content and consequently the 

band gap of oxynitrides. 

Cross-substitution of Ca2+ in CaTaO2N with La3+ and O2- with N3- yield in series of solid 

solutions of the general formula Ca1-xLaxTaO2-xNx (x = 0.05–1.00). The nitrogen content 

and consequently the band gap was tuned by varying the Ca2+-content. The band gap 

decreases linearly from 2.75 eV (CaTaO2N) to 2.0 (LaTaON2). The synthesized materials 

possess bright colors (from yellow to red), and good thermal and chemical stability. Due to 

their remarkable optical and chemical properties Ca1-xLaxTaO2-xNx oxynitrides were 

evaluated as substitutants for toxic Cd-containing yellow-red pigments [27]. 

Recently, optical properties of solid solutions of the general formula Sr1-xLaxTiO3-xNx (x = 

0.0–1.0) have been reported [54]. Although, the same principle of the co-substitution and 

the O/N-content control as in the Ca1-xLaxTaO2-xNx system was realized, the band gap does 

not vary linearly with the nitrogen content. This can be explained in the following way. 

Increase of the degree of x within the Ca1-xLaxTaO2-xNx series leads to a higher nitrogen 

content and increasing structure distortion (r(Ca2+) < r(La3+)). Both factors are favorable 

for the optical band gap decrease in this system. Increase of x within the Sr1-xLaxTiO3-xNx 

system leads to increasing nitrogen content and increasing structure distortion (r(Sr2+) > 

r(La3+)). Whereas, the nitrogen content increase leads to a band gap decrease, the structure 
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distortion results in the optical band gap increase (Fig. 1.4B). Thus, both these factors 

partly compensate each other. 

1.8. Photocatalytic properties of oxynitrides. 
Recent efforts to improve the QE of oxide photocatalysts are concerned with improving 

their optical activity by means of anionic substitution. Theoretical calculations made by 

full-potential linearized augmented plane wave (FLAPW) formalism in the framework of 

the local density approximation (LDA) for S, C, N, P, F –doped TiO2 show that p-states of 

N3- and S2- most effectively contribute to the band gap narrowing. Thus, N3- and S2- are the 

best candidates for a partial oxygen substitution [80]. However, only substitution with N3- 

allows maintaining the oxide crystal structure type due to the better ionic radii matching. 

Since d0 perovskite type oxides have shown a remarkable photocatalytic activity the 

photocatalytic properties of d0-oxynitride perovskites are of a great interest. 

Indeed, since oxynitrides absorb in the visible region they are potential candidates for 

various photocatalytic applications (photocatalytic production of hydrogen from water or 

organic waste, or photocatalytic waste decomposition), etc. Only Zr4+, Ti4+, Ta5+, Nb5+–

containing oxynitride-perovskites satisfy the stability criteria and hence, their 

photocatalytic properties are worthy to be examined. 

Photocatalytic oxynitride-perovskites are a relatively new research topic. The first report on 

the photocatalytic water splitting into H2 and O2 with an oxynitride photocatalyst appeared 

in 2002. Kasahara et. al reported on the photocatalytic properties of LaTiO2N and 

La0.75Ca0.25TiO2.75N0.25 prepared by thermal ammonolysis of the citric route produced 

corresponding oxide precursors [77]. Photocatalytic reactions were carried out on powders, 

which surfaces were modified with IrO2 (oxygen evolution catalyst) and Pt (hydrogen 

evolution catalyst) and in the presence of a sacrificial electron donor (methanol) and 

sacrificial electron acceptor (Ag+). The materials were tested under visible light of 420 < λ 

< 600 nm. The amount of 440 μmol O2 was formed over 0.02 g of LaTiO2N during 43 

hours of irradiation. The maximum quantum efficiency achieved for the O2 evolution was 

1.5 %. Ca - modification led to a considerable increase in the quantum efficiency (from 1.5 

% up to ca. 5 %). Moreover, substitution of 25 at % of La3+ in LaTiO2N with Ca2+ led to a 
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suppression of the N2 evolution observed during the photocatalytic oxygen production over 

LaTiO2N and attributed to the reduction of the intrinsic N3- with photochemically induced 

holes: 

2 N3- + 6 h+ → N2       (1.7) 

Later on it was found that in alkaline solutions with pH ~ 8.1 the N2 evolution over 

LaTiO2N during the photocatalytic O2 production doesn’t occur [11]. 

Both LaTiO2N and La0.75Ca0.25TiO2.75N0.25 were rather ineffective during the photocatalytic 

H2-production tests: the maximum of 0.15 % quantum efficiency was achieved for 

LaTiO2N. 

Since then, photocatalytic properties of a number of Ta5+- and Nb5+-containing oxynitrides 

were investigated under the same experimental conditions. Ta5+-containing oxynitride-

perovskites (CaTaO2N, SrTaO2N [81], NdTaO2N and LaTaON2 [79]) were able to catalyze 

H2 production from water. Up to 38 μmol h-1 of H2 were achieved over LaTaON2 [79]. 

However, these oxynitrides found to possess no activity during the photocatalytic oxygen 

production. 

Recently photocatalytic properties of Nb5+-containing oxynitrides ANbO2N (A = Ca2+, Sr2+, 

Ba2+) were investigated. The niobates with A = Sr2+, Ba2+ didn’t show any photocatalytic 

activity, whereas CaNbO2N was active during the photocatalytic production of oxygen (35 

μmol h-1 g-1) [82]. 

Recently the first study on photocatalytic water oxidation over the perovskite related 

Rb1+xCa2Nb3O10-xNx*yH2O (K2NiF4-type structure) oxynitride produced by thermal 

ammonolysis of Dion-Jacobson phase RbCa2Nb3O10 in the presence of CaCO3 was reported 

[83]. The materials appeared to be rather poor photocatalysts. Their maximum of the 

quantum efficiency for the O2-production (0.70 %) was even lower than that of the starting 

oxide precursor (1.07 %). Moreover, they were found to decompose in contact with water. 

As it was found before for oxides, the quantum efficiency of the oxynitrides is dependent 

upon the used co-catalyst. Thus, the highest evolution rate of H2 (190 μmol h-1 g-1) over 

LaTaON2 was achieved by adding 0.15 wt % Pt-0.25 % Ru loaded co-catalyst, whereas 
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separately performed tests of LaTaON2 impregnated with 0.15 wt % of Pt and 0.25 wt % of 

Ru yielded in 15 and 40 μmol h-1 g-1 of hydrogen evolution rate, respectively [79]. 

In some of the studies, dedicated to the synthesis and photocatalytic properties of 

oxynitrides it is emphasized, that low quantum efficiencies measured on oxynitride 

perovskites could be related to one of the following factors: complex defect structure of 

their surfaces, which can serve as recombination centers for the photochemically induced 

electron-hole couples or low absorption rate of the H2 and O2 evolution catalysts [11, 77]. 

Moreover, as it was pointed by Osterloh [29],  the reported values of flat/band potentials 

exhibit large variations, which reflects experimental uncertainties, as well as intrinsic 

differences between materials, which arise from different routes used for materials 

preparation. The flat band potential is known to be dependent on ion absorption, surface 

defects and surface reactions. Yamasita et. al [81] stated that no O2 evolution was detected 

over visible light irradiated SrTaO2N and BaTaO2N, whereas the authors of [82] reported 

on the photocatalytic oxygen production over these materials, tested under similar 

conditions. This difference can be explained only by deviations of synthesis procedures 

used for the tested materials. 

The modification of oxynitride preparation procedures as well as the development of a 

method, which allow good impregnation rates of the co-catalysts for H2 and O2 evolution, 

has to be achieved. As a result, increase in photocatalytic activity of oxynitrides is 

expected. 

1.9. Anionic ordering 
Complete or partial O/N ordering has been reported for a number of perovskite- and 

perovskite-related oxynitrides, which contain cations from the VB group in d0-electronic 

configuration (Ta5+ and Nb5+) as well as Al3+ [52, 58]. A completely ordered N/O 

arrangement was reported for all the oxynitrides of the K2NiF4-type (Sr2NbO3.3N0.7 [55], 

Sr2TaO3N [45, 59], Ba2TaO3N [45], Nd2AlO3N [66]). In Ta- and Nb-containing oxynitrides 

of that type, N3--ions occupy the equatorial positions (Fig. 1.8A) of the octahedra (along a 

and b axis). The ordering in these compounds is consistent with the less polarizable O2--

ions occupying A5BO-octahedra (A = Sr2+, Ba2+, B = Ta5+), and are mostly surrounded by 
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less polarizing cations (Sr2+, Ba2+). More polarizable N3--ions occupy A4B2N-octahedra (are 

mostly surrounded by more polarizing cations Ta5+ and Nb5+). The type of the O/N- order 

found in Nd2AlO3N is completely opposite: N3- is in an octahedral AlNd5N environment 

and O2- occupies AlNd5O and OAl2Nd4 octahedra (Fig. 1.8B). The reason for that is 

explained by a small difference in polarizabilities of Al3+ and Nd2+ [45]. Ta- and Al- 

containing oxynitrides of the K2NiF4-type keep their anionic arrangement ordered up to 

1673-1773 K [45, 59]. 

An ordered anionic arrangement was also reported for some of the simple oxynitride-

perovskites. Currently, the origin of the partial or complete anionic ordering in this group 

of materials is not well understood. Depending on the preparation routes different degrees 

and directions of ordering have been reported for the same materials. For example, for 

SrTaO2N prepared by thermal ammonolysis of a Ta2O5/SrCO3 mixture with an addition of 

flux (NaCl), the space group I4/mcm and a complete O/N-order was reported [58], while for 

the same compound, prepared from SrO and TaON in nitrogen atmosphere or prepared by 

thermal ammonolysis of Sr2Ta2O7 with no flux a statistical distribution of O/N among the 

available sites was observed [45]. A completely ordered anionic arrangement was reported 

for LaTaO2N prepared with an addition of the CaCl2 flux (Fig. 1.9A). Recently, a partial 

O/N order was found in SrNbO2N (Fig. 1.9B) [52]. Although, this material adopts the same 

space group as SrTaO2N (I4/mcm), N3--ions of these compounds occupy preferably 

different anionic sites. It is reasonable to expect that the difference in the degree of the 

O/N-order reported for the simple perovskite-type oxynitrides arise from the difference in 

their thermal history. Therefore, it is interesting to investigate the influence of the thermal 

history on the O/N-order of these compounds. 
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Figure 1.8. Anionic ordering in Ruddlesden-Popper oxynitrides: A. Sr2NbO3.3N0.7 (N3- is located 

within ab plane); B. Nd2AlO3N (N3- is located along the c-axis) 

 

Figure 1.9. Anionic ordering in simple oxynitrides: A. In monoclinic LaTaON2 (S.G. C2/m); B. 

In tetragonal SrTaON2 (S.G. I4/mcm) 
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1.10. Mixed-valent oxynitride-perovskites 
Since N3- has a higher negative charge than O2-, nitrogen insertion into the oxygen 

sublattice can lead to an increase of the B-site cation oxidation state, and, consequently, 

change the charge carriers concentration according to the charge compensation mechanism. 

This method was considered as an alternative to the cationic substitution to change 

electronic transport properties of the p-type conducting LaVO3 [39]. Similar to the Ba2+ and 

Sr2+ substituted LaVO3 the synthesized oxynitrides of general formula LaVO3-xNx (x < 

0.53) show an increased electrical conductivity compared to that of LaVO3. While the 

conductivity of Sr2+ and Ba2+ containing samples changes from semiconducting to metallic 

when increasing the substitution level of La3+ [84, 85], all the oxynitride samples remain 

semiconducting. Moreover, a decrease of the electrical conductivity with the increase of the 

nitrogen content was measured for the oxynitride samples with x > 0.53. 

Another example, where oxygen substitution with nitrogen led to materials with modified 

physical properties, is the LaWO3-xNx system [47]. Up to now, the members of this system 

with x = 0.6 and 0.7 were characterized. Both materials possess temperature independent 

low negative value of Seebeck coefficient (│S│< 5 μV K-1) and low electrical conductivity 

(~15*102 S m-1), which is weakly temperature dependent (EA ~ 8*10-3 eV). The low 

conductivity values indicate low mobility of charge carries, which is attributed to one of the 

following reasons: 

1. Narrowing of the conductivity band due to the structural distortion (the crystal 

structure of the tested materials is tetragonal,
−

4P  with the W-(O,N)-W angle value 

equal to 1640). 

2. Low compactness of the samples (50-60 %). 

3. The presence of atoms with different formal oxidation state at the same 

crystallographic site (like O2-/N3- or W5+/W6+), which is not favorable for the wide 

conduction band formation and can be responsible for trapping charge carriers. 

Another tungsten containing oxynitride series which also possess low weakly temperature 

dependent electrical conductivity and high charge carriers concentration at the Fermi level 

(proven by magnetic susceptibility measurement) is SrWO3-xNx [49]. 
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Only low oxygen substitution with nitrogen was achieved for SrMoO3-xNx system. Up to 

now, studies on samples with x ≤ 0.5 (SrMoO2.6N0.4 and SrMoO2.5N0.5) have been described 

in the literature [48, 49]. Both neutron and x-ray diffraction studies confirmed no deviation 

from the cubic symmetry (space group mPm
−

3 ) for these compositions. Their electrical 

conductivity was several orders of magnitude lower than that of SrMoO3 and showed 

metallic-like temperature dependence [86]. Magnetic susceptibility measurements revealed 

Pauli paramagnetism (χ ~ 10-4 emu mol-1 Oe-1) at room temperature and a magnetic 

transition at T ~ 54 K. In [48] it is referred to as an antiferromagnetic transition, whereas 

the authors of [49] suggested a spin-glass formation. Synthesis of the members with x > 1 

and investigation of their electronic and structural properties would be of interest. 

One of the problems concerned with an accurate determination of oxynitrides electronic 

properties is low density of the characterized ceramics [39, 47-49]. Due to a higher bonding 

covalence of oxynitrides as compared to oxides, their sintering is difficult. It was reported 

that using an isostatic pressing technique partly solves the problem and allows increasing 

density of ceramic samples from 40-60 % up to 89 % [87, 88]. 

1.11. Scope of the present work 
The first part of the present work (Chapters 3-4) is dedicated to the synthesis and 

characterization of d0-oxynitride-perovskites. The chosen systems and formulated tasks are 

as follows: 

1. Ca1-xLaxTiO3-xNx (x = 0–0.7). Investigation of the influence of cross substitution of 

Ca2+ with La3+ and O2- with N3- on the optical properties, structure and thermal 

stability of this complex oxynitride system.  

Two previously reported members of this family (LaTiO2N and 

La0.75Ca0.25TiO2.25N0.75) are among the most effective visible light driven water 

splitting photo catalysts. Therefore it is interesting to explore a lower degree of 

substitution in the Ca1-xLaxTiO3-xNx system and to establish crystal structure-optical 

properties relation for the system. Moreover, optical properties of that system can be 

potentially interesting for the pigment application. Since that application of these 
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materials requires working in air, thermal stability of the compounds has to be 

further investigated. 

2. LaNbON2. Since Nb5+ possesses the lowest electronegativity among the early 

transition metal cations with the same electronic configuration and due to the high 

nitrogen content, which potentially can be achieved, LaNbON2 is expected to 

possess one of the smallest optical band gaps among the known oxynitrides. 

Relatively few information on this material is available in the literature. Its 

preparation by thermal ammonolysis of LaNbO4 oxide precursor and lattice 

parameters were firstly reported by Marchand et al. [53] Apart from this, there is no 

further information on that material available. In the present study we were focused 

on the preparation of LaNbON2 samples suitable for the crystallographic 

characterization, determination of its crystallographic parameters, investigation of 

the anionic composition and anionic distribution dependence from thermal history as 

well as characterization of its optical, photochemical properties and thermal stability. 

The second part of the work (Chapter 5) is dedicated to the synthesis and characterization 

of Mo-containing mixed-valent oxynitride-perovskites. The following systems have been 

investigated: 

3. SrMoO3-xNx (x > 1). Up to now the only known molybdenum containing oxynitride-

perovskite system is SrMoO3-xNx (x = 0.4, 0.5) [48, 49]. It was prepared by thermal 

ammonolysis of SrMoO4 containing Mo in its air-stable formal oxidation state +6, at 

T = 1023-1073 K. In this system the formal oxidation state of molybdenum varies 

between +4.4 and +4.5 depending on the anionic composition. Herein we report on 

synthesis of previously unreported highly substituted SrMoO3-xNx (with x > 1, e.g. 

containing Mo5+/Mo6+), examination of their crystal structure, anionic composition 

and distribution, physical properties and thermal stability.  

4. CaMoO3-xNx, BaMoO3-xNx. Although perovskite-type oxides CaMoO3 and BaMoO3 

are known [86, 89-91], no reports on the synthesis of the corresponding oxynitrides 

are available in the literature. Thus, possible thermal ammonolysis synthesis 

methods for previously unreported CaMo(O,N)3 and BaMo(O,N)3 were developed. 
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The crystal structure of CaMo(O,N)3 and BaMo(O,N)3 was compared with that of the 

corresponding oxides CaMoO3 and BaMoO3. 
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2. Experimental techniques 

2.1. Synthesis of oxide precursors 

2.1.1. Ceramic method 
Polycrystalline Ca1-xLaxTiO3+y were synthesized by a standard ceramic method. 

Stoichiometric amounts of La2O3, Ca(NO3)2*4H2O and TiO2 were thoroughly mixed with 

ethanol in an agate mortar and annealed 3 times (24 hours each time) at T = 1673 K. As an 

example, the reaction between La2O3 and TiO2 can be expressed by the following equation: 

La2O3(s) + 2 TiO2(s) ⇄ La2Ti2O7(s)     (2.1) 

During ceramic synthesis the phase formation occurs at the interphase between the reacting 

particles. If the particles are not in contact, the ions have to diffuse to the reaction zone, 

which requires heating the reactants to relatively high temperatures (typically above 1373 

K). Besides, the reactants should be thoroughly grinded to obtain a homogeneous 

composition. In many cases, to achieve a single phase compound, several heating-

regrinding cycles are required. 

2.1.2. Soft chemistry synthesis 
The decomposition of complex precursors containing a premix of the cations on a 

molecular level can be used as an alternative to the standard ceramic method to achieve 

single phase crystalline oxides [92]. This soft chemistry (chimie douce) approach consists 

in the preparation of the stable metal chelate complexes with certain α-hydroxycarboxylic 

acids (citric acid, glycine etc.) with their subsequent thermal decomposition. In the metal 

chelate matrix the starting cations are mixed on a molecular level. The phase formation 

occurs at relatively low temperatures (typically below 1273 K) because no diffusion 
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processes are necessary [92, 93]. Besides, molecular level mixing allows to maintain good 

chemical homogeneity of the synthesized oxides. 

In the present work a modified Pechini method, which employs citric acid as a complexing 

agent was used to synthesize Nb5+-, Ti4+- [94, 95] (Chapters 3 and 4) and Mo6+-containing 

[96] (Chapter 5) oxide precursors as shown on Figs.2.1-2.3. 

 

 

 

 

Figure 2.1. Flow chart for the synthesis of the LaNbO4 oxide precursor. 
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Figure 2.2. Flow chart for the synthesis of Ca1-xLaxTiOy oxide precursors. 

 

Figure 2.3. Flow chart for the synthesis of CaMoO4 oxide precursor. 



 

    39

2.1.3. Precipitation from aqueous solution 
This method was employed to synthesize molybdates of the general formula AMo6+O4 (A = 

Ca2+, Sr2+, Ba2+) [88, 96]. Synthesis of these materials by the ceramic method requires 

using MoO3 as one of the reagents. The main disadvantage of using this oxide is its high 

vapor pressure (10-2 mbar at T ~ 873 K). Therefore, to obtain AMo6+O4 with the proper 

stoichiometry the atomic ratio of A:Mo and the synthesis temperature have to be optimized. 

However, oxide AMoO4 can be easily prepared either by precipitation or by a soft 

chemistry approach (as it was mentioned before for CaMoO4). 

To prepare AMoO4 0.04 mol MoO3 (JMC, Specpure) is dissolved in a minimal amount (ca 

20 ml) of NH3 (aq, 25 %) and precipitated with 100 ml of an aqueous solution of Sr(NO3)2 

(Merck, >99%) with the concentration 0.4 mol L-1: 

(NH4)2MoO4(sln) + A(NO3)2(sln) ⇄ AMoO4(p) + 2NH4NO3(sln) (2.2) 

The precipitate was washed with distilled water, dried and annealed at 1073 K for 4 hours 

to form a phase pure well crystalline AMoO4. 

2.1.4. Reduction of AMoO4 to AMoO3 
CaMoO3 was synthesized by reduction of CaMoO4 produced by the citrate method with 

forming gas (5% H2 / 95% N2, 99.999% purity, Pangas) [90]. The reduction of 1 g of 

CaMoO4 was carried out at 1173 K during 12 hours (with an intermediate regrinding after 

4 h and 8 h of the reaction) under a forming gas flow of 100-300 mL min-1 [95]. The 

forming gas was supplied through a gas inlet quartz tube with a diameter of 5.8 mm ending 

above the sample and about 2 mm from the reactor end. After the reaction, the sample was 

quenched down to room temperature within 1 minute 

SrMoO3 and BaMoO3 were synthesized by reduction of the corresponding oxide precursors 

SrMoO4 and BaMoO4 (1 g) with a forming gas flow of 250-300 mL min-1. The reduction 

was carried out at T = 1373 K and T = 1473 K during 5 and 15 hours for SrMoO4 and 

BaMoO4, respectively. 

The reduction of AMoO3 proceeds according to the following equation: 
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AMoO4(s) + H2(g) ⇄ AMoO3(s) + H2O(g)    (2.3) 

All the reduction experiments were done in a horizontal tubular quartz reactor with an 

internal diameter of 30 mm. 

2.2. Thermal ammonolysis 
All the oxynitride samples were produced by a thermal ammonolysis reaction carried out in 

a self-made set-up (Fig. 2.4). 

The general aims of the construction were the following: 

1.  To obtain oxynitride powders with a uniform anionic composition. 

2. To apply different cooling programs for the samples. 

3. To allow working with fluxes. 

4. To allow simultaneous thermal ammonolysis experiments for several precursors 

(screening). 

 

 

Figure 2.4. The scheme of the self-made thermal ammonolysis set-up. 

The scheme of the self-built thermal ammonolysis set-up is shown on Fig. 2.4. The main 

parts of the setup are: the furnace (Labortherm N3, operating at T up to 1273 K) with a 

temperature controller (REX-C1000 from RKC), the tubular reactor, the gas supply and the 
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evacuation system. The gas supply and the evacuation system include a mass flow 

controller (model 5850E from Brooks Instrument), gas communications (Swagelog), a 

digital vacuummeter (DVR 2 from Vacuubrand) and a membrane pump (MZ-2 C from 

Müller+Krempel AG). The reactor with an internal diameter of 30 mm is connected to the 

motor with an adjustable rotation speed (KRvrTD 65/45 from Büchi rotavapor) and an air 

fan, all mounted on the Al-made frame (Aphoenix mechano from RK Rose+Krieger). The 

frame itself was placed on the Al-made sledges. The sledges allow that the reactor slides 

along the horizontal plane for fast introduction and the withdrawal of the reactor from the 

furnace. This is especially important, when the quenching of the material is required. The 

purpose of the motor is to rotate the reactor and thus to mix the material during the 

ammonolysis reaction with the intention to improve the uniformity of the oxynitride 

anionic composition by better exposure of the powder to the gas flow. 

 

Figure 2.5. Photograph of the self built Al2O3 sample holder used for the screening experiments. 

A special sample holder was designed to react different precursors under the same 

ammonolysis conditions at the same time. It was made from one piece of Al2O3 (Fig. 2.5). 

Its lower part was cut and polished to allow sliding inside the reactor. Four holes were 

drilled in its upper part to carry four different materials. 

The reactors used for the ammonolysis are made of two different materials: Al2O3 and 

SiO2. The alumina reactor is used for the screening experiments and for the experiments 

which involve mineralizers. The quartz reactor is used, when the material has to be 

quenched. 

Gases are supplied through the gas inlet quartz tube placed 1-2 cm from the sample. Such a 

close location of the NH3 supplying tube to the sample surface is necessary to prevent NH3 

decomposition before contacting the sample. 
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The thermal ammonolysis reactions were performed in the following steps: 

1. Air was evacuated from the system by using the vacuum pump until the rest pressure 

of 30 - 40 torr was reached; 

2. The reactor was filled with nitrogen until the pressure inside the tube slightly 

exceeded atmospheric pressure; 

3. Nitrogen was replaced by ammonia; 

4. The reactor was heated up to the ammonolysis temperature; 

5. After the ammonolysis completion the reactor was cooled down to room 

temperature. 

Ammonia of >99.98 % purity was used for all experiments. 

Cooling of the samples was normally performed in 3 different ways: 

1. Quenching within 1 minute down to room temperature; 

2. Slow cooling under NH3; 

3. Slow cooling under N2 (99.999 % purity). 

Potassium chloride (KCl) was used as a mineralizer (flux) during the synthesis of 

LaNbON2 (Chapter 4). The flux was mixed with the oxide precursor in molar ratio of 

3(flux):1(oxide). After the ammonolysis the flux was washed out with deionized water. 

2.3. Structural and microstructural characterization by 

diffraction techniques 
X-ray-, neutron- and electron diffraction investigations were carried out to obtain structural 

and microstructural information on the starting oxide, the oxynitride and the reoxidation 

intermediate powders as explained below. 

2.3.1. X-ray diffraction 
The experiments were performed using a Phillips X’Pert PRO MPD Θ-Θ System. Single 

crystalline silicon sample holders for low background were used for the qualitative phase 

analysis; scattered x-rays were detected with a linear detector X’Celerator. Front load 

infinite thickness sample holders made of steel were used for the quantitative analysis and 
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crystallographic parameters determination; scattered x-rays were detected with a 

proportional counter. A secondary monochromator made from pyrolytic graphite was used 

to reduce the fluorescent background contribution. 

2.3.2. Neutron diffraction 
In the present work thermal neutrons (λ = 1.494 Å) were used to study the anionic 

composition and to determine both atomic coordinates and thermal displacement factors of 

the synthesized oxynitrides. 

The neutron diffraction (ND) data were recorded at the high resolution powder 

diffractometer for thermal neutrons (HRPT) [97] located at the Swiss Spallation Neutron 

Source (SINQ) of the Paul Scherrer Institut in Switzerland. The samples were placed in 

cylindrical vanadium cans with 6-8 mm diameter. The measurements were performed in the 

angular range of 4.6 - 164.9° with a step size of 0.1-0.05°. 

2.3.3. Structural and microstructural analysis from powder diffraction 

data by using the Rietveld method 
In the present work The Rietveld method (also denoted to as Rietveld refinement) was 

employed to obtain accurate values of atomic positions, lattice constants, anionic site 

occupation factors, displacement parameters of novel oxynitrides (Chapters 3-5) as well as 

to determine particle size and strain of the oxides and the oxynitrides (Chapter 5) from the 

neutron- and x-ray powder diffraction spectra. The principle of the method is described 

below. 

2.3.3.1. Theoretical background 

The intensity measured during the x-ray or neutron diffraction experiments can be modeled. 

The calculated intensity at ith step is equal to: 

biKkiKK Kci yAPFLsy +Θ−Θ= ∑ )22(2φ    (2.4) 

where 
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s  is the scale factor, 

K  represents the Miller indices, h k l, for a Bragg reflection, 

KL  contains the Lorentz, polarization and multiplicity factors, 

φ  is the reflection profile function, 

KP  is the preferred orientation function, 

A  is the absorption factor, 

KF  is the structure factor for the Kth Bragg reflection, 

biy  is the background intensity at the ith step, 

iΘ  is the scattering angle, 

kΘ  is the Bragg angle. 

The Rietveld method consists of refining a crystal structure by minimizing the weighted 

squared difference between the observed and the calculated pattern against the parameter 

vector β: 
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where 

iy  is the observed intensity, 

iω  is the variance of the ith observation, 

iσ  is the standard deviation of the ith observation 

The necessary condition for 2S  to reach the minimum is: 
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The starting values 0β  for the refined parameters β  are normally known from the structure 

solution step. A Taylor expansion of )(βciy around 0β  allows applying an iterative 

process. The shifts applied to the parameters at each cycle for improving 2S  are calculated 

by solving a linear system of equations: 

bA =
0β

δ         (2.8) 

where 

the elements of the A  and the b  matrixes are expressed as follows: 
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The shifts of the parameters obtained by solving the system of equations are added to the 

starting parameters: 

001 βδββ +=        (2.11) 

The new parameters are considered as starting ones for the next cycle. The procedure is 

repeated until the criterion of the convergence is satisfied. 

Thus, the Rietveld method provides values of structural and microstructural parameters 

which correspond to the local minimum of 2S . 

The variance of the adjusted parameters )( kβσ  is calculated from the expression: 

212 )()( SA kkk
−=βσ       (2.12) 

where  
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PN
S
−

=
2

2χ        (2.13) 

where 

N  is the number of independent observations, 

P  is the number of least-squares parameters 

The quality of the refinement is evaluated from the fit quality indicators (so-called, R-

factors), calculated for the regions, where the Bragg reflections contribute to the diffraction 

pattern: 
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The acceptable values for the refinements R-factors, which will be presented in the 

following chapters are the following: Rp < 0.15, Rwp (wRp) < 0.2 [98-100]. 
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2.3.3.2. Structural information 

The structure factor can be expressed as: 
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22
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Thus, it contains information about atomic coordinates (xyz), their deviation from the 

equilibrium position (
−

u 2) and occupation ( g ). The Rietveld method allows accurate 

refinement of these parameters. 

2.3.3.3. Microstructural information 

The microstructural effects were treated using the Voight approximation [101]: both 

instrumental and sample intrinsic profiles were supposed to be approximately described by 

a convolution of Lorentzian and Gaussian components. The Thompson-Cox-Hastings 

(TCH) pseudo-Voight ( pV ) profile function was used to mimic the exact Voight function: 

)()1()()( xGxLxpV ηη −+=      (2.19) 

),,()( HpVxpV ηΘ=       (2.20) 

where 

)( xL  – Lorentzian function, 

)( xG  – Gaussian function, 

η  – mixing parameter, 

H  – full width of the reflection at half maximum (FWHM). 

The microstructural information (particles size, strain) was obtained according to the 

following procedure: 

1. Lorentzian and Gaussian components of the reflections full widths at half maximum 

(FWHM) were modeled according to Thomson-Cox-Hastings (TCH): 
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Θ++Θ+Θ+= 222 cos/tantan)( SSG PWVUUH   (2.21) 

Θ++Θ+= cos)(tan)( SSL YYXXH     (2.22) 

2. CoefficientsU , V , W , X , Y , which determine an instrument resolution function, 

were refined from the XRPD data of the NIST standard reference material SRM 660, 

LaB6. 

3. The sample related coefficients SU , SP , SX  and SY  were refined from the XRPD 

data of the investigated material. The refinement was performed using the instrument 

resolution file based on the predetermined U , V , W , X , Y  coefficients. 

4. Hi and iη (where i stands for size and strain) were calculated from TCH equations: 

( )543223455 08.047.443.269.2 LiLiGiLiGiLiGiLiGiGii HHHHHHHHHHH +++++=  (2.23) 
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5. Size-strain related integral breadth ( iβ ) of the reflection, was calculated from the 

formula: 
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6. The obtained iβ  values were used for the average volume weighted particles size 

(
V

D ) and maximum strain ( e ) values calculation: 
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Θ= cot
4
1

straine β        (2.27) 

All the refinements were done by using the software Fullprof [102]. 

2.3.4. Transmission electron microscopy 
Electron diffraction and high resolution studies were done by transmission electron 

microscopy (TEM) using a Philips CM30 microscope operating at 300 kV. Double-tilt 

sample holders were used for copper grids with the product powders. Diffraction 

simulations were performed using software JEMS [103]. 

2.4. Composition and microstructure studies 

The anionic composition of the synthesized oxynitrides was studied with thermal analysis 

methods (hotgas-extraction and thermogravimetric analysis, TGA) as well as with neutron 

diffraction and Elastic recoil detection analysis (ERDA). The cationic composition was 

studied with Rutherford backscattering spectrometry (RBS) and energy dispersive x-ray 

spectrometry (EDX). 

2.4.1. Hotgas-extraction 
Since the properties of oxynitrides are sensitive to their nitrogen content, correct 

determination of the anionic composition is highly important. The most commonly used 

thermal methods for the O/N content determination are hotgas-extraction and 

thermogravimetric analysis (TGA). 

In this work the hotgas-extraction experiments were performed using a LECO TC500 

analyzer (Fig. 2.6). It uses an electrode furnace capable of producing high electrical current 

to heat the sample material. 

Nitrogen is measured by thermal conductivity and oxygen is measured by infrared 

radiation. 

Analysis begins by placing an empty graphite crucible (sealed and purged of atmosphere) 

between two electrodes in the furnace. High current passes through the crucible generating 
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high heat (T ~ 573 K), which drives off gases trapped in the graphite (out-gassing). Then, 

the sample is dropped from the loading mechanism into the crucible. High current (T ~ 

3273 K) is passed through the crucible again driving off gases released from the sample. 

The oxygen from the sample combines with carbon from the crucible to form carbon 

monoxide (CO). Sample gases then pas through heated rare earth copper oxide, which 

converts CO to CO2. The sample gases then pass through the infrared cell, which measures 

the oxygen as carbon dioxide. Then, CO2 is removed by an absorber (Lecosorb). The gasses 

pass through the thermal conductivity cell which detects nitrogen. 

The analyzer is calibrated with SiO2 and SiN standards. 

 

Figure 2.6. LECO TC500 analyzer. 

The advantage of the hotgas-extraction is the promptness of the analysis: it only takes about 

3 minutes to measure the O/N content of a sample. This method also allows simultaneous 

determination of oxygen and nitrogen contents. 

2.4.2. Thermogravimetric (TGA) and Differential Thermal (DTA) 

analysis 
Thermogravimetric analysis (TGA) is a technique used to determine the change of the 

sample weight in relation to the programmed change in temperature or time. The changes 

of the sample weight are accompanied by the adsorption or evolution of various gases. The 
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gases can be identified by means of mass spectrometry (MS). The method employs 

fragmentation of gas molecules into ions and measuring their mass-to-charge ratio. 

Exothermic or endothermic changes in the sample can be detected by differential thermal 

analysis (DTA). This technique measures the temperature difference between the sample 

and the reference as a function of the reference sample temperature or time. 

In the present work TGA/DTA/MS were used to study the decomposition of the soft 

chemistry precursors (synthetic air), the thermal stability (He, Ar, N2) and the thermal 

reoxidation (synthetic air) of the oxynitrides and to determine the nitrogen content of the 

oxynitrides (Chapters 3 and 4). 

These studies were performed in the temperature range of 300 K <T< 1673 K using a 

NETZSCH STA 409CD thermobalance coupled by a heated quartz capillary to an 409C 

Aeolos Quadrupol Mass Spectrometer (MS). Heating rates of 2 K min-1, 5 K min-1 and 10 

K min-1 and a gas flow of 50 mL min-1 were used. The studies were done using Al2O3 

crucibles. Purity of all the gases used in thermal gravimetric analysis was ≥ 99.9999 %. 

The d0-perovskite-type oxynitrides reoxidize upon heating them in synthetic air according 

to the equation: 

ABOxNy(s) + 3y/4 O2(g) ⇄ ABOx+3 y/2(s) + y/2 N2(g)   (2.28) 

The reoxidation leads to d0-oxides as identified by x-ray diffraction. 

The amount of evolved nitrogen can be determined from the weight gain ( mΔ ), measured 

during the reoxidation experiment. 

From that value nitrogen stoichiometry ( y ) can be calculated:  

( ) )(
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)()(2
3 2/3

2/3

22 yx
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+×
−

Δ
=    (2.29) 

where 

)( 2NM  – molar mass of molecular nitrogen, 

)( 2OM  – molar mass of molecular oxygen, 
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)( 2/3 yxABOM +  – molar mass of the formed oxide, 

)( 2/3 yxABOm +  – mass of the formed oxide. 

2.4.3. Neutron diffraction 

 

Figure 2.7. The dependence of the neutron scattering length from the atomic number. 

Additionally to the thermal analysis methods neutron diffraction was employed to study the 

anionic composition of the synthesized oxynitrides. This technique offers 2 particular 

advantages over the thermal analysis methods: 

1. It allows the selective O/N content determination in a particular bulk phase of the 

multicomponent mixture, i.e. the result is not affected by the presence of impurities. 

2. It allows to study the anionic distribution over available crystallographic sites. 

Neutrons as uncharged particles interact with the atomic nuclei. The radius of atomic nuclei 

rN  < 10-14 m is much smaller than the wavelength of thermal neutrons. Therefore, the 
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nuclei act as a point scatterer for thermal neutrons, e.g. its scattering amplitude does not 

vary with the scattering angle Θ. Hence, the scattered wave function for neutrons ( nψ ) is: 

[ ]p
p

n rik
r

b
⋅−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= 1expψ       (2.30) 

where 

pk  is the scattered wave vector, 

pr  is the position of the wave front, 

b  is the neutron scattering length. 

The neutron scattering length is measured in barns (1 barn = 10-15 m) and it is related with 

the atomic weight ( A ) of an element through the following equation: 

3/115Ab =         (2.31) 

While the general 3/1A  dependence of b  is observed due to the resonant absorption in 

compounds nucleus, b  does not vary gradually with 3/1A  (Fig. 2.7). This offers the 

possibility to distinguish between the closely located atomic elements such as oxygen and 

nitrogen. Indeed, the neutron scattering length for nitrogen (9.36 barns) strongly differs 

from that of oxygen (5.803 barns). 

2.4.4. Scanning electron microscopy and energy dispersive analysis 
Microstructure studies were performed using a LEO JSM-6300F scanning electron 

microscope. The cationic composition was studied by energy dispersive x-ray spectrometry 

(EDX-Link Pentafet 5947, from Oxford Microanalysis). 

2.4.5. Measurements of the specific surface area 
The surface area of the starting oxides and the produced oxynitride samples was measured 

by the BET method using a Chembet-3000 system (Quantachrome instruments). The 
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measurement is based on the physical adsorption of inert gas molecules on a surface of the 

material. The BET adsorption isotherm equation is the following: 
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where 

v  – quantity of the adsorbed gas, 

mv  – volume of the adsorbed gas (it corresponds to the volume, which is required to cover 

all surface with layer of a unimolecular thickness), 

P  – equilibrium pressure of the adsorbed gas at the adsorption temperature, 

OP  – saturation pressure of the adsorbed gas at the adsorption temperature, 

c  – BET constant: 

⎥⎦

⎤
⎢⎣

⎡
−=

RT
E

Ec L
1exp       (2.33) 

where 

1E  – heat of adsorption for the first layer, 

LE  – heat of adsorption for the second and higher layers, 

R  – gas constant (8.314 J mol-1 K-1), 

T  – temperature (in K). 

The BET isotherm can be plotted as 
P
PO  vs. 

⎥
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OP
P

v
. The linearity of the plot is 

maintained only at low pressures ( 0.05 < OP
P

< 0.35). Its slope and the intercept with y-

axis were used to calculate vm and c. From the values obtained, the specific surface area S  

was calculated as: 
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Mm
sNv

S Am=        (2.34) 

where 

AN  – is Avogadro’s number, 

s  – adsorption cross-section, 

M  – molecular weight of the adsorbed gas, 

m  – is the sample weight. 

2.5. Photocatalytic activity 
In the present work we report on the photocatalytic performance of LaNbON2 (Chapter 4). 

In many cases noble metal (Au, Pt) impregnation allows to improve the performance of the 

photocatalyst [29]. Therefore, we additionally studied the photocatalytic performance of the 

Pt-impregnated LaNbON2 (Chapter 4). 

2.5.1. Platinum impregnation 
The Pt-impregnation was carried out as follows. 5 mg tetraamineplatinum (II) nitrate, 

Pt(NH3)4(NO3)2 (Alfa Aesar, CAS 20634-12-2), was dissolved in 1 ml deionized water. 

The solution was slowly poured into a 250 mL flask containing a suspension of 

LaNbO4/LaNbON2/TiO2 (495 mg) in deionized water (10 mL). The suspension was kept at 

room temperature for 24 hours under a constant stirring. Then, water was removed by 

heating the suspension at T = 318 K under vacuum in a rotavapor. The platinum reduction 

was carried out at T = 623 K in a tubular furnace using a 10 vol % H2 mixture with He. The 

gas flow was set to 40 mL min-1. The time of reduction was 80 minutes. 

2.5.2. Photocatalytic water decomposition 
Photocatalytic water splitting was carried out at the University of Milano (in collaboration 

with Prof. Milena Selli). A typical reaction solution placed in the photochemical reaction 

vessel comprised 43 ml of methanol (6 vol. %) aqueous solution, containing 14 mg of the 

analyzed powder (catalyst). Before starting the reaction the solution was placed in an 
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ultrasound bath for 10 minutes for the dispersion of the catalyst. Either an iron halogenide 

mercury arc medium pressure 250 W lamp (Jelosil HG 200), emitting mainly in the 320–

400 nm range (UV-region), or an Osram Powerstar HCI1-T Neutral White 150Wlamp 

(Visible-region), mounted on a Twin Beam support, emitting at the 340-450 nm range, 

were employed as irradiation sources. Concentrations of the evolved H2 and O2 were 

determined by means of gas chromatography. The photocatalytic activity of the oxynitrides 

was compared with that of known photocatalysts such as TiO2 (Degussa P25 with s = 50 m2 

g-1) and SrTiO3 (FP, s = 107 m2 g-1). 

2.6. Spectroscopic characterization 

2.6.1. UV-Vis diffuse reflectance spectroscopy 
Optical properties of the polycrystalline powders were investigated by UV-Vis diffuse 

reflectance spectroscopy. Reflectance data were collected with a Varian Cary 500 Scan 

UV–Vis–NIR scanning double-beam spectrometer equipped with a 150mm Labsphere 

DRA-CA-50 integrating sphere over the spectral range of 250–2000 nm (0.6–5 eV). The 

measured reflectance (R) was transformed into the Kubelka-Munk (KM) function F(R): 

S
K

R
RRF =

−
=

2
)1()(

2

      (2.35) 

where 

K  is the absorption coefficient and  

S  is the scattering coefficient. 

In the linear region, where a steep increase in the KM function is observed the Tauc 

equation can be applied: 

( )n
optgEhBhK ;−⋅=⋅ νν      (2.36) 

where 
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h  is the Planck’s constant (6.62606896(33)*10-34 J s or 4.13566733(10)*10-15 eV s), 

B  is the constant, 

optgE ;  is the optical band gap value, 

v  is the frequency of the electromagnetic wave:  

λ
ν c
=         (2.37) 

where 

c  – velocity of light in vacuum (2.9979*108 m s-1), 

λ  – wavelength. 

The equation can be transformed into:  

( )( )2
; νν hRFEh

B
hvK
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⎞

⎜
⎝
⎛ ⋅

    (2.38) 

The further evaluation of the band gap was carried out according to Davis-Mott [104] and 

Shapiro’s [105] methods. According to the Davis-Mott method the graph of ( )( )2hvRF ⋅  

vs. E  (in eV) was plotted. The region, where a steep increase in the plotted function is 

observed, was fitted with a linear function, which intersection with the energy axis was 

considered as the value for the band gap. 

The Shapiro’s method of the optical band gap determination is based on extrapolating the 

onset of the absorption to the wavelength axis. 

2.6.2. Raman and infrared spectroscopy 
Raman and infrared spectroscopy were use to monitor the presence of the carbonate and 

reoxidation intermediate impurities in the oxynitrides as explained in Chapter 3. 

Raman spectroscopic studies were performed using a He-Ne laser, which emits at 632.8 nm 

in a single mode (Renishaw NIR 780TF series). 
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Figure 2.8. The scheme of the setup used for the Raman spectroscopic investigations: A. A 

general view. B. A close view on the employed measurement cell. 

Infrared spectra (IR) from all samples were recorded in the 650 - 4000 cm-1 region using a 

Fourier Transform – Infrared Spectrometer BIO RAD FTS 175C (Fig. 2.8). 

Raman and infrared spectroscopic studies of strongly absorbing samples were performed 

under the flowing inert gas to prevent the samples from reoxidation, which can be induced 

by laser heating. 

2.6.3. Extended X-ray absorption spectroscopy 
XANES measurements at the Mo K-edge were performed at the beamline CEMO at the 

Hamburger Synchrotron Radiation Laboratory, HASYLAB, Germany. Data were collected 

in the transmission mode. The energy scale was calibrated from the first inflection point in 

the K-edge of Mo metal (19.999 KeV), which was measured simultaneously as reference. 

The beamline was equipped with a double-crystal fixed exit monochromator with Si (311) 

crystal pairs. Signal intensities where detuned to 40% of their maximum levels to minimize 

contributions of higher harmonics. Spectra were acquired in 2 eV increments for the pre-

edge region (19.80 - 19.98 KeV) and 0.20 eV near the edge (19.98 - 20.03 KeV). SrMoO3 

and SrMoO4 were measured as standards for Mo4+ and Mo6+ respectively. The software 

package WinXAS v3.1 was used for data analysis [106]. 
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2.7. Physical properties 

2.7.1. Magnetic susceptibility 
Magnetic susceptibility measurements were performed on pressed powder samples in the 

temperature range of T = 5 K-300 K and in a magnetic field range of -5 T-+5 T using a 

vibrating sample magnetometer VSM (Quantum Design PPMS,) and SQUID (Quantum 

design MPMS). For the VSM measurements brass half tube sample holders and plastic 

cylinders, which give together a negligible magnetic signal of order 10-8 emu T-1, were 

used. The sample was centered on the sample holder using a Quantum Design supplied 

centering device, then slightly pressed from both sides with plastic cylinders of low 

magnetic susceptibility and finally sealed using a weakly magnetic varnish. The varnish 

possesses magnetic susceptibility of -8.02*10-9 emu Oe-1 mol-1 as determined from the 

separate measurement. Obtained field cooled (FC) and zero field cooled (ZFC) 

magnetization values were recalculated to the molar magnetic susceptibility values using 

following equation: 

nT
M
×

=χ         (2.39) 

where 

χ  – molar magnetic susceptibility, 

M  – magnetization (in emu), 

T  – magnetic field (in Oe), 

n  – amount of the measured material (mole). 

Obtained susceptibility values were corrected for the signal coming from the varnish, shape 

factor and ionic core diamagnetism. 

2.7.2. Electronic transport measurements 
Electrical transport measurements were performed on bars with dimensions of 1.65 mm × 

5–10 mm × 1 mm. The bars were obtained under an uniaxial pressure of 10 bar followed by 
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a cold isostatic pressing at 2000 bar. The bars were sintered at T = 1073 K for 30 min under 

flowing ammonia. 
High temperature electrical conductivity (DC four-probe method) and Seebeck coefficient 

were measured simultaneously as a function of temperature in the temperature range of 

340 K < T < 950 K using a RZ2001i measurement system from Ozawa science, Japan. Pt-

contacts were used for these measurements. 

In the temperature range of 5 K < T <300 K the electrical resistivity was measured using a 

Quantum Design PPMS. Electrical contacts used for the measurements were made of Ag-

containing double composite epoxy. Contacts to the measurement Puck were performed 

using Au- wires and In-solder. Before the measurements, the epoxy was dried under inert 

gas atmosphere at T = 373 K during 2 hours. 

The measured resistance was recalculated to conductivity using the following formula: 

SR
l
×

=σ         (2.40) 

where 

σ  – electrical conductivity, 

R  – measured resistivity, 

L  – distance between the voltage probes, 

S  – area. 
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3. Ca1-xLaxTiO3-xNx (x = 0 – 0.7) 

oxynitrides 

3.1. Synthesis and thermal stability 

Oxide precursors for the ammonolysis were prepared by a modified Pechini method as 

explained in Chapter 2. Titanium (Alfa Aesar, 99.99%), La(NO3)3*6H2O (Merck, >99.0%), 

Ca(NO3)2*4H2O (Merck, >99.0%) and citric acid (Merck, >99%) were used as starting 

compounds. 

Additionally, La2Ti2O7 was prepared by the standard ceramic method using TiO2 (Merck, 

>99%), La2O3 (Fluka, 99.99%) and Ca(NO3)2*4H2O (Merck, >99.0%) (Chapter 2). 

Powder x-ray diffraction confirmed the phase purity of La2Ti2O7 produced by both methods 

(Figure 3.1A, D). Oxide precursors with x = 1, 0.7, 0.5 obtained at 873 K by soft chemistry 

were x-ray amorphous (Figure 3.1B), while reflexes of the perovskite-type structure were 

resolved for samples with x = 0.3 and 1.0 (Figure 3.1C). A TGA analysis of the precursor 

with x = 1 revealed a progressive weight loss of 4.5 % starting at about 1070 K, which is 

accompanied by the appearance of a peak with m/z = 44 in the corresponding MS spectra. 

This signal can be attributed to CO2 evolution. XRPD confirmed the formation of 

crystalline La2Ti2O7 after the TGA measurement (Figure 3.1D). Based on our TGA 

experiments and the earlier Infrared spectroscopic studies of Bocher et. al [94] the observed 

thermal behavior of the precursor is attributed to the decomposition of carbonates followed 

by the formation of the crystalline oxide phase [94, 107-109]. From the TGA study the 

composition of the amorphous precursor can formally be expressed with the formula 

La2Ti2O6.4(CO3)0.6. 

The compound La2Ti2O7 has a perovskite-related crystal structure. It is a member of the 

family of oxides of general formula AnBnO3n+2. Their crystal structure is derived from the 

simple perovskite structure ABO3 by separating layers of corner-sharing BO6 octahedra 



 

    62

along the (110) plane [110]. Therefore, they are often denoted to as “(110) layered 

perovskites”. 

 

 

 

Figure 3.1. XRPD patterns of A. Ceramic precursor with x = 1, prepared at 1673 K; B. Precursor 

with x = 1, produced by the soft chemistry route and annealed at 873 K; C. Precursor with x = 0.3, 

produced by the soft chemistry route and annealed at 873 K; D. Precursor with x = 1, produced by 

the soft chemistry route and annealed at 1223 K in the TGA. 
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Table 3.1. Adjusted parameters of the ammonolysis and N/O content of the synthesized 

oxynitrides determined by hotgas-extraction 

Composition T, K NH3 flow, 

mL min-1 

Time, min N content 

(hotgas) 

O content 

(hotgas) 

LaTiO2N 1223 360 2020 0.96±0.05 2.16±0.05 

La0.7Ca0.3TiO2.3N0.7 1123-1173 200 2835 0.76±0.01 2.22±0.02 

La0.5Ca0.5TiO2.5N0.5 1073-1098 100 2850 0.58±0.02 2.54±0.04 

La0.3Ca0.7TiO2.7N 0.3 1073 100 1676 0.36±0.01 2.74±0.02 

Ammonolysis was performed in a rotating cavity reactor. Air in the reactor was replaced by 

nitrogen (MESSER, 99.5%) by applying a nitrogen gas flow of 100 mL min-1. Then the 

samples were heated until the reaction temperature was reached and nitrogen was 

exchanged for ammonia (PanGas, 99.98%). LaTiO2N was synthesized at T = 1223 K. 

XRPD of all the Ca-containing oxides reacted at this temperature revealed considerable 

amounts of CaO and TiN impurities. Decreasing the reaction temperature ammonia flow, 

reaction time and using soft chemistry produced precursors allowed to decrease the amount 

of impurities. The adjusted reaction parameters of all the samples are collected in Table 3.1. 

After the reaction all the Ca-containing oxynitrides were cooled down to 473 K in ammonia 

gas flow and further to room temperature in nitrogen gas flow to remove unreacted 

ammonia gas. The cooling of LaTiO2N (prepared from the standard ceramic route produced 

precursor) was performed either in ammonia or in nitrogen atmosphere. The quenching was 

performed after switching off the ammonia flow. Additionally, one of the LaTiO2N 

samples was cooled in ammonia down to 1000 K. Then ammonia was changed for nitrogen 

and further cooling proceeded. These different cooling modes were applied to study the 

influence of the cooling procedure on the anionic content and surface composition of this 

material. 

Thermal reoxidation studies reveal 3 stages during the transformation of the synthesized 

oxynitrides to the corresponding oxides (Fig. 3.2). The first stage corresponds to the 

temperature range of 300 K < T < 600 K. A very small weight loss (0-0.5 weight %) is 

observed in the TGA-signal. MS-signals of H2O (m/z = 18), and CO2 (m/z = 44) evolution 

are monitored in the same temperature region, which is concluded to be due to the release 
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of the surface adsorbed molecules. The second stage starts at temperatures higher than 600 

K when a progressive weight gain is observed. It is accompanied by an exothermic signal 

in the DTA and a molecular nitrogen evolution signal (m/z = 28) in the MS spectra. Beside 

N2, a weak signal with m/z = 30 which is attributed to nitrogen monoxide NO is measured 

by MS. The phase which has formed decomposes further during the third stage, again with 

molecular nitrogen release. It can be concluded that this phase corresponds to the 

dinitrogen fragments containing intermediate [50, 68, 69, 73]. During its decomposition the 

weight loss is detected by TGA. 

 

Figure 3.2. TGA of the reoxidation of: A. LaTiO2N; B. La0.7Ca0.3TiO2.3N0.7; C. 

La0.5Ca0.5TiO2.5N0.5. Heating rate 2 K min-1. 
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A difference in the decomposition rates of the intermediates during this third stage is 

observed. Thus the intermediate of the LaTiO2N reoxidation process completely 

decomposes in the temperature interval of 1090 K < T < 1223 K, when heating it with 2, 5 

or 10 K min-1. Its decomposition is accompanied by a sharp signal of molecular nitrogen 

emission in the MS spectrum (Fig. 3.3) and a small exothermic signal in the DTA curve. 

For the Ca containing samples broadening of the molecular nitrogen signal is observed 

(Fig. 3.3). The DTA signal, which should accompany this process, can’t be resolved using 

the particular experiment arrangement. In the region of the intermediate decomposition the 

slope of the TGA graph decreases as the Ca content increases (Fig. 3.2). The observed 

differences in the thermal behavior of the intermediates indicate a decrease in the 

intermediates decomposition rate with increasing x. 

 

Figure 3.3. Molecular nitrogen in the MS spectra appeared during reoxidation of 

La0.3Ca0.7TiO2.7N0.3 and LaTiO2N. Heating rate 10 K min-1. 

The intermediates of all the oxynitrides were isolated by quenching them from 873 K to 

300 K with a cooling rate 40 K min-1 within the TGA. XRPD studies of the isolated 

samples reveal the formation of phases with the same crystallographic structure as for the 

parent oxynitrides but of lower crystallinity as broadening of the reflections is observed on 

the XRPD patterns.  
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XRPD analysis was also carried out on the completely reoxidized oxynitrides. The reaction 

product of the LaTiO2N reoxidation was assigned to La2Ti2O7 (2D, monoclinic). On the 

XRPD pattern of the reoxidized La0.3Ca0.7TiO2.7N0.3 only reflections, which can be 

attributed to a perovskite type phase were resolved. However at 2Θ region near 300 

background slightly increases. This can be attributed to the second phase presence, which is 

x-ray amorphous. The perovskite type phase should be one that was previously reported 

[111]. It is represented by A-site deficient La0.3Ca0.7TiO3 (mostly due to Lanthanum 

vacancies formation, when the oxygen content is close to 3.0). Thus the second phase 

should be Lanthanum enriched. For the other oxynitrides corresponding reoxidized samples 

were multiphase products. With increasing Ca content the decrease in the intensity of the 

perovskite phase assigned reflections was observed. 

Apparently the main crystallographic changes occur during the third stage when the 

intermediate decomposes and the oxide phase is formed. Crystallographic studies confirm 

that for the La0.3Ca0.7TiO2.7N0.3 reoxidation intermediate the third stage proceeds without 

significant change in the crystallographic structure, whereas for other intermediates the 

structure changes partly or completely from 3D (simple perovskite) to 2D ((110) layered 

perovskite). 

Recently thermodynamic aspects of the intermediates formation and decomposition were 

studied. It was shown by Tessier et al. [73] that the enthalpy of the transformation 

perovskite-layered perovskite comprises the main contribution to the value of enthalpy drop 

during the intermediate decomposition. From our observations it can be concluded that 

changes in the crystallographic structure influence also the kinetics of the intermediates 

decomposition. 
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Figure 3.4. TGA-MS of the LaTiO2N two step decomposition in He. Heating rate 10 K min-1. 

MS signal corresponds to N2 evolution (m/z=28). 

Thermal stability studies in helium atmosphere (Fig. 3.4) reveal a decomposition of all the 

studied oxynitrides. A weight loss was detected starting at a temperature near 1073 K and 

finished near 1373 K. Only a molecular nitrogen signal (m/z = 28) was detected by means 

of mass spectrometry during both steps (Fig. 3.4). Changing the atmosphere for nitrogen 

doesn’t suppress the decomposition. Phase analysis using XRPD was performed on the 

decomposed phases. For LaTiO2N and La0.7Ca0.3TiO2.3N0.3 it reveals the formation of 

La2O3 and TiN together with a perovskite-type phase of unknown composition. The 

thermal treatment of La0.3Ca0.7TiO2.7N0.3 and La0.5Ca0.5TiO2.5N0.5 results in a mixture of 

TiN and the perovskite-type phase. 

3.2. Structure 
The x-ray diffraction powder pattern of LaTiO2N formed after the ammonolysis of both 

ceramic and soft chemistry produced precursors can be indexed using a cubic perovskite 

unit cell. However, since the atomic scattering factors of O2- and N3- are close and 

significantly lower than those for La3+ and Ti4+, the collected data cannot provide sufficient 

information for the correct space group assignment. In fact, neutron diffraction reveals the 
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presence of supercell reflections, corresponding to the unit cell with a ≈ √2*ap, b ≈ 2*ap, 

c ≈ √2*ap (where ap is denoted to the cubic perovskite lattice parameter). Further neutron 

data refinements in the profile matching mode reveal that the unit cell is at least 

orthorhombically distorted and possibly I- or C-centered. Examination of the Rietveld fits 

quality of I- and C- centered orthorhombic, monoclinic and triclinic models derived for 

perovskites ended up with two possible structural models, Imma (wRp = 8.19, Rp = 8.15, χ2 

= 2.46) and 
−

1I  (wRp = 7.99, Rp = 7.85, χ2 = 2.48). Since, in the present case the material 

has very close values for two of its lattice parameters (a ≈ c) and a size-strain reflections 

broadening often measured for oxynitrides [65], a care should be taken when choosing 

between two structural models with close Rietveld refinement statistics. 

Since the electron atomic scattering amplitude is fe~Z1/3 (where Z = atomic number), light 

elements like oxygen/nitrogen scatter electrons more strongly than x-rays. Hence, electron 

diffraction is a well suited technique to study pseudosymmetry in perovskites. Space groups 

Imma and 
−

1I  have different reflection conditions. Thus, they can be distinguished by 

electron diffraction. Moreover, ED can reveal important microstructural features of the 

compound and deviations from the ideal structure, which can not be detected by x-ray or 

neutron diffraction techniques. 

According to the lattice parameters settings used by Howard et al. [4, 112] Imma can be 

related to 
−

1I  by the matrix: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

12/12/1
02/12/1
12/12/1

 

The reflection condition (hk0): h = 2n does not allow the reflection {110}, which belongs to 

the zone axis [001]/[111]/[112], to appear in the S.G. Imma. This reflection corresponds to 

the reflection {011} allowed in the S.G. 
−

1I . 
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Electron diffraction images (Figure 3.5) taken from the LaTiO2N sample confirmed the 

absence of the extinctions characteristic for the S.G. Imma, which confirms that the true 

space group, describing the average crystal structure of LaTiO2N, is 
−

1I . 

Further TEM examination of the material indicated the presence of twin-domains of 

different types and orientations. Some examples of such domains are given in 

Figure 3.6A, B. The presence of domains can be explained by the small mismatch in the 

values of the lattice parameters a and c (0.06 %) and the fact that c2 ≈ a2 + b2. It confirms 

structural transition(s) for LaTiO2N, which occur(s) in the temperature region of T = 1223 - 

298 K. Beside twin domains, incommensurate superstructure reflections were observed in 

some of the ED patterns (Figure 3.6C). This confirms the presence of some intermediate 

phase of different symmetry than 
−

1I  at room temperature. 

 

 
Figure 3.5. Electron diffraction patterns of LaTiO2N taken along the A. [100]║[111]; B. 

[110]║[011]; C. [210] ║[012]; D. [201] ║[102], E. [211] ║[112] orthorhombic zone axis. Red and 

white colors are used to distinguish between similar zone axes. Reflections forbidden in the S.G. 

Imma are marked with circles.  
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Figure 3.6. Electron diffraction patterns showing microstructural features of LaTiO2N A. 

Rotation twin-domains formed along [100]║[111] orthorhombic zone axis; B. Rotation twin-

domains formed along [201]║[102] orthorhombic zone axis (characteristic reflections splitting is 

marked with circles); C. Incommensurate superstructure reflections along [100]║[111] 

orthorhombic zone axis (rows with the superstructure reflections are marked with arrows). 

 

Figure 3.7. Rietveld refinement plot of the neutron powder diffraction data for the ammonia 

cooled LaTiO2N, prepared from the soft chemistry produced precursor. Space group:
−

1I . The 

observed intensities, calculated profile, difference curve and Bragg positions are shown. TiN 

(second row of ticks below the graph) has been included as a minor impurity phase in the 

refinement, as well as vanadium (the container material). 
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The refinement of the neutron data against the 
−

1I  model (Figure 3.7) converged with 

reliable fit characteristics (wRp = 9.76, Rp = 10.6, χ2 = 1.69 for the oxynitride sample 

synthesized from the soft chemistry produced precursor and wRp = 7.99, Rp = 7.85, χ2 = 

2.48 for the oxynitride sample obtained from the standard ceramic route synthesized 

precursor). 

The summary of the refinements against 
−

1I  space group for the ceramic precursor 

synthesized LaTiO2N is given in Table 3.2. As it can be seen a significant degree of the 

O/N ordering occurs in the oxynitride sample prepared from the ceramic precursor. 

Nitrogen tends to occupy one of the available 4i sites preferably. Within the estimated 

standard deviation (ESD) the same degree of the O/N ordering was found for both the 

samples. Hence, the starting precursor preparation route has barely any influence on the 

degree of the O/N ordering of LaTiO2N. 

The refinement of O/N occupancies leads to compositions LaTiO1.97(6)N1.03(6) and 

LaTiO1.98(6)N1.02(6) for the oxynitrides synthesized from the ceramic and the soft chemistry 

precursors, respectively. The refined O/N content confirms that the anionic composition of 

the samples is close to the ideal, e.g. 2 O2- and 1 N3-. 

The refined TiN impurity content was equal to 0.4 wt.% and 1.0 wt.% for the samples 

synthesized from the ceramic and the soft chemistry precursors, respectively. 

Space groups for the Ca-substituted LaTiO2N samples were assigned based solely on 

Rietveld refinements of their neutron data (lower crystallinity of these samples as compared 

to that of LaTiO2N didn’t allow us to corroborate space group assignments by TEM). The 

refined crystallographic data of the Ca-substituted derivatives of LaTiO2N is given in Table 

3.2. 

Table 3.2. Structural parameters of the synthesized oxynitrides of general composition            

Ca1-xLaxTiO3-xNx refined from the neutron diffraction data. 

Sample  x = 1 x = 0.7 x = 0.5 x = 0.3 
Radiation  neutron  neutron  neutron  neutron  
λ, Å  1.494 1.494 1.494 1.494 
T, K  298 298 298  
S.G.  −

1I  
Pnma Pnma Pnma 
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a, Å  5.6056(2) 5.5467(3) 5.5001(8) 5.4926(4) 
b, Å  7.8627(4) 7.8287(5) 7.7678(15) 7.7374(6) 
c, Å  5.5722(3) 5.5643(4) 5.4876(12) 5.4735(4) 
α,0  90.194(6) 90 90 90 
β,0  90.213(5) 90 90 90 
γ,0  89.982(13) 90 90 90 

V, Å3  245.59(2) 241.63(2) 234.45(8) 232.62(3) 
Z  4 4 4 4 

La/Ca x 0.5058(10) 0.0070(11) 0.008(2) 0.0215(11) 
 y ¼ ¼ ¼ ¼ 
 z 0.0015(17) 0.0054(15) -0.008(4) -0.005(2) 
 Biso, Å2 0.63(4) 0.78(5) 1.26(9) 0.83(7) 
 site 4i 4c 4c 4c 
 occ. 1 0.7/0.3 0.5/0.5 0.3/0.7 

Ti(1) x 0 ½ ½ ½ 
 y 0 0 0 0 
 z 0 0 0 0 
 Biso, Å2 0.54(4) 0.65(5) 0.50(8) 0.76(8) 
 site 2a 4b 4b 4b 
 occ. 1 1 1 1 

Ti(2) x 0 - - - 
 y ½ - - - 
 z 0 - - - 
 Biso, Å2 0.54(4) - - - 
 site 2c - - - 
 occ. 1 - - - 

O/N(1) x -0.0587(7) 0.4951(18) 0.497(2) 0.4894(13) 
 y 0.294(4) ¼ ¼ ¼ 
 z 0.009(2) 0.0635(7) 0.0467(17) 0.0661(16) 
 Biso, Å2 1.21(3) 1.06(3) 1.48(5) 0.90(4) 
 site 4i 4c 4c 4c 
 occ. 0.73(2)/0.27(2) 0.78(2)/0.22(2) 0.56(2)/0.44(2) 0.85(2)/0.15(2

) 
O/N(2) x 0.261(4) 0.2652(8) 0.2784(11) 0.2809(8) 

 y 0.0350(13) 0.0330(3) 0.0341(10) 0.0337(6) 
 z 0.242(4) 0.7335(8) 0.7239(13) 0.7189(8) 
 Biso, Å2 1.21(3) 1.06(3) 1.48(5) 0.90(4) 
 site 4i 8h 8h 8h 
 occ. 0.72(2)/0.28(2) 0.79(2)/0.21(2) 0.93(2)/0.07(2) 0.95(2)/0.05(2

) 
O/N(3) x 0.261(4) - - - 

 y 0.4699(10) - - - 
 z 0.757(4) - - - 
 Biso, Å2 1.21(3) - - - 
 site 4i - - - 
 occ. 0.52(2)/0.48(2) - - - 

<Ti-O/N>  1.99(2) 1.990(3) 1.967(5) 1.970(3) 
<Ti-O/N-

Ti> 
 163.3(6) 162.10(13) 161.8(2) 159.03(14) 
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Anionic 
content 

 O1.97(6)N1.03(6) O2.36(4)N0.64(4) O2.42(4)N0.58(4) O2.85(4)N0.25(4) 

χ2  2.48 1.56 2.65 1.17 
wRp

b  0.0799 0.127 0.119 0.128 
Rp

b  0.0785 0.132 0.131 0.157 
      

As it can be seen from the refined anionic compositions, it is possible to adjust nitrogen 

content to the level very close to the expected by varying Ca-content of the samples. The 

refined lattice parameters and <Ti-O/N-Ti> angle values confirm that simultaneous 

substitution of La3+ with Ca2+ and N3- with O2- leads to the increase of the structure 

distortion energy. This can be expected from the smaller ionic radii of Ca2+ and O2- 

compared to those of La3+ and N3- [35, 36]. For the same reason it could be expected that 

the average <Ti-O/N> distance should decrease continuously upon simultaneous 

substitution of La3+ with Ca2+ and N3- with O2-. However, this is not confirmed 

experimentally. The only reason for that is the presence of cationic and/or anionic defects, 

such as Ti3+ and/or oxygen vacancies.  

3.3. Influence of cooling on the bulk anionic and surface 

composition of LaTiO2N 
A significant deviation in the O/N content calculated from the TGA and hotgas-extraction 

together with neutron diffraction was found for all the oxynitrides (Figure 3.8). 

To study the origin of these deviations we compared the O/N content of the LaTiO2N 

samples cooled in different ways as explained in Chapter 3.1. 

For the LaTiO2N samples, which were cooled in N2 and quenched in NH3, respectively, the 

nitrogen content calculated from the thermal reoxidation in TGA led to the compositions 

LaTiO2.06(2)N0.96(1) and LaTiO2.075(3)N0.95(2). This finding is in good agreement with the 

results obtained by hotgas extraction, which led to LaTiO2.11(1)N0.95(2) for the nitrogen 

cooled sample and LaTiO2.10(3)N0.97(3) for the sample quenched in NH3. 

In contrast, for the NH3 cooled samples the weight gain in the TGA experiment was much 

smaller than expected, leading to a value of 0.75 for the nitrogen content (Figure 3.8). The 

obtained result suggests a presence of cationic vacancies, which is not in agreement with 
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the result of the Rietveld refinement of the cationic composition. On the other hand, from 

the hotgas extraction experiments the calculated composition is LaTiO2.11(2)N1.10(1). 
There are several factors, which could influence the obtained result like the presence of 

volatile impurities, or the formation of carbonates/oxycarbonates, especially those that 

decompose in the temperature region in which the reoxidation proceeds, and finally a 

partial reduction of the transition metal. These possible effects lead to an underestimation 

of the nitrogen content, whereas the presence of transition metal nitrides leads to an 

overestimation of the nitrogen content. 

 

 

 

Figure 3.8. TGA of nitrogen cooled, ammonia cooled and quenched samples performed in the 

synthetic air with a heating rate of 10 K min-1. 
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Figure 3.9. FTIR spectra of LaTiO2N samples quenched and cooled under different atmospheres. 

 

Figure 3.10. Raman spectra of LaTiO2N samples quenched and cooled under different 

atmospheres. 
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Figure 3.11. Raman spectrum of the ammonia cooled sample. The arrows indicate two 

additionally resolved peaks. 

Results of the hotgas extraction analysis are as well affected by volatile impurities in the 

sample. The presence of such impurities can, on the other hand, be determined by coupling 

the TGA system with a mass spectrometer (MS) or by applying IR/Raman spectroscopy. 

Fourier Transformed Infrared (FTIR) and Raman spectra of the corresponding samples are 

shown in Figures 3.9,10. In the FTIR spectra broad absorption bands can be observed in the 

region 700-900 cm-1. The observed bands can be attributed either to the CO3
2--ion (ν2 = 725 

cm-1 and ν4 = 850 cm-1) or to the NO3
-/NO2

- -ions (ν = 800-850 cm-1). The most intense 

signals at these frequencies were measured for the ammonia cooled samples, whereas the 

weakest signal was measured for the nitrogen cooled sample. The presence of traces of 

carbonates and nitrates in these samples was confirmed by the evolution of CO2 (m/z = 44) 

and NO (m/z = 30) detected by MS during the reoxidation of all the samples in TGA. It is 

to be noted that the neither x-ray nor neutron diffraction gave hints for the 

carbonates/nitrates. 
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In the Raman spectra shown in Figure 3.10 the frequency region which is characteristic for 

dinitrogen containing reoxidation intermediates (approx. 2235 cm-1) [50, 68, 69, 71, 73, 95] 

is depicted. The most intense signal of N2 is measured for the quenched sample. This can 

be explained by oxygen diffusion inside the reactor due to the pressure drop during the 

quenching. 

Comparison of the anionic composition of the ammonia cooled sample and the sample 

which was cooled in ammonia to 1000 K and in nitrogen to room temperature suggests that 

the main changes within the samples appear in the temperature region between 1223 and 

1000 K. The nitrogen content in both samples is 10 % higher than the theoretical value. 

Close inspection of the Raman and IR data reveals two additional weak features at ν = 1700 

and 2000 cm-1 in the spectra of these samples (Figure 3.11). These frequencies cannot be 

detected in the spectra of the nitrogen cooled and quenched samples. Very weak frequency 

at ν = 2000 cm-1 can be attributed to the C ≡ N stretching mode of CN- - ions, which may 

be part of a [Ti3+ (CN)n]3-n complex [113]. The frequency at 1700 cm-1 corresponds to the 

NH4
+ ion. Presence of those two species should lead to overestimated N content for the 

samples cooled in ammonia. 

According to the information from the gas supplier ammonia contains traces of H2O, CO, 

CO2, O2 and oil. Hence, the carbonization of the material surface must occur due to the 

interaction between the carbon containing gases coming with ammonia and La3+ which is 

known for its high affinity to carbon. Additionally, partial reoxidation of the material 

surface occurs due to the presence of oxygen traces. 

The enhancement of the chemical stability of the oxynitride samples, which have their 

surface carbonized and reoxidized, can be seen when comparing their reoxidation curves 

with those of the samples with a noncontaminated surface (Figure 3.8). Apparently, the 

former starts to react with oxygen at lower temperatures than the latter one. Hence, the 

impurity layer on the top of the LaTiO2N particles acts as a barrier layer, protecting the 

material from decomposition. This effect occurs due to the chemical stability of the 

compounds formed on the surface, for example lanthanum carbonate, which has its 

decomposition temperature around 1223 K. 
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3.4. Optical properties 
Diffuse reflectance spectra of the synthesized oxynitrides are presented in Fig. 3.12. 

Corresponding band gap values for the direct optical transitions and colors of the obtained 

oxynitrides are listed in Table 3.3. Band gap values calculated from the Mott-Davis and 

Shapiro’s methods are equal for all the compositions except of LaTiO2N. For this 

compound the Mott-Davis method resulted in the band gap value of 2.2 eV, whereas 

Shapiro’s method gave the value of 2.1 eV. The difference is most probably caused by the 

change in the diffuse reflectance of that compound which is not steep enough for the 

unambiguous determination of the linear region. The value of 2.1 eV is in accordance with 

the literature reported band gap value of LaTiO2N [11]. As it can be seen from Figures 3.13 

and 3.14 the band gap width increases with the increase in Ca content. The observed band 

gap width increase is in accordance with the measured decrease in the nitrogen content and 

the structure distortion energy increase (as it follows from the <Ti-O/N-Ti> angle values 

obtained from the neutron diffraction study). 

 

Figure 3.12. UV-VIS diffuse reflectance spectra for the Ca1-xLaxTiO3-xNx oxynitrides. 
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Table 3.3. Optical band gaps and colors of the Ca1-xLaxTiO3-xNx oxynitrides. 

Composition Band gap, eV 

(Davis-Mott) 

Band gap, eV 

(Shapiro) 

Color 

LaTiO2N 2.23 2.11 Brown 

La0.7Ca0.3TiO2.,3N0.7 2.34 2.30 Brownish-Green 

La0.5Ca0.5TiO2.5N0.5 2.75 2.72 Green 

La0.3Ca0.7TiO2.7N0.3 2.96 2.95 Light-Green 

CaTiO3 3.31 3.30 White 

 

 

 

 

Figure 3.13. Band gap energy (as evaluated by the Mott-Davis method) dependence on Ca 

content. 
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Figure 3.14. Band gap energy (as evaluated by the Shapiro’s interpolation method) dependence 

on Ca content. 

The measured band gap width dependence on Ca content is close to the linear, which 

confirms the possibility of fine-tuning the band gap energy by cross-substitution. 

3.5. Conclusions 
Oxynitrides with the general formula Ca1-xLaxTiO3-xNx (x=0, 0.3, 0.5, 0.7) were 

synthesized for the first time. Their crystal structure, thermal stability and optical properties 

were studied. 

All the materials were prepared by thermal ammonolysis of the corresponding oxide 

precursors. However, Ca-containing oxynitrides are metastable under the ammonolysis 

conditions. Thus, time, temperature and ammonia flow have to be carefully adjusted to 

reduce amounts of the secondary phases (TiN and CaO). 

Thermal reoxidation of the synthesized oxynitrides proceeds via the formation of 

dinitrogen-containing intermediates. The decomposition rate of the reoxidation 
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intermediates correlates with the structural changes occurring during their transformation to 

the corresponding oxides. 

Thermal treatment of the obtained oxynitrides in nitrogen and helium atmospheres leads to 

their decomposition. The decomposition results in multiphase mixtures, which contain Ti3+. 

Since the only detected species in the atmosphere are N2 molecules the self reduction with 

the intrinsic N3- occurs. Apparently, the formation of the stable N2 molecule is the main 

driving force of this process. 

All the oxynitrides crystallize in a distorted perovskite-type structure. The degree of the 

perovskite structure distortion decreases with increasing Ca content (as confirmed by 

neutron diffraction) mainly due to the smaller ionic radii of Ca2+ and O2- as compared to 

those of La3+ and N3-. Neutron diffraction and hot-gas extraction confirm the O/N content 

of the synthesized samples close to the predicted. 

The amorphous carbonate, nitrate and reoxidation intermediate impurities formed on the 

surface of LaTiO2N during the synthesis cannot be detected either by x-ray or by neutron 

diffraction. For this purpose the IR and Raman spectroscopic techniques have to be applied 

to avoid serious mistakes on the O/N content evaluation when using TGA. 

The combination of the diffraction and spectroscopic techniques allowed revealing 

important relations between the cooling mode, the surface- and the anionic composition of 

LaTiO2N. The obtained results are essential for understanding physical and catalytic 

properties of oxynitrides as well as for their accurate O/N content determination. 

In general, the surface contamination has to be taken into account since it often leads to a 

decrease of the photocatalytic performance. Special precaution should be taken during the 

synthesis procedure in this case, i.e. high purity gases should be utilized for the sample 

cooling. Alternatively, the sample can be rapidly quenched down to the room temperature. 

The band gap of the materials increases linearly with increasing Ca2+ content (decreasing 

N3- content), i.e. the concomitantly increasing ionicity of the chemical bonds and increasing 

the perovskite structure distortion energy. Due to the linear response between the optical 

band gap value and composition, cross substitution within Ca1-xLaxTiO3-xNx series is 

effective to change optical properties of the constituent members. Together with good 
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thermal and chemical stability, this makes the synthesized oxynitrides prominent for the 

photocatalytic and pigment applications study. 
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4. LaNbON2 

4.1. Synthesis and stability 
The oxide precursor for the ammonolysis was prepared by a complex polymerization 

method [50] as described in Chapter 2. La(NO3)3•6H2O (Merck, >99.0%), NbCl5 (Aldrich, 

99.0%) and citric acid (Merck, >99%) were used as starting compounds. 

A mass of 0.5 g of NbCl5 was dissolved in a 50 ml of pure ethanol. An excess of citric acid 

in molar ratio of 3(citric acid):1(total amount of cations) was added to the formed solution 

under the constant stirring. After complete dissolution of citric acid La(NO3)3•6H2O was 

added. The obtained solution was predried at 573 K and calcined at 1323 K to yield in 

LaNbO4. 

The ammonolysis reaction was performed in a rotating cavity reactor made of alumina. Air 

in the reactor was replaced by nitrogen (PanGas, 99.999%). The sample was then heated 

under a nitrogen flow of 100 mL min-1 until the reaction temperature was reached and 

nitrogen was replaced by ammonia (PanGas, >99.985%). 2 g of the oxide precursor was 

ammonolyzed at 1223 K, using an ammonia flow of 300-400 mL min-1. The reaction time 

was 31 h. Oxide samples were ammonolyzed with- and without adding a flux (KCl). One of 

the ammonolyzed samples was quenched down to room temperature within 2 minutes, 

whereas the other was slowly cooled down within 7 hours. 

XRPD confirmed the phase purity of LaNbO4 produced at 1323 K. (Figure 4.1). XRPD 

pattern of the oxynitride phase formed after the ammonolysis without KCl revealed broad 

reflections which can be indexed using a cubic perovskite unit cell (Figure 4.2A). 

Asymmetry of high-angle reflections confirms that the actual symmetry of that material is 

lower than cubic. More reflections could be resolved on the XRPD pattern of the oxynitride 

samples obtained by the ammonolysis with KCl (Figure 4.2B). This confirms its better 

crystallinity as compared to the sample synthesized without the flux. SEM images taken 

from that the starting LaNbO4 and the synthesized oxynitrides are shown in Figure 4.3. 
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SEM of the starting oxide shows μm-size particles (Figure 4.3A). For the sample 

ammonolyzed without flux 1-2 μm agglomerates formed by ~100 nm-size particles can be 

seen (Figure 4.3B). Apparently the sample of such a low crystallinity is not suitable to 

attempt its crystal structure determination. SEM of the oxynitride sample synthesized with 

the flux (Figure 4.3C) revealed that its microstructure is mainly represented by μm-size 

rectangular particles coexisting with agglomerates similar to those found for the flux-free 

ammonolyzed sample. The presence of these agglomerates in the flux-ammonolyzed 

sample can be attributed to the nonuniform flux distribution. Due to the better crystallinity 

of the flux-ammonolyzed samples they were used for the crystallographic study. 

 

Figure 4.1. XRPD pattern of LaNbO4 after annealing at 1323 K for 12 hours. Space group: I2/c. 

The reflections are assigned according to the pdf entry 01-081-1973. 
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Figure 4.2. XRPD pattern of LaNbON2 synthesized: A. Without adding a flux (KCl); B. With 

adding the flux. The inset demonstrates difference in crystallinity of the oxynitride powders 

synthesized with and without adding the flux. 

 

Figure 4.3. SEM micrographs of: A. LaNbO4; B. LaNbON2 synthesized without the flux; 

C. LaNbON2 synthesized with the flux (KCl). 
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Figure 4.4. TGA and DTA thermal reoxidation curves of LaNbON2 

 

Figure 4.5. MS signals of N2 (m/z = 28) and NO (m/z = 30) monitored during the thermal 

reoxidation of LaNbON2 



 

    87

Reoxidation study of LaNbON2 performed under synthetic air in the TGA (Figure 4.4) 

revealed the stability of the material up to T = 500 K. Further heating led to the formation 

of the reoxidation intermediate. The intermediate decomposed at T > 1000 K resulting in 

the formation of the single phase LaNbO4. Thus, the decomposition proceeded according to 

the scenario, which was already established for other perovskite-type oxynitrides [68, 69, 

73] and was discussed in details in Chapter 3. MS revealed N2 (m/z = 28) retention during 

the intermediate formation and decomposition steps (Figure 4.5). Moreover, NO (m/z = 30) 

retention was measured during the formation of the reoxidation intermediate. 

The weight gain measured during the reoxidation of the quenched sample corresponds to 

the composition of LaNbO1.07(2)N1.93(2). 

4.2. Room and low T crystal structure 
Due to similar ionic radii of Ta5+ and Nb5+, we attempted to refine the LaNbON2 XRPD 

data using the structural model reported before for LaTaON2 (S.G. C2/m) [58]. Le-Bail 

refinement of the XRPD data performed using this structural model revealed a fairly good 

fit, however a close examination of the XRPD profile revealed weak superstructure 

reflections, which were not accounted for by the C2/m model and could not be attributed to 

the most probable impurity phases (La2O3, NbON, KCl and unreacted LaNbO4). 

Subsequent Rietveld refinement of the XRPD data revealed unstable thermal displacement 

parameters and a strong correlation between the c – lattice parameter and the angle β. The 

refined value for the angle β = 134.90(5) is close to the value 1350, which means that the 

actual symmetry of the material can be higher than monoclinic. All the observed reflections 

can be indexed on the base of a primitive unit cell with a ≈ c ≈ √2*ap and b ≈ 2*ap. The 

observed extinctions can correspond to the space group Pnma or its subgroup P21/n. 

According to the lattice parameters settings used by Howard and Stoke [4, 112], Pnma can 

be related to P21/n by the following matrix: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

101
2/12/12/1
2/12/12/1
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The reflection condition (hk0): h = 2n does not allow the reflection (110), which belongs to 

the zone axis [001], to appear in the S.G. Pnma. The reflection corresponds to the reflection 

(101) in the P21/n and is allowed in this space group. Hence, if no twinning occurs, these 

space groups can easily be distinguished from the electron diffraction images. Electron 

diffraction of LaNbON2 confirmed the absence of (110) reflection in [001] zone axis 

(Figure 4.6A). 

 
Figure 4.6. Electron diffraction patterns of LaNbON2 taken along: A. [001] zone axis; B. [011] 

zone axis; C. [100] zone axis; D. [101] zone axis. 

Diffraction patterns taken along other zone axis confirmed the reflection conditions for the 

space group Pnma (Figure 4.6): (0kl): k+l = 2n; (h00): h = 2n; (k00): k=2n; (00l): l = 2n. 

Further Rietveld refinement of the neutron diffraction data was performed in the space 

group Pnma. The cationic composition was fixed to the stoichiometric ratio 1:1. Anionic 

sites were initially randomly populated by O2-- and N3-- ions with the molar ratio 1:2. 

Lattice parameters obtained from the preliminary Le-Bail refinement were used as starting 

ones. The refinement of the detectors zero, background, profile parameters, atomic 

coordinates, lattice parameters and isotropic thermal displacement factors ended up with χ2 

= 1.7. Further refinement of the anisotropic thermal displacement factors reduced this value 

down to 1.52 (Figure 4.7).  
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Figure 4.7. Rietveld refinement plot of the neutron powder diffraction data for the ammonia 

cooled LaNbON2. Space group: Pnma. The observed intensities, calculated profile, difference curve 

and Bragg positions are shown. Vanadium (the container material) has been included as a minor 

impurity phase in the refinement. 

The refinement of the cationic occupancies with the fixed anionic occupancies did not give 

any hint for possible cationic vacancies. The refinement of the anionic occupancy resulted 

in LaNbN1.98(5)O1.02(5) and LaNbN1.97(5)O1.03(5) composition for the quenched and the slowly 

cooled oxynitride, respectively, and a totally disordered anionic arrangement for both the 

samples. Within the doubled standard deviation (2σ) the refined O/N content values are 

close to those determined from the TGA experiment. The analysis of the correlation matrix 

revealed no serious correlations between the structural parameters. The summary of the 

refinements against the space group Pnma is given in Tables 4.1 and 4.2. Cooling the 

sample down to 1.5 K does not cause its crystallographic symmetry change, but the 
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increase of the structure distortion degree. The latter is reflected in the lower value of the 

average <Nb-(O/N)-Nb> angle measured for the cooled sample (Table 4.2). 

Table 4.1. Structural parameters of LaNbON2 at 298 K and 1.5 K refined from the neutron 

diffraction data. 

Name  LaNbON2 LaNbON2 

radiation  neutron (HRPT, PSI) neutron (HRPT, PSI) 
λ, Å  1.494 1.494 
T, K  298 1.5 
S.G.  Pbnm Pbnm 
a, Å  5.7307(1) 5.7221(1) 
b, Å  8.0836(1) 8.0684(1) 
c, Å  5.7558(1) 5.7428(1) 
V, Å3  266.63(1) 265.13(1) 

Z  4 4 
La x -0.0146(4) -0.0179(3) 

 y ¼ ¼ 
 z -0.0038(4) -0.0044(4) 
 Biso, Å2 1.10(3) 0.74(3) 
 site 4c 4c 
 occ. 1 1 

Nb x ½ ½ 
 y 0 0 
 z 0 0 
 Biso(eq), Å2 0.86 0.89 
 site 4b 4b 
 occ. 1 1 

O/N(1) x 0.5052(5) 0.5082(5) 
 y ¼ ¼ 
 z 0.0719(3) 0.0743(3) 
 Biso(eq), Å2 1.11 0.83 
 site 4c 4c 
 occ. 0.60(2)/0.40(2) 0.56(3)/0.44(3) 

O/N(2) x 0.2310(3) 0.2281(3) 
 y 0.03751(15) 0.03829(16) 
 z 0.7689(3) 0.7722(3) 
 Biso(eq), Å2 1.61 1.45 
 site 8d 8d 
 occ. 0.692(15)/0.308(15) 0.725(18)/0.275(18) 

χ2  1.52 1.59 
wRp

b  0.0930 0.115 
Rp

b  0.0876 0.108 
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Anisotropic displacement parameters of atoms in Å2 

Atom B11 B22 B33 B12 B13 B23 

   298 K    
Nb 0.0093(5) 0.0027(3) 0.0051(5) 0.0005(4) 0 0.0005(4) 

O/N(1) 0.0131(8) 0.0022(3) 0.0078(5) 0 0.0036(6) 0 

O/N(2) 0.0120(5) 0.0060(2) 0.0127(5) 0.0022(3) -0.0073(3) -0.0019(4) 

   1.5 K    
Nb 0.0079(6) 0.0031(3) 0.0061(6) 0.0008(4) 0.0013(9) -0.0009(4) 

O/N(1) 0.0121(8) 0.0010(3) 0.0051(5) 0 0.0034(6) 0 

O/N(2) 0.0110(5) 0.0057(2) 0.0110(5) 0.0014(3) -0.0055(3) -0.015(3) 

 

Table 4.2. Selected bond distances in Å and angles in degrees for LaNbON2 at 298 K and 1.5 K. 

 LaNbON2 298 K LaNbON2 1.5 K 
    

Nb-O/N(1) x2 2.0630(3) 2.0623(4) 
Nb-O/N(2) x2 2.0586(17) 2.0561(17) 
Nb-O/N(2) x2 2.0591(17) 2.0597(17) 
<Nb-O/N>  2.0602(12) 2.0594(12) 
La-O/N(1)  2.786(4) 2.750(3) 
La-O/N(1)  3.011(4) 3.044(3) 
La-O/N(1)  3.272(3) 3.276(3) 
La-O/N(1)  2.489(3) 2.474(3) 
La-O/N(2) x2 2.721(2) 2.720(2) 
La-O/N(2) x2 2.961(2) 2.939(2) 
La-O/N(2) x2 3.241(2) 3.268(2) 
La-O/N(2) x2 2.577(2) 2.558(2) 

<La-O/N>(8 short)  2.724(2) 2.707(2) 
Nb-O/N(1)-Nb x2 156.795(14) 155.972(14) 
Nb-O/N(2)-Nb x4 160.99(7) 160.02(7) 
<Nb-O/N-Nb>  159.59(5) 158.67(5) 

A number of differences can be noticed between crystal structures of LaNbON2 and 

LaTaON2. One of the most significant is the difference in the crystallographic symmetry. 

This could not be predicted, since Ta5+ and Nb5+ have identical ionic radii [35, 36]. Indeed, 
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all the previously synthesized niobium- and tantalum-oxynitrides of the general formula 

ABO2N (A = Ca2+, Sr2+, Ba2+, B = Nb5+, Ta5+) with the same A-site cation are isostructural 

[38, 87]. The difference in the anionic/cationic composition of LaNbON2 and LaTaON2 is 

the most reasonable explanation for the observed difference in the symmetry. Another 

significant difference is that LaNbON2 possesses a totally disordered anionic arrangement, 

whereas a totally ordered anionic arrangement was reported for LaTaON2 [58]. The origin 

of the partial or complete anionic ordering in oxynitride-type perovskites is not well 

understood. However, it seems to be connected with the differences in their preparation (in 

particular, the difference in the temperature of the ammonolysis, the cooling program or the 

mineralizer used). 

4.3. Optical properties and photocatalytic activity 
UV-Vis DR spectra of the starting oxide and the synthesized oxynitrides reveal that partial 

replacement of oxygen with nitrogen leads to a progressive reduction of band gap width 

(Figure 4.8). For the starting oxide LaNbO4 band gap values calculated from Shapiro’s and 

Davis- Mott methods are equal to 3.3 eV and 3.7 eV, respectively. For the slowly cooled 

and quenched oxynitride samples both these methods give the value of 1.7 eV. So far, the 

smallest band gap values have been reported for BaTaO2N (1.8 eV) and BaNbO2N (1.8 

eV). Among the tantalum containing oxynitride-perovskites with different A-site cations, 

the band gap decreases in the following order: CaTaO2N (2.4 eV) > SrTaO2N (2.1) > 

LaTaON2 (1.9 eV) > BaTaO2N (1.8 eV) [38]. For the Nb5+-containing analogues the 

following sequence is observed: CaNbO2N (2.1 eV) > SrNbO2N (1.9 eV) > BaNbO2N (1.8 

eV) [38]. As it is discussed in Chapter 1, optical band gap values of oxynitrides depend 

primary upon their B–site cation electronegativity, degree of the structure distortion and 

nitrogen content. The higher average band gap value for tantalates as compared to niobates 

is in the accordance with higher electronegativity of Nb5+ as compared to that of Ta5+ [5]. 

Within the tantalate series of general formula ATaO2N, the band gap value decreases as the 

degree of the structure distortion decreases, i.e. as the ionic radii of the A-site cation 

increases. When the structure distortion is large enough it can fully compensate the 

influence of the nitrogen content increase on the band gap value. This explains the larger 
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band gap value for cubic BaTaO2N (<Ta-O/N-Ta>=1800) as compared to monoclinic 

LaTaON2 (<Ta-O/N-Ta>=156.770) [58]. Hence, among the tantalate series the influence of 

the structure distortion on the band gap value dominates over the influence of the nitrogen 

content. Within the niobate series (ANbO2N) the band gap value decreases as the degree of 

the structure distortion decreases, similar to the observation in the tantalate series. 

However, within the niobate series Eband.g(BaNbO2N) < Eband.g(LaNbON2). The fact that 

Eband.g(LaTaON2) > Eband.g(BaTaO2N), whereas Eband.g(BaNbO2N) < Eband.g(LaNbON2) can 

be explained by the difference in the degree of the structure distortion of LaNbON2 and 

LaTaON2. The latter is reflected in their <B-O/N-B> angle values (B = Ta5+, Nb5+). The 

<Nb-O/N-Nb> angle value of LaNbON2 is equal to 159.590, which is slightly larger than 

the <Ta-O/N-Ta> angle value of LaTaON2 (156.770). Hence, in LaNbON2 the influence of 

the high nitrogen content on the band gap value is not fully compensated by the structure 

distortion. 

Table 4.3 contains the information on the photocatalytic activity and surface area of 

LaNbON2, LaNbO4 and TiO2 (P25) used as a reference. As it can be seen from the Table, 

the partial oxygen replacement with nitrogen in LaNbO4 leads to the significant 

improvement of the photocatalytic activity. Although, TiO2 with- and without Pt 

modification produces more hydrogen (in μmol g-1 h-1) than LaNbON2, it should be noted 

that the surface area of TiO2 is about ten times larger than that of LaNbON2. The hydrogen 

evolution rate normalized to the sample’s surface area (μmol g-1 h-1 m-2) is about 4 times 

higher for LaNbON2 than for TiO2. Platinum modification significantly improves the 

photocatalytic performance of TiO2. For LaNbON2 the opposite influence of the Pt-

modification on the photocatalytic performance is revealed: the hydrogen evolution rate 

decreases from 12.7 μmol g-1 h-1 m-2 down to 0.2 μmol g-1 h-1 m-2. Annealing of Pt-

modified LaNbON2 at T=373 K in air during 1 hour slightly increases the hydrogen 

evolution rate up to 1.7 μmol g-1 h-1 m-2. This data confirms that partial reduction of 

LaNbON2 surface occurs during the Pt-impregnation process. Within testing time of 4 

hours no significant changes in the hydrogen evolution rate were detected, which evidences 

that LaNbON2 is stable under the reaction conditions. 
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Figure 4.8. Optical spectra of LaNbO4 and LaNbON2 (slowly cooled and quenched). 

Table 4.3. Photocatalytic activity and surface area of Pt-modified and as-prepared TiO2, 

LaNbON2 and Pt-modified LaNbO4. 

Sample H2 evolution rate, 
μmol g-1 h-1 

H2 evolution rate, 
μmol g-1 h-1 m-2 

Surface area, m2 g-1 

LaNbON2 (q) 65 12.7 5.1 

LaNbON2 (q)+Pt 1.0 0.2 5.1 

LaNbON2 (q)+Pt, air 
annealed 

8.9 1.7 5.1 

LaNbO4+Pt 1.1 0.4 2.7 

TiO2 152 3.04 50 

TiO2+Pt 3721.3 74.72 50 



 

    95

4.4. Conclusions 
Perovskite-type oxynitride LaNbON2 was successfully synthesized by thermal 

ammonolysis of the oxide precursor LaNbO4. Addition of the KCl flux during ammonolysis 

resulted in a material with better crystallinity, which is essential for the crystal structure 

determination and refinement. At room temperature LaNbON2 crystallizes in the distorted 

GdFeO3-like structure (space group: Pnma) as derived from the x-ray and electron 

diffraction studies. According to the neutron diffraction data, LaNbON2 possesses totally 

disordered anionic arrangement irrespective of the thermal history. 

According to the UV-Vis DR spectroscopic study, LaNbON2 possesses the smallest optical 

band gap (1.7 eV) among the known oxynitride-perovskites. 

The material shows considerable photocatalytic activity comparable with that of 

commercial TiO2. An attempt to modify LaNbON2 surface with 0.5 wt % of Pt led to the 

surface reduction and, consequently, degradation of the photocatalytic behavior. From the 

photocatalytic activity tests it follows that the further improvement of the photocatalytic 

performance of LaNbON2 can be achieved by: (1) development of the method, which 

assures effective deposition of platinum on the material’s surface without causing its 

reduction; (2) development of the method, which allows producing the oxynitride with high 

surface area. 
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5. Mo-containing oxynitrides 

5.1. SrMoO3-xNx (x > 1) 

5.1.1. Synthesis and stability 
0.04 mol of MoO3 (JMC, Specpure) was dissolved in a minimal amount (ca 20 ml) of NH3 

(aq, 25 %) and precipitated with 100 ml of an aqueous solution of Sr(NO3)2 (Merck, > 

99%) with the concentration of 0.4 mol L-1. The precipitate was washed with distilled 

water, dried and annealed at 1073 K for 4 hours to form phase pure, well crystalline 

SrMoO4 as confirmed by XRPD (Fig. 5.1A). 

SrMoO3 was prepared by reduction of 1 g freshly synthesized SrMoO4 at T = 1373 K with 

forming gas (5% H2 / 95% N2, 99.999% purity, Pangas). A gas flow of 300 mL min-1 was 

applied. The reduction was completed in 5 hours. The prepared material was of a purple-red 

color. Its phase purity was confirmed by XRPD (Fig. 5.1B) [86]. When stored at ambient 

conditions SrMoO3 transforms slowly to SrMoO4. The presence of moisture promotes a 

faster SrMoO4 formation. Therefore, in between handlings the material was kept in a 

desiccator. 

The amount of 2.25 g of the SrMoO4 powder was ammonolyzed at T = 1073 K under 

ammonia (PanGas, >99.98%) flow of 150 mL min-1. The synthesis temperature was 

reached with a heating rate of 10 K min-1. After the reaction, the furnace was cooled down 

to room temperature with a cooling rate of 10 K min-1 under flowing ammonia. Three 

samples with different O/N content were obtained after 11 h, 48 h and 72 h of the 

ammonolysis. 

According to the XRPD results (Fig. 5.1C), a perovskite-type single phase oxynitride is 

already obtained after 11 h of ammonolysis at T = 1073 K, whereas the formation of Mo2N 

impurity phase was observed at higher temperatures. 



 

    97

 

Figure 5.1. XRPD patterns confirming the phase purity of: A. SrMoO4 after annealing at 1073 K 

for 4 hours. Space group: I 41/a. The reflections are assigned according to the pdf entry 01-085-

0809. B. SrMoO3 ( mPm
−

3 ) obtained by the reduction of SrMoO4. C. SrMoO2N ( mPm
−

3 ) 

obtained by thermal ammonolysis of SrMoO4. 

The samples are of a dark-blue color. Similar to SrMoO3 they are sensitive to the storing 

conditions. In particular, in contact with moisture they evolve ammonia and transform into 

SrMoO4 within a period of a few months. Since the samples may also react with oxygen 

they were stored in dry N2 after the synthesis. 
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The O/N content measured by hotgas extraction corresponds to the compositions 

SrMoO1.95(5)N1.05(5), SrMoO1.81(5)N1.19(5) and SrMoO1.73(5)N1.27(5) for the compounds obtained 

after 11, 48 and 72 hours of ammonolysis, respectively. Hence, the nitrogen content of our 

samples is more than twice higher than reported before [48, 49]. The measured O/N content 

corresponds to a mixed oxidation state between +5/+6 for molybdenum. EDX reveals an 

average Sr:Mo ratio of all oxide and oxynitride samples equal to 0.98(1):1.02(2). Thus, 

within this method mistake (about 3 %) the obtained ratio is very close to the ideal ratio 

1:1. 

5.1.2. Structure and microstructure 

 

Figure 5.2. The influence of the nitrogen content (measured by hotgas extraction) on the lattice 

constants (refined from XRPD data) of the samples. 

XRPD confirms the same space group mPm
−

3  for SrMoO3 and all the prepared oxynitride 

samples. The lattice parameter of SrMoO3 refined from the XRPD data, a = 3.9752(1) Å, is 

in perfect agreement with the previously reported value of 3.9751(3) Å for the sample with 

anionic stoichiometry equal to 3. The dependence of the measured lattice constant from the 

nitrogen content of the oxynitride samples is shown in Fig. 5.2. The lattice parameter of the 



 

    99

sample treated for 11 h is 3.9782(1) Å, which is higher of that reported in the literature for 

SrMoO2.5N0.5 (3.9773(1) Å) [49] and of SrMoO3. Larger lattice constants were found for 

the samples with higher nitrogen content. Nitrogen insertion is expected to lead to an 

increase of the cell parameter since the effective ionic radius of N3- (1.32 Å) is larger than 

that of O2- (1.26 Å). On the other hand, oxidation of Mo4+ (0.79 Å) to Mo5+ (0.75 Å) and 

Mo6+ (0.73 Å) [35, 36] should lead to a decrease of the lattice constant. Although these two 

factors are expected to partly compensate each other, an increase of the lattice constant with 

the nitrogen content is measured, indicating that the influence of the larger anionic radius is 

the dominating effect. 

 
Figure 5.3. Microstructure of: A. SrMoO4. B. SrMoO3. C. 11 hours ammonia reacted SrMoO4.  

The microstructure of SrMoO4, SrMoO3 and of 11 hours ammonia treated sample is 

represented by 1-10 μm-size particles (Figure 5.3). 

Perovskite-type compounds often possess pseudosymmetry which originates from a tilting 

of the BO6-octahedra, while the cations occupy the same positions as in the cubic aristotype 
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structure. When the tilting is rather small it can not be probed by XRPD due to a low X-ray 

scattering power of anions. In contrast, the neutron scattering lengths of oxygen and 

nitrogen are large and therefore superstructure reflections, which occur due to the 

pseudosymmetry, are often intense. One example for such pseudosymmetry is SrNbO2N, 

which, according to X-ray diffraction, crystallizes in a simple cubic perovskite structure, 

while ND revealed a tetragonal supercell [52]. Additionally, since oxygen and nitrogen are 

distinguishable with neutrons, ND allows to verify the O/N content measured by hotgas 

extraction. 

 

Figure 5.4. Rietveld refinement plot of the ND data for the 11 hours ammonolyzed sample. 

Space group: mPm
−

3 , a = 3.9835(1) Å, wRp = 6.78, Rp = 5.20, χ2 = 1.36 

Rietveld refinement of the ND data collected from the 11 h ammonolyzed sample was 

carried out in the space group mPm
−

3 . In the starting structural model the Sr:Mo ratio was 

set to 1:1 (based on the cationic compositions study), whereas the O:N ratio was set to 2:1. 

Thermal displacement factors were refined isotropically for all atoms.  
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Table 5.1. Structural parameters of the SrMoO1.95N1.05 refined from neutron powder data. Space 

group: mPm
−

3  (a = 3.9835(1) Å, wRp = 6.78, Rp = 5.20, χ2 = 1.36). 

Name x y z  Biso, Å 2 Occupancy 
factor 

site 

Sr 1/2 1/2 1/2 0.92(4) 1 1b 
Mo 0 0 0 0.72(4) 1 1a 
O/N(1) 1/2 0 0 0.64(2) 0.64(1)/0.36(1) 3d 

 

The occupancy factors for oxygen and nitrogen were initially refined with the anionic site 

constrained to be fully occupied. In succeeding runs the occupancy factors of the anions 

were refined independently. Finally, the lattice and the profile parameters, 2Θ0, the 

background coefficients, the thermal displacement factors and the anionic occupancies 

were refined together. Within the doubled standard deviation (2σ) no difference between 

the parameters obtained with the constrained and the unconstrained model were found. For 

this reason in the final refinement a complete occupation of the anionic sites was assumed 

and only the O/N ratio was refined. Refinements of the cationic occupancies gave no hints 

for the presence of the cationic vacancies. Summary of the structural parameters refined 

from the neutron data can be found in Table 5.1. The statistics of the refinement, the visual 

inspection of the fit (Fig. 5.4) and the refined values of the thermal displacement factors 

indicate that the chosen model is correct. The refined O/N content corresponds to the 

composition SrMoO1.89(2)N1.11(2), which is in a reasonable agreement with the result 

obtained by hotgas extraction. 
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Figure 5.5. Normalized Mo K-edge XANES spectra of the oxynitrides in comparison to the 

SrMoO3 and SrMoO4 standards. 

 

Figure 5.6. Linear relationship of average Mo valence and Mo K-edge position (relative to Mo 

metal) calculated from K-edge position of the standards SrMoO3 and SrMoO4. 
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The Mo K-edge XANES spectra of SrMoO3, SrMoO4, SrMoO1.95(5)N1.05(5) and 

SrMoO1.81(5)N1.19(5), are shown in Figure 5.5. The edge shifts are obtained by using a well 

resolved feature above the absorption edge as shown in the inset of Figure 5.6, and are 

reported relative to the first inflection point in the Mo metal K-edge at 19.999 KeV [114]. 

The shift of the Mo K absorption edge to higher phonon energies with respect to the metal 

standard gives information about the average valence of the Mo while the pre-edge features 

correspond to its coordination geometry [115]. 

The XANES spectrum of SrMoO4 shows a strong pre-edge peak which arises from an 

allowed 1s - 4d electronic transition for tetrahedral symmetry [116]. This characteristic can 

also be observed as a shoulder for the oxynitrides with compositions SrMoO1.95(5)N1.05(5) 

and SrMoO1.81(5)N1.19(5). Since no SrMoO4 impurity was detected with XRPD and ND, the 

feature most probably corresponds to a distortion in the octahedral oxygen environment of 

Mo – ions reported before for MoO3 [115]. In the XANES spectrum of SrMoO3, where Mo 

is in a regular octahedron, this feature is not observed. Since for the oxynitrides no 

deviations from the cubic symmetry and no anomalous displacement parameters of their 

constituent ions have been detected by using ND (see Table 5.1), the local distortions in the 

surrounding of the Mo ions must have a too small coherence length to be detected with 

diffraction techniques. Most probably, the symmetry reduction arises from the different 

polarizabilities of O2- and N3--ions, and their disordered arrangement around the Mo-ions. 

This interpretation is in accordance with recent EXAFS studies on BaTaO2N, which reveal 

distorted octahedral arrangement of the Ta5+-ions [117]. It should be noted that like in our 

case neither XRPD nor ND had given any hints on the possible deviation of the local 

symmetry from Oh. While diffraction methods give information on a long range ordering 

averaged over the whole sample, XAS is sensitive to the short-range surrounding of the 

respective element and therefore this method is well suited to detect local deviations from 

the average symmetry [118].  

From the energy shift of the X-ray absorption edge, the oxidation state of transition metals 

can be derived [119]. Figure 5.7 depicts the calculated average Mo valence state for 

SrMoO1.95(5)N1.05(5) (+4.62) and SrMoO1.81(5)N1.19(5) (+4.52). On the other hand, the valence 

states obtained from the O/N content of these samples are +5.03 for SrMoO1.95(5)N1.05(5) and 
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+5.19 for SrMoO1.81(5)N1.19(5). This seeming discrepancy can be explained by the fact, that 

the absorption edge shift originates from both the "valence shift" (i.e. shift due to changing 

the oxidation state) and the "chemical shift" (shift due to different electronegativities of O2- 

and N3- - ligands). Since the oxide standards used are not able to account for differences in 

electronegativity of the anions, a big discrepancy between the calculated and the expected 

Mo valences arises. 

5.1.3. High temperature physical properties 
The measured Seebeck coefficient values for the synthesized samples are up to 3 times 

higher than those reported for SrMoO3 (S = 4-9 μV K-1) [86] but still close to those of 

metals. The Seebeck coefficient increases with increasing nitrogen content of the samples. 

The evolution of S with temperature and N content is shown in Figure 5.7.  

 

Figure 5.7. Temperature dependence of Seebeck coefficient of the oxynitrides. The inset shows 

an irreversible decrease of the measured vales when samples were heated above their 

decomposition temperature. 
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Apparently, the values for all samples increase with temperature passing through a 

maximum at T = 650 K for SrMoO1.95N1.05, T = 600 K for SrMoO1.81N1.19 and T = 550 K 

for SrMoO1.73N1.27. Further heating of the samples is leading to the formation of metallic 

Mo impurity phase as revealed by XRPD and an irreversible decrease of the Seebeck 

coefficient. Thus, the temperature at which the maximum of the Seebeck is reached can be 

considered as decomposition temperature. Apparently, the formation of metallic Mo is 

connected with a nitrogen release from the samples. We have already reported similar 

behavior for Ca-substituted LaTiO2N heated under N2 (1 atm) [95]. The main driving force 

for the reduction of molybdenum is the formation of the very stable N2 molecule (941 kJ 

mole-1).  

 

Figure 5.8. Temperature dependence of electrical conductivity of the oxynitrides. 

 

The electrical conductivity of the samples decreases with increasing nitrogen content as 

shown in Figure 5.8. Contrary to the metallic SrMoO3 the electrical conductivity of the 

oxynitrides increases with temperature, i.e. a semiconducting behavior is observed. The 

measured conductivity values are 3 orders of magnitude lower than those of SrMoO3 



 

    106

(12.8*103 S cm-1) [86] and are of the same order of magnitude than those of SrMoO2.6N0.4 

(66.7 S cm-1) [48], but one order of magnitude higher than reported for SrMoO2.5N0.5 (2 S 

cm-1) [49]. It should also be noticed that the temperature dependence of the SrMoO2.6N0.4 

conductivity is semiconductor-like [48] similar to our samples, whereas that of 

SrMoO2.5N0.5 was described as metallic [49]. 

The power factor of the samples increases with temperature (Fig. 5.9). The measured values 

are lower than those reported for SrMoO3 [120] due to the lower electrical conductivity of 

the oxynitrides. 

 

Figure 5.9. Variation of power factor of the oxynitrides samples with temperature. 

The conductivity values and behavior of our samples are typical for semiconductors or poor 

metals. The density achieved for the ceramics (up to 89 % of the theoretical density) 

resembles the one reported for SrMoO3 (90.8 %) [86]. Therefore, the observed high 

deviation between the conductivity values measured on our samples and reported for 

SrMoO3 can not be attributed to the difference between the samples density. Another factor 

that can affect the conductivity and its temperature dependence is the composition of grain 

boundaries. Indeed, taking into account that the samples are air sensitive, it may happen 

that the grain surface partly reoxidizes during the handling and, thus, the measured slight 
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temperature dependence of the conductivity originates from the grain boundaries influence. 

The measured Seebeck values suggest that the synthesized samples are metallic-like. 

5.1.4. Low temperature physical properties 
Figure 5.10A shows temperature dependence of resistivity measured for SrMoO3 and 

SrMoO1.95(5)N1.05(5) (further denoted to as SrMoO2N). The measured resistivity of SrMoO3 

is significantly lower than the literature reported value (~5 μΩ cm) measured on the single 

crystal [121]. This implies an importance of the grain-boundary scattering processes during 

electrical transport of charge carriers of SrMoO3. However, the measured sample shows 

metallic-like behavior of resistivity with temperature. Metallic nature of SrMoO3 is also 

corroborated by its close to zero Seebeck coefficient (Figure 5.10B) value, which unlike the 

resistivity is related to the bulk property of the material. The Seebeck coefficient decreases 

continuously with temperature, which confirms holes to be the main charge carriers for 

SrMoO3. The measured Seebeck values are close to the literature values [86, 120]. Figure 

5.10C shows the variation of thermal conductivity with temperature. The values of thermal 

conductivity are about 3 times lower than those reported in reference [120], which is 

attributed to the lower density of our sample. As shown in Figure 5.11 the material exhibits 

a temperature independent paramagnetism (χ ~ 1.8*10-4 emu mol-1 K-1) between T = 100-

300 K. This is consistent with the absolute value of the magnetic susceptibility reported 

previously and explained as enhanced Pauli paramagnetism [49]. Below 100 K the 

magnetic susceptibility slightly increases, adopting the Curie behaviour superposed on the 

temperature independent background. Finally at T ~ 54 K a monotonous hyperbolic 

increase is interrupted by a weak anomaly. 
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Figure 5.10. Temperature dependences of: A. Resistivity; B. Seebeck coefficient; C. Heat 

conductivity of SrMoO3 and SrMoO2N. 

Unlike SrMoO3, the measured SrMoO2N shows semiconducting-like behaviour of its 

resistivity with temperature (Fig. 5.10A). Moreover, the absolute resistivity of SrMoO3 is 

higher than that of SrMoO2N. Based on the measured absolute Seebeck values it can be 

deduced that holes are predominating charge carriers of SrMoO2N (Fig. 5.10B). The 

Seebeck values of SrMoO2N are higher than those of SrMoO3. 

The measured thermal conductivity value of SrMoO2N is one order of magnitude smaller 

than that of SrMoO3 and it resembles the thermal conductivity of glass (Fig. 5.10C). 
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Figure 5.11. Molar magnetic susceptibility of SrMoO3 and SrMoO2N measured with SQUID. 

The inset shows expansion of the magnetic anomaly for SrMoO3 when changing the magnetometer 

type from SQUID to VSM. 

Similarly to SrMoO3, SrMoO2N oxynitride shows a temperature independent 

paramagnetism, low temperature upturn and anomaly at T ~ 54 K. The temperature 

independent component is, however, smaller than that of SrMoO3 and the low temperature 

upturn and anomaly are enhanced. The magnetic data of SrMoO2N can be fitted with the 

equation: 

Θ−
+= + T

C
LPχχ ,      (5.1) 

where 

χ  is the measured value of magnetic susceptibility (corrected for the sample holder, the 

varnish and diamagnetic contributions), 

LP+χ  is the sum of the Pauli and Landau paramagnetic terms, 

C  is the Curie constant, 

T  is temperature, 
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Θ  is the Weiss constant.  

The fit gives LP+χ  = 8.5*10-5 emu mol-1 K-1, C  = 3.3*10-5 and Θ  = -63 K. The obtained 

C  value corresponds to the anti-ferromagnetic component with the effective magnetic 

moment of effμ =0.05 Bμ , which is strongly reduced with respect to the expected spin-only 

value of 1.73 ( S  = 1/2). This suggests high level of electron delocalization in the system. 

Lower magnetic susceptibility confirms that the density of states at Ef is lowered in 

SrMoO2N as compared to SrMoO3 while the more pronounced low temperature features 

indicate (in coherence with difficult synthesis of SrMoO2N) the higher contamination by 

paramagnetic impurities. The paramagnetic term LP+χ  can be expressed as: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=+

2

*3
11

m
mNDFBLP μχ ,      (5.2) 

where 

FD  is density of states (DOS) at the Fermi level, 

N  is the number of itinerant electrons per one mole of unit formula, 

m  is the electron mass and  
*m  is the effective electron mass. 

Within the free electron approximation m = *m  Hence: 

FBLP NDμχ 7.0≈+       (5.3) 

From this equation the susceptibility related DOS at the Fermi level can be obtained. Its 

value for SrMoO2N is equal to FD  = 25 Ry-1/formula unit. 

Alternatively, the DOS at the Fermi level can be calculated from the Sommerfeld parameter 

(γ ), which is derived from the bulk-related heat capacity data. 

The specific heat data for polycrystalline SrMoO2N plotted as TC P /  versus 2T  follows a 

straight line below 10 K as it was reported before for SrMoO3 [121]. Therefore, at this 
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region the data can be expressed by the sum of a linear term for the electronic ( Tγ ) and the 

lattice ( 3Tβ ) contributions: 

3TTC P βγ += ,       (5.4) 

where 

FB NDk 2
2

3
πγ =        (5.5) 

34 5/12 DBNk Θ= πβ ,      (5.6) 

where 

Bk  is the Boltzmann constant, 

DΘ  is the Debye temperature. 

The fitting of the Equation 5.4 results in γ =3.86 mJ mol-1 K2 and DΘ  = 318.9 K. The 

value of γ  corresponds to the DOS of FD  = 22.3 Ry-1/formula unit. This close to the 

LP+χ -derived DOS value evidences on the absence of strong electronic correlations in the 

system (Wilson ratio WR  ≈ 1). The literature value of γ  for SrMoO3 (7.9 mJ mol-1 K2) 

[121] is higher than that of SrMoO2N, hence the DOS at the Fermi level of SrMoO3 ( FD  of 

45.0 Ry-1/formula unit) is higher than that of SrMoO2N. Besides, to conclude about the 

influence of the anionic substitution on the magnetic correlations of the SrMoO3-xNx 

system, the Wilson ratio of SrMoO2N should be compared with that of SrMoO3. From 

Equation 5.3 we obtain the DOS of 53.0 Ry-1/formula unit for SrMoO3. Thus, the Wilson 

ratio of SrMoO3 WR  ≈ 1.1. Hence, this material is essentially free from magnetic 

correlations. 
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Lower density of states at Ef for SrMoO2N is consistent with an expected increase in the 

formal Mo oxidation state, e.g. the removal of electrons from the itinerant t2g states of Mo-

ions, when part of O2- in SrMoO3 is replaced with N3-: 

22
//

3
/ 212 HOHNeMoNHOeMo OMo

x
OMo ++++=+++ ••••  (5.7) 

Together with the anionic composition refined from the neutron diffraction data this points 

to the fact that an increase of the molybdenum oxidation state is the main charge 

compensating mechanism for partial substitution of O2- with N3-. 

The evaluation of the influence of the anionic substitution of SrMoO3 on the charge carrier 

mobility has to be related to the electrical resistivity and thermal conductivity data. 

Semiconducting-like behaviour with low electrical resistivity reveal a low charge carriers 

mobility for SrMoO2N. It can be caused by one or the combination of the following factors: 

1. Creation of charge carrier traps due to the occupation of the same crystallographic 

site by atoms with different charge and electronic level positions or Mo-(O,N)6 

octahedra distortion as revealed by XANES; 

2. Dominating role of the charge carriers scattering at grain boundaries in the 

electronic and heat transport processes. 

From lower thermal conductivity and higher electrical conductivity values of SrMoO2N 

compared to those of SrMoO3 it follows that the mobility decrease has a dominating 

influence over the charge carrier concentration on the charge-carrier transport as compared 

to the influence of the charge carriers concentration. 

The anomaly measured at T ~ 54 K apparently, can not be associated with partial 

substitution of O2- with N3-. The same magnetic feature can be noted on the magnetic 

susceptibility curves of SrMoO3 and Sr2MoO4 published previously [122, 123]. Although, 

no explanations is given in [122], the authors of [123] has attributed the feature to 

molecular oxygen. 

It is known that oxygen can significantly influence magnetic susceptibility data [124]. Bulk 

oxygen melts at T = 54.4 K and a paramagnetic γ-phase transforms into the 
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antiferromagnetic β-phase at T = 43.8 K. Residual oxygen in the measurement chamber or 

in the sample can give a signal on the susceptibility curves. Here, a comparative magnetic 

measurement performed with another instrument is used to establish the presence of 

molecular oxygen. 

Magnetic susceptibility of the same samples was measured under the same magnetic field 

additionally with a VSM PPMS option. From Figure 5.11 (inset) it is clearly seen that the 

measurement with VSM gives a sufficiently expanded magnetic signal with 2 maxima at T 

~ 47 K and 54 K respectively. Thus, the maximum at T ~ 54 K corresponds to the melting 

point of oxygen and the maximum at 47 K to the β-γ – transformation of solid oxygen. The 

measurement of an empty sample holder did not reveal any anomalies. Thus, the measured 

signals result from molecular oxygen in the samples and not in the holder. At present, it is 

difficult to conclude where molecular oxygen is located: on the measured samples surface, 

in pores between grains or within grains. 

Physical properties of the oxygen confined in pores or adsorbed by the sample surface 

dramatically differ from those measured on bulk oxygen samples. For example, physical 

properties of the oxygen confined in pores depend upon the pores size distribution, filling 

and internal pressure [125-128]. 

Finally, three possible explanations can be given for Curie paramagnetism measured below 

50 K: 

1. It is related to intrinsic property of the material and can be concerned with the 

presence of electronic defects (like /
MoMo ) as it was found before for SrVO3; 

2. Presence of a x-ray amorphous paramagnetic impurity phase; 

3. Paramagnetism of γ-oxygen, confined in pores of the measured material. 

5.1.5. Conclusions 
Solid solutions of the general composition SrMoO3-xNx with x > 1 were successfully 

synthesized by thermal ammonolysis of SrMoO4. The nitrogen content of our samples is 

more than twice higher than previously reported and is confirmed by both ND and hotgas 

extraction measurements. XANES study reveals a lower oxidation state of Mo with respect 

to the value calculated from the nitrogen content, originating from a higher covalency of 
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the Mo-N bond compared to the Mo-O bond ("chemical shift"). Both XRPD and ND reveal 

no deviations from the cubic perovskite structure for the synthesized compounds, whereas 

local distortions of the Mo(O,N)6 octahedra are detected with XANES. These distortions 

may arise due to the different polarizabilities of O2- and N3- and anionic disorder. Seebeck 

values of the oxynitrides are similar to those of metals. Smaller values of electrical 

conductivity of our samples compared to those of SrMoO3 are measured. 

Low temperature physical properties of cubic perovskite phases, SrMoO2N and SrMoO3, 

have been investigated in the temperature range of 5 K < T < 300 K on the polycrystalline 

samples. These materials are p-type conductors as deduced from the Seebeck coefficient 

measurements. Both compounds show paramagnetism dominated by the Pauli term. Lower 

magnetic susceptibility and gamma-coefficient γ  of the oxynitride confirm simultaneously 

lower density of states near the Fermi level of SrMoO2N as compared to that of SrMoO3 

according to the higher valence of Mo in SrMoO2N. Together with the anionic composition 

refined from the neutron diffraction data and obtained by hotgas extraction, this point to the 

fact that an increase of the molybdenum oxidation state is the main charge compensating 

mechanism for partial substitution of O2- with N3-. Comparison of the DOS values derived 

from the magnetic susceptibility and heat capacity measurements confirms the absence of 

electronic correlations in the SrMoO2N material. 

In contrast to the corresponding oxides the oxynitride samples reveal low thermal 

conductivity and semiconducting-like electrical resistivity. This can be attributed to the 

frustrated electronic structure of SrMoO2N (e.g. due to the Mo-(O,N)6 octahedra 

distortion). 

The presence of molecular oxygen in the measured materials is responsible for the 

magnetic anomaly observed at T ~ 54 K, contrary to previously suggested 

antiferromagnetic or spin-glass transitions. It is also assumed that paramagnetic oxygen 

contributes to the observed increase of the magnetic susceptibility at low temperatures. 
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5.2. CaMo(O,N)3 and BaMo(O,N)3. Phase formation, structural 

and microstructural characterization of novel oxynitride-

perovskites. 

5.2.1. Synthesis of starting oxides 
BaMoO4 was prepared according to the procedure described in [129]. A 0.1 M solution of 

Ba(NO3)2 (Merck, purity > 99.0 %) was poured slowly with constant stirring into a 0.1 M 

solution of Na2MoO4 (Riedel-de Haän, purity > 99.5 %). The formed precipitate was 

washed several times with deionized water and calcined at 1073 K during 4 hours. 

BaMoO3 was obtained by reduction of BaMoO4 (1 g) with a forming gas (5% of H2 in N2) 

flow of 300 mL min-1. The reduction was carried out at T = 1473 K during 15 hours in a 

tubular quartz reactor with an internal diameter of 30 mm. 

CaMoO4 was synthesized by the citrate method [90]. Stoichiometric amounts of 

H24Mo7N6O24*4H2O (Fluka, > 99.0 %) and CaCO3 (Alfa Aesar, > 99.5 %) were dissolved 

in an aqueous 0.1 M citric acid C6H8O7 (Riedel-de Haän, > 99.5 %) solution. The amount 

of citric acid was 3 times higher than the total molar amount of Mo and Ca. The obtained 

solution was predried at 393 K overnight and heated up to 873 K within 12 hours. The final 

product was then heated from 873 K to 1073 K with a heating rate of 5 K min-1, calcined at 

that temperature during 2 hours and cooled down to room temperature.  

CaMoO3 was synthesized by reduction of CaMoO4 produced by the citrate method with 

forming gas (5% of H2 in N2) [90]. The reduction of 1 g of CaMoO4 was carried out at 

1173 K during 12 hours (with an intermediate regrinding after 4 h and 8 h of the reaction) 

under a forming gas flow of 100-300 mL min-1 in a quartz reactor with an internal diameter 

of 30 mm [95]. Forming gas was supplied through a quartz tube with a diameter of 5.8 mm 

placed above the sample and about 2 mm from the reactor end. After the reaction, the 

sample was quenched down to room temperature within 1 minute. 
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Figure 5.12. Rietveld refinement plot of the x-ray powder diffraction data for CaMoO3. Space 

group: Pbnm. The observed intensities, calculated profile, difference curve and Bragg positions are 

shown. Mo has been included as a minor impurity phase in the refinement 

XRPD confirmed phase purity of all the synthesized oxides, except of CaMoO3, for which 

a Mo impurity of 2.3 weight % was refined. Crystallographic parameters of CaMoO3 as 

obtained by refinement of the XRPD data (Figure 5.12) in space group Pbnm  are 

summarized in Tables 5.2 and 5.3 and are in a good agreement with a previous neutron 

diffraction study of this compound [90]. The observed isotropic line broadening was 

accounted for by refining isotropic size-strain components (in Fullprof referred to as U and 

Y) of the sample intrinsic profile. Their refined values correspond to an apparent size value 

of 0.13 μm and an apparent strain value of 0.31 %. 

The refined lattice parameter of BaMoO3 is equal to 4.0409(1) Å, which is close to the 

value of 4.0404(3) Å reported in reference [86]. No line broadening was found for this 

oxide with respect to the used standard LaB6. 
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Both CaMoO3 and BaMoO3 are of a purple-red color. In contact with moisture they oxidize 

into corresponding CaMoO4 and BaMoO4. Therefore they were stored under dry nitrogen 

atmosphere. 

5.2.2. General procedure for the ammonolysis of molybdates 
All the synthesized oxides were reacted with ammonia gas (PanGas, 99.999 %, 100 mL 

min-1) at 873 K < T < 1123 K. The reactions were carried out each 25 K in an Al2O3 reactor 

with an internal diameter of 30 mm. Each sample load was 0.1 g. The reaction time was 20 

h. Ammonia was supplied by means of a quartz tube with a diameter 5.8 mm placed above 

the sample. Heating and cooling rates were 10 K min-1. 

5.2.3. Thermal ammonolysis study of AMoO4 (A = Ca2+, Ba2+) 
X-ray powder diffraction patterns of BaMoO4 reacted with ammonia at different 

temperatures can be seen in Fig. 5.13. Reflections corresponding to Ba3Mo2O6N2 [62, 130] 

and BaMoO4 are identified for the sample reacted at 898 K for 24 hours (Fig. 5.13B). The 

BaMoO4 main reflections disappear upon heating the sample up to 973 K. XRPD confirms 

Ba3Mo2O6N2 to be the main phase formed after the ammonolysis at T = 973 K.  

Some additional reflections belonging to a phase, indexed as a cubic perovskite with the 

lattice parameter larger than that of BaMoO3 are also resolved (Fig. 5.13C). Those 

reflections are attributed to a nitrided BaMoO3 (further referred to as BaMo(O,N)3). The 

reflections of this phase disappear after 48 h of the ammonolysis at T = 973 K and only 

reflections of Ba3Mo2O6N2 can be resolved. On the XRPD pattern of the sample, which 

was reacted with ammonia at 1023 K, Mo2N and Ba3Mo2O6N2 are the main identified 

phases. Two weak reflections, which belong to an unidentifiable phase, appear between the 

(015) and (110) reflections of Ba3Mo2O6N2 (Fig. 5.13D). Thus, BaMo(O,N)3 is not formed 

as a main phase from BaMoO4 under the chosen reaction conditions. 
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Figure 5.13. XRPD: A. Pure BaMoO4; B. After the 20 h reaction with NH3 at T = 898 K; C. 

After the 20 h reaction with NH3 at T = 973 K; D. After the 20 h reaction with NH3 at T = 1023 K 
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Figure 5.14. XRPD: A. Pure CaMoO4; B. After the 20 h reaction with NH3 at T = 898 K; C. 

After the 20 h reaction with NH3 at T = 973 K 

The reaction between CaMoO4 (Fig. 5.14A) and ammonia starts at 873 K. The XRPD 

patterns reveal the appearance of broad features coincident with the main reflections of 

Mo2N [131]. At 898 K CaO and Mo2N can be identified. Some additional reflections that 

could not be assigned to any known phase appear at that temperature (Fig. 5.14B). The 

XRPD pattern of the sample reacted with NH3 at higher temperatures reveals the presence 

of the CaO and Mo2N (Fig. 5.14C). Thus, CaMo(O,N)3 can not be prepared directly from 

CaMoO4 under the chosen reaction conditions. 
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5.2.4. Thermal ammonolysis study of AMoO3 (A = Ca2+, Ba2+) 

 

Figure 5.15. Evolution of the XRPD profile with time measured during the ammonolysis of 

CaMoO3 at T = 898 K: A. Non-reacted sample; B. The sample after the 50 h reaction (the inset 

shows the splitting of the main reflections due to the non-uniform O/N distribution through the 

particles depth); C. The sample after the 100 h reaction 

A noticeable interaction between CaMoO3 (Fig. 5.15A) and NH3 starts at 898 K. The 

ammonolysis results in a perovskite-type phase with cell parameters deviating from the 

ones of the starting oxide. Its formation can best be monitored by inspection of the (200), 

(020) and (002) located roughly between 32 and 33° 2θ. During the reaction the (002) and 

(200) reflections are shifted to lower angles, whereas the (020) reflection is shifted to 

higher angles. This indicates an increase in a and c, but a decrease in the b parameter of the 
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unit cell. As can be seen from Figure 5.15B a broadening of the diffraction peaks occurs at 

the early stages of the ammonolysis. A closer examination reveals the splitting of the 

reflections (see the inset of Fig. 5.15B). At that stage the pattern can be fitted assuming two 

perovskite type phases ( Pbnm ) of different lattice parameters and atomic coordinates, 

corresponding to CaMo(O,N)3 samples with different anionic composition. The kinetics of 

oxygen exchange with nitrogen is slow due to the low synthesis temperature.  

 

Figure 5.16. XRPD study on the influence of the sample mass, ammonia flow and temperature 

on the kinetics of the CaMo(O,N)3 phase formation. Smaller sample mass, increasing temperature 

and/or ammonia flow promotes faster formation of the oxynitride phase 
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The reaction rate of the oxynitride phase formation enhances with increasing temperature, 

increasing ammonia flow and/or decreasing sample mass (Fig. 5.16). The formed 

oxynitride phase (Fig. 5.15C) is stable under ammonia up to T = 923 K. A further increase 

of temperature leads to the formation of Mo2N and CaO impurities. 

The sample batch used for the crystallographic investigation by Rietveld refinements was 

obtained by ammonolyzing 0.7 g of CaMoO3 at T = 898 K during 100 hours (when the 

main reflections splitting disappeared and no further change in the lattice parameters was 

detected by XRPD) under an ammonia flow of 300 mL min-1. After the reaction the sample 

was quenched to room temperature within one minute. Increasing the synthesis temperature 

T > 898 K led to the oxynitride phase with lower nitrogen content as deduced from the 

Bragg reflection positions measured by XRPD. The explanation for this is given further in 

the text. 

 

Figure 5.17. Thermal ammonolysis study of BaMoO3: A. Pure BaMoO3; B. The sample reacted 

with NH3 at T = 998 K during 85 h (the shift of the perovskite phase reflections to lower angles can 

be seen) 
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The ammonolysis of BaMoO3 (Fig. 5.17A) proceeds similar to that of CaMoO3. The 

temperature had to be raised up to 998 K and the sample mass had to be decreased down to 

0.25 g in order to promote a faster formation of the oxynitride phase. As in case of the 

CaMoO3 ammonolysis a broadening of the perovskite-phase reflections and their shift to 

lower angles is observed. This indicates the formation of the oxynitride-perovskite phase 

BaMo(O,N)3 with a larger lattice constant compared to BaMoO3. However, the formation 

of the secondary phase is simultaneously observed (Fig. 5.17B). Some of the reflections 

were assigned to Mo, BaO and Ba3Mo2O6N2 phases. However, we could not attribute the 

main impurity phase reflections, which are coincident with those of the phase formed 

during the ammonolysis of BaMoO4 at 1023 K (Fig. 5.13D), to any phase of the Ba-Mo-O-

N system found in ICSD (inorganic crystal structure database) and Pdf-2 (powder 

diffraction files) databases. Therefore, we conclude, that they belong to a previously 

undiscovered phase of the Ba-Mo-O-N system. The broadening of BaMo(O,N)3 reflections 

decreases with time. It has to be noted that while the ammonolysis of BaMoO4 leads to the 

minor amount of the BaMo(O,N)3 phase, the ammonolysis of BaMoO3 leads to a 

considerable BaMo(O,N)3 yield. 

Both CaMo(O,N)3 and BaMo(O,N)3 possess a dark blue color. The materials are moisture 

sensitive. Therefore, they were stored under the same conditions as CaMoO3 and BaMoO3. 

5.2.5. Discussion of the thermal ammonolysis results 
During its reactions with AMoO3 and AMoO4 oxides NH3 can act as a nitriding and a 

reducing agent:  

AMoO4(s)+(2+2x)/3 NH3(g) ⇄ AMoO3-x(s)Nx+ (1+x) H2O(g) + (2-x)/6 N2(g) 

(reduction)        (5.8) 

AMoO3-x(s) + y NH3(g) ⇄ AMoO3-x-yNx+y(s) + y H2O(g)+ y H2O(g) + y/2 H2(g) 

(nitridation)        (5.9) 
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At T > 573 K ammonia undergoes considerable dissociation: 

2NH3(g) ⇄ N2(g) + 3 H2(g)      (5.10) 

The formed hydrogen can also further reduce AMoO4/AMoO3 oxides. Depending on the 

relative rates of the processes described above a more nitrided or more reduced product will 

be formed. As it is mentioned in [40] to achieve effective nitridation the dissociation of 

ammonia should be minimized before it reaches the sample’s surface. Otherwise, reduction 

may dominate over nitridation. That is why it is important to increase the ammonia flow 

with temperature [40]. Additionally, increasing ammonia flow promotes faster water 

removal [44, 45] and the renewal of active nitriding species over the sample. These factors 

can account for the enhanced kinetics of the oxynitride phase formation observed during 

the ammonolysis of AMoO3 when increasing the ammonia flow. Partial dissociation of 

ammonia away from the sample’s surface, when increasing temperature explains the 

formation of the CaMo(O,N)3 oxynitride phase with lower nitrogen content as was found 

during the present study. 

Besides the ammonia flow rate, the structure of the starting precursor and the ionic radius 

of the A-site cation and the covalence of the Mo-(O/N) bonding influence the oxynitride 

phase formation. 

A detailed study on the Mo – oxidation state stability of AMoO4 and AMoO3 (A = Ca2+, 

Sr2+, Ba2+) against reduction is available from the work of Kamata et al. [89, 91]. The 

authors reported that the alkaline-earth cation with a larger ionic radius provides better 

stabilization of the Mo - oxidation state in AMoO3 and AMoO4. The influence of the A-site 

cation ionic radius on the Mo-oxidation state stability was discussed in terms of the positive 

inductive effect. The strength of the positive inductive effect of a cation is related with its 

polarizing power [6]. The latter is inversely proportional to the ionic radius of the cation. 

Hence, within one group of the Periodic Table the strength of the positive inductive effect 

decreases with decreasing the ionic radius of the element. Thus, for Ca2+, Sr2+ and Ba2+ the 

strength of the positive inductive effect decreases with the sequence Ba2+ > Sr2+ > Ca2+. In 

the same sequence the ability of the alkaline-earth to retain the Mo-ion oxidation state 
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decreases. Indeed, during the ammonolysis of AMoO4 the increase of the Mo-oxidation 

state in the main product phase with the increase of the A-site cation ionic radius is 

observed. 

Apart from the ammonia flow and the positive inductive effect, the influence of the lattice 

energy and structure distortion energy on the phase formation during the ammonolysis has 

to be considered. 

Apparently, AMoO3 undergoes fewer structural changes during the ammonolysis than 

AMoO4. The lattice stability of AMoO3 is higher than of AMoO4. This is the most probable 

explanation for the differences in the phase formation observed during the ammonolysis of 

AMoO4 and AMoO3 (with the equal A - site cation). 

The tolerance factor (t) expresses the degree of distortion of the perovskite structure 

(ABX3). It is calculated by dividing the A - X distance by the M - X distance times square 

root of two: 

t = <A-X>/√2<B-X>      (5.11) 

The deviation of t from 1 is proportional to the structure distortion energy, which is a part 

of the total energy of a compound. The higher the distortion energy, the less favored is the 

formation of the perovskite structure. Thus, different tolerance factors of AMoO3 compared 

to those of the corresponding oxynitrides can explain whether substitution of oxygen with 

nitrogen leads to the less distorted and thus, more stable structure. Tolerance factors of 

CaMo4+O3, SrMo4+O3 and BaMo4+O3 calculated from ionic radii of the constituent ions [35, 

36] are 0.95, 0.98 and 1.03 correspondingly, whereas for the corresponding oxynitrides, for 

example, CaMo6+ON2, SrMo6+ON2 and BaMo6+ON2 they are equal to 0.97, 1.01 and 1.05. 

According to these values the substitution of O2- with N3- in CaMoO3 and SrMoO3 reduces 

the structure distortion energy. Thus, the substitution is favorable for the perovskite 

structure formation. On the other hand, for BaMoO3 partial substitution of O2- with N3- 

would lead to a more distorted structure. Therefore, it can be expected that formation of the 

phase pure BaMo(O,N)3 at ambient pressure will be difficult, which is in an accordance 

with our experiments. 
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It has to be noted, that only the tolerance factor consideration, which in many cases is 

sufficient to compare crystal structures stability of perovskite-type oxides or fluorides (e.g. 

materials with predominantly ionic type of bonding) may not be enough to compare crystal 

structure stability of an oxide with that of the corresponding oxynitride. Indeed, higher 

covalence of the Mo-N bonding as compared to that of the Mo-O bonding makes the Mo-

(O,N)6 octahedra more flexible to distort. Even, if this type of distortion occurs only 

locally, it may sufficiently reduce the structure distortion energy. 

It is worthy to compare our results on the ammonolysis of BaMoO4 and BaMoO3 with 

those reported by Liu et al [48]. Here the formation of the perovskite-oxynitride phase 

BaMo(O,N)3 during the ammonolysis of both BaMoO3 and BaMoO4 can be observed, 

while the authors of ref. [48] reported that they were not able to convert BaMoO3 and 

BaMoO4 into BaMo(O,N)3. This can be explained by the difference in the ammonia 

chemical potential which originates from the different ammonia flow used during the 

studies as discussed above. 

5.2.6. Crystal structures of CaMoO3, CaMo(O,N)3 and BaMo(O,N)3 
So far, only little information on the crystal structure of the perovskite-type CaMoO3 is 

available in literature. Based on XRPD data a monoclinic symmetry was proposed for that 

material [89]. In contrast, de la Calle et. al [90] suggested an orthorhombic symmetry with 

the space group Pbnm  based on the results of neutron diffraction data refinement. An 

alternative monoclinic symmetry was not yet tested. Most of both CaMoO3 and 

CaMo(O,N)3 crystallites analyzed by means of selected area electron diffraction (SAED) 

exhibit complicated electron diffraction (ED) pattern due to the presence of twin-domains. 

In such a case, different twin orientations superposed by double diffraction make the 

observation of the extinctions discarding glide planes and screw axis difficult. Here, to 

choose between the possible space groups x-ray diffraction was used additionally. 

We consider two space groups, which were found to fit the XRPD data of CaMoO3 and 

CaMo(O,N)3 with close values of the fit quality indicators: orthorhombic Pbnm , and 

monoclinic P21/n, based on the unit cells √2ap x √2ap x 2ap and √2ap x 2ap x √2ap 

(ap = cubic perovskite lattice parameter), respectively. 
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Figure 5.18. Electron diffraction patterns for CaMo(O,N)3 taken along the A. [100] and B. [010] 

orthorhombic zone axis 

 

Figure 5.19. Examples of ED patterns resulting from the superposition of different twin domains 

in CaMo(O,N)3: A. 900 oriented [-1-10] domains; B. 900 oriented [001] domains; C. 600 oriented [-

201] domains; D. 450 oriented [-1-10] and [001] domains 
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ED pattern (Fig. 5.18, 5.19) exhibits reflections with indices (h00), (0k0) and (00l): h = 

2n+1, k = 2n+1, l = 2n+1. But these reflections are less intense compared to (h00), (0k0) 

and (00l): h = 2n, k = 2n, l = 2n, and disappear upon sample rotation. They are therefore to 

be attributed to double diffraction. This conclusion is also confirmed by the absence of any 

forbidden diffraction in the [010] zone. On both our XRPD and ED (Fig. 5.18A) patterns 

we do not observe (0kl) reflections (with k = 2n+1), which are allowed in the P21/n space 

group and are not allowed in the space group Pbnm . From that we conclude that the true 

space group for both CaMoO3 and CaMo(O,N)3 is Pbnm . 

Mainly two types of twin-domains were found for CaMoO3: A) 450 oriented [-1-10] and 

[001] domains; B) Domains formed by the superposition of [010] and [100] zone axes. 

For CaMo(O,N)3 more twin-domain types have been found: A) 90° oriented [-1-10] 

domains (Fig. 5.19A); B) 900 oriented [001] domains (Fig. 5.19B); C) 600 oriented [-201] 

domains (Fig. 5.19C) D) 450 oriented [-1-10] and [001] domains (Fig. 5.19D). 

Formation of twin domains of these types were reported earlier for a number of distorted 

perovskite-type oxides with similar lattice parameters (in our case the mismatch for 

CaMoO3 between a and b is 2.3 %, whereas for CaMo(O,N)3 the mismatch is 0.9 %) [132-

135]. 

Rietveld refinements of CaMo(O,N)3 from both neutron and x-ray data were carried out in 

space group Pbnm . In the starting structural model the Ca:Mo ratio was set to 1:1, whereas 

the O:N ratio was set to 2:1. The background was determined manually, refined at the 

initial stages and fixed during the further refinement. Thermal displacement factors were 

refined isotropically for all the atoms. Since x-rays are not able to distinguish between O2- 

and N3- we did not attempted to refine the anionic composition from the x-ray data. During 

the neutron data refinement the occupancy factors for oxygen and nitrogen were refined 

with the anionic site constrained to be fully occupied. Finally, the lattice and the profile 

parameters, 2Θ0, the background coefficients, the thermal displacement factors and the 

anionic occupancies (neutron data) were refined together. To improve the fit, δ-MoN 

( 26 mP
−

) [136], γ-Mo2N ( mFm
−

3 ) [137], and CaO ( mFm
−

3 ) were included in the 

refinements. Amounts of these secondary phases were determined from the XRPD data 
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(Fig. 5.20) refinement (the refinement resulted in ~1 wt % of CaO and ~2 wt % of each 

MoN and Mo2N phases) and were kept fixed during the neutron data refinement. Further 

inspection of the neutron diffraction profiles and difference graphs revealed weak features 

attributed to the presence of some not identified impurity phase. Therefore, the regions 

containing main reflections of that phase were excluded from the refinement.  

The statistics of the refinements, the visual inspection of the fit (Fig. 5.20-5.21) and the 

refined values of the thermal displacement factors indicate that the chosen model was 

correct.  

 

Figure 5.20. Rietveld refinement plot of the x-ray powder diffraction data for CaMoO1.7(1)N1.3(1). 

Space group: Pbnm. The observed intensities, calculated profile, difference curve and Bragg 

positions are shown. CaO, δ-MoN and γ-Mo2N have been included as a minor impurity phases in 

the refinement 

The refined O/N content and the anionic distribution correspond to the composition 

CaMoO1.7(1)N1.3(1) with a totally disordered O/N arrangement. The result is in a reasonable 

agreement with the hotgas extraction analysis, which yielded in the composition of 

CaMoO1.79(5)N1.25(2) obtained after subtracting the secondary phases contribution (taken 
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from the refinement). The neutron data derived O/N content corresponds to the formal 

oxidation state of Mo +5.3. Higher nitrogen content of this phase as compared to that of 

SrMo(O,N)3 phase [88] can be explained by higher ammonia flow and lower synthesis 

temperature employed during the present investigation. 

 

Figure 5.21. Rietveld refinement plot of the neutron powder diffraction data for 

CaMoO1.7(1)N1.3(1). Space group: Pbnm. The observed intensities, calculated profile, difference 

curve and Bragg positions are shown. CaO, δ-MoN and γ-Mo2N have been included as a minor 

impurity phases in the refinement. 

As a summary of the refinements, the obtained structural parameters bond lengths and 

angles are displayed in Tables 5.2, 5.3. 

Table 5.2. Refinement results for CaMoO3 and CaMoO1.7(1)N1.3(1) 

Name  CaMoO3 CaMoO1.7(1)N1.3(1) CaMoO1.7(1)N1.3(1) 
radiation  x-ray CuKα1/2 x-ray CuKα1/2 neutron (HRPT, PSI) 
λ, Å  1.5406/1.5444 1.5406/1.5444 1.494 
T, K  298 298 298 
S.G.  Pbnm Pbnm Pbnm 
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a, Å  5.4499(1) 5.5029(1) 5.5068(1) 
b, Å  5.5811(1) 5.5546(1) 5.5593(1) 
c, Å  7.7791(1) 7.8248(1) 7.8317(2) 
V, Å3  236.62(1) 239.19(1) 239.76(1) 
Z  4 4 4 
Ca x 0.9894(7) 0.9970(10) 0.9941(13) 
 y 0.0461(3) 0.0294(5) 0.0334(9) 
 z ¼ ¼ ¼ 
 Biso, Å2 0.46(4) 1.13(3) 1.05(7) 
 site 4c 4c 4c 
 occ. 1 1 1 
Mo x ½ ½ ½ 
 y 0 0 0 
 z 0 0 0 
 Biso, Å2 0.11(2) 0.901(13) 0.74(5) 
 site 4b 4b 4b 
 occ. 1 1 1 
O/N(1) x 0.081(1) 0.0717(15) 0.0642(6) 
 y 0.4750(10) 0.4731(17) 0.4872(7) 
 z ¼ ¼ ¼ 
 Biso, Å2 0.92(7) 1.13(9) 0.90(8) 
 site 4c 4c 4c 
 occ. 1/0 0.56/0.44a 0.56(4)/0.44(4) 
O/N(2) x 0.7055(8) 0.7034(11) 0.7113(5) 
 y 0.2921(8) 0.2897(12) 0.2885(5) 
 z 0.0453(6) 0.0329(9) 0.0329(3) 
 Biso, Å2 0.92(7) 1.13(9) 0.90(6) 
 site 8d 8d 8d 
 occ. 1/0 0.57/0.43a 0.57(3)/0.43(3) 
χ2  2.13 1.71 1.97 
wRp

b  0.135 0.136 0.128 
Rp

b  0.102 0.128 0.149 
a Not refined. 
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Table 5.3. Selected bond distances in Å and angles in degrees calculated for CaMoO3 and 

CaMoO1.7(1)N1.3(1)
a 

 CaMoO3 CaMoO1.7(1)N1.3(1) 
    
Mo-O/N(1) x2 2.000(1) 1.9909(6) 
Mo-O/N(2) x2 2.009(4) 1.997(3) 
Mo-O/N(2) x2 2.012(4) 1.995(3) 
<Mo-O/N>  2.007(3) 1.994(2) 
Ca-O/N(1)  3.228(6) 3.061(6) 
Ca-O/N(1)  2.445(6) 2.552(6) 
Ca-O/N(1)  3.138(7) 3.085(8) 
Ca-O/N(1)  2.371(7) 2.446(8) 
Ca-O/N(2) x2 2.610(5) 2.708(6) 
Ca-O/N(2) x2 2.735(5) 2.705(5) 
Ca-O/N(2) x2 2.382(5) 2.454(5) 
Ca-O/N(2) x2 3.407(5) 3.278(5) 
<Ca-O/N>(8 short)

b  2.520(6) 2.592(6) 
Mo-O/N(1)-Mo x2 153.00(6) 159.13(3) 
Mo-O/N(2)-Mo x4 151.9(2) 157.01(11) 
<Mo-O/N-Mo>  152.267(15) 157.72(8) 
a Derived from the neutron data. 
b The average, calculated from the 8 shortest distances. 
 

According to the refinements, the average Ca–O/N distance increases upon the substitution 

of oxygen with nitrogen, which is consistent with a larger ionic radius of N3- (1.48 Å) 

compared to that of O2- (1.38 Å). The average Mo–O/N distance value of CaMoO1.7(1)N1.3(1) 

(1.994(2) Å) resembles the one determined for SrMoO1.89(2)N1.11(2) by neutron diffraction 

(1.999(5) Å) [88]. However, partial substitution of O2- in SrMoO3 by N3- leads to an 

increase of the average Mo–O/N distance, which is not the case for CaMoO3 (Table 5.3), 

where the mean Mo–O/N distance is not significantly affected by the substitution. 

Moreover, the smaller average Mo–O/N distance of CaMoO1.7(1)N1.3(1) than that of 

SrMoO1.89(2)N1.11(2) does not agree with the O/N composition of these phases. This indicates 

that CaMoO1.7(1)N1.3(1) may contain anionic/cationic vacancies. Thermal displacement 

parameters values of Ca and Mo in CaMoO1.7(1)N1.3(1) are higher than those in CaMoO3, 
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which gives hint for the presence of the cationic vacancies in the former compound. Hence, 

true formal oxidation state of Mo in this compound must be lower than that calculated from 

the O/N content. 

Based on the refined Mo–O/N–Mo angle values for CaMoO3 and CaMoO1.7(1)N1.3(1) it can 

be concluded that the crystal structure of the latter compound is less distorted. This is in 

accordance with higher ionic radius of N3- compared to that of O2-. 

Similar to CaMoO3 the reflections of CaMoO1.7(1)N1.3(1) are broadened isotropically (Fig. 

5.22). The refined apparent size is 0.14 μm, the strain is 0.29 % . Both values are close to 

those obtained for CaMoO3. 

SEM reveals a particle size of about 0.2 μm for both CaMoO3 and CaMoO1.7(1)N1.3(1) (Fig. 

5.23). Thus, size broadening on the diffractograms arises from both the crystallites size and 

the presence of twin domains. Small apparent strain values obtained for both CaMoO3 and 

CaMoO1.7(1)N1.3(1) confirm that both materials are chemically homogeneous. The larger 

apparent size and the smaller apparent strain values obtained for CaMoO1.7(1)N1.3(1) 

compared to CaMoO3 can arise either from the smaller mismatch between a and c lattice 

constants for the former compound or from the different thermal history of the samples, 

which would also explain the multiplicity of different twin types observed for 

CaMoO1.7(1)N1.3(1) by TEM. 
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Figure 5.22. Angular variation of the total full width at half maximum (FWHM) determined from 

whole profile Rietveld refinements of the XRPD data for CaMoO3, CaMoO1.7(1)N1.3(1) and the 

standard LaB6 SRM 660a 

 

Figure 5.23. SEM micrographs (taken with the magnification of 9000 x) of powders with 

composition A. CaMoO3, B. CaMoO1.7(1)N1.3(1) 
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Figure 5.24. SEM micrographs (taken with the magnification of 5000 x) of powders with 

composition A. BaMoO3, B. BaMo(O,N)3 (the XRPD refined apparent particle size is 0.12 μm) 

SEM together with XRPD reveal a particle size of BaMo(O,N)3 similar to that of 

CaMo(O,N)3 (Fig. 5.24). Because of the unknown impurity composition and structure we 

did not attempt a whole pattern refinement of XRPD data of BaMo(O,N)3, but rather 

estimate the lattice constant and line broadening of BaMo(O,N)3. The obtained lattice 

constant (4.0657(1) Å) is larger than the one refined from the XRPD data for BaMoO3 

(4.0409(1) Å). Contrary to the partial oxidation of Mo4+ to smaller Mo5+ and Mo6+, a partial 

replacement of O2- with larger N3- will lead to the increase of the lattice constant. From the 

comparison of the lattice constant values for BaMoO3 and BaMo(O,N)3 follows that it is 

the difference in the ionic radii of O2- and N3-, which has a major influence on the lattice 

constant. The larger lattice constant of BaMo(O,N)3 indicates that both Mo–O/N and Ba–

O/N distances increase upon partial substitution of O2- with N3- in BaMoO3. 

5.2.7. Conclusions 
The possibility to prepare previously unreported oxynitride-perovskite AMo(O,N)3 (A = Ca, 

Ba) phases by thermal ammonolysis of AMoO4 and AMoO3 oxide precursors was 

investigated. 

Only the ammonolysis of CaMoO3 and BaMoO3 is leading to a considerable yield of the 

desired phases. CaMoO4 reacted with ammonia decomposes to CaO and Mo2N. 
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BaMo(O,N)3 is formed as a minor phase during the ammonolysis of BaMoO4, which yields 

mainly in Ba3Mo2O6N2. Thus, the crystal structure of the starting precursor is crucial for 

the desired phase formation. Among the other factors influencing the phase formation 

during the ammonolysis of AMoO3 and AMoO4 we considered the gas to solid ratio, 

positive inductive effect of the A-site cation, the lattice energy, the structure distortion 

energy and Mo-N bonding covalence. 

CaMo(O,N)3 crystallizes in space group Pbnm  and possesses a less distorted crystal 

structure than CaMoO3. Neutron diffraction reveals a statistical distribution of O2- and N3- 

among the available anionic sites and an anionic content corresponding to the composition 

CaMoO1.7(1)N1.3(1). 

TEM shows evidence for twin-domains in both CaMoO3 and CaMoO1.7(1)N1.3(1), which 

together with the average crystallite size may be responsible for the line profile broadening 

in the XRPD patterns. The multiplicity of different twin types measured for 

CaMoO1.7(1)N1.3(1) compared to CaMoO3 can be explained either by the smaller mismatch 

between a and c lattice constants in the former compound or by the different thermal 

history of the compounds. 

BaMo(O,N)3 adopts the space group mPm
−

3 .This indicates a totally disordered O/N 

arrangement as found for CaMoO1.7(1)N1.3(1). Its determined lattice parameter and 

consequently both Mo–O/N and Ba–O/N distances are larger than of the corresponding 

BaMoO3 as revealed by x-ray diffraction, which is attributed to the larger ionic radius of 

N3- compared to that of O2-. 
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Summary 

This thesis is dedicated to the synthesis and characterization of novel perovskite-type 

oxynitrides. 

The study yielded in several novel and previously uncharacterized oxynitride phases with 

d0-2 electronic configurations of the constituent transition elements, e.g. LaNbON2, 

SrMoO3-xNx (x > 1), CaMo(O,N)3, BaMo(O,N)3, Ca1-xLaxTiO3-xNx (x = 0-0.7). Anionic 

composition of the synthesized phases was evaluated by a variety of methods: thermal 

gravimetric analysis, hotgas extraction, neutron diffraction. Crystal structure and anionic 

distribution of the synthesized materials were investigated by x-ray-, neutron powder 

diffraction and transmission electron microscopy. Optical band gaps of the synthesized d0-

oxynitrides were determined from UV-Vis diffuse-reflectance spectroscopic measurements. 

Electronic conductivity, heat transport and magnetic susceptibility of the mixed-valent (d0-

2) oxynitrides were studied. 

The main achievements of the present study and suggestions for further research are 

summarized as follows: 

1. Ca1-xLaxTiO3-xNx (x = 0-0.7). Novel solid solutions of general composition        

Ca1-xLaxTiO3-xNx (x = 0-0.7), which show linear response between optical band gap 

value and chemical composition, bright colors and good thermal stability essential 

for the pigment application. A further investigation of photocatalytic activity of 

these materials as a function of their composition would be of interest. 

2. LaNbON2. A perovskite-type oxynitride LaNbON2 was synthesized. This material 

possesses the smallest optical band gap (1.7 eV) among the known oxynitride-type 

perovskites. Moreover, it catalyzes H2 production from the water-methanol 

mixtures. The photocatalytic performance of a material depends on the position of 

its conduction band relative to the electrode potential for the H2-evolution. The 

latter is a function of the pH of a solution. Therefore, the farther study of the 

photocatalytic performance of LaNbON2 as a function of the pH is of interest. 

Moreover, it is useful to develop a method, which allows impregnating the powder 
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of LaNbON2 with noble metals (such as Pt, Au) without causing the powder surface 

reduction. This would be extremely useful to improve its photocatalytic 

performance. 

3. SrMoO3-xNx (x > 1). Novel mixed-valent oxynitrides of general composition 

SrMoO3-xNx (x > 1) were synthesized. Their crystal structure, Mo-oxidation state 

and physical properties were investigated. 

4. CaMoO1.7(1)N1.3(1), BaMo(O,N)3. Phase formation and crystal structure of two 

novel oxynitrides CaMoO1.7(1)N1.3(1), BaMo(O,N)3 were studied. The interest to the 

N3-- and N2-containing inorganic and metal-organic Mo-derivatives is driven by the 

ability of these compounds to catalyze molecular nitrogen reduction into ammonia. 

Therefore, as further work, catalytic study on the synthesized oxynitride-perovskites 

and intermediate products of their thermal reoxidation is proposed. 
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