A Posteriori Error Analysis of Hybridized Mixed Finite Element Methods for Second Order Elliptic Boundary Value Problems
- The mixed hybrid finite element approximation of second order elliptic boundary value problems by hybridized Raviart-Thomas elements of any order can be seen as a nonconforming approximation of the primal mixed formulation of the problem. In this paper, we provide a unified framework for the a posteriori error analysis in terms of residual-type a posteriori error estimators consisting of element and face (edge) residuals. This unified framework allows to establish the reliability of the error estimators on the basis of appropriate interpolation operators as well as suitable reconstruction operators.
Author: | Ronald H. W. HoppeORCiDGND, Johannes Neher, Natasha S. Sharma |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-10443 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/1220 |
Series (Serial Number): | Preprints des Instituts für Mathematik der Universität Augsburg (2009-01) |
Type: | Preprint |
Language: | English |
Publishing Institution: | Universität Augsburg |
Contributing Corporation: | University of Houston |
Release Date: | 2009/01/22 |
Tag: | adaptive hybridized mixed finite element methods; a posteriori error analysis; elliptic boundary value problems |
GND-Keyword: | Finite-Elemente-Methode; A-posteriori-Abschätzung; Fehleranalyse; Elliptisches Randwertproblem |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |