On the Iterative Proportional Fitting Procedure: Structure of Accumulation Points and L1-Error Analysis

  • A new analysis of the Iterative Proportional Fitting procedure is presented. The input data consist of a nonnegative matrix, and of row and column marginals. The output sought is a biproportional fit, that is, a scaling of the input matrix by means of row and column divisors so that the scaled matrix has row and column sums equal to the input marginals. The IPF procedure is an algorithm alternating between the fitting of rows and columns. The structure of its accumulation points is explored in detail. The progress of the algorithm is evaluated through an L1-error function measuring the deviation of current row and column sums from target marginals. A formula is obtained, of max-flow min-cut type, to calculate the minimum L1-error directly from the input data. If the minimum L1-error is zero, the IPF procedure converges to the unique biproportional fit. Otherwise, it eventually oscillates between various accumulation points.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Friedrich PukelsheimGND, Bruno Simeone
URN:urn:nbn:de:bvb:384-opus4-10528
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1229
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2009-05)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Contributing Corporation:Sapienza Università di Roma, Dipartimento di Statistica, Probabilità e Statistiche Applicate
Release Date:2009/03/17
Tag:Iterative proportional fitting procedure; biproportional fits; biproportional apportionments
GND-Keyword:Wahrscheinlichkeitsmass; Stimmenauszählung
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):Deutsches Urheberrecht