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1 Introduction

Density functional theory (DFT) was formulated more than 40 years ago by Pierre Hohen-
berg, Walter Kohn and Lu Jeu Sham [El, E] Since then it has been continuously developed
and extended and is now one of the most commonly used tools for the study of electronic
structure in condensed matter physics and quantum chemistry. Its basic idea is to ex-
press the ground state energy in terms of the particle density and thereby providing a
mapping between an interacting many-body system and a noninteracting single-particle
Hamiltonian. Already in the first years DF'T has been used not only for calculations
of electron densities but also of spin densities [E, E] Other important extensions are
the inclusion of vector potentials E, B, Ia, H] and time-dependent potentials [ﬁ, , E, Im]
The former allows for calculations with magnetic fields and expresses the ground state
energy as a functional of the density and the current-density, while the latter leads to
time-dependent densities. Both extensions are needed for a fully gauge invariant formu-
lation of density functional theory. Furthermore — while the static formulation allows
only for ground state properties, e. g. the ground state energy — time-dependent density
functional theory (TDDFT) gives also access to excitation energies via the singularities
of the linear response function |L1].

Contrary to these successes, one crucial ingredient for practical applications of density
functional theory, the so-called exchange-correlation energy, is not known exactly. Often
the interaction is split into two parts, the Hartree energy, which is easy to incorporate
into the formalism, and the exchange-correlation energy. Unfortunately the construction
of the theory makes approximations for this latter part quite intransparent. Identifying a
well defined (explicit) expansion parameter, e. g. the interaction strength, and expanding
up to a certain order in this parameter, is not that straightforward and obvious for DFT.
Although known in principle for quite a long time ng Iﬂ] this method has not been
applied to DFT until the 90-ties qllﬂ, E] Especially the first order expansion in the
interaction — the so-called exact-exchange method (EXX) — has received much attention
since then and seems to give better results than older approximations M], like the local
density approximation (LDA) H, E] or the generalized gradient approximation (GGA)

|. These are not derived from perturbation theory in the interaction strength but are
constructed around the (nearly) homogeneous system, such that the homogeneous system
is exact. In this case the exchange-correlation energy can be determined for example from
Monte-Carlo simulations of the homogeneous system. Slow variations of the density can
be taken into account by the use of density gradients. Although these approximations
may be fully replaced by the exact-exchange method and higher order expansions at some
point in the future, they are still heavily used, since the latter significantly increase the
computational complexity.

Despite these problems with the exchange-correlation energy, density functional the-
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ory became an important tool for the theoretical investigation of materials. On the other
hand practical applications of DFT have further deficiencies even beyond the approxima-
tions for the exchange-correlation energy. For example, the Fermi surface and excitation
energies are often extracted from the Kohn-Sham levels of static DFT — although it is
not guaranteed that these quantities coincide with the real Fermi surface and excitations
of the interacting system |18, IE] In principle the band gap can be obtained from such
a calculation [IE], but it is often underestimated within the local density approximation.
It was found that the discontinuities of the exact exchange-correlation potential, almost
always not, captured within LDA, contribute significantly to the gap ,E]

Do discrepancies between theory and experiment arise from insufficient exchange-
correlation potentials or from the misusage of density functional theory? It is a promising
approach to investigate such problems by means of simple lattice models @, |. DFT
results for one-dimensional lattices have been compared to exact diagonalizations of not
too small systems [@, ], quantum Monte Carlo simulations M] and results from den-
sity matrix renormalization group (DMRG) calculations [@] On the other hand one
has to be careful when concluding from the quality of, for example, the local density
approximation in one dimension to its performance in higher dimensions. The difference
is that in the former case there is no Fermi surface but only two distinct Fermi points.
Thus the description as a Fermi liquid is no longer valid and has to be replaced by the
notion of a Luttinger liquid [IE, @, El]

In this work we will study one-dimensional systems. Our main motivation for using
such a model is the wealth of known properties to compare with. In addition, since a few
years much work has been done to realize such systems in the laboratory. For example,
nowadays it is possible to use single-wall carbon nanotubes [@, @], ultra-cold atomic

ases in optical lattices [@, @, @] or the edge states of a fractional quantum Hall fluid
E} to investigate a Luttinger liquid experimentally. These carbon nanotubes or other
(almost) one-dimensional systems, like for example Indium phosphide nanowires, have
some interesting applications as functional electronic devices on a molecular scale E, IE]
Another approach uses organic molecules for building such a device [@] In the experi-
mental setup this organic molecule is usually contacted by two gold electrodes and the
current voltage characteristics are measured m, @, @, @i’ There are two distinct ways
of modeling such systems theoretically: On one hand one can use simple phenomenolog-
ical models [@ where additional effects, like e.g. driving with a laser field [@, @] or
some disorder M]AE
a realistic model of the experimental setup to calculate the transport properties [49, @]
However, early experimental results and density functional calculations for such systems
differed by several orders of magnitude. There has been much work done to understand
and overcome the problems on the theoretical [El, @, Iﬁ, Iﬂ] and the experimental side
[@], and nowadays the difference is often less than an order of magnitude [@]

Despite these successes there are still open questions left. For example, there are still
a few cases where density functional theory and experiment disagree. More important
from a conceptual point of view is the question whether the use of exchange-correlation
potentials which are calculated from equilibrium quantities is justified for such a non-
equilibrium situation. Even in the linear response regime the behavior of DFT is not fully

|, are comparably easy to incorporate. On the other hand one may use



understood. For example, it was found by comparing a DFT calculation on the basis of
the exact exchange-correlation potential with results from DMRG @] that it often is
sufficient to use a naive approach for calculating the linear conductance, which neglects
the so-called exchange-correlation kernel. Furthermore, as the previously mentioned
(almost) one-dimensional systems are nowadays of great interest, it is necessary for the
discussion of the results from density functional theory to understand the peculiarities
of the approximations within this context.

In this thesis we investigate the successes and failures of the local density approxima-
tion and the exact-exchange approximation by comparison with exact results for trans-
port properties, like the transmission through an impurity or the conductance through
a small interacting system. In a further step we develop a scheme for calculating the
exchange-correlation potential from exact diagonalizations of small systems, a procedure
which is also feasible for strong interactions. In order to do so we use a one-dimensional
model of spinless fermions with nearest-neighbor interaction. For this model the Bethe
ansatz E] is an efficient tool for determining the ground state energy or the Drude
weight of the homogeneous system, thus providing the ingredients for the local density
approximation. At half filling even some analytical results for the infinitely long system
are known from bosonization @] Small systems — up to about 25 lattice sites — can be
exactly diagonalized without any problem, and for larger systems one can also use the
density matrix renormalization group formalism [@, | to obtain accurate results.

This work is organized as follows: In the next chapter we introduce the model of
spinless fermions and we also recapitulate some known results. In the third chapter
we introduce the static (current-) density functional theory. Usually this is done by
proving the Hohenberg-Kohn theorem and then by a variation procedure to find the
Kohn-Sham Hamiltonian. However we use an alternative approach which uses Legendre
transformations to establish a mapping between the many-body and the single-particle
Hamiltonian [El] The advantage of this formulation is that it is easily extendable to
other systems, like systems with a finite current or a time-dependent potential [@] After
introducing DFT and some of its approximations we reexamine some of the results by
Schénhammer and Gunnarson [@, , Iﬂ] and add our own observations. The fourth
chapter introduces the time-dependent DFT. To identify the successes and limits of the
local density approximation we focus here on the dynamical susceptibility. In the fifth
chapter we use a one-dimensional system consisting of noninteracting leads and a small
interacting region to analyze DFT. We are especially interested in the results for the
linear conductance through the interacting region. After showing the poor performance
of LDA for this problem we use an exact diagonalization procedure to obtain improved
exchange-correlation potentials, leading to a conductance which is close to the exact
one. Finally in the last chapter we summarize our findings and propose some ideas for
continuing these investigations.
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2 Spinless Fermions

2.1 Model

We consider a tight-binding model of spinless fermions with nearest-neighbor interaction
and periodic boundary conditions. In this work we restrict ourselves to one-dimensional
models. For formal aspects such as the Hamiltonian or the formulation of (current-)
density functional theory this is just for the sake of simplicity of notation. On the other
hand we know numerous properties of this one-dimensional model, which we can use for
the local density approximation or for comparison with results from density functional
theory. The Hamiltonian can be written as

H:-i—+\7+zvlﬁl (21)

where

Tt > (570, + o796 ) (2.2)

is the kinetic energy (h = 1) and

V= V; <ﬁl - %) (ﬁl+1 - %) . (2.3)

is the interaction. The local on-site potential is denoted by v; and ¢; is a local phase which
can be associated with a magnetic field. The hat denotes operator-valued quantities. éf is
a creation operator and ¢; annihilates a particle at site [ and n; = éfrél is the occupation
number operator. The system size is denoted by L and N stands for the number of
particles on the lattice. The lattice constant is equal to one.

One immediately sees that

oH
= —. 2.4
" oy (24)
Analogous we find the current operator
oH
=, 2.5
Oy (25)
where
Ji= =it (e ey — e, ) (2.6)
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is the local current between sites [ and [ + 1. An important relation that connects the
densities and currents is the continuity equation. It can be found easily in the Heisenberg
picture as

%m =i[H, ) = — (i — Ji-1) - (2.7)

This implies that, for time-independent systems, the current is constant throughout the
whole ring. The currents (j;) and densities (n;) are observables and thus invariant under
gauge transformations, which are described by the unitary operator

= { > Xml} (2.8)

The Hamiltonian then transforms as

A~

H — UHO™ =) "y, (2.9)
l
thereby implying the relations for the local phases and potentials:

&L — &1+ X1 — Xi+1
v — U — XJ-

(2.10)

Invariants are then .
er = ¢ — (Vg1 — wr), (2.11)

corresponding to the electric field in electrodynamics, and the total phase
=) o (2.12)
!

corresponding to the magnetic flux. Note that for a system of charged particles on a ring
in a perpendicular magnetic field, ® equals 27 times the magnetic flux in units of the
flux quantum @] So for our system the local phase can be almost gauged away with
only a remaining phase ® = ), ¢; modulo 27 at the boundary.

The solution of the homogeneous system (v; = 0 has been found by C. N. Yang and

C. P. Yang using the Bethe ansatz technique [ﬁ ] In this series of papers they
consider the Heisenberg XXZ model

AXXZ _ ‘]Z ( gD JrO_(z) Z(/z+1) + A&g)&gﬂ)) . (2.13)
which is equivalent to our model of spinless fermions with J = 1 and A = % The

relation between these two models can be seen by means of the Jordan—ngner trans-
formation @] Some of the details are shown in Appendix [AJl In a later chapter we
employ the solution of the homogeneous system to obtain the exchange-correlation ener-
gies and potentials within the local density approximation. A short introduction to the
Bethe ansatz is presented in Appendix

10



2.2. Ferromagnetic, antiferromagnetic and gapless phase

XXZ-model: A>1 -1<A<1 A< -1
spinless fermions: V<=2t =2 <V <2t V> 2t
zero magnetization: | ferromagnetic | gapless phase | antiferromagnetic
(half filling)
finite magnetization: | ferromagnetic | gapless phase gapless phase
(other fillings)

Figure 2.1: Short summary on the different phases of the Heisenberg XXZ model with anisotropy A
and the corresponding spinless fermion model with interaction V.

2.2 Ferromagnetic, antiferromagnetic and gapless phase

So far we have only considered some general properties of the Hamiltonian EII). Now
we turn our attention to the ground state of this model. By doing so we switch back and
forth between the Heisenberg XXZ model and the spinless fermions, depending on which
model gives a more intuitive explanation. An overview on the XXZ model is for example
given by Hans-Jiirgen Mikeska and Alexei K. Kolezhuk ] In general, one-dimensional
systems are quite distinct from higher dimensional models m % @] In the following
we will recapitulate some of the results for our model:

The Heisenberg XXZ model exhibits three phases — ferromagnetic, antiferromagnetic
and the so-called gapless phase @] A short overview on these phases is given in Figure
BT For an anisotropy parameter A > 1 it is in the ferromagnetic phase. Without an
additional external field the ground state consists of the two degenerate states |17 ...)
and |[]] ...). An arbitrary small field leads to a collapse of the ground state to one of
these two states and thus to a fully magnetized lattice. This phase corresponds to the
spinless fermion model with attractive interaction V' < —2t and the states corresponding
to the two ferromagnetic states above are the completely filled and the empty lattice.

The low lying excitations of the ferromagnetic Heisenberg model are magnons where
the spin quantum number differs by one from the ground state values. In the language of
spinless fermions these excitations would be states with one particle or hole on the lattice.
Since the system is homogeneous, the kinetic energy of the excited state is determined
by the plane wave dispersion —2tcosq. Additionally we have to twist two interaction
bonds, so that the dispersion of these low lying excitations is given by

€(q) = —2tcosq— V. (2.14)

The spectrum has a gap at ¢ = 0 of magnitude |V| — 2¢ which closes for V' — —2t.

The antiferromagnetic phase occurs for anisotropy A < —1 and zero magnetization.
However, since the antiferromagnetic state %(! T ...y + 1Tl ...)) is an eigenstate of
the Hamiltonian only in the limit A — —oc, there are still quantum fluctuations present
which prevents the order from being complete. In the spinless fermion model this phase
appears at half filling for an interaction V' > 2¢. The excitation spectrum can be obtained
in the strong interaction limit by perturbation theory [@] It is given by

Vv 4t

e(a) = 7 |1 = 37 cos(@) cos(a + )|, (2.15)

11
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Figure 2.2: Imaginary part of the dynamical susceptibility Imy(q,w) (in units of t=') at half filling and
zero interaction.

where ¢’ is an additional momentum with —7 < ¢’ < w. Technically we have here two
momenta, because the excitations consists of two independently moving domain walls.

At zero magnetization for —1 < A < 1 (=2t < V < 2t) and elsewhere for A < 1
(—2t < V) one finds a phase with a gapless excitation spectrum. If the interaction is
zero we have a simple dispersion law

e(k) = —2tcosk, (2.16)

and the ground state is just a Slater determinant of plane waves with wave-vectors
smaller than the Fermi vector kr. The excitation spectrum can be seen by means of the
dynamical susceptibility as shown in Figure There we have plotted the imaginary
part of the dynamical susceptibility at half filling, giving the spectral weight of the
charge excitations. The maxima and minima of the excitation continuum at interaction
V = A =0 are easily found:

A€pax = € (k:F + g) —€ (kzF — g) = 4t sin %, (2.17)
Aémin = € (krp + q) — € (kp) = 2tsing. (2.18)
The long-wavelength low-frequency limit of the susceptibility is given by
(vrq)?
W)= Xo——5— - 2.19
x(0.0) = X003 (2.19)

X0 is the static susceptibility and vg the Fermi velocity.

In Figure one clearly sees an unique feature of one-dimensional systems, the fact
that no low-energy excitations exist apart from the points ¢ = 0 and ¢ = 2kp. This
can be easily understood by noting that there exists no Fermi surface in one dimension,

12
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just two distinct points. The reduced phase space of the low lying excitations leads to a
breakdown of the Fermi liquid theory for the interacting system and to a new concept,
the so-called Luttinger liquid @, IE] One finds that the excitation spectrum from the
susceptibility is qualitatively the same as in Figure Yet there are differences, for
example the Fermi velocity in (ZI9) is renormalized with the interaction [IE],

7t sin(2n)

= 2.20
b=, (2:20)

where 7 is a parametrization of the interaction and is defined by
V = —2tcos(2n). (2.21)

The static susceptibility is also renormalized:

™ —2n

X0 (2.22)

" 2m sin(2n)
The other relevant low energy limit is ¢ — 2kp. In this case the susceptibility shows a
power law divergence, given by [71]]

1
x(q,w) ~ gk (2.23)

where © parametrizes the interaction according to 20 =1 — %arcsin A.

13
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3 Static density functional theory

In this chapter we examine density functional theory for static potentials and phases.
Its basic idea is to express the ground state energy of an interacting many-body system
as a functional of the densmes The existence of such a functional is provided by the
Hohenberg-Kohn theorem ] which we present in Appendix In a next step one uses
the constrained search method [Iﬁ Iﬁ %l] and a variational principle E] to determine
a single-particle Hamiltonian, the so-called Kohn-Sham Hamiltonian, whose eigenstates
allow the calculation of the true ground state energy and density of the interacting
Hamlltoman An introduction to density functional theory can be found for example
in [Iﬂ Iﬁ . However we take another point of view and present density functional
theory in the context of Legendre transformations [@] which lies also at the heart of
the constrained search method M] Besides a clear and insightful formulation of DFT,
the approach using the Legendre transformation also gives a clear and precise way for
extending density functional theory to more complex problems like the inclusion of vector-
potentials, finite temperatures or systems, which are out of equilibrium. However, within
this chapter we confine ourselves to models with static potentials v; and vector-potentials,
which only enter via the phases ¢; in the hopping term. After the formulation of density
functional theory in the next section we introduce some approximations for an essential
ingredient, the so-called exchange-correlation potential. Amongst them are the local
density approximation and the exact-exchange method. Finally, in the last part of this
chapter we investigate the quality of the approximations. The discussion on the local
density approximation is also presented in [[71].

3.1 Density functional theory by Legendre transformation

The principal idea behind current density functional theory is to establish a mapping
between an interacting many-particle system H with local potentials v; and phases ¢; and
a single-particle system H* with effective potentials v; and phases ¢;. These Hamiltonian
can be written as

A= 3 (4efey, +e7e 0 ) + VS g + 3 uiy (3.1)
l l l
and

=ty <ei¢?@l+@l+1 +e e ¢, ) +3 vy (3.2)
l l

The ground state energy of the Hamiltonian (&l), E = (H), is then a function of the po-
tentials {v;} and the phases {¢;}. Their conjugated variables, the densities and currents

15
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can then be found as
oFE

. ) . OFE
nl:<m>:3—vl’ ]l:<]l>:8—¢l-

Now we introduce the Legendre transform F' of the ground state energy which transforms
from the potentials and phases to the new variables {n;} and {j;} according to the relation

Fln,jl=E=> wm— > duj. (3.4)
1 1

(3.3)

Here n and j is a shorthand notation for the sets {n;} and {j;}. The local potentials and
phases can be recovered by

oF oF
v =—— =——. 3.5
In order to establish the mapping between the interacting and the single-particle
system, the ground state energy of the latter is transformed analogously,

Fon®, 5% = E* =Y oin} = > _ ;. (3.6)
l !

Considering the single-particle system at the same densities as the interacting system,
n; = ng and j; = j;, rewriting F' as F® + (F — F**) and using the back-transformation
(B3) gives a relation between the single-particle and many-body potentials,

aEHXC 5 aEHXC

v = + (3.7)
Here we have defined the Hartree-Exchange-Correlation energy as EHXC = [ — S, The

difference HXC
OF HXC

on; Y
is then the so-called Hartree-exchange-correlation potential. In the traditional formu-
lation of DFT the mapping between the interacting and the single-particle system is
provided by the Hohenberg-Kohn theorem and the so-called v-representability of the
interacting density. In our context these theorems ensure the existence of the Legen-
dre transformation and the back-transformation. The Hohenberg-Kohn theorem can be
found in Appendix [Bl and the relation between these theorems and Legendre transforms
is discussed in more detail in Appendix

The ground state energy of the interacting system can be found by the reversed
transformation, F' — FE, which can be expressed in terms of single-particle quantities as

E=F+) vm+ )Y i
I I

=F*+ (F = F*)+ Y _[of + (o — o)l + > _[¢5 + (0 — 67 (3.9)
l 1

(3.8)

v =y =

= F5 4 pHXC | Z(vl — 7)) + Z(le — &])Ji-
1 l

16
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E® can be evaluated as the sum over the N lowest eigenvalues of the single-particle

system
N

B =) ¢ (3.10)

j=1

Clearly, the ground state energy is not only the sum of eigenvalues of the noninteracting

Hamiltonian, but one also has to take the correction EHXC — > leXCnl into account.

As we will see later these corrections are quite important and should not be neglected.
Introducing explicitly the Hartree contribution, EH, through

EHXC — pH 4 pXC (3.11)
with EH =V >, un+1, we arrive at the standard relation
vf = vy + o +ufC. (3.12)

The Hartree potential is apparently le = V(n;—1 + ny41) and the exchange-correlation
potential is given by

) EXC
In addition we get for the single-particle phases
aEXC
&=+, HC= 7 (3.14)

since the Hartree energy depends on the densities only. Please note that the single-
particle potentials and phases depend, by construction, on the densities and the currents.
Therefore the auxiliary system has to be determined self-consistently with respect to the
densities and currents. The exchange correlation energy can be formally written as

EXC = (0] T+ V[0) — (05 T°(05) — E" + >~ 6%y (3.15)
l

where |0) and |0s) are the ground state wave functions of the interacting and the single-
particle system, respectively. Up to now we have been avoiding the problem of determin-
ing the exchange-correlation energy explicitly. Since this is a hard problem we have to
make some approximations. Some of the possible approximations are presented in the
next sections.

3.2 Approximations

3.2.1 Local density approximation

A simple approximation for the exchange-correlation energy is the so-called local density
approximation (LDA). There the exchange-correlation energy is written as

EXC[n, 4] = & (ny, 1) (3.16)
.

17
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Thus the exchange-correlation potentials and phases

EXC XC EXC XC
XC — a _ 86 and XC — 8 = 86 . (317)

Y oy Oy ! ¥l ¥l

C can be

are functions of the local density and current-density only. This local energy e*
determined from the exact exchange-correlation energy of the static homogeneous system

for given density n and current j,

EXC
X0 = — (3.18)
where EXC is calculated from the exact ground state energy according to equation (BIH).

For the three-dimensional electron gas this energy is usually obtained by analytical cal-
culations for certain limiting cases and quantum monte carlo simulations followed by a
interpolation procedure ﬂ, % . For our system of spinless fermions this can efficiently be
done with the Bethe ansatz [57], hence we call the exact ground state energy EBA(n, 7).
A detailed presentation of the Bethe ansatz is shown in the Appendix Admittedly
the Bethe ansatz solution is found as a function of n and ¢. Thus the phase variable has
to be eliminated from this expression in favor of the current, using the relation

- 10B%A(n,¢)

I 5 (3.19)

for the homogeneous system. The second term in (BIH), which we denote E°(¢), is given
by the single-particle result (—n/L < ¢ < /L)

2
E%¢) = E° cos ¢, EY ~ ——tL sin(mn), (3.20)
T

where the latter relation holds for large L. Since ¢ ~ 1/L, we may expand for small ¢;
in particular, the Drude weights, DBA and D, are defined according to the following
relations (¢ — 0):

EBA(¢) — EBA(0) = DBALg? (3.21)

E%¢) — E°(0) = D°L¢? (3.22)

Note that DBA and DP are functions of the density, and DB depends on the interaction
V. For example, D? = (t/7)sin(n7) = vp /27, where vp is the bare Fermi velocity, and
DBA = wtsin pu/[4u(m — p)] for half filling (n = 1/2), where V (in the range —2t...2t)
is related to p by V = —2t cos p [80].

Combining the above relations, we obtain

1 1
C(n,j) = 7 (B (n,0) = E%(n,0)) = Vn® + 3%, (3.23)

where

1/ 1 1
NE(n) =5 <D0(n) - DBA(n)> : (3.24)

18



3.2. Approximations

vXC(j = 0)/t

Figure 3.1: Exchange-correlation potential as function of the density at j = 0 for various interactions.
Potentials with V' > 2 have a jump at n = 0.5.

Note that AX¢(n) < 0 since DP(n) < D(n). The resulting approximation may be
called current-LDA (C-LDA) and is obviously exact if the system is homogeneous. The
exchange-correlation potential for current j equal to zero and the second-order contribu-
tion AXC are depicted in Figures Bl and B2, respectively. The validity of the approxi-
mation for other than the homogeneous system will be examined later.

3.2.2 Gradient approximations

In contrast to e.g. the Hartree-Fock approximation, density functional theory within
the local density approximation is a local theory. This has the advantage that the
computational costs are significantly lower in DFT+LDA. A way to improve LDA is
to take not only the local densities but also its gradients into account

EXCln] =Y X (ny, V). (3.25)
l

This definition leads to the so-called generalized gradient approximation (GGA). A short
overview on GGA and earlier gradient approximations can be found for example in [Iﬂ]
and a variety of different functionals in use are shown in ﬂ] The construction of a
modern GGA, based on a number of exact conditions, can be found in M] However,
within this work we will not investigate the gradient approximations, so we do not go
into more detail.

3.2.3 Exact-exchange method

Another way of approximating the exchange-correlation energy is the exact-exchange
method (EXX) which is exact up to first order in the interaction m, @] It shows
some similarities with the Hartree-Fock approximation, but retains some of the com-
putational simplicity of the density functional formalism, which is especially relevant

19



Chapter 3. Static density functional theory

N<< /2t

Figure 3.2: Second order correction to the exchange-correlation potential for currents j # 0 as a function
of the density.

for systems with long-range interaction. For our one-dimensional artificial system with
nearest-neighbor interaction Hartree-Fock calculations are faster since it only modifies
the secondary diagonals of the Hamiltonian while the exact-exchange method needs a
complicated calculation scheme, as we will see in the following.

In principle the exact-exchange approximation, also known as the optimized effective
potential approach E IE Iﬁ] even allows higher order approximations. Basically this
scheme expands the ground state energy in orders of the interaction just as in usual
perturbation theory. The first order contributions are the Hartree and the exchange
energy,

EUXCIn) ~ EMn) + EX[n), (3.26)

where EM[n] =V 3", mym41. The exchange energy is given by

occ.

:—VZ ng] n](l+1)

where the sums over j and k go over the occupied states ¢ of the single-particle Hamilto-
nian, i.e. the lowest N eigenstates. The main difference to the usual perturbation theory
is that the orbitals ¢;[n| depend on the densities and are eigenstates of the Kohn-Sham
Hamiltonian but not of an arbitrary single-particle Hamiltonian, as the Hartree-Fock
orbitals would be. The corresponding potential is then obtained by taking the derivative

occ.

Zwk [+ 1) eg[n](D) ], (3.27)

<X QEX 9pi(1") duy OEX  9p:(I") vy
§:§:a @ (3.28)

N 8’01/ anl 8(10: (l”) 87}[’ (“)nl ’

The indices I" and 1" go over the lattice (1...L) while the sum over i again goes over the
occupied states. The first term of both summands on the right hand side is simple to
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determine from (B27) and we have for example:

aEX ocCcC. . . . .
Do) = VS (@i (1" + 1) pf (1 + 1) + 05 (17 = D)l (1) (17 = 1)) . (3.29)

J

The second terms in ([B2Z) can be found by first order perturbation theory. Consider
the Hamiltonian H® which corresponds to the eigenstates ¢; and perturb it with a small
potential term dvpny. Then the derivative is

vy +0v;, (7
880z‘(l”) ‘ o +oy; (l”) — o (l”)
= llm 2 ? = E

ov Sv;1—0 ov
14 vy 14 k£i

P O)el)

€ — €k

(1" (3.30)

The €, are the eigenenergies of the single-particle Hamiltonian. The sum over k includes
all eigenstates of the Hamiltonian except the i-th. Finally, the last expression of (B2
is the inverse of the susceptibility and can be derived by applying ([B30) to the relation

ny =35 05 (D (1):

oy pi sog soj(l)soz(l)
X = avl, ZZ:; — E —|— C.C. (331)

Combining the results and inserting into (B28]) one gets an expression for the exchange
potential

— €
v i,y k# €i k

(3.32)
Note that the susceptibility y has an eigenvalue which is zero. This eigenvalue corre-
sponds to a homogeneous change of the density and thus is not particle number conserv-
ing. So we have to exclude it before inverting .
The calculation of this exchange-potential is already numerically expensive. So, al-
though possible, the inclusion of higher order terms is not feasible. However, the correla-
tion energy can be approximated analogous to the local density approximation (BIHI),

EUXCln] = E%n) + EX[n] + Z (3.33)

C

where €~ can be determined from the exact solution of the homogeneous system. In the

following we denote the resulting approximation by EXX+LDA.

3.3 Practical applications

We have seen that density functional theory provides a way of mapping many-body prop-
erties onto a single-particle problem. Unfortunately therefore one has to make two sac-
rifices. First, one cannot extract every many-particle quantity from a density functional
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calculation. For example the excitation energies or the density of states are concepts
that lie outside the static formalism. The second sacrifice is the approximation of the
exchange-correlation potential. So there are certainly limitations to density functional
theory and it is the aim of this section to investigate them. A thorough review of the
quality of the local density approximation when applied to realistic materials can be
found for example in [83].

3.3.1 Charge gap in the spinless fermion model

An important quantity to distinguish metals from insulators and to characterize the in-
sulator is the band gap (see for example @]) It is common knowledge in the DFT
community that usually the local density approximation underestimates the band gap
while the Hartree-Fock theory would overestimate it. So sometimes a material is found to
be a metal in density functional calculations while experiments show it to be a semicon-
ductor or insulator. The band gap problem has been studied intensively in the literature,
in particular it has been pointed out that a discontinuity in the exchange-correlation
potential is cruciai%ﬁ @] Lattice models are quite useful for the understanding
of such problems |22, 23, EZ] We now repeat some of the work done for our model of
spinless fermions. The charge gap can be defined as the difference

A= puni1— pN, (3.34)

where py is the chemical potential of a N-particle system and, according to m], can
be calculated as uy = Fny — En_1. The Kohn-Sham gap is defined as the difference of
the lowest unoccupied (molecular) orbital (LUMO) and the highest occupied (molecular)
orbital (HOMO),

AKS — ey —en. (3.35)

If the exchange-correlation energy has no discontinuities as a function of the particle
number M], the two quantities are identical in the thermodynamic limit. Please note
that we need to solve three self-consistent calculations for particle numbers N — 1, N
and N + 1 to obtain A, while AKS only uses results from a N-particle calculation.

For the investigation of the charge gap we first look at the homogeneous system. There
a gap opens for strong interactions V > 2¢. In this case the local density approximation
gives the correct ground state energies En. Thus the gap A obtained from the homoge-
neous system is obviously exact. On the other hand, since the system is homogeneous, the
Hartree potential and the exchange-correlation potential also have to be homogeneous.
Therefore the potentials contribute only by a global energy shift. The eigenstates of this
Hamiltonian are then just plain waves with a cosine dispersion and no gap at all. So
we see that in this case the Kohn-Sham gap AKS is always zero for arbitrary interaction
strength, whereas A # 0 for V' > 2t. We can now conclude that the exchange-correlation
potential is discontinuous, as seen also in Figure Bl So in this case the band gap is
completely due to the discontinuity of the exchange-correlation potential.

Next we investigate the gap in a weakly interacting system, i.e. within the gapless
phase with |V| < 2. There we open a gap by inserting the potential v; = wcos2kpl,
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Figure 3.3: Charge gap of a system with a staggered potential (u = 2¢) as a function of the interaction
at half filling. We compare three different gaps: The exact gap (solid green line) and the LDA gap
(dotted blue line), both obtained as the difference of the chemical potentials, the LUMO-HOMO gap
(dashed red line) as obtained from a DFT calculation with the exact exchange-correlation potential.
The system size is L = 26.

where kp is the Fermi vector and u is the strength of the potential. In case of half filling
this leads to a staggered potential

w  if [ is even,
v = (3.36)
—u if [ is odd.

The calculation of the gap with various methods gives the results shown in Figures
to In Figure we use a half filled system to compare the exact charge gap, as
obtained from exact diagonalizations, to the LUMO-HOMO gap from a density functional
calculation with the exact exchange-correlation potential and the DFT+LDA gap. We see
that for a noninteracting system the band gap is of the size of the potential (2u = 4t) and
increases with interaction. In contrast to the homogeneous system the Kohn-Sham gap is
now not equal to zero. However both, the full gap with the local density approximation
and the LUMO-HOMO gap with the exact exchange-correlation potential, are far too low
compared to the real size of the gap. To substantiate this finding we show some results
at quarter filling in Figure B4 Again we see that, while the real gap is growing with
increasing interaction, the gap predicted by the LUMO-HOMO value of exact density
functional theory is almost constant and the LDA gap is even decreasing.

This behavior coincides with the common knowledge that LDA usually underestimates
the band gaps. On the other hand it is found that within Hartree-Fock theory the
predicted band gap is often overestimated compared to experimental data. Since for
weak interactions the exact-exchange approximation is equivalent to Hartree-Fock theory
we expect an oversized band gap from the former. If we look again at the two situations,
half and quarter filling, we find the results depicted in Figures B and meet these
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Figure 3.4: Charge gap of a system with a staggered potential (u = 2¢) as a function of the interaction
at quarter filling. We compare three different gaps: The exact gap (solid green line) and the LDA gap
(dotted blue line), both obtained as the difference of the chemical potentials, the LUMO-HOMO gap
(dashed red line) as obtained from a DFT calculation with the exact exchange-correlation potential.
The system size is L = 28. The LDA calculations did not converge for V' > 1.2¢.

expectations. Furthermore we see that at half filling the exact-exchange method is quite
good for all considered interactions and in both cases tremendously better than the LDA.
However, these results can still be improved quite easily by using the exact-exchange
approximation together with a local density approximation for the correlation energy
(EXX+LDA).

3.3.2 Stability of the homogeneous system

In Section we discussed the phase diagram of the interacting spinless fermions. For
repulsive interactions, V' > 0, the system exhibits a ordered phase for V' > 2t at half
filling and is gapless elsewhere. In the case of the ordered phase the homogeneous system
is unstable with respect to small perturbations, thus an infinite small perturbation leads
to a staggered density profile. In the gapless phase on the other hand the homogeneous
system is stable against such perturbations.

In this section we follow our results in @] and investigate the stability of the homo-
geneous system within the local density approximation. This is done by means of the
charge susceptibility x(q), which is defined via the relation

dng = —x(q) 0vg. (3.37)

ong and dv, are the Fourier transforms of the on-site densities n; and the potentials vy,
respectively. Analogous we can define a single-particle susceptibility x®(¢q) through the
change of the density by a change of the (effective) single-particle potential

dng = —x*(q) dvy. (3.38)
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Figure 3.5: Charge gap of a system of size L = 26 with a staggered potential (u = 2t) as function of
the interaction at half filling. We compare the exact result (solid green line) with density functional
results obtained within the local density approximation (dotted blue line), the exact-exchange approx-
imation (red +) and a combination of both, where the correlation energy is approximated by a local
approximation (black x).
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Figure 3.6: Charge gap of a system of size L = 28 with a staggered potential (v = 2t) as function of
the interaction at quarter filling. We compare the exact result (solid green line) with density func-
tional results obtained within the local density approximation (dotted blue line), the exact-exchange
approximation (red +) and a combination of both, where the correlation energy is approximated by
a local approximation (black x).
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Using equation B2, dvfl/dng = dqq 0v;' /0n, and the analogous result for 61);(0/611(1/
we rewrite dvy as

St — Gy + 0l 4 603XC — 0+ 20 4 T ) 5 3.39
vy = 6vg + 0v, + 0v, T = dvg + 5nq+ 5, ng. (3.39)

Inserting (B331) into this expression and equating (B31) and ([B38) gives then a relation
between x(¢q) and x*(q),

x(q) = x*(q) {1+ [2V cos(q) + [*“(a)] x(0)} (3.40)

. _ x*(q)
14 [2V cos(q) + fXC(q)] x*(q)

Here, 2V cos(q) is the Hartree term from (B39) and fXC is the derivative of the exchange-
correlation potential with respect to the density. In the thermodynamic limit (L — o0)
the susceptibility of the auxiliary system is given by

x(q) (3.41)

B 1 N sin(q/2) + sinkp
 drtsin(q/2)  |sin(q/2) — sinkp

X*(q) (3.42)
with the Fermi wave vector kr. Equation (BZI]) is exact if one knows the exact expression
of the exchange-correlation kernel fXC(q). In case of the local density approximation this
kernel is independent of ¢ and only depends on the filling.

The stability boundary of the homogeneous system is determined by the condition
that the static susceptibility becomes infinite and changes sign, i.e. if

1
x*(q)

Due to the logarithmic divergence of x*(q) for ¢ — 2kp this is equivalent to the condition
that V(q) + f*%(q) changes sign. Figure B shows the region of stability for the local
density approximation in the n-V-plane for the infinite system and for finite systems of
length L = 103 and L = 10%, respectively. If we investigate the weak interacting case in
more detail we find

+V(g) + fX%q) =0. (3.43)

2
2 = % (B4 — M) = —V (2kp) + O(V?), (3.44)
which cancels the V(g)-part of the denominator for ¢ — 2kp. So in first order in the
interaction we cannot draw a conclusion about the stability of the homogeneous system.
Numerically one finds that the second order correction of fﬁiDCA changes sign at n. ~ 0.331,
thus limiting the range of stability to n. < N < 1—mn, at weak coupling. In contrast, the
Hartree approximation is stable only for V(2kr) > 0, i. e. below quarter and above three

quarter filling, while the exact ground state is unstable only at half filling for interactions
V > 2t.
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Figure 3.7: Region of stability as a function of the density and interaction for a homogeneous system.
The shaded areas show the stable regions of the local density approximation for different system sizes.
The solid red line at n = 0.5 depicts the charge instability obtained from the exact ground states.
The dotted red line marks the border of the stable region of the Hartree approximation (n < 0.25 and
n > 0.75).

Since the single-particle susceptibility at 2kp diverges only logarithmically with system
size L there are pronounced finite size effects that strongly enlarge the region of stability
within the local density approximation. As a consequence within LDA finite homogeneous
systems are stable for all densities from weak to intermediate interaction strength, as can
be seen in Figure B for L = 10% and L = 10%.

We did not study the stability of the exact-exchange method. In principle the exchange-
correlation kernel is known for this approximation @, ], but in order to use condition
(BA3)) for finding the stability boundary one has to evaluate a quite complex expression.
Another way to address this issue is to investigate wether, starting with an inhomoge-
neous system, the self-consistency procedure for solving the single-particle Hamiltonian
leads to an homogeneous or inhomogeneous density profile. However, due to finite size ef-
fects and finite numerical accuracy the results for the boundary are inconclusive. On the
other hand it seems that the region of stability is strongly reduced within this method, at
least near half filling. There the homogeneous system is definitely unstable for interaction
V =t, maybe also for weaker interactions.

3.3.3 Static susceptibility

Here we investigate the static density-density response function in more detail, at first
for the local density approximation, later within the exact-exchange formalism. In Fig-
ures and Bd we compare x"P2(q) with exact susceptibilities obtained from exact
diagonalization of small systems. As to be expected, in the long wavelength limit,
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Figure 3.8: Static susceptibility at half filling for interaction V' = ¢. The symbols are results from exact
diagonalizations at system sizes L = 14,16, 18, 20,24. The line is the result from a LDA calculation
at L = 202.
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Figure 3.9: Static susceptibility at quarter filling for interaction V = ¢. The symbols are results from
exact diagonalizations at system sizes L = 12,16, 20, 24. The line is the result from a LDA calculation
at L = 204.
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q — 0, perfect agreement is found. Technically, there is a cancellation between the
susceptibility 1/x°(0) = 2ntsinkp and the second derivative of the Hartree energy
el = —(2t/7) sin kr + Vn? with respect to n = kg /7. Therefore

326BA>_1 10N

= —— 4
on? L ou (345)

X"PH g —0) = <
which is the exact uniform susceptibility of the interacting system. Unfortunately already
the next to leading contribution, ~ ¢, is not obtained correctly within LDA. At half
filling the discrepancy between the LDA susceptibility and the exact one becomes more
and more pronounced for ¢ — 2kp = 7. At ¢ = 2kp the exact susceptibility diverges
with the power law (ZZ3)), while in LDA there is only a cusp. The cusp value itself
remains finite and approaches x“PA (1) = 1.668/t for L — co. At quarter filling x*P*(q)
is very close to the exact susceptibility for ¢ < 2kp, while for ¢ > 2kp there is a clear
discrepancy. For ¢ = 2kp = 7/2 the exact result again is strongly size-dependent but
finite whereas the LDA result diverges already at finite system size, since at quarter
filling one is already outside the range of stability of the local density approximation.
In order to obtain the next to leading contribution correctly we could use a gradient
approximation. In general, higher orders could be obtained by using the exact results for
the susceptibility to reconstruct the exchange-correlation potential. For a short overview
on this problem we refer to Appendix

Let us now turn our attention to the exact-exchange approximation. If we repeat our
investigation of the static susceptibility we find Figures B0 and BI1l Additionally we
show results where we have improved the exact-exchange approximation by including
the correlation energy within a local approximation. If we focus on the pure exact-
exchange approximation we see that it agrees far better with exact results than the
LDA for a wide range of g-values. However, in the long-wavelength limit where the
local density approximation is (almost) exact we see a sudden decrease which does not
reflect the true result. This result can be connected to our previous discussion of the
stability of the homogeneous system as follows: To obtain the static susceptibility, we
explicitly calculated the density response to a small perturbation. The decrease of the
susceptibility at small ¢ implies that the calculation converged to an ordered phase.
Thus we find that the exact-exchange method predicts the homogeneous system to be
instable even for the weak interaction V' = t. However, looking at the results for the
exact-exchange approximation where the correlation energy has been treated with a local
density approximation, it seems that this instability can easily be cured. For the sake of
completeness we also show Figure BTl where we compare these two approximations with
exact results at quarter filling. Again we see that a better treatment of the exchange
part gives far better results at higher g-values than the local density approximation.

3.3.4 Scattering from a single impurity

To elaborate more on the problem of the 2kpr divergence we now investigate a model
with non-zero potential v;. An important example of such a model is the case of a single
impurity, i.e. v; = vjmp at the impurity site and v; = 0 elsewhere. In particular, we take
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Figure 3.10: Static susceptibility for a homogeneous system at half filling for interaction V' = ¢. The
symbols are results from exact diagonalizations at system sizes L = 12,16,20,24. The red line
is the result from a DFT calculation at L = 102 within the exact-exchange approximation. The
black line stems from a similar calculation where additionally the correlation-part of the energy was
approximated using the local density approximation.
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Figure 3.11: Static susceptibility for a homogeneous system at quarter filling for interaction V = t¢.
The symbols are results from diagonalizations. The red line is the result from a DFT calculation
at L = 100 within the exact-exchange approximation. The black line stems from a similar calcula-
tion where additionally the correlation-part of the energy was approximated using the local density
approximation.
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a look onto the scattering at such an impurity, where, in one dimension, the reflection
and transmission coefficients are strongly renormalized by the interaction @, , El]

This renormalization can be understood by a simple picture developed by Matveev et
al. [@] Without interaction an impurity leads to modulations of the density (known as
Friedel oscillations) which decay as 1/r with the distance r to the impurity. The presence
of electron-electron interaction leads to additional scattering at these density oscillations.
For wave vector ¢ close to kg the correction to the bare transmission 7y up to linear
order in the interaction is given by [El]

1
0T 2a74(1 — 7p) In <|q — k:p|d> . (3.46)
The parameter d characterizes the typical length scale of the interaction, i. e. it is equal to
one for nearest-neighbor interaction. The prefactor « takes the interaction strength into
account. It is given by the sum of the Hartree and exchange contributions, a = agy + ay,
with ap = =V (2kp)/2mvp and ayx = V(0)/2mvp. Please note that equation [BZH) is
valid as long as §7 < 1, thereby implying

aln(l/]lqg — kpld) < 1. (3.47)

Because of this condition we cannot use equation (B0 for arbitrarily small |¢ — kp|. In
order to obtain the transmission within this limit we have to sum the leading divergences
to all orders in the interaction. This can be done by using a renormalization group
approach M]

According to equation (BZ0), a small change dgq of a wave vector ¢ (¢ > kp) leads to
a renormalization of the transmission,

(g —dg—kr)d
(q—Fkr)d =
Using this renormalized transmission 7 (¢ — dgq) instead of 7y as new initial value we

repeat the renormalization procedure. Thus the change of the transmission due to a
change of the wave vector is given by

dgd
(q—kp)d
We now repeat this renormalization step by step until we reach the finite size limit
g—kpr = 2w /L. The total renormalization of the transmission is then found as the solution
to the differential equation ([BZ9). The typical scale of the initial value is ¢y — kr o< 1/d

and corresponds to the bare transmission 7 = 7;. The solution of this equation at
q — kp = 27 /L is then given by

7(q) =T (¢ —dgq) = —2aTp(1 — 7o) In (3.48)

d7 =2a7(1-1T) =207 (1—-T)-dIn{(q — kr)d}. (3.49)

_ T (27/[qo — kr|L)™
Ro+To (27 /[q0 — kp]L)**’

where Rg = 1—7 is the bare reflection probability. Thus it is found that the transmission
at ¢ — kp renormalizes algebraically with the system size and approaches zero in the

(3.50)

thermodynamic limit, even for a weak defect (repulsive interaction).
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Figure 3.12: LDA results for the Drude weight of a half filled system with a single impurity as function
of the interaction strength, for several values of the impurity strength vimp = 0, ¢, 2t, 3t, 4¢, 5t, 6¢ (from
top to bottom), and different system sizes. In contrast to the exact results, within LDA the Drude
weight is practically independent of the system size.

Repeating the previous arguments within the density functional formalism, thereby
rewriting the exchange-correlation potential as leC = > fl)f,cém/, we find the inter-
action parameter a = —[V(2kp) + fX¢(2kr)]/2mvr. As before the first term of this
expression is the Hartree contribution. However, within the local density approximation
the second term is f{§y = —V(2kr) + O(V?) which cancels the Hartree term. Therefore
the transmission is not renormalized in DFT+LDA up to first order in the interaction.

To substantiate this finding numerically we calculate the Drude weight D for a system
with a single impurity. It is defined as the response of the system to a change of boundary
conditions according to

L d*E
“3 @,

where F(®) is the ground state energy. @ can be interpreted as the magnetic flux
through the one-dimensional ring or a twist in the boundary conditions, such that ® =0
corresponds to periodic and ® = 7 to antiperiodic boundary conditions [@, @]

We choose the Drude weight for characterizing the transmission through the impurity
for several reasons: First, it is calculated from the ®-dependence of the ground state
energy and thus much simpler to obtain than the transmission which is a property of the
wave function. Second, unlike the wave function the ground state energy is a well defined
quantity within the density functional formalism and its dependence on the magnetic
flux is also justified by means of CDFT. On the other hand the Drude weight is closely
related to the transmission through the defect @, @, @] In the noninteracting system
— where 7 is not renormalized — the size dependence of D is negligible. In the interacting
system, on the other hand, the transmission coefficient for (¢ —kr) ~ vp/L is relevant as
discussed above. Correspondingly, the Drude weight increases (decreases) algebraically
with system size for repulsive (attractive) interaction [@, El, .

(3.51)
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Figure 3.13: Exact exchange results for the Drude weight of a half filled system with a single impurity
as function of the interaction strength. The colored lines are calculated at impurity strength vimp = ¢
for different system sizes. The dashed gray lines are the corresponding results for vimp = 2t.

In Figure we present our LDA results for the Drude weight at half filling, for
different system sizes (L = 62,102,202) and different values of the impurity strength
(Vimp = 0,¢,2t,3t,4t,5t,6t). Unlike the (numerically) exact results @], we do not ob-
serve any dependence on system size within the local density approximation, which is
in agreement with the perturbative argument given after equation (BR0). On the other
hand, if we use the exact-exchange method we do find a renormalization with system size.
In Figure we present the Drude weight for three different system sizes as function of
the interaction. For clarity we restrict ourselves to two impurity strengths (vimp = t, 2t).
If we investigate the size dependency more closely at different interactions, we find the
results depicted in Figure BI4l There we have plotted the Drude weight as function
of the system size. One clearly sees an exponential decrease of the Drude weight with
increasing system size, in contrast to the algebraic decrease predicted by ([Bh0). Recall
that the exact-exchange method predicts an ordered ground state, and thus a gapped
system. In this context the exponential decrease of the Drude weight is no surprise.

Since in Chapter we could cure this problem of the exact-exchange method
by including the correlation term within a local approximation, it is interesting, how
EXX-+LDA affects the renormalization of the Drude weight. In order to investigate this,
we shortly repeat our discussion on the basis of the two Figures and B16 In the first
figure, BT0 we show again the Drude weight as a function of the interaction for different
system sizes and impurity strengths. Again we find a renormalization with the system
size. In addition, the comparison with Figure B-T4] shows that the renormalization is not
as strong as within the pure exact-exchange method. Studying the dependence of the
Drude weight on the system size we find Figure There we plot the behavior of the
Drude weight for several interactions V. As one can see, for interaction V = ¢ we still
see the exponential behavior, which indicates a gap, albeit a much smaller one than in
EXX. For weaker interactions the limit of large system size also can be described by an
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Figure 3.14: Exact exchange results for the Drude weight of a half filled system with a single impurity
(vimp = t) as function of the system size at different interactions. The dashed lines are fits with
exponential functions.
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Figure 3.15: Results for the Drude weight of a half filled system with a single impurity as function of
the interaction strength within the EXX-+LDA approximation. The colored lines are calculated at
impurity strength vimp = t for different system sizes. The dashed gray lines are the corresponding
results for vimp = 2t.
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Figure 3.16: Results for the Drude weight of a half filled system with a single impurity (vimp = t)
as function of the system size at different interactions within the EXX+LDA approximation. The
upward axis uses a logarithmic scale. The dashed lines are fits with exponential functions. So for
large size L the system renormalizes exponentially.

exponential function, although we see differences for small systems. In any case, even
EXX-+LDA does not reproduce the algebraic dependence on the system size as expected

from equation (B20).
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4 Time-dependent density functional
theory

In the last section we analyzed static density functional theory together with two ap-
proximations, the local density approximation and the exact-exchange method. We have
seen that one can extract the ground state energy and density from such a calculation.
However, often one is also interested in excitation energies or the dynamical response
to some applied field. Access to these quantities can be gained via the time-dependent
density functional theory introduced by E. Runge and E. K. U. Gross [ﬁ] and put on a

more formal basis by R. van Leeuwen [10]. A comprehensive treatment of this topic can
be found for example in |93, ]

4.1 Time-dependent density functional theory by Legendre
transformation

As we have seen in the last chapter the basic idea of static density functional theory is
the mapping of an interacting Hamiltonian onto a noninteracting one. In the case of a
time-dependent system the idea is the same, to provide a mapping from the interacting
Hamiltonian H onto an effective single-particle system Hs. Thus, one has to map the time
evolution of the interacting system, given by the time-dependent Schrédinger equation,

. d .
i [¥(®) =H® @), (4.1)

onto the evolution of a single-particle system. An important ingredient for the existence of
the mapping within the static formalism is the Rayleigh-Ritz principle, i.e. the minimal
property of the ground state energy. For time-dependent systems this principle is no
longer applicable. The role of the ground state energy can, however, be played by the
quantum mechanical action, which shall be introduced in the following. Thereby we
follow the reasoning in [IE] or the third chapter of [@], which is based on the Keldysh
technique m, m] We consider here a system at finite temperature 1" since it is easy to
incorporate into the formalism. Of course, the limit 7" — 0 is no challenge.

4.1.1 The Keldysh time-evolution

First we introduce the time-evolution operator g(t,t’ ) which is defined by the relation
|W(t)) =S(t,t')|W(t')). Inserting this into the time-dependent Schrodinger equation and
its complex conjugate we find

. d g N _ L c / . d e AN AT
i S(11) = HO)S(t,¢) and ig;S(tt) = =S(t.#) H(E). (4.2)
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Chapter 4. Time-dependent density functional theory

0_ t_

Figure 4.1: Keldysh contour for the pseudo-time 7.

The solution to these equations is formally found as

S(t,t") = , (4.3)
_ .ot )
T |:eflft,dt1H(t1):| t < t/

where T is the chronological time-ordering operator which orders operators with later
times to the left and T is the anti-chronological time-ordering operator.

The expectation value of an observable O at some time ¢ can then be evaluated as
O(t) = Tr{poS(0,)OS(t,0)} where jg is the density operator at ¢ = 0. If the system is
in equilibrium for ¢ < 0, the density operator can be written as

A e—ﬁ(ﬂo—uN) . eﬁﬂNg(_iﬁ’ 0) (4 4)
P Tr{e PR} Tr{ePN§(<ig,0)} |
where 8 = 1/kgT is the inverse temperature and 4 is the chemical potential. The
expectation value of O is then found as
Tr {eﬁ“Né(—iB, 0)5(0,)05(t, 0)}
ot) = ) (4.5)

Tr {eBﬂNé(—iﬁ, O)}
We can interpret this result as an evolution along a contour from zero to time t, back
to zero and then along the imaginary axis up to —if as depicted in Figure EE1l In the
following we denote the evolution along this contour by the pseudo-time 7.

Before we can formulate the time-dependent version of density functional theory we
need one more property of the time-evolution operator. Introducing a small perturbation
6V(7) into the Hamiltonian H we get

1(%5@.(7, ) = 8V(r)S(7,7') + H(r)dS (T, ) (4.6)

for the change of the evolution operator. Using ([2) and the boundary condition
dS(7,7) = 0 we can solve this equation and we find for the change of the time-evolution

operator:
-

5§(T, ) = —i/ dTlé(T, T1)(5\7(T1)§(T1,T,). (4.7)

38



4.1. Time-dependent density functional theory by Legendre transformation

4.1.2 Action functional

The role of the ground state energy in static density functional theory is now played by
the functional

Alv, ¢] = iln T {eﬁ“Né(—iﬂ; o_)}. (4.8)

Please note that v and ¢ are contour variables, i.e. they may take different values on
the forward and the backward branch, and S is the time-evolution operator along the
contour in Figure L]l Physical potentials can be recovered by requiring v(ty) = v(t-)
after the calculation, where t; and #_ indicate equal times on the backward and forward
contour, respectively. Since we want to use a Legendre transformation to transform from
the potentials to their conjugate variables, the densities, and thus obtaining the effective
single-particle potential we need to check that for A equations analogous to B3) hold.
By using (1) we find for a variation in the potential

sA Tr{eﬂuNS(_lg 0)3(0, 7)y é( )}

= ny(7). (4.9)
su(r) Tr {eﬁﬂNS —i3,0_
Similarly we find for a variation in the phase
A
5o0(7) = ji(7). (4.10)

In the next step we perform the Legendre transformation from the potentials and phases
to the densities and currents,

Aln, j] /dTan oy (r /dTZﬂ )Py (T (4.11)

The subscript C' implies integration over the whole contour. As usual one recovers the
local potentials and phases by

57;5[?7_) = —y(7) and 5;?247_) = —¢y(7). (4.12)

If we follow the same procedure for a noninteracting system He, ie. by defining a
time-evolution operator $°(¢,#') and then introducing the functional A® similar to ([EX),
we can again perform a Legendre transformation from the single-particle potentials and
phases to their conjugate variables

A%n, j] = A°[v®, ¢°] — /C dr ) " ny(r)vi(r) — /C dr > ji(r)ei (7). (4.13)
l l

Since we want our auxiliary system H* to yield the same densities and currents as the
interacting system H we relate A and A® through the identity

Aln, j] = A*[n, j] + (Aln, j] — A%[n, j]) = A%[n, j] + A"XCn, 4]. (4.14)
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Chapter 4. Time-dependent density functional theory

The last equality is simply the definition of the Hartree-exchange-correlation functional
AHXClp 4], Using @EIA) we find the following rule for determining the effective single-
particle quantities,

u(r) = vf(r) — o *(r),

4.15
au(r) = 61(r) — 65°(r), (415

where the Hartree-exchange-correlation potential leXC(T) is defined as

§AHXC
HXC _
v () = () (4.16)

Since the Hartree term does not depend on the currents, we find

XC dAXC

le (T) 6]l (7_) ) (417)
which also depends on all densities and currents. Please remember that all these quan-
tities depend on the contour-time variable 7 instead of the physical time ¢. Thus the
variation of the potentials (phases) in positive ¢-direction is independent of the variation
in negative t-direction. Physical potentials can be recovered by requiring physical den-
sities, i.e. they are the same on the forward and the backward branch of the contour.
Then we have

5AHXC
and (bxc t) = —
l ( ) 5jl

(4.18)

n=mi (1), =31 (1) S —

4.1.3 Gauge invariance

An important point we have neglected up to now is the gauge invariance of our system.
The influence of gauge invariance on density functional theory is twofold: On one hand
it is desirable that not only the interacting system but also the single-particle system is
gauge-invariant. On the other hand the gauge invariance affects the Legendre transform,
because the transform (EZI]) is no longer unique. So the question arises, if this non-
uniqueness affects physical quantities.

We begin by shortly repeating how a gauge transformation (J) affects the potentials
and phases:

&=+ X1 — Xi+1

, . (4.19)
V=0 — Xl

Thus, if we variate the generating functional A in the direction of these gauge transfor-
mations, we get

JA =AW, ¢') — Alv,¢] = — /CdT > Daumm(r) + Casa(r) = xa(m) aul(r)] . (4:20)
l
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4.1. Time-dependent density functional theory by Legendre transformation

Partial integration of the first term and resummation of the second term leads to
-/ dr Sl ) + () = ()] (421)

Since A is gauge invariant, it follows that 64 = 0 for all y;(7), thereby implying the
continuity equation (7). Thus our question from above has to be answered with: yes,
the gauge invariance does affect physical quantities, but in a completely desirable way,
since it enforces the continuity equation.

Of course, the gauge transformation is recovered by the back-transformation from
the densities to the potentials, A[n,j] — Afv,¢]. In this case one can exploit that
the Legendre transform uses an extremal condition (cf. Appendix [J) and calculate the
extremum under the constraint that the continuity equation is fulfilled,

n?]

Alv, ¢] = ext {A /dTZXl T) 4+ 5i(7) — jl_l(T)]} . (4.22)

Here the x;(7) are the Lagrange parameters. Invoking, as before, a partial integration of
the first term and a resummation of the second, the extremum is now given by

0A .
() + xi(1) = —v(7) (4.23)
and 5A
) + X141(7) = xu(7) = =i (7). (4.24)

Comparing this expressions with (EEI2)) we find the original gauge transformation [EI9).

4.1.4 Dynamical susceptibility and causality

After this introduction of time-dependent density functional theory we now turn our at-
tention to an important quantity which is accessible within this framework, the dynamical
susceptibility. For example, the explicit evaluation on the contour of the density-density
response function gives

Xon(l, 7,1 7) = —;Zl((:/)) = i(Te[Amy(r) Adp(r)]) . (4.25)

Here Any(7) is a density fluctuation operator An;(7) = 7y(7) — (f;(7)) in the Heisenberg
picture. Switching back to physical potentials, where dv(t) = dv(t4) = dv(t_), we find

67’Ll /dt/z l T, l T L_ —t =t X(Z,Ta l/’T/)|T_t ! } 5vl’(t/)? (426)
=t,T'=t}

where the change of sign in the second term comes from the integration on the backwards
branch of the contour. Inserting ([L2H) gives

67’Ll /dt/zxnn l t ll 5’01/( ), (427)
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Chapter 4. Time-dependent density functional theory

with the definition xZ (I,¢,1,t') = 1©(t — ') {[Ay(t), Ay (t')]) for the retarded density-
density correlation function. The step function © originates from the cancellation of
terms for ¢/ > t.

If we repeat the whole argument for the single-particle functional A° we find accord-
ingly the single-particle susceptibility x;,,. Since the solution of our single-particle system
provides us with x;,, and we are interested in the response Xy, of the interacting system,
we need a relation between the two. This can be found by noticing that the Legendre
transformation provides also a relation between A[n, j|] and the susceptibility,

1 52 A

L7 = —. 4.28
Denn (87,1, 7)] dny (1) ony (17) (4.28)
Then, using this relation together with (14l we find

[Xnn]il = [Xim]il + frljrcha (4.29)
where we defined the so-called Hartree-exchange-correlation kernel as

SuPXC (1)
HXC o l
L1 = —"". 4.30
nn ( y Tyl T ) 6’1’Ll! (7_/) ( )

Please note that it is defined as functional derivative on the contour. Applying the
same procedure as for the susceptibilities when going back from the pseudo-times on the
Keldysh contour to physical times gives a retarded Hartree-exchange-correlation kernel,
which therefore introduces a source of memory into the calculation. This causality cru-
cially depends on the fact that the variations of the potential along the forward and the
backward part of the contour are independent. If we would use physical potentials in the
definition of the susceptibility, for example,

6%A _omy(t)

= = —Xnn(l, 1,11 4.31
oy (t) duy () Sup (1) Xnn (L, 1, 1), (4.31)

the left-hand side would be symmetric under exchange of (I,t) an(lﬁé' , ﬁ Thus the
response function y would not be zero for ¢’ > ¢, i.e. not causal @, , 94].

In the preceding discussion we used Y, to illustrate the principle of the Keldysh
formalism, but similarly we may consider the density-current- or the current-current
correlation functions (xnj, Xjn and x;;). Hence we will use a matrix notation to denote

the susceptibility in the following,
R R
. X Xnj
x=\"% "7 (4.32)
Xin  Xjj

Accordingly the Hartree-exchange-correlation kernel has a similar structure,

fHXC fHXC
JEHXC _ nn,R nj,R (4 33)
- fHXC fHXC ? :
Jjn,R JiR

42



4.2. Approximations

where the elements f}fyxg are the retarded versions of
52AHXC
HXC o
Iyl =—\ 4.34
fu (1) Spu(7) dvyp (7') 3
Thus ([EE29) can be written in the form
o1 esi—1 L F . _s FHXCT 1 o
N7 =0T O o = [T (4.35)

The components of the matrix ([32) are related via the continuity equation or gauge
transformations. A short summary of these relations and a few symmetries can be found
in Appendix

4.2 Approximations

Clearly, similar to the static formalism, we have avoided the problem of solving the time-
dependent many-body Schrédinger equation by putting all interaction effects into the
Hartree-exchange-correlation potential. However, since we do not know this quantity,
we have to use some approximations. As already discussed in Chapter Bl we separate
the Hartree potential from the exchange-correlation potential. Since in the Hartree po-
tential the interaction is instantaneous there is no further complication within the time-
dependent formalism. So we have v"XC = ¢H 4+ 4XC and the kernel of the susceptibility
becomes fHXC = fH 4 FXC Therefore the susceptibility [E33) reduces to the standard
RPA expression if fXC = 0. Note that fH only has an nn-entry, in Fourier representation
given by V(q) = 2V cos q. However, as we saw in Section EET.4l the exchange-correlation
potential does in principle have a memory, i.e. it depends on all previous densities. The
simplest approximation is then to assume that the system evolves adiabatically, which
means that it is completely determined by the densities (and currents) at the consid-
ered time. In this case we can just reuse the exchange-correlation potentials and phases
calculated from the static exchange-correlation energy (B23)).

It does, however, make an essential difference if we consider charge densities only or
together with the current-densities. In the first case this assumption, together with the
local density approximation, gives the so-called adiabatic LDA, also known as ALDA,
while we denote the second case with C-ALDA where the C stands for the current. The
main difference between these two is that the ALDA is a truly local approximation both
in space and in time while the inclusion of currents takes some nonlocal effects, again both
in space and in time, into account [E] The reason for this is simply particle conservation
as can be seen from the continuity equation for our one-dimensional lattice model,

—wn(q,w) + 2sin%j(q,w) =0 (4.36)

or in real space

(t) = ji-1(t) = 5it). (4.37)
A more thorough investigation of nonlocal exchange-correlation potentials, that can be
constructed with help of currents, can be found in [ﬁ%'ﬁ] and the resulting functional has
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Chapter 4. Time-dependent density functional theory

been tested for example by P. L. de Boeij [@] The adiabatic LDA has been compared
with exact results in m, |. For the calculation of the exchange-correlation kernel
within the exact-exchange approximation we refer to @ .] It has already been applied

mMIEIm@

4.3 Dynamic Susceptibility

Now we investigate the dynamical susceptibility within C-ALDA in more detail. In
particular, we consider a homogeneous system with total flux ® — 0. In this limit, the
current also vanishes, 7 — 0. In this case we find that the off-diagonal elements of the
Hartree-exchange-correlation kernel (33, fﬁlxc and fHXC both vanish, because the
expansion of the ground state energy with respect to the Current has no first order term.
Thus f1XC contains only the two terms f1XC and fHXC and the yp,,-element of (E3H)
is given by

fHXC

X (@, @) = X (0, @) = X (0 @) FEC X (0, 0) = X5;(0, ) FIEOXn(quw). (4.38)

Employing particle conservation ([LHl) we rewrite the density-current correlators in terms
of the density-density response. Solving then for x,, we get

X (4, w
Xnn (g, w) = Z&(c ) e (4.39)
1 + ben(q7 w) |:f + 4sm2(q/2 f
where fHXC and fHXC are, due to the local adiabatic approximation, independent of ¢

and w. If fEXC = 0 we recover the approximation known as ALDA.
In order to discuss this result in more detail, recall that in the long-wavelength low-
frequency limit the density response of the single-particle system is given by

Xrn (€ W) = Xtat (@vr)” (4.40)
ot ot (qup)? — (w + 10)2°

where vp is the Fermi-velocity and the static susceptibility is given by x5.. = 1/mvp.
Considering the limit w = 0, ¢ — 0, and noting that

2 7BA 2 170
fRO— 1 <8 B OB 2LV> (4.41)

nn L on? on?

it is straightforward to verify that the density response of the interacting system is

1 92EBAN !
Xstat = (fiarﬂ ) . (4.42)

On the other hand, taking ¢ — 0 first, we find

Xjj(g = 0,w — 0) = —2DPA, (4.43)
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Figure 4.2: Tmaginary part of the dynamical susceptibility Tmxyn(g,w) in units of ¢~ for half filling
and V = 1.0t. w is given in units of ¢ obtained within the C-ALDA. For the plot we replace the
imaginary part of the denominator in (O3) by a finite value, 7, which we choose here to be 0.005¢.

i.e. in both limits we recover the exact result. The minus here is due to our definition of
the response function. Inserting ([EZ40) into ([E39) we find for small ¢,w

(qv)?
~ 4.44
Xnn(q,w) Xstat (qv)Q — (w + io)za ( )
where
AT
v = T — . 4.45
F 1— fJHjXCUF Xstat ( )

This is exactly the susceptibility of a Luttinger liquid. So, C-ALDA gives the correct
values of the static susceptibility ygtat and the velocity v of the collective modes.

To complete our analysis of the dynamical susceptibility we present some numerical
results. In Figure we plot the imaginary part of xy,,(q,w) for half filling and interac-
tion V' = t. The continuum has the same boundaries as in the noninteracting case (cf.
Fig. Z2)), but now its spectral weight vanishes in the long-wavelength limit. Above the
continuum there is a well-defined branch of collective excitations. As discussed above, the
corresponding velocity for ¢ — 0 has the exact value. However the contour plot is almost
indistinguishable from the corresponding one obtained within ALDA. This can be seen
for example by means of Figures and B2l where the profile in w-direction of the imag-
inary part of x,n(q,w) at ¢ = m/2 is shown. These two figures use a much higher system
size and a lower value for the broadening 7. The blue line corresponds to the single-
particle system which has a divergence at the higher end of the spectrum. The green and
red lines depict the susceptibilities within the ALDA and C-ALDA, respectively. As one
sees, the spectral weight of the quasi-particle continuum is diminished compared to x*,
while there is a single peak above the continuum. This peak corresponds to the branch
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Chapter 4. Time-dependent density functional theory
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Figure 4.3: Imaginary part of the dynamic susceptibility Imy.» (g, w) (in units of t~*) as a function of
the frequency w at ¢ = 7/2 and interaction V' = ¢. The system was chosen to be of size L = 10° and
at half filling. The red curve corresponds to the single-particle susceptibility x® whereas the green
line is obtained within the standard adiabatic LDA while the red line is for C-ALDA. (n = 10™*#)

of collective excitations in Figure and clearly there is only a minor difference when
including the current.

However, these results have some shortcomings. In M] Rodrigo G. Pereira, Steven
R. White and lan Affleck investigated the dynamical structure factor for the Heisenberg
XXZ model, which corresponds to the density-density correlation function in the spinless
fermion model. Amongst others they used the DMRG approach which gives (numeri-
cally) accurate results. These DMRG results differ in various ways from Figures and
K4l First, contrary to the adiabatic approximation the whole continuum and not only
one branch is shifted by the interaction. A second qualitative difference is that in the
DFT-+ALDA approach the singularity lies above the continuum while the exact results
show that it is shifted by the interaction to the lower edge of the continuum. Thus,
as with the static susceptibility, the local density approximation only gives reasonable
results in the long-wavelength limit, ¢ — 0.

In the previous discussion we used the linear response function as a means to inves-
tigate the validity of the adiabatic approximations. Now we can reverse this argument
and ask what can we learn from our results for the real exchange-correlation kernel and
therefore for the corresponding potential. So let us first investigate what happens techni-
cally in the adiabatic local density approximation. This can be seen in Figure EEDl, where
we have plotted the real part of the dynamic susceptibility as function of the frequency
w at ¢ = w/2 for a system of 50 lattice sites at half filling. The dashed black line de-
picts the single-particle susceptibility. One can see due to the finite size of our system a
few singularities which become a continuum in the thermodynamic limit, . — oo. The
constant red line is equivalent to the inverse of the Hartree-exchange-correlation kernel,

1
2V cos(q) + fin <’

(4.46)
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Figure 4.5: Real part of the dynamic susceptibility Rexnn (g, w) (in units of t~*) as a function of the
frequency w at ¢ = /2. The system was chosen to be of size L = 50 and at half filling. The dashed
black curve corresponds to the single-particle susceptibility x° whereas the green line is obtained
within ALDA. The constant red line shows the value of fHXC,
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Chapter 4. Time-dependent density functional theory

such that the points, where the red and black lines intersect, determine the singularities
of the susceptibility within the adiabatic local density approximation which is plotted as
a green line. Including the ij}XC term does not change the picture qualitatively since this
term is an analytical function in w and the prefactor is rather small. As one sees from
this picture the highest singularity is shifted by the ALDA denominator but all other
poles can only be shifted in the small region between the neighboring singularities that
is by zero in the thermodynamic limit.

Thus, the quasi-particle continuum has to stay at the same position with an analytic
exchange-correlation kernel, whereas in the exact susceptibility the boundaries of the
continuum do depend on the interaction strength. To capture this kind of physics within
DFT one has to find and use a highly non-analytic function for f1%C(q,w).
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5 Transport through a quantum dot

As already said before, DFT is an important tool for determining the electronic structure
of materials. In recent years the application of density functional theory to the electronic
transport through interfaces between two materials or through nanocontacts between two
leads became more and more important. In the following we concentrate on the latter.
As an application they can be used for electronics of molecular size while from a theo-
retical point of view they consist of open systems out of equilibrium. Both features, the
open system and the non-equilibrium are very difficult to treat theoretically. In order to
investigate the quality of density functional theory when applied to such a problem, one
needs to decide whether discrepancies to the experiment or other theoretical approaches
arise because of an insufficient modeling of said features or because of the underlying
approximation for the exchange-correlation potential. In the following we focus on the
latter question and study the conductance through a quantum dot by means of the linear
conductance which only depends on equilibrium quantities. Moreover we employ a model
which has already been investigated using the density-matrix renormalization group ap-
proach (DMRG). Thus we are able to assess the quality of different approximations even
for strong interactions.

5.1 Model

In this chapter we modify our model of spinless fermions. We follow @], where the
authors used DMRG to calculate the exact conductance of a quantum dot attached to
leads. Figure BJlis a schematic picture of this model. The Hamiltonian can be written
as

H=Hc + Hp + Hg + Heer, + Hoor (5.1)

where Hc is the Hamiltonian for the central system. Hi, and Hg stand for the left and
right lead, respectively, while HCHL and Hoop are the couplings between the leads and
the system. The central system Hc consists of ten real-space sites. The first two sites
are noninteracting, whereas the next five sites, the (quantum) dot, are interacting and
can also be tuned by a gate voltage vgate. The last three sites are again noninteracting.
Therefore the corresponding Hamiltonian can be written as

I)

9 7

1 R 1 .
E L1141 Cl Gt cchl +V g <nl - 5) <nl+1 — 5) + E Vgate 1. (5.2)
=1 1=3
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Figure 5.1: The model used throughout Chapter @ At the center we have five interacting sites which
can be tuned by the gate voltage. These sites are coupled to a few noninteracting real-space sites
(empty circles) and at both sides we have noninteracting leads which are modelled in k-space. For
clarity the different hopping parameters have been omitted in this picture.

As in the previous sections V' is the interaction strength. The hopping amplitude #; ;4
takes several values

t 1=1,8,9
g =St 1=27 (5:3)
tdot l:36

such that the hopping between interacting sites is given by tq.t, the hopping between
noninteracting sites by ¢ and the coupling between interacting and noninteracting sites
by t. The numerical values of these parameters are in the following chosen to be: t = 1,
tpot = 0.5 and ¢/ = 0.2. The leads are modelled by a series of discrete energy levels,

Him =) eélé,, (5.4)
k

such that the number of levels near the Fermi energy for half filled leads is exponentially
dense,

R sinh(T'k) ‘ (5.5)

sinh(I'Ly /)

Here Ly g is the size of the left /right lead. The index k goes from —%LL/R to %LL/R and
the parameter I' has the value I' = 0.2 for our calculations. This choice for the levels of
the leads has the advantage that there are enough levels near the Fermi energy, i.e. the
resolution is high enough, to observe the resonances when tuning the gate voltage, while
at the same time keeping the size of the leads sufficiently small for efficient numerical
calculations. The couplings between system and leads can be written as

Hoor = Ztk (che; +efey) and Hoor = Ztk (chern+ oy ), (5.6)
k k

where the energy levels € are coupled directly to the outermost real-space sites. This
coupling is modelled in a way to resemble an open system as close as possible. A detailed
derivation of the coupling strength can be found in Appendix [El We find that

b= — (5.7)

/TN (er)

where N (e€) is the density of states in the leads at energy e.
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5.2. Effective potentials from exact diagonalization

5.2 Effective potentials from exact diagonalization

In this chapter we are looking at a situation, which is in some respect fundamentally
different to the situation in earlier chapters: we study a system where the interaction
is confined to a small region, the quantum dot. Thus we are able to use not only the
LDA and the exact-exchange method to investigate this model, but the small size of
the quantum dot also enables us to calculate a good exchange-correlation potential by
using exact diagonalizations of the central system |:|C, which contains the dot and a few
neighboring sites.

In this case we approximate the Hartree-exchange-correlation energy for the complete

Hamiltonian (B1),

EUXC — P[n] — F[n] where /%€ = ai(F[n] — F?[n]), (5.8)
ny

by the Hartree-exchange-correlation energy of the central region without the leads,

EMXC = Foln] - F&[n] where UZHXC = a%(Fc[n] — F&[n)). (5.9)
l

Here Fc[n] is the Legendre-transform of the ground state energy of the central region
Hc without the leads (compare to the definition of F' in Chapter Bl). Accordingly Fgln]
is its noninteracting pendant, corresponding to an effective noninteracting Hamiltonian
Hg, for this region. Please note that Fg[n] and F&[n] depend on all densities of the
central system. Thus, within this approximation, we are able to calculate a nonlocal
Hartree-exchange-correlation potential for the central region.

The remaining task is now to calculate Fg[n], F&[n] and their derivatives. In order
to do so, we introduce an potential ), vc; 7y into the Hamiltonian of the central region
(E2) and an analogous potential ), v& 7, into the single-particle Hamiltonian H‘é By
adjusting these potentials we are able to reproduce the density profile, given by the
complete single-particle Hamiltonian Hs , at the central region. Then (at this profile)
with the definitions (B4l and (BX) of the Legendre transformation we find

EUXC — Bo — ES + Z vfXCn, and viXC = Ve — Vo (5.10)
!

Since the extended interacting region contains only a few lattice sites — 10 in our model
— an exact diagonalization of the Hamiltonian or, even better, a simple iteration method
like the Lanczos algorithm to calculate the ground state of the interacting Hamiltonian
Hc is still quite fast. Thus, even if we have to take the iteration process for finding the
correct density profile into account, this procedure is still feasible for calculations. A
schematic of the self-consistent procedure is depicted in Figure

However, we still have to deal with another complication. If we look at the Hamilto-
nian He then the eigenstates contain only an integer number of particles. Calculations
of the total system on the other hand may give a fractional number of particles, N, at
the extended interacting region. So, instead of only one ground state, we have to use a
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Kohn-Sham
hamiltonian oﬁ the
full system H*

effective potentials
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Figure 5.2: Schematic of the self-consistent procedure that is used to obtain the nonlocal exchange-
correlation potential. Within this scheme we have two self-consistent cycles. The inner cycle (greyed
out) consists of a three-step procedure. It begins with diagonalization of the interacting Hamiltonian
F'c of the central region and the corresponding single-particle Hamiltonian I:|é to obtain the ground
state. In the next step we determine the densities n¢ ;,nq,; of both systems. If these densities differ
from the density of the complete single-particle system H*® we determine new potentials V&, Ve, and
repeat this cycle. If the ground state densities of I:IC and |:|SC agree with n; the inner self-consistency
cycle terminates and we can calculate the effective single-particle potential for the complete system.
The outer cycle is the same as for other density functional calculations, where we diagonalize the
Kohn-Sham Hamiltonian, calculate the density and then calculate the exchange-correlation potential
until we reach self-consistency.
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5.2. Effective potentials from exact diagonalization

superposition of states with different particle numbers. The most simple superposition
is described by the density operator

p=alN,0) (N,0| + (1 —a)|N +1,0) (N +1,0], (5.11)

where |N,0) denotes the N-particle ground state. N lies between the integer numbers
N and N +1 and @« = N +1 — N is chosen, such that Tr{pN} = N. We can motivate
this ansatz by considering the density operator for the grand canonical ensemble

b= Lo BHcu), (5.12)

The partition function is defined as Z = Tr{efﬁ (Ho—nN )}, (3 is the inverse temperature,
1 the chemical potential and N the particle number operator of the system. The zero
temperature limit 5 — oo gives a projector to a single state p = |N,0) (V,0| and the
number of particles as a function of the chemical potential is a step-function. If we choose
= Eni1 — En, where Ey is the energy of the N-particle ground state, the system is
exactly in between the N- and the IV 4 1-particle ground state,

1
p =5 (IN.0) (N0 + N +1,0) (N +1,0]). (5.13)

Any slight deviation of this value gives again a pure state with an integer number of
particles. However if we use an arbitrary small but finite temperature the steps between
the particle numbers are broadened and we can adjust p to give any fractional particle
number. In this case the dominant part of the density operator reads:

p= % IN,0) (N,0| e PEN=EN) LN 4+1,0) (N 41,0 e*ﬁ(ENH*ﬂ(NH))] . (5.14)
One then finds the relation

M:ENJrl—EN—{—lln <l—1> . (5.15)
Ié) o

between g and a. Considering only discrete systems (and neglecting degeneracies) we
can always choose the temperature small enough so that only the two states |V, 0) and
N +1,0) contribute significantly. This was also found in [m] for the ground state
energy of a system with fractional particle number. In the following we abbreviate this
approximation with ED (ezact diagonalization). In Figure we show an example for
the Hartree-exchange-correlation potential at the central region obtained with DFT-+ED
compared to the potential from the exact-exchange method.

The exact diagonalization procedure, as discussed in this section, is by construction
not applicable to long chains of interacting fermions. However, one may ask, if we can
generalize this procedure to such systems. A straightforward generalization is to look at
site [ and calculate the exchange-correlation energy for this site from exact diagonaliza-
tion of this site together with its neighbors. By studying the static susceptibility with
this generalization we find two inherent artifacts that render this method useless. The
corresponding discussion can be found in Appendix [E1]
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0.75

0.5

leXC /t

0.25

Site [

Figure 5.3: Hartree-exchange-correlation potential at the central region. We compare the exact-
exchange approximation to our exact diagonalization procedure. The interaction strength was set
to V =1t = 2tqot; the gate voltage was Vgate = 0.5¢.

5.3 Linear conductance

The linear conductance G is determined from the response of a system to an applied bias
voltage U, i.e. as the ratio of the induced current and the bias voltage,

1
G = ik (5.16)
Since we consider only one-dimensional systems the current is simply given by the current-
density, j = (j). The bias voltage can be modelled as a difference in the chemical
potentials of the left and right lead. In the following we choose a symmetric model
where the left and right lead are shifted by —|—% and —%, respectively. If U is small we
can use linear response theory to calculate the change of the current by means of the

current-density response function,

5jl = — Z Xjn(l,l/,w) 5?)1/, (5.17)
l'elL,R

where vy = % on the left and dvy = —% on the right lead (denoted by L and R

respectively). In the dc-limit w — 0 the current j is, due to current conservation in
one-dimension, constant throughout the system. Therefore the conductance in the linear
response limit is given by

2
. € .. ' / ' /
G = T bldl_)mo Re l,EL Xin(l, 1 w) — Z,ERXM(Z,Z W) (5.18)

where the site [ can be chosen arbitrarily. Here we put back the physical units e and h.
There are also other, equivalent, possibilities to calculate the conductance, e. g.

i =">_ ol w)de(l',w), (5.19)
l/
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5.3. Linear conductance

where e(l,w) = iwg; — vy41 + vy corresponds to the electric field and o is the nonlocal
conductivity. In a gauge where the electric field is put into the local phase one finds

e . 1
G = T ul}lLI%) Rea (xji(l,lpec,w) + x5l lowr,w)) - (5.20)

Here the indices l1..c and o, g denote the sites of the system coupled to the left and
right lead, respectively. All other elements of the sums vanish because of the constant
potential. Using a static gauge transformation we can shift these two indices to any
position on the central region. For practical application of equation ([20) it is favorable
to evaluate the current-current correlation function not at the bonds to the leads but at
the first bonds within the central region (I1_2 and lg_,19 with the notation of fig. ETI).
The reason simply is that in the former case we have to evaluate the current from every
energy level of the leads to the central region while the latter only needs the current
between two sites. Since the exact result does not depend on [ one may also choose [ as
l12 and as lg..19 and again average over this two values, so that the conductance of the
single-particle system becomes

2 A ~ 2 o
GS = ﬂ._ lim Re— Z (Kl + Jtgeno [P (fi = fp)

h w—0  2iw W+ e, — € +in

et - Wﬂ]l +Jigeno ) (i = fp)
— 7 lim 4 152 910 D
"h o2 2w kzz; (w+ep —ep)?+n? (5.21)
e? El ..+ -
_ 77_772 ’< Ulle Jlg—10 ’p>’ (fx fp)( €r — Gp)-
R (P

Since we are dealing with a finite system the parameter n is kept bigger than zero.
This leads to a broadening of the energy levels and to an additional source/drain in the
continuity equation for the leads,

oy +nny+ 51— 5i-1 = 0. (5.22)

7 must be chosen large enough, so that enough particles are created/annihilated in the
leads to sustain the current through the system. On the other hand if it is too large,
too much details of the conductance are smeared out. A sensible choice for our system
is found to be n = 0.4 - 10~%. Due to the relations between the current-current, current-
density and density-density correlator one can also use ., to calculate the conductance.
Beginning with (EI8) and using the continuity equation (B22), one finds

7'('@277 ‘<k’NL+NR‘p> Q(fk_fp)

2h " (ep — €x)? + 12

G* =

(er — €p)- (5.23)

Here Nj and Ny are the occupation number operator for the left and the right lead,
respectively. Using the same argument as before we symmetrized the expression with
respect to exchanging L <« R.
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Chapter 5. Transport through a quantum dot

As already stated during the discussion of the susceptibilities in Chapters Bl and H
the susceptibility of the interacting system is given by the single-particle susceptibility
modified by a denominator similar to the random-phase approximation (RPA). Therefore
we also have to modify the conductance. If we use, for example, the density-density
correlator to calculate the conductance (23,

2

- 3 4 — -
G = w% lim Re > (w+m) xnn (L1 w) = e 5 " Re > xXan(1,1,0), (5.24)
L,l'eL,R L,l'eL,R
with L and R denoting the left and the right lead, the correction to the single-particle

susceptibility is given by the matrix equation

FIXCT R, (5.25)

The elements of the matrix Xy, are given by [Xnnliwr = Xnn(l,1’,0). We will see soon that
the Hartree-exchange-correlation kernel fHXC is irrelevant for the model and approxima-
tions of the present study. Nevertheless we complete here the general discussion. We
analyze equation (BZH) under the assumption that fHXC can be truncated in real space
for positions that are far from the interacting region. Clearly this assumption holds for
the ALDA, where fHXC is confined to the interacting region. In this case it is given by

Xon = [1— Xon

§ fKEDA(m) if | =10'and [,!’ interacting
[ =V if I=0+1,I'"—1and ! interacting , (5.26)

0 otherwise

where | and I’ are interacting sites. Please remember that f{XS\(n;) = 0v*C(n;)/on,.
V' is the interaction strength and the elements on the secondary diagonal are derived
from the Hartree potentials. Since we need only the double sum of the susceptibilities
(BE24) and fHXC is confined to the interacting region, we do not have to solve the matrix
equation ([223) but the simpler equations

Z [)Znn]zg = Z Xnn i + Z ( Z Xnn zl> [fyl;lrf(c]lm< Z [)Znn]mg) (527)
i,jeL,R i,je LR I,meC Mel,R jelL,R
and
S Bonliy = D Wl + D Wl [ C]l'm< > [Xnn]mg')- (5.28)
jeL,R jeLLR I"’meC jel,R

Here C denotes the sites of the central region. The second equation is needed to calculate
the last term of the first equation. Therefore the index [ only denotes sites of the
interacting system and the second equation can be solved self-consistently. Thus in a
more compact syntax the conductance can be written as

G=0G+ me? 77 RG{X HXC X} (529)

X=X +Xred fHXC
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5.4. Results

with the vectors x = >,y g[Xnnlty and x* = > 1 p[Xonlij- Xfeq 1S a ‘reduced’ suscepti-
bility of the single-particle system, which only takes into account changes of the density
in the interacting system due to variations of the potential at the interacting system.
The solution of this reduced form of the matrix equation does in our case (ALDA for five
interacting sites) only need the inversion of a 5 x 5-matrix instead of a L x L-matrix as
in (2Z8) and is thus numerically quite efficient.

As already stated before the exchange-correlation kernel is irrelevant for the calcula-
tion of the linear conductance within our model. Rewriting equation as

Sjr =Y _ o (1,1') [se(l') + 6e"™*C(1)] (5.30)
;

HXC = _pfIXC 4 yIXC we can rephrase

the above statement as: The internal field "X does not contribute to the conductivity.
This can be easily seen in one dimension: Particle conservation implies the current is
constant throughout the system, i.e. o® does not depent on the position [. Additionally
we have the symmetry o%(l,1") = o*(I',1), thus it also does not depend on I’. Then the
current through our dot becomes

where ¢ is the single-particle conductivity and de

5j =0 [de(l) + 6] . (5.31)
7

Inserting the explicit expression for the internal field we see that most terms of the sum
cancel and only the two Hartree-exchange-correlation potentials at the interfaces to the
leads contribute. If they are small, as to be expected for our system where the interaction
is confined to a small region, we may neglect them and find that ¢® = o.

5.4 Results

Calculating the conductance for our model system with various approximations for differ-
ent interaction strengths gives a number of interesting results. With figures B4 to BT we
show a representative overview of these results. In the previous section we have already
argued that the Hartree-exchange-correlation kernel is negligible. In fact, within the
local density approximation the contribution of this kernel is zero, because the exchange-
correlation potential is confined to the interacting region. Thus we use G = G* in the
following discussion.

5.4.1 General features

The first figure, B4 shows the conductance as function of the gate voltage for the non-
interacting system (grey line) and for a relatively weak interaction, V' = 0.5t = t40t (red
line). The results in this graph were obtained with LDA. The first, trivial, observations
are that there are five resonances and the conductance at each of the resonances is equal
to one. The number of the resonances is just the number of energy levels of our dot and
occur whenever, by tuning vgate, one of the levels is at the Fermi energy. The height of
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Figure 5.4: Conductance through the small interacting region calculated within the local density ap-
proximation for interactions V =0 (grey) and V = 0.5t = tgot (red).

the maximum of G is determined by the fact that we are dealing with a one-dimensional
model without spin and thus have only one transport channel, so that G = e?/h for
resonant scattering. The next observation is the symmetry with respect to vgate = 0
which is caused by the particle-hole symmetry of our model (E2). If we now compare
the interacting with the noninteracting result we see that the resonance peaks are shifted.
This shift is equally easy understood. So let us look at the outermost peaks. They occur
at the transition from five to four particles or from one to zero particles on the dot. Thus
there is no interaction between particles on the dot. However, since the interaction of
our system (BE2) is symmetrized,

6 6 6
. 1 ) 1 o . . -
V=V E <7’Ll — 5) <7’Ll+1 — 5) =V E nmnp41 — Vv E 5(71[ + nl+1) + V. ]., (532)
=3 =3 =3

we have an additional potential causing this shift. A rough estimate, assuming that
the particle is in the potential minimum at the three inner sites, predicts an interaction
dependent shift of the resonances by V. This is about the value we find in Figure B4
The second peak is not shifted as much since now particle-particle interaction (the first
term in (32)) cancels part of the potential felt by the second particle or hole.

5.4.2 Local density approximation

In the next two figures we compare the LDA-calculations with more accurate results.
In Figure we show the number of particles on the quantum dot as a function of
the gate voltage at interaction V = 0.5t = tgo;. Since this interaction is relatively
weak, a self-consistent Hartree-Fock calculation, which we present also in this figure, is
still reasonable. The number of particles on the dot carries similar information as the
conductance. For example, the positions of the conductance peaks are given by the
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Figure 5.5: Number of particles in the interacting region at interaction V' = 0.5t = tqot. We compare
results from the local density approximation to a Hartree-Fock calculation.

transitions of the particle number, and the width of the former correspond to the width
of the latter. We already see that, although the local density approximation reproduces
the positions of the resonances quite well, the width of the inner resonances is far to
big. This property of the LDA can be seen more drastically in Figure B0l where we
set the interaction to V = 2t = 4t4,;. For comparison with exact results we have also
plotted DMRG results, which we extracted from Figure 3 of [@] Another problem of
the local density approximation at this interaction strength is that the convergence of
the calculation is somewhere between rather poor and nonexistent.

How can we explain this extraordinary broadening in LDA? Let us begin with the
resonance at vgate = 0. Since our system is particle-hole symmetric it yields a homoge-
neous half-filled density distribution at exactly this value. If we tune the gate voltage we
effectively shift the energy levels of the dot such that the central level is no longer at the
Fermi energy and therefore the conductance decreases. Furthermore the central energy
level is now either fully occupied or empty. If we are using the local density approxi-
mation, an essential ingredient is the exchange-correlation energy which has a minimum
at half filling (cf. Fig. BT). So, within LDA, the system gains more energy by staying
at half filling, compared to the loss of half a particle and the shift by vgate. Thus the
local density approximation keeps the central level at the Fermi edge and one expects
that the system stays at the resonance condition as long as the gate voltage is smaller
than the difference of the exchange-correlation energies at half filling and % filling. To
corroborate this explanation let us take a look at Figure B2l There we have plotted
the exchange-correlation energy for the homogeneous interacting system as a function of
the density n as it is used for LDA. The black line corresponds to interaction strength
V = 4dtqet, as in Figure B0, while the red line corresponds to Figure Bl If we compare
the exchange-correlation energies for half and % filling, as indicated by the grey dotted
lines, we find that the systems energy gain per lattice site is about AeXC = 0.012t40; for
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Figure 5.6: Conductance through the small interacting region calculated within the local density ap-
proximation for interaction V' = 2t = 4tq.¢. The exact results from DMRG calculations are extracted

from Fig. 3 of @] Due to convergence problems the quality of the LDA data is rather poor.
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Figure 5.7: Exchange-correlation energy of the homogeneous system, calculated with Bethe ansatz for
various interactions. The dotted lines show the differences of the energy between half and % filling.
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Figure 5.8: Number of particles in the interacting region calculated within the exact-exchange approx-
imation for interaction V = 0.5t = t4qot. For comparison results from LDA and Hartree-Fock are
included.

V = tqor and AeXC = 0.11tqo for V = 4tgqo;. Thus in the latter case the total energy
gain for staying at half filling is about AEXC = 0.55t4.; which gives approximately the
half the width of the plateau at vgate = 0. The outer peaks are unaffected by the local
density approximation, since in their case there is at maximum only one particle in the
interacting region and therefore there is no interaction.

5.4.3 Exact exchange approximation

Having analyzed the deficiencies of the local density approximation we can ask ourselves
how to improve the results. In the following we present two ways for improvement: In the
next section we use the exact diagonalization procedure, introduced in Chapter B2 to
determine an exchange-correlation potential which depends non-locally on the densities.
Another way to generate such a potential is to use the exact-exchange approximation
(B32), which should be valid for weak interactions. The results can be seen in Figure
One finds that the steps in occupation are reproduced as good as within the Hartree-Fock
approximation.

As the Hartree-Fock approximation the exact-exchange method suffers from a problem
when going to higher interactions. If we look at the number of particles on the dot one
finds a hysteresis when increasing and decreasing the gate voltage around one of the
steps, i. e. the jump from one particle number to another is not occurring at the correct
value of vgate, but at lower values when decreasing and at higher values when increasing
the gate voltage. In Figure we show such a hysteresis, which was obtained from a
Hartree-Fock calculation.
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Figure 5.9: Hysteresis in the number of particles as function of the gate voltage as it is seen from a
Hartree-Fock calculation. The symbols are the results from the calculation, the dashed lines indicate
the hysteresis. The interaction was set to V =1t = 2t40t.

5.4.4 Exchange-correlation potentials from exact diagonalization

To evaluate the quality of the exchange-correlation potentials obtained from our exact
diagonalization procedure BE2we calculate the conductance for relatively weak and strong
interactions. The result for the conductance through a weakly interacting system can
be seen in Figure We see that the widths of the resonances are much closer to
the Hartree-Fock result than within the local density approximation. The discrepancies
between DFT+ED and Hartree-Fock can be traced back to the following: Though the
chosen interaction V' = 0.5¢ = tq, is relatively weak compared to the value in Figure B2T11
V = 4tqet, it is already strong enough that higher than first order contributions to the
Hamiltonian become important. This can be seen from the hysteresis in the conductance
or the particle number on the dot when increasing and decreasing the gate voltage, which
is absent in an exact calculation. Although it is small this hysteresis is already present
for V' = t4qot and becomes stronger for stronger interactions.

If we examine the conductance using this method at a strong interaction V = 4ty we
find Figure BT1l For comparison we have also included the exact results from a DMRG
calculation. We see that the conductance near the resonances is reproduced really good
by our nonlocal exchange-correlation potential. Thus we see that it is indeed sufficient
to calculate the exchange-correlation potential for the central region and to neglect it
at the leads. Since it is also justified to neglect the exchange-correlation kernel in the
calculation of the linear conductance for such a system, we may conclude that our exact-
diagonalization procedure for the exchange-correlation potential is a suitable method for
calculating the transport through a small interacting region even at strong interactions.
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Figure 5.10: Number of particles in the interacting region calculated within DFT+ED for interaction
V' = 0.5t = taot. For comparison results from LDA and Hartree-Fock are included.
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Figure 5.11: Conductance through the small interacting region calculated for interaction V' = 4tqo; = 2t.
The DMRG data was extracted from Fig. 3 of [5d].
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6 Resumeé

In this work we studied one-dimensional lattice models in order to investigate the ap-
plicability and accuracy of density functional theory. We focused on the local density
approximation (LDA) but also discussed the exact-exchange method, and a new method
introduced by us which employs exact diagonalizations of small systems to determine the
exchange-correlation potential which depends non-locally on the densities.

In particular, we first studied the static theory and extended it by formulating the cur-
rent density functional theory (CDFT) on a lattice: CDFT takes not only the potentials
but also phase factors in the hopping term into account. Using Legendre transformations
we learned how the interaction gives rise to effective single-particle potentials and phases.
Within the local density approximation these potentials can efficiently be determined by
means of the Bethe ansatz. Using this formalism we recapitulated the band gap prob-
lem. We established that derivative discontinuities of the exchange-correlation potential
always contribute significantly to the gap. As commonly known we confirmed that LDA
underestimates the gap, whereas the exact-exchange method, especially together with a
local approximation of the correlation energy, gives quite good results.

Next we studied the phase diagram of the spinless fermion model within the local
density approximation. We found that the parameter range where the homogeneous
system is unstable is strongly enlarged within LDA compared to the exact solution.
Analyzing the density-density correlation function we saw that, as to be expected, LDA
becomes exact in the long-wavelength limit but fails near the singularity at 2kg, where
kp is the Fermi wave vector. This singularity is important to describe backscattering
processes, and accordingly the description of the transmission through a weak impurity
fails completely within the local density approximation. This situation is again improved
by using the exact-exchange method. We found that this approximation gives a better
treatment of the 2kp-singularity, but has an inherent stability problem. This instability
gives rise to an exponential renormalization of the Drude weight, while the exact result
is an algebraic decrease.

In the next step we introduced the time-dependent version of current density func-
tional theory on the lattice by use of the Keldysh formalism. This formulation allows
the treatment of problems with time-dependent potentials and phases. After extending
the local density approximation to the adiabatic LDA (ALDA), we turned our attention
to the dynamic susceptibility. We found that the inclusion of the current densities into
the theory gives rise to a frequency-dependent exchange-correlation kernel. With this
new part the dynamic susceptibility becomes exact in the long-wavelength low-frequency
limit. In other words, in the long-wavelength limit not only the static susceptibility but
also the velocity of the collective excitations is exactly reproduced by C-ALDA. However,
we also found that the boundaries of the quasi-particle continuum do not change as a
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function of the interaction strength, which does not reflect the true situation.

In the fifth chapter we studied a model consisting of a small interacting region coupled
to two leads and calculated the linear conductance through this ‘quantum dot’. To assess
the quality of the results obtained from density functional theory, we checked them
against results calculated within the Hartree-Fock approximation and with the density
matrix renormalization group algorithm. We realized that even for weak interactions
the local density approximation dramatically overestimates the width of the resonance
peaks. For stronger interactions this leads to a conductance which is several orders of
magnitude higher than the true result. The reason for this problem is that the LDA
not only favors a homogeneous density profile, but also keeps the quantum dot near half
filling. We also found that the exact-exchange approximation gives reasonable results for
weak interactions. Another interesting property of this model is that we do not have to
take the exchange-correlation kernel into account for the calculation of the conductance,
i. e. the internal field due to the interaction can be neglected. This can be done whenever
the system has only one transport channel and the Hartree-exchange-correlation potential
is negligible at the contacts to the leads.

Since the local density approximation gave poor results, we looked for a way to deter-
mine improved exchange-correlation potentials, depending not only on the local density
but on all densities of the central region. This can be done by using exact diagonaliza-
tions of the central region for the interacting and the single-particle case evaluated at the
same densities as the full system. We found that such an exchange-correlation potential
improves the conductance dramatically.

Naturally we were not able to answer all open questions, so this work can be extended
in several ways: For example, up to now we have considered only systems with one
transport channel. One could simply add another channel by including the spin of a
particle, which would lead to the Hubbard model. In this case we could still use the
Bethe ansatz to determine the exchange-correlation potential within the local density
approximation [IE_ll] If we calculate the conductance through a small interacting region
within this model we will probably encounter situations where the exchange-correlation
kernel cannot be neglected.

The exchange-correlation kernel was discussed in this work only within the adiabatic
LDA and the C-ALDA. So in order to generalize the calculation of the conductance
to systems with a larger number of channels, where the local density approximation
probably still fails, we need for example to evaluate this kernel within the exact-exchange
approximation. In this case we could investigate the influence of the exchange-correlation
kernel on the conductance. We would also be able to answer the question whether the
exact-exchange approximation improves the results for dynamical susceptibility.

So far we have considered only the linear conductance through a quantum dot. A next
step would be to go beyond this linear regime and calculate the full I-V-characteristics.
This is nowadays often done using the so-called ‘non-equilibrium Green’s functions’ to-
gether with the Landauer-Biittiker formalism @, IE] However, this approach has two
problems: First, it uses the eigenfunctions of the Kohn-Sham Hamiltonian to calculate the
Green’s functions, which is not justified within density functional theory. A second diffi-
culty is that the transport through an interacting region is in principle a non-equilibrium
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situation. Thus also a non-equilibrium exchange-correlation potential is required. In
contrast, recent calculations of the I-V-characteristics use equilibrium potentials only.
Therefore it would be most interesting to see how the exchange-correlation potential for
a non-equilibrium situation could be determined and how it affects the results.
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A Some details of the spinless fermion
model

A.1 Jordan-Wigner-Transformation

The Jordan-Wigner transformation [@] is a way to transform a Heisenberg XXZ model

-7y (agmgw +6WeHD 4 A 5g>5g+1>) (A1)
l

into a model of spinless fermions with nearest-neighbor interaction. The relation between
the spin- and particle-operators are

60 =2p; —1
=1 A2
&g) :exp{—iwzm}él (A-2)
i=1
where 6 = %(&5}’ — i&?(j)). Using this the Heisenberg model can be written as
2J e éh e 4JA N L N L A3
—vZ (@ e+ 858 ) 2 Z =g )\ 5 ) (A.3)
t l Vv l
where N is the particle number and L is the lattice size. So we have J = % and A = —%

where ¢t and V' are our usual spinless fermion parameters.

A.2 Bethe ansatz for spinless fermions

A wuseful and quite general tool for solving one-dimensional systems is the ansatz intro-
duced by Bethe lmgi; Some models that have been solved with this ‘Bethe ansatz’ are for
example the one-dimensional Bose gas [IE, m], the Heisenberg XXZ magnet B, @, @],
the Heisenberg XYZ chain [IE] and the Hubbard model [m] A comprehensive work on
this subject and related problems is the book by Korepin, Bogoliubov and Izergin [IE]

Since we are basically working with a Heisenberg XXZ model we follow closely Yang
and Yang [Iﬁ] and only translate it into the spinless fermion language. Consider the
homogeneous spinless fermion model with nearest-neighbor interaction

H=—t> (&, +6&6 ) +V Y i, (A.4)
l l
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We are looking for the ground state solution |¥) of this Hamiltonian,
H|U) = EB|D), (A.5)
where |U) can be written as
O) = > (xr...ay) et e 10). (A.6)
T1,eN

Here |0) is the vacuum state and x1, ...z are the positions of the N particles. Now look
onto an ordered sector of the configuration space with z1 < 29 < ... < xy. Consider a
configuration (config| with NV particles at positions z1,...xx where no pair of particles
is located at neighboring sites. Then applying (config| from the left to ([AH) gives

N
—t> W(ay =1 )Yy 1) = Bg(ry . ay). (A7)
j=1

If two particles are neighboring, x,,+1 = =.,, + 1, we get the equation

—t Z (oo —1..)+ (. .zj+1..)]+
j%;L

—t W..xm— Lz, + 1. )+ (. T,y + 2. )] (A.8)

— (E—V)T/J(.%’lxjv)

Now we make a plane-wave ansatz for the wave-function:

Perm.

N
T,Z)(Sﬂl v xN) = Z APerm. exp inPerm(j)xj . (Ag)
i=1

The sum goes over all possible permutations of the momenta {p;}i=1. n. Aperm. is a
prefactor that depends on the permutation. Inserting this ansatz into (A7) we get a
relation for the energy as in the noninteracting case,

N
E = —Qthospj. (A.10)
j=1

Using this together with ([A8) we obtain

A i(p+q) ip
_p:_t+te. +Ve. (A1)
Ag t + teilpta) 4V eld

for the ratio of two amplitudes Ap and Ag, where Ap belongs to a permutation ...p,q, ...
and Ag to the same permutation where only p and ¢ are switched. This equation can
also be expressed as

Ap = —e 94, A.12
Q
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A.2. Bethe ansatz for spinless fermions

Figure A.1: Graphical representation of the Yang-Baxter equations.

where .
_V qin P—4
57 SiN =5
ptq |, V P—q"
COS 5~ + 57 COS

O(p,q) = 2arctan (A.13)

So far we have only considered permutations of two neighboring particles. To generalize
this finding we need to decompose an arbitrary permutation into a set of two-particle
permutations. This only works if the Yang-Baxter equations M]

(12)(13)(23) i (123)(13)(12) (A.14)

(12)(21)

are fulfilled. The first equation requires that all different decompositions of a general
permutation are equivalent. The second states that interchanging two particles twice
should have no effect. These equation are depicted in Figure [Al So in general we get

Ap = (—1)#Perm-exp —iZ@(pj,pl) Ag, (A.15)
(.0

where the sign is determined by the number of needed 2-particle permutations and the
sum in the exponential goes over the set of permutations between Ag and Ap. If we
assume periodic boundary conditions

W(oxj )=+ L) = (. ay..)ePil (A.16)

we get from ([ATH) a equation for the momenta p;

N
1= (D" texp {—iz @(pj,pi)} exp {—ip;L}. (A.17)

i=1

After taking the logarithm we find

N1 N
p;L =2 <—T+j—1> -> Op) j=1...N, (A.18)
i=1
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Appendix A. Some details of the spinless fermion model

where the first term is found by taking the logarithm of the factor (—1) = e™V+27J  The
values of j are chosen such that the solution of this equation gives the ground state. Since
the function © depends on the momenta this equation has to be solved self-consistently.
The ground state energy of the system can then be calculated from (AI0).

If we are investigating a system with a magnetic flux through the one-dimensional
ring, this flux leads to an additional phase at the boundary. It is therefore easy to
incorporate into the formalism just by introducing an additional phase factor e'® into
equation ([AZT@). This leads to an additional term, ®, which has to be added to the right
hand side of equation (AIS).
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B Hohenberg-Kohn theorem

The Hohenberg-Kohn theorem marks the birth of density functional theory H] by stating
that the ground state energy of an interacting many-body system is a unique functional
of the density. If such a system is described by the Hamiltonian

A~

H=T+V+ /drv(r)ﬁ(r), (B.1)

where T and V describe the kinetic and interaction energy and v(r) is the potential, the
theorem reads [E]]

The potential v(r) is (up to a trivial additive constant) a unique functional of the
density n(r) = (n(r)).

It is elegantly proofed for nondegenerate ground states by reductio ad absurdum:

Assume that two potentials v(r),v’(r), which differ by more than a constant, lead
to the same density n(r). Then the corresponding ground states ¥ and ¥’ are are
different, because they are the eigenstates of the different Hamiltonian H and H’.
Since the ground state minimizes the eigenenergy, we find

17:(@%Hﬂm§<(wufmoz(muﬂm>+/ﬁﬂu&y—mmmwy (B.2)
Thus we get
E <E+ /dr [V (r) — v(r)]n(r), (B.3)

and similarly by exchanging primed and unprimed variables
E<E + /dr [v(r) — o' (r)]n(r). (B.4)
Addition of these two expression leads to
E+FE <FE' +FE, (B.5)

which contradicts itself.

So we can conclude that a potential v(r) is uniquely determined by the density n(r).
Furthermore, since the potential determines the Hamiltonian the density also determines
the ground state energy, i.e. it is a unique functional of the density, £ = FE[n]. If
the ground state is degenerate, the above reasoning would lead to £ + E' < E' + E,
which is no contradiction. In this case or, for example, in spin-density functional theory
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the uniqueness is no lonier guaranteed. A discussion of this problem can be found for

.

example in [Iﬂ, m,
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C Legendre transformations within DFT

C.1 Definition

The Legendre transform g(p) of a function f(x) can be defined as @]

9(p) = max {pr — f(z)}. (C.1)
Clearly, a necessary condition for the maximum of this expression is given by
O (o~ ) L0 C2)
5 PT (z)) =0, (C.
from where the usual expression for p,
Of(x)
= ; C.3
p=—5 (C.3)

follows. However, this condition alone is not sufficient, furthermore we need the convexity
of f(x) to ensure the existence of the maximum.

C.2 Existence within the DFT context

Within the context of static density functional theory, the existence of the Legendre
transform of the ground state energy can be proved by a variant of the Hohenberg-Kohn
theorem [E]] In order to do so we rewrite (CJ)) as

F[n] = max {E[v] — val} , (C4)
l

where FE[v] is the ground state energy as a functional of the potential v = v; and the
densities n; = OF /Ov;. Please note that we changed the sign (— f — E), so that E[v] must
be concave for the Legendre transform to exist. Concavity is ensured by the condition

(1= XN)E[v] + AE[u] < E[(1 — X\)v + A\u (C.5)

with two different potentials v and u for all parameters A between 0 and 1. Rewriting
the energies as expectation values this condition becomes

(1 - )‘) <\Ilv’ H, ’\IJU> + A <\Iju‘ H, ‘\Ilu> < <\II>\’ H) ’\Ij)\> ’ (06)

where the H, and H, are the Hamiltonian corresponding to the potentials v and u. W,
and ¥, are the respective eigenstates. The Hamiltonian H) belongs to the potential
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(I = N)v + Au with the eigenstate W). Rewriting the right hand side in terms of the
Hamiltonian H, and H,, one finds that the functional E|[v] is convex if

(1 - )‘) <\Ilv’ HU ’\IJU> + A <\I}u’ Hu ‘\Ilu> < (1 - )‘) <\I})\‘ Hv ‘\IIA> + A <\II>\’ Hu ’\IIA> : (07)

On the other hand, assuming nondegenerate ground states, we have (U,|H, |¥,) <
(V| Hy |Wy) and (V| Hy [Wy,) < (V| Hy |Vy). Therefore this condition is fulfilled and
thus the Legendre transform exists. A similar proof can be found for example in @]

C.3 V-representability

Given a potential v that leads to a density n, the Hohenberg-Kohn theorem provides that
this potential can be uniquely determined by the density. It does not, however, provide
the existence of such a potential, i.e. given a certain density it is possible that there
exists no potential that leads to this density. The question of v-representability of static
systems has been studied for example in E, El, |. In the noninteracting spinless
fermion model a not v-representable density is for example given by

if [
- 0 1if [ even . (C.S)
1 ifl odd

If for a given density a potential exists the corresponding density is v-representable. The
question of v-representability is important for practical applications of DFT since one
uses a mapping between the interacting many-particle system and a noninteracting one
[E], which should yield the same density as the interacting one. Thus if the interacting
density is not v-representable in the noninteracting system density functional theory
cannot be applied.

Within the formulation by means of Legendre transformations the problem of v-
representability transforms to the questions, whether the functional F*[n®] (cf. Eq. [B8))
exists at the density of the many-body system, n® = n, or in other words, whether the
back-transformation F*[n] — E*[v*] exists.
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D Properties of the dynamical
susceptibility

The density and current density response functions obey Onsager’s relations:

Xnn (1 I w; {o}) = Xnn(ll7 Lwi{=ai})
Xnj (LU, wi{en}) = —xin(l', L wi {=d1}) (D.1)
Xii (LU widon}) = xg (1, Lwi {=di})
The minus sign in the second relation reflects that the current is odd under time reversal.
Considering a homogeneous situation we obtain
Xnn(Q, W5 0) = Xnn(—¢,w; —¢)
Xnj (@, w3 @) = =Xjn(—¢, w; —¢) (D.2)
Xji(@wi9) = Xj5(—q,w; —9)
where ¢ is the wave vector. For the single-particle system the explicit results are as
follows:

1 Ng — Nk4q
s ) — E D.3
XILLI/(q, ’ ¢) [ p €L Ek;-l,—q 10 K/;UJ/ ( )

where kpp = 1, Knj = Kjn = Upyq/2, and kj; = v]%_,_q/Q. In addition, €, = —2tcos(k + ¢)
is the free-particle dispersion, v = Oex/0k the corresponding velocity, and nj denotes
the Fermi function. We note also that

Xnj (¢ w; #) = Xjn(q,w; @) (D.4)

due to parity symmetry. Particle conservation implies

_ o4
W Xnn = 251n§ Xnj
(D.5)

. q12
w2 Xnn = [251115} Xjj

where we suppressed the argument (q,w;¢) for simplicity. These relations allow writing
the density and current response in gauge-invariant form, for example

Xon (g, w)
on(q,w) = “oisind e(q,w) (D.6)

where e(q,w) = —iw ¢(q,w) — 2isind v(q,w). Equivalently

Sias) = L) (g 0.7

such that won(q,w) = 2sing 0j(q,w).
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E Transparent boundaries

To calculate transport through a finite system it would be optimal if one could model
an open system in such a way that the boundaries are transparent, i.e. that there is no
backscattering. In general, this is difficult to achieve. However, if we require only that a
particle at the Fermi energy is not backscattered and use an small imaginary potential
at the leads, thereby implying a finite lifetime of a particle, we can model our system
accordingly.

Consider the Hamiltonian of a lead attached to some reals space sites,

==t (G Tee ) => t(efe, +éic )+ adie,. (B
l k k

The first term describes the hopping on the real space sites, whereas the last term repre-
sents the lead. The second terms gives the coupling between the two. In the following
we determine the coupling strength ¢; to suit our needs. Without backscattering the
eigenfunction can be written in the form

W) =Sy + 3 AR, (E2)
l k

where |I) = ¢;" |0) and |k) = ¢/ |0) with the vacuum state |0). Now applying the Hamil-
tonian onto this state we find

I:l ’\Ifq> = ( teflq ZtkAk> l— 1> 2tCOS(] Z eilql ’l +Z GkAk —tk) V{?> ( )
1=2,.
so that |¥,) is an eigenstate if the two conditions

—te717 — Zk t Ay
epAp — t,

—2t cosq (E.4)

!
!

—2t cosq

are fulfilled. If we take the Fermi vector at half filling, ¢ = 7, the right hand side becomes
zero. Now solving the second equation for A; and inserting it into the first we get

1—Zt2—1—/dej\/():k; . (E.5)

Here N (€) is the density of states at the leads. This condition is fulfilled if

t%u
€

N(e)= =id(e). (E.6)
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This equation can be solved if the energy has a small imaginary part which can be set to
zero at the end of the calculation. We then see that
1
ty = —— (E.7)

VTN ()
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F Potentials from exact diagonalizations
for bulk systems

F.1 Applicability of the exact diagonalization procedure to
bulk systems

The main question of this section is, how to generalize the exact diagonalization procedure
from Chapter to find nonlocal exchange-correlation potentials in bulk systems where
the interaction is not confined to a small region. It can be accomplished by using the
approximation

EFP (g s Mg
EHXCr 1 l ms -+ Ntm F1
=3 o , (F.1)

where M = 2m + 1 is the size of the subsystems to be diagonalized exactly. EZED is the
difference of the ground state energies of the interacting and the noninteracting subsys-
tem evaluated at the densities ny_,, ..., nj1m, similar to ([E9). The Hartree-exchange-
correlation potential is then found to be

EFP (.o
leXC _ Z % i (n m]\74 anH-M)‘ (F.2)

i=l—m
The most important technical difference to the application of this method to the system
with the small interacting region is that now we have to sweep through the complete
system and diagonalize a subsystem for every lattice site. Disregarding the limits of
numerics, it is obvious that if the size of the subsystem reaches the size of the total system,
M — L, this method becomes exact. However due to numerical limits we have to use
small sizes for the subsystem, M = 3,...9. To assess the quality of this approximation
we return to our prominent test case of Chapter Bl the static susceptibility, which can
be calculated from the density profile of a homogeneous system with a weak impurity at
one site. The results for various values of M are shown in Figure [[LJl For comparison we
also included the results obtained by exact diagonalizations of small systems and results
from LDA.

Although this method becomes exact for M = L, this approximation is far worse than
the local density approximation, for several reasons: The most striking problem is that
the static susceptibility in the long-wavelength limit ¢ — 0 reaches not the correct value
but the value of the noninteracting system, UFLF One also observes that the susceptibility
oscillates as a function of ¢ which is also an artifact of the approximation. A more
thorough investigation shows that the intersections of the susceptibility with the exact
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Figure F.1: Static susceptibility of a chain of spinless fermions (size L = 102, half filling, interaction
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V = 1.0t) calculated with nonlocal exchange-correlation potentials as defined in equation ([£2)). The
different colors indicate the system size taken for these diagonalization. The symbols denote values
obtained from exact diagonalizations of small systems (sizes: L = 14,16, 18,20, 24). The upper panel
is a detailed view of the region confined by the gray box in the lower panel. The horizontal, dashed
grey line in the upper panel at x = Wﬁ) indicates the noninteracting static susceptibility in the ¢ — 0
limit. The vertical lines are drawn at the g-values of the small systems, depicted with the same color.



F.1. Applicability of the exact diagonalization procedure to bulk systems

values are given by the g-values that exist in the subsystems, gg = QMW j wherel...M —1,
with the exception of g5 = 0.

These peculiarities can be understood as follows: We begin by considering variations
of the Hartree-exchange-correlation potential,

l+m

SviXC — % Z [0v] (z) — duy(2)] . (F.3)

r=l—m

The parameter x can be understood as the position of the center of a subsystem and
thus specifies the subsystem where the potential is taken from. Thus we also have to
sum over all subsystems that contain the site [ and therefore contribute to the potential.
Since we discuss the susceptibility of the homogeneous system in ¢-space, we need the

Fourier transform of 6v™%€ which is given by
l+m
viXC = Z N [6v) (x) — du(2)]. (F.4)
z=l—-m

The potentials vj and v;, determined from a subsystem centered at x depends only on
the densities at x — m, ...z + m. Therefore this expression can be expanded as

HXC —iql oo 5”1 5Ul (z)
Z e Z Z 3 0ny. (F.5)
Ny

r=l—my=r—m

Using the definition of the susceptibility we can replace the two fractions by the inverse
of the corresponding susceptibility of the subsystem,

I+m  I+m

SupC — MZe—lql > -0 - sw-0 " e (F6)

r=l—-my=Il—-m

Here we have used the homogeneity of the system twice. First, it is necessary for writing
the susceptibility as a function of the difference y—I[, and second, it enables us to eliminate
the index z specifying the subsystem. In particular we choose the subsystem specified
by x = [. Carrying out the sum over x gives just a factor M and using the substitutions
y—y—Iland [ — [ +y we find

m Lty
by X0 = 37 b — s} Y e o
y=-m =14y
m L
= > @ ) - @)Y e o (F.7)
y=—m =1
= > e {paw) - s} ong.

y=—m
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0 -L L

Figure F.2: Schematic of the variations of the homogeneous density in the long-wavelength limit. The
magnified region depicts the situation in a small subset of the whole system.

In the step from the first to the second line we used the periodicity of the system and
rearranged the elements of the sum, which is then just the Fourier transform of the
density-variations. The sum over y also looks like a Fourier transformation but is only
in special cases. In general, the values that ¢ can take are determined by the size of the
total system, ¢ = %’Tj with j = 0,...,L — 1, whereas the subsystems can take only the
values gg = QM“ Jjwith j =0,...,M —1. Thus ¢ = ¢s + Gremaining and the sum is a Fourier
transformation only if ¢remaining = 0. In this case we find

6™ = x§(@)] ™" — [xs(9)] ™ (F.8)

and thus for the susceptibility

*(9)
(q) = A . (F.9)
v {be@] ™ - xs(a) ™'}

Therefore we expect that x yields the exact values (except for finite size effects) whenever
Qremaining = 0. This can be clearly seen in Figure [[21] where vertical lines are plotted at
these values. However, according to (E£7), in between those points a crude trigonometric
interpolation is used, which is responsible for these oscillations.

Now we are also able to explain the other artifact, y going to the noninteracting value
for ¢ — 0. The general situation in this limit is depicted in Figure In this limit
the density varies only slowly in real space. Thus, if we choose a particular subsystem,
the density profile within this system will be almost constant. On the other hand, as
can clearly be seen from the figure, the variations of the density lead to a variation of
the number of particles in the subsystems, which is the dominant contribution for ¢ — 0.
Therefore the susceptibilities x§ and xgs in equation ([EEJ) are evaluated at ¢ = 0 and
thus are zero, since the particle numbers are fixed.
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F.2 Constructing nonlocal potentials from the exact
susceptibility

We have seen that the local density approximation performs poorly when calculating the
susceptibility. Now we can ask ourselves, if we can use the exact results of the density
response function for small systems to obtain a better exchange-correlation functional.
Of course, one may use the exact-exchange approximation, but this method has two
problems: First, the inherent instability of the homogeneous system and second, the
computational complexity scales very poorly with system size compared to the LDA. It
is indeed possible to construct an approximation based on the susceptibility; in fact the
limit ¢ — 0 of such a construction has been used to construct a gradient approximation

4.

We start with the local density approximation for the exchange-correlation energy,

IeXS
Eipaln) =) eioalm) — ¢ = (;?A
I

(F.10)

n=n;

Since this approximation is exact in the homogeneous case we construct our approxima-
tion around the LDA. Unlike the various flavors of the gradient approximation we do not
use the local densities and their gradients but pairs of densities,

1
EXCn] = Zei(c(nl) +3 Ze?c(nl,nl/;l - 1. (F.11)

1 LU

The exchange-correlation potential is then

pro = 2a ) 3 0ty i L = 1) (F.12)
877,[ v 877,[

Here we have assumed that e3C is symmetric under the exchange of [ and I’. Earlier we

stated that we construct the nonlocal potential around the local density approximation.

Hence we choose ¢} = eLD A~ Since the LDA is exact for the homogeneous system we

have to construct eXC such that it is zero if n; and ny are equal to the density of the

homogeneous system n = % The most simple expression satisfying this condition is

&yl = 1) = 3,0 = 1) - (ng — ) (nyr — 1), (F.13)

where the quantity f3 XC depends only on the average density (or the particle number) and
the distance [ —I’. As the name suggests this quantity is part of the exchange-correlation
kernel of the susceptibility as can be seen in the usual way of writing the variations of
the effective single-particle potential in g-space as

dvg = dvg + 5?) + 5ULDA 5?)(1;R. (F.14)
LR XC(5 8U5R
is the Fourier transform of the second term in ([EETJ) and f3%(n,q) = 7. The

acronym LR stands for linear response, which is used to determine fQXC as we will see.
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The susceptibility can then be written as

x*(9)
1+ x%(q) [2V cosq + {55, + f3C(a)]

x(q) = (F.15)

If we have an approximation for y(q), we can calculate the prefactor of our nonlocal
potential

>%e) = [X(@)] " = (@] =2V cosg — fi5a, (F.16)
or in real space
1 o
(a1 - 1) = L300 5 ), F.17
q

Using the homogeneous system as input, this exchange-correlation potential should be
fairly good even for inhomogeneous systems, as long as the inhomogeneities are within
the linear response regime of the homogeneous system.

The connection of this approximation to the gradient expansions can be seen on the
basis of equation ([EET1]), where the second term can be written as

Z Cr=1)-(ny —n)(ny —n) =57 Z N_gNg. (F.18)

LU q£0

The last equality can be found by inserting the Fourier representation of fQXC and the
densities. Thereby the ¢ = 0 term of n; and 72 cancel each other. Please also note that

QXC(q) goes to zero for ¢ — 0 since this limit is already described by the local density
approximation. Using the symmetry f5C(q) = f5C(—q) we see that the lowest order
expansion of f5¢(g) in powers of g is proportional to ¢>. On the other hand if we use

the lowest order gradient expansion (see for example [74]|) we have
Cn]:—EZB-(an)Z:—iZqu-n_ n (F.19)
24 2L o

where again we inserted the Fourier representation for the densities. Thus we see that the
gradient expansion is given by the lowest order term of our nonlocal exchange-correlation
potential. On the other hand it is clear that we need an infinite sum of higher order terms
to reproduce the singularity at ¢ = 2kp.
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