On the complete classification of unitary N = 2 minimal superconformal field theories

  • Aiming at a complete classification of unitary N = 2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N = 2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work [Gannon1996]. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N = 2 minimal models by simple counting arguments. We find a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariantAiming at a complete classification of unitary N = 2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N = 2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work [Gannon1996]. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N = 2 minimal models by simple counting arguments. We find a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function.show moreshow less
  • Um die unitären N = 2 minimalen Modelle (ohne Annahme der Raumzeit-Supersymmetrie) vollständig zu klassifizieren, wird durch Orbifolding gezeigt, dass jeder Kandidat für eine modular-invariante Zustandssumme einer solchen Theorie in der Tat die Zustandssumme eines minimalen Modells ist.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Oliver Gray
URN:urn:nbn:de:bvb:384-opus-14514
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1346
Title Additional (German):Über die vollständige Klassifikation der unitären N = 2 minimalen superkonformen Feldtheorien
Advisor:Katrin Wendland
Type:Doctoral Thesis
Language:English
Publishing Institution:Universität Augsburg
Granting Institution:Universität Augsburg, Mathematisch-Naturwissenschaftlich-Technische Fakultät
Date of final exam:2009/08/03
Release Date:2010/01/22
Tag:conformal field theory; supersymmetry; representation theory
GND-Keyword:Konforme Feldtheorie; Supersymmetrie; Darstellungstheorie
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):Deutsches Urheberrecht mit Print on Demand