TY - RPRT A1 - Höfner, Peter A1 - Möller, Bernhard T1 - Fixing zeno gaps N2 - In computer science fixpoints play a crucial role. Most often least and greatest fixpoints are sufficient. However there are situations where other ones are needed. In this paper we study, on an algebraic base, a special fixpoint of the function f(x) = a · x that describes infinite iteration of an element a. We show that the greatest fixpoint is too imprecise. Special problems arise if the iterated element contains the possibility of stepping on the spot (e.g. skip in a programming language) or if it allows Zeno behaviour. We present a construction for a fixpoint that captures these phenomena in a precise way. The theory is presented and motivated using an example from hybrid system analysis. T3 - Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg - 2010-11 KW - fixpoints KW - iteration KW - semiring KW - Kleene algebra KW - omega algebra KW - hybrid systems Y1 - 2010 UR - https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/1449 UR - https://nbn-resolving.org/urn:nbn:de:bvb:384-opus4-11809 PB - Institut für Informatik, Universität Augsburg CY - Augsburg ER -