TY - RPRT A1 - Dang, Han Hing A1 - Möller, Bernhard T1 - Extended transitive separation logic N2 - Separation logic (SL) is an extension of Hoare logic by operations and formulas to reason more flexibly about heap portions or, more concretely, about linked object/record structures. In the present paper we give an algebraic extension of SL at the data structure level. We define operations that, additionally to guaranteeing heap separation, make assumptions about the linking structure. Phenomena to be treated comprise reachability analysis, (absence of) sharing, cycle detection and preservation of substructures under destructive assignments. We demonstrate the practicality of this approach with examples of in-place list-reversal, tree rotation and threaded trees. T3 - Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg - 2013-07 KW - seperation logic KW - reachability KW - sharing KW - strong separation KW - verification Y1 - 2013 UR - https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/2370 UR - https://nbn-resolving.org/urn:nbn:de:bvb:384-opus4-23703 PB - Institut für Informatik, Universität Augsburg CY - Augsburg ER -