TY - JOUR A1 - Bila, Eleni A1 - Doherty, Simon A1 - Dongol, Brijesh A1 - Derrick, John A1 - Schellhorn, Gerhard A1 - Wehrheim, Heike T1 - Defining and verifying durable opacity: correctness for persistent software transactional memory T2 - Lecture Notes in Computer Science N2 - Non-volatile memory (NVM), aka persistent memory, is a new paradigm for memory that preserves its contents even after power loss. The expected ubiquity of NVM has stimulated interest in the design of novel concepts ensuring correctness of concurrent programming abstractions in the face of persistency. So far, this has lead to the design of a number of persistent concurrent data structures, built to satisfy an associated notion of correctness: durable linearizability. In this paper, we transfer the principle of durable concurrent correctness to the area of software transactional memory (STM). Software transactional memory algorithms allow for concurrent access to shared state. Like linearizability for concurrent data structures, opacity is the established notion of correctness for STMs. First, we provide a novel definition of durable opacity extending opacity to handle crashes and recovery in the context of NVM. Second, we develop a durably opaque version of an existing STM algorithm, namely the Transactional Mutex Lock (TML). Third, we design a proof technique for durable opacity based on refinement between TML and an operational characterisation of durable opacity by adapting the TMS2 specification. Finally, we apply this proof technique to show that the durable version of TML is indeed durably opaque. The correctness proof is mechanized within Isabelle. Y1 - 2020 UR - https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/79694 SN - 978-3-030-50085-6 N1 - Formal Techniques for Distributed Objects, Components, and Systems - 40th IFIP WG 6.1 International Conference, FORTE 2020, Held as Part of the 15th International Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15–19, 2020, Proceedings VL - 12136 SP - 39 EP - 58 PB - Springer CY - Cham ER -