Completely Free Elements

Dirk Hachenberger

Abstract. This paper is a working out of the same-titled talk given by
the author at the Third International Conference on Finite Fields and Their
Applications in Glasgow, 1995. We give a survey on recent results on the
characterization, the structure, the enumeration, and the construction of com-
pletely free elements and normal bases in finite dimensional extensions over

finite fields.

1. A Strengthening of the Normal Basis Theorem. If E is a finite
dimensional Galois extension over a field F with Galois group G, then the
Normal Basis Theorem states that the additive group (E, +) of £ is a cyclic
module over the group algebra FG, 1.e., there exists an element w in E such
that the set {g(w) | ¢ € G} of G-conjugates of w is an F-basis of E. Such
a basis 1s called a normal basis in £ over F. Every generator w of E as
FG-module is called a normal basis generator in E over F. For the sake of
simplicity such an element is also called free in E over F.

If H is a subgroup of G, and Fix(H) is the intermediate field of E over F
belonging to H via the Galois correspondence, 1.e., the subfield of F which
1s fixed elementwise by H, then (E,+) likewise carries the structure of a
Fix(H)H-module. Again, this module is cyclic; its generators are exactly
those elements whose H-conjugates build a Fix(H)-basis of £, i.e., the normal
basis generators or free elements in F over Fix(H).

Considering simultaneously all module structures of (£,+) arising from
the intermediate fields of E over F' together with the corresponding Galois
groups, 1t is natural to ask whether a stronger version of the Normal Basis
Theorem holds:

Do there exist elements in £ which simultaneously are free over every
intermediate field of E over F'7

Such elements are called completely free in E over F.

This problem was first considered by C. Faith 4] in 1957. He proved
existence in the case where the ground field F has infinite cardinality by
generalizing Artin’s proof of the Normal Basis Theorem [1]. Indeed, since
Artin’s argument also applies to finite fields provided the cardinality of the
ground field is large enough, one can show that for every integer m > 1 there
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It was only 86 that D. Blessenohl and K. Johnsen [3] affirmatively set-

tled the existence in the case of arbitrary finite fields. Their proof essentially
relies on the fact that the Galois groups occuring are cyclic and gives more
insight into the structure and nature of completely free elements. Altogether,
the following holds:

Theorem 1.1 Let E be a finite dimensional Galois extension over F, and

let K be any nonempty set of intermediate fields of E over F. Then there
exists an element in E which simultaneously is free over K for every K € K.

A look at the Section 'Open Problems and Conjectures’ of the proceeding
volumes of the latest International Conferences on Finite Fields and Their
Applications shows that completely free elements have attained much inter-
est, lately. Here, it is our aim to give a survey on recent results obtained
by the author on the characterization, the structure, the enumeration, and
the construction of such elements, and, on normal bases in general in finite
fields. It is our aim to give an idea of the nature of completely free elements.
['OI' QeLdllb pI‘OOIS d.Il(l Cxampleﬁ WIl]LIl luuSerLe Lllese TEbulbb we ft_:fef to
the three papers [5], [6] and [7], and mainly to the monograph [8], which is
an extensive treatment of normal bases, completely free elements, and the
structure of algebraic extensions over finite fields.

As standard references for the theory of finite fields, their arithmetic, and
their applications, we refer to the books of R. Lidl and H. Niederreiter [11}
and D. Jungmckel [10]. For the general algebraic background reference is
t n [9].
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2. The Existence of Completely Free Elements. Throughout, we
assume that £ and F' are finite fields (although some of the results also hold
under more general conditions). Basically, Blessenohl and Johnsen’s proof of
the existence of completely free elements in finite fields (see [3]) consists of
two parts. First, similar as in the case of ordinary normal basi

the existence is easily reduced to extensions of prime power degree.

Reduction Theorem. Ifu and v are completely free in GF(q™) over GF(q
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then wv is completely free in GF(q™") over GF(q).
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Thus let r be a prime number, and assume that F is the »™-dimensional
‘\l?]’lﬂ‘l‘ﬂ r > 1 1 1
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cases have to be considered, dependent on whether = is the characteristic of
F or not. The following result, which is already due to Faith [4], deals with
the case where 7 is the characteristic of F.

Theorem 2.1 Consider E = GF(q"") over F = GF(q), where r s equal to
the characteristic of F, and where n > 1 is an integer. Then the following
statements are equivalent:

(1) The (E, F)-trace of w € E 1is nonzero.
(2) w is free in E over F.
(3) w is completely free in E over F.

The case where r 1s different from the characteristic of F is the real dif-
1]* ‘Rrﬂ f\nc"hf\ +1’l ‘- + r‘r\‘ra‘l"ar] 1'\ ‘‘‘‘‘‘‘ 1+ o pal oF =~ CFMN

ficult one. We postpone this part, since it is covered by results we are go-
ing to present in the next sections. The original, difficult to follow proof
of Blessenohl and Johnsen essentially uses representation theory of abelian
groups applied to cyclic Galois extensions. In [5], we have given a simpler
proof of this difficult part. Our approach is mainly based on linear algebra
and properties of cyclotomic polynomials which occur as annihilators of par-
ticular submodules of the extension field considered. This approach likewise
leads to concreter, much more general results, and to the decomposition the-
ory which we are going to outline in the next section. Already in extensions
of prime power degree, we were able to determine the exact number of com-
pletely free elements (see [5]). Moreover, in [6] and [7] we have given explicit
constructions of completely free elements in every prime power extension over
every finite field, whence via the Reduction Theorem explicit constructions
of completely free elements in any finite dimensional extension over any finite
field are available. In particular this gives constructions of ordinary normal
bases in arbitrary finite dimensional extensions over any finite field.

3. Decompositions of Completely Free Elements. If for example we
consider the 1296-dimensional extension over GF(13), the Reduction The-
orem and results from [5] give that there are at least 12°¢ completely free
elements in that extension. Actually, the number of such elements in that
extension is at least 12!12°®. Consequently, the Reduction Theorem does not
give a characterization. However, in this section we will see that completely
free elements can be characterized by certain decompositions. We need some
definitions and first recall well known results on ordinary normal basis gen-
erators. These go back to the fundamental work of O. Ore [13].

Let £ = GF(qm), F = pp(n\ and let o denote the Frobenius automor-

phism in E over F, ie., the canomcal generator of the Galois group G of
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E over F' mapping every w in £ to its gth power. Since the Galois group
is cyclic and o in particular is an £-linear mapping on F, the FG-module
structure of the additive group of E can be studied with tools from linear
algebra: We consider E as a cyclic o-invariant F-space.

With respect to this structure, the annihilator ideal of (£, +) is generated
by the polynomial 2™ — 1. The o-invariant #-subspaces of £ correspond bi-
jectively to the monic divisors of 2™ — 1 with coefficients in F' (the submodule
corresponding to fis Uy := {v € E|f(o)(v) = 0}). Every submodule is cyclic.
For w € F, the g-order of w is defined to be the monic polynomial of least
degree which annihilates w (it is denoted by Ord,(w)). The generators of U;
are exactly those elements in E whose gq-order is equal to f. In particular,
the elements in £ which are free over F' are exactly those whose g-order is
equal to 2™ — 1.

Now, a decomposition A of ™ — 1 over F is a set of monic divisors of
z™ — 1 with coefficients in F such that different members of A are relatively
prime, and ™ — 1 = J[5ca 6.
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The fnnnwmg well known theorem gives a cha
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in K over F in terms of a decomposion f — 1 over F.

Theorem 3.1 Consider the extension E = GF(q™) over F = GF(q) and let
A be a decomposition of ™ — 1 over F. Then the following holds:

(1) @sca Us is a decomposition of (E,+) into o-invariant F-spaces, i.e.,

every w € E can uniquely be written as Y sca ws with ws € Us for all

& ~ A

o€ A.
(2) Ordy(w) = lsca Ordy(ws) for allw € E.

(3) w s free in E over F if, and only if Ord,(ws) = & for all A-components
ws of w.

Consequently, if for a given decomposition A of 2™ —1 a generator of each
A-component is known, then we have a free element.

Now, in order to find completely free elements, in analogy to Theorem
3.1, we consider the problem whether there are decompositions A of z™ — 1
over F' satisfying the following property:

(*) Every completely free element can be characterized by the properties
of its A-components, and, every completely free element can be constructed
by working independently on the A-components.

Observe, however, that there is an essential difference considering com-
pletely free instead of free elements:
In the case of free elements, Theorem 3.1 is natural, since every A leads to

Py Y] iy pp P |
a decomposition of (E, +) vv}'uph respects the only mudu‘m structure consid-

ered. In contrast, the definition of completely free requires that (E, +) has to
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be simultaneously generated with respect to all its module structures arising
from the intermediate fields of £ over F. Hence, for all positive divisors d
of m, we have to consider (E,+) simultaneously as GF(g?)-vector space with
respect to o? (we choose o as generator of the corresponding Galois group).
But, since no nontrivial subgroup of (E,+) can simultaneously be invariant

under all these module actions, the existence of a nontrivial decomposition
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On the other hand, the existence of a nontrivial decomposition satisfy-
ing (*) implies that in order to characterize completely free elements not
all module structures actually have to be considered simultaneously. Thus,
necessarily, the simultanity is "distributed over the components” of such a
decomposition.

Throughout, we will make the latter ideas precise. The only restriction
we make is that the degree m of the extension is relatively prime to the
cardinality g of the ground field. This implies that the polynomial z™ — 1 is
square-free over GF(g). Though technically more involved, the results can be
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In order to describe how to find a nontrivial decomposition satisfying (*),

we introduce further definitions:

Let k,1 > 1 be integers, and let &, be the kth cyclotomic polynomial. A
polynomlal A of the form )\ = ®i(zt) is called sustable over GF( ), provided
k and t are relatively prime to g (in which case A is square-free). Due to
fundamental properties of cyclotomic polynomials, we may without loss of
generality assume that k& and t are relatively prime.

A decomposition A of ™ — 1 over GF(q) is called suitable, provided that

4 1s suitable over GF(q f or every § in A.
A‘ c111+2]’\]p !‘]Df‘r\m

suitable decomp

GF(q), if it satisfies (

These definitions are motivated by the fact that z™ —1 = ®;(z™) is a suit-
able polynomial, and that, trivially, {™ — 1} is an agreeable decomposition
of ™ — 1 over GF(q). Now, the following theorem gives a necessary condition
which states when an agreeable decomposition of 2™ — 1 over GF(gq) can be
refined.

c-f~

Q

]

Q
Fh

8
3

|

D

!

[¢]

e ]
P
*d
~——

)
)

Theorem 3.2 Let A be an agreeable decomposition of ™ — 1 over GF(q).
Let A = ®(z*) be an element of A (with k and t being relatively prime), and
let r be a prime divisor of t. Assume that R 1s the largest power of r dividing
t. Furthermore, let ¥ = {‘I’k(mF), @kR(m%)}, and let ' := A — {A} U X.
Then the follounng holds:

(1) T s a suitable decomposition of z™ — 1 over GF(q).
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(2) If the multiplicative order of g modulo the square-free part of kt is not
divisible by R, then [’ is an agreeable decomposition of €™ — 1 over

GF(q).

We remark that Theorem 3.2 always is applicable to the trivial decompo-
sition {®;(z™)} with r being the largest prime divisor of m, in which case

we obtain the nontrivial agreeable decomposition {'rr —-1 dp ('rﬂ\l (whm—p
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R is the largest power of r dividing m). This shows that nontr1v1al agreeable
decompositions of 2™ — 1 always do exist!

As an example, consider the 42-dimensional extension over GF(5). Re-
peated application of Theorem 3.2 shows that {x — 1,z + 1, ®3(z?), ®+(z®)}
is an agreeable decomposition of z*? — 1 over GF(5). Moreover, Theorem 3.2
cannot be applied to any of its components.

Tt 1s an open problem whether the rp‘n ement condition (9) ;
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3.2 1s necessary.

Once an agreeable decomposition has been found, it remains to character-
ize the components of completely free elements w11‘h respect to this decom-
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position. This is done in the following two theorems.

Theorem 3.3 Let A be an agreeable decomposition of ™ — 1 over GF(q),
where g and m are relatwely prime. For w € E let > 5.5 ws be the decompo-
sition of w with respect to A. Then w s completely free over F if, and only
if for all § € A, ws stmultaneously generates Us with respect to all module
structures arising from the intermediate fields of E over F which leave Us
tnvariant.

In order to make the characterizing condition in Theorem 3.3 more precise,
properties of cyclotomic polynomials turn out to be very helpful. First, one
can show the following:

Let A = ®¢(z*) be a suitable divisor of 2™ — 1 over GF(q), and let U,
be the o-invariant F-subspace of E corresponding to A. Then for a positive
divisor d of m, Uy is GF(g%)-invariant if, and only if d divides ( 7, where p(k)
denotes the square-free part of k. Therefore, the module structures arising
from intermediate fields of E over F' which leave U, invariant correspond
bijectively to the poitive divisors of (’,;) Furthermore, as o%-invariant GF(q9)-

space, U, is annihilated by the polynomial @”(k)(a:;%:)—d). Therefore, Theorem
3.3 can be formulated as follows:

Theorem 3.3’ Let A be an agreeable decomposition of 2™ — 1 over GF(q),
where q and m are relatively prime. For w € E let 3 5.5 ws be the decompo-
sition of w with respect to A. Then w is completely free over F' if, and only
if the following holds for all § € A:
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If § = ®(z), then Ord a(ws) = ‘P#(k)(mp(i’%)‘d) for all positive divisors d of

;t(kT); where pu(k) denotes the square-free part of k.

We remark that in the case where A is the trivial agreeable decomposition
{z™ — 1}, Theorem 3.3’ results in the obvious fact that w is completely free
over F if, and only if Ord ¢(w) = 27 — 1 for all nonnegative divisors d of m.

However, already if we look at the agreeable decomposition {z+ — 1,
Pr(z®)}, where  is the largest prime dividing m, and where R is the largest
power of 7 dividing m, we can illustrate the effect which early in this Sec-
tion we described as "distribution of simultanity over a decomposition”: An
application of Theorem 3.3’ gives that it is sufficient to require the module
structures arising from divisors of Z; not all divisors of m have to be consid-
ered.

As a further example, look at the 42-dimensional extension over GF(5).

The agreeable decompos1t10n given subsequently to Theorem 3.2 shows that,
instead of the 8 module structures arising from positive divisors of 42, it is
sufficient to simultaneously require at most 4 module structures (for A =

$,(z®) we have to consider those corresponding to the positive divisors of 6).

It remains to show how components of a completely free element with
respect to a given agreeable decomposition can actually be found. This prob-
lem is solved in general in [8]. Here, we restrict our attention to a particuiar
class of extensions and just mention that the general case via a generalization
of the Reduction Theorem can be reduced to particular basic classes of ex-
tensions. The class considered in the next section is such a basic one. There,

fortunately, the problem can easily be solved.

4. Regular Extensions. In this section we characterize those pairs (g, m),
for which g and m are relatively prime, and the canonical decomposition
[Ty ®a is agreeable over GF(g). By definition (see Section 3) the canonical

decomposition is the finest suitable decomposition of z™ — 1 over GF(g).
For simplicity those pairs (g, m) and the corresponding extensions are called
regular.

The following result shows that regularity can be characterized by a simple
number theoretical condition on g and m.

Theorem 4.1 Consider GF(q™) over GF(q), where m and q are relatwely
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order of ¢ modulo the square-free part of m are relatively prime.

We remark that this number theoretical condition e.g. always holds in

he case where m 15 a nnmP power. 'T'rlvm"v further examnles are the nairs
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(g,m) where g — 1 is divisible by the square-free part of m. However, there
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are also other examples available, e.g., if all prime divisors of m belong to
{5,7,13,17,19,37}, and gq is relatively prime to m, then the multiplicative
order of ¢ modulo the square-free part of m divides the least common multiple
of {6 —1,7—1,13-1,17— 1,19 — 1,37 — 1} which is equal to 36. Thus, the
multiplicative order of ¢ modulo the square-free part of m is relatively prime
to m.

In order to obtain a completely free element in a regular extension, by
Theorem 3.3’, for every positive divisor k of m we have to find an element wk

satisfying Ord a(wi) = @ (k)(:c#(")d) = & for all positive divisors d of 75 k),
where p(k) 1s the square-free part of k. Amazmgly, the number theore‘mcal
condition which characterizes regularity also assures that up to some excep-

ttonal pairs (g, m) every such element can be characterized as the generator

of Us, with respect to one particular module structure. (For an integer m,

let my be the largest power of 2 dividing m. Then (g, m) is called ezceptional,
if 8 divides m,, if the multiplicative order of ¢ modulo m, is equal to 2, and if
g is not congruent to 1 + %2 modulo m,.) Fortunately, the exceptional cases
can also be handled.

Theorem 4.2 m and g be relatively prime, let GF(q™) be a regular ez-

Let
foemcrinm nmnomr (IF(q)’ and nceume that (a4 m) 1¢ mot errentinnal Far amn olo_

tension over G and assume that (q,m) is not exceptional. For an ele-
ment w € GF(q™) let 3ok, wi be the decomposition of w corresponding to the
canonical decomposition of €™ — 1. Then the following holds:

For every divisor k of m there ezxists a divisor T(q, k) of E(kT\ only depending
on k and q, such that w is completely free in GF(g™) over.GF(q) if, and only
if wy generates Us, as o™ (@) -inyariant GF(¢"(@"))-vector space, i.c., if, and

OTI'ly Zf OI’dq-r(q,k) (’LUk) = (I),u,(k](m F(k)f(%k)) = @ k

T(q,k)

Altogether, we can summarize our results as follows: After having divided
the whole problem of determining a completely free element into appropriate

alemwith i s 11,
parts, in a large class of field extensions, the problem can algorithmically

be solved by determining a generator of a cyclic vector space. This can e.g.
be done by applying H. Luneburg’s algorithm which computes the rational
normal form of an endomorphism (see [12]). In Section 5, we give explicit
constructions of such elements.

We finally remark that, as a further consequence of Theorem 4.2, the exact
number of completely free elements in regular extensions can be determined.

Theorem 4.3 Let GF(q™) be a regular eztension over GF(q). Then the num-
ber of completely free elements in GF(q™) over GF(q) is at least (g — 1)™



HACHENBERGER: Completely free elements 105

5. Explicit Constructions. Observing that (g%, 2) is regular, provided
that (g, m) is regular, and due to the content of Theorem 4.2, we here consider
the following basic problem (where again, the Q-order is defined with respect

to the Frobenius automorphism over GF(Q)):

Assume that (@, K) is regular. Given the finite field GF(Q), find an
element v in GF(Q¥) having Q-order ®.

This problem is solved by the following two theorems. (The exceptional
cases mentioned in Section 4 can similarly be handled.) First, a certain
element whose @Q-order has a particular form is given.

Theorem 5.1 Let (Q, K) be a regular pair, let s be the multiplicative order
of Q@ modulo the square-free part of K, and let p = p(Q, K) be the largest
diisor of Q* — 1 whose prime divisors all consist of prime divisors of K.
Furthermore, let n be a primative pK th root of unity.
Then GF(QX*) is obtained by adjoining n to GF(Q), and the Q-order of
n is of the form f(z*), where f is a divisor of ®x which is irreducible over

AT NN
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Next, with the same notation as in Theorem 5.1, let Tr denote the trace
function of GF(Q**) onto GF(Q¥). Using the fact that s and K are relatively
prime, it can be shown that the Q-order of Tr(7n) is an irreducible GF(Q)-
divisor of ®x. Hence, similar as in Theorem 3.1 for free elements, it remains
now to find a set of elements in GF(QK ) whose Q-orders correspond bijectively

Py g i A2 crmvee ~L 1 U UL Iy S, ol nF Ve my.
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the sum of these elements constitutes an element having Q-order ®x. A

construction of such a set is given in the following theorem.

Theorem 5.2 Additionally to the assumptions of Theorem 5.1, let a be the
greatest common divisor of p and K, let I be a set of representatives of units
modulo a, and let J be a complete set of Q-orbit representatives of I (i.e.,

PR u. Ny ot conaruent to 10 modulo a for eac L demdonpm
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different j and 7' in J).

Then {Ordg(Tr(n?))lj € J} is equal to the set of monic divisors of ®x
which are irreductble over GF(Q). Moreover, Tr(} ;c;n’) generates Usg,
as Y-invariant GF(Q)-space, where % s the Frobenius automorphism over

GF(Q).
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6. Concluding Remarks. The decomposition theory and again proper-
ties of cyclotomic polynomials can be used to give iterative constructions of
series of elements which are completely free in suitable extensions over the
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ground field considered. One only has to guarantee that all decompositions
are agreeable. For the case of regular extensions this is illustrated in the
following theorem.

Theorem 6.1 Let (q,m) be a regular pair, and let w be a completely free
element in GF(q™) over GF(q). Let n > 1 be an integer such that (g, mn)
18 reqular. Let D be the set of positive divisors of mn which are not divisors
of m. For every d € D, let vq be an element which stmultaneously generates
Us, with respect to all module structures arising from intermediate fields of
GF(¢™") over GF(q) which leave Us, invariant.

Then w + ¥ 4cp vq is completely free in GF(g™") over GF(q).

Moreover, every element in GF(q™") which is completely free over GF(q)
can be obtained in this manner.

We finally remark that in the recent papers Blake, Gao and Mullin [2] and
Scheerhorn [14], [15] there are given constructions of series of irreducible
polynomials whose roots are completely free over the field considered. The
extensions GF(¢™) over GF(q) which are covered by these constructions are
those, where m is a power of 2 (see [2]), or where m is odd and all prime
divisors of m divide ¢ — 1 (see [2] and [14]), or where m is odd and all prime

divisors of m divide g + 1 (see
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