Actions of Linearized Polynomials on the
Algebraic Closure of a Finite Field
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Abstract. Let g and h be monic polynomials in F'[z], where F is the finite
field of order q. We define a dynamical system by letting the g¢-linearized
polynomial associated with g act on equivalence classes of a certain F-
subspace of the algebraic closure F' of F in which related elements of F' lie
in the same orbit under the action of the ¢-linearized polynomial associated
with h. When h = z, this is equivalent to the system in which the dynamic
polynomial g acts on irreducible polynomials over F' as discussed in [CH],
where a conjecture of Morton [M] was proved as regards linearized poly-
nomials. A generalization of that result is proved here. This states that
when ¢ and h are non-constant relatively prime polynomials, then there
are infinitely many classes with prescribed preperiod and primitive period
in the (g, h)-dynamical system.
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1. Introduction

Let F = GF(g) and F be the algebraic closure of F. For any polynomial
f =3, fizt in F[z], let A,(f) be the associated (additive) g-linearized
polynomial (or simply g-polynomial) 3, fiz? and set

ol = A,(f)(z). (1.1)

By these means we obtain the set Ap of all q—polynomials Moreover,
AF acqwres a rmg structure LurO‘Lig, d(]ut ion and pULyT“LOﬁ‘LLuL CompOSZLLUIL
Indeed, the association f — A,(f) yields a ring isomorphism from F[z] to
Ap (see [O] or [LN]).

By the dynamics of a mapping v on a set S is meant all that pertains
to the orbits of elements of S under iterates of . For i > 0 let {9 denote
the ith iterate of v (with 4(®) being the identity on S). An element s € S
is called periodic, if its orbit {v(¥(s)|i > 0} is finite. If s is periodic and
k > 0 and n > 1 are minimial such that v (k) )(s) = v+ (s), then k is called
the preperiod of s, while n is called the pmmltwe period of s. A periodic
element is called purely periodic if its preperiod is zero. The backward orbit
of s € § is the set of all t € S for which there exists an ¢ > 0 such that
~(t) = s, excluding the members of the orbit of s different from s, if s is
purely periodic. We refer to (S,v) as a dynamical system.

In this paper v will be induced by a monic ¢g-polynomial A4(g) in which

event the above mentioned isomorphism reduces the study of iterates and

comnosites of angmnwu] manninos to that of powers and products of ordi-
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nary polynomials, respectively. For the set S we may, in the first instance,
choose S = F. If A,(g) acts naturally on S (i.e., by evaluation), it is clear
that every element is periodic. Moreover, if ¢ is non-constant, then, given
n, bllele are at most llllllt‘ly many pLuely pt’llUUll elb‘lllb‘ﬂbb UI ].)I.IIIJ.ILIVC
period n: this is because A,(g" — 1) is a nonzero polynomial and thus has
only finitely many roots. Studies delineating those primitive periods (and
preperiods) that can be realized in the dynamical system (F, 4,(g)) and
on other questions relating the dynamical structure to the polynomial and
field structures have been undertaken by Batra and Morton [BM1, BM2]
and Chou and Cohen [CC] and will not be discussed here in detail.
Nevertheless we elaborate on one aspect of the system just introduced.
The subset V, of F comprising the purely periodic elements of (F, A,(g))
can be partitioned into equivalence classes under the relation p, defined by
the rule that (a, 3) € p, if and only if a and 3 lie in the same orbit under
Aq(g) (evidently, this can be done for every dynamical system (S, v)). For
example, if g = x (so that A,(z) is the Frobenius automorphism w — w?
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on F), then V, = F and (a, 3) € p, if and only if o and 8 have the same
minimal polynomial over F. In fact, if u, denotes the minimal polynomial
of a over F| then a — p, induces a bijection between the set V;/p, of
equivalence classes of p, and the set Iy of monic irreducible polynomials
in Flz]. Observe that each n > 1 occurs as a primitive period. Another
case in which V, = F is the trivial one when g = 1, i.e., when A,(g) is the
identity map: then Vj/p; essentially is the same as the set F. Section 2
will include a more explicit description of the set V; in general: it is always
an F-subspace of F' which is invariant under the Frobenius automorphism.

For a more general dynamical system, yet one that retains A,(g) as the
dynamical polynomial, let & be another monic polynomial in F[z] and take
S to be the set Vj,/py. Since (a9)" = (o), there is a natural action of
A ( a)on Vi/o: if Ph ( ) denotes the equivalence class of «, then

g7 TS Ty il e TR M MESes

Aq(9)(pn(@)) == pr(Aq(g)()) = pn(e?) (1.2)

is well-defined. In particular, if h = 1 we recover the situation discussed
above and if A = z, then, from the previous paragraph we obtain a system
equivalent to that in which the linearized polynomial G := A,(g) acts on
Ir by defining

G(ta) == pas-

Such dynamical systems (I, G) (in a more general context in which the dy-
namic polynomial G need not be additive) were introduced by Vivaldi [V].
They were studied more intensively by Batra and Morton [BM1], (BM2],
by Morton [M] and by Cohen and Hachenberger [CH]. For these systems
the dynamics is richer because, potentially, there are infinitely many purely
periodic elements of any given period. Indeed, in [CH], in establishing a
conjecture of Morton [M] in the case of g-polynomials, it was shown that,
for g not of the form ! (I > 0 an integer), the system (I, A4(g)), equiva-
lently (Vi/pz, Aq(g)), contains infinitely many elements having prescribed
primitive period n (> 1) and preperiod k (> 0).

In the present paper we consider the general situation with arbitrary
monic g-polynomials g and h. For simplicity, we refer to (Vi /pn, A4(9))
as the (g, h)- ( dynamical ) system. In order to extend the above mentioned

nnnnn 1+ ~f [f“ necaaca rn aveant thaan nalunnimiala aaticfuing o ralat

1T0ouUlL Ul l\J.LLJ llUbCDDallly, we TALTPU lJ.I..I.UDC puly NoMials Ddblbly 1115 [ l.U].CLUJ.U.IJ
of the form g" = h® where 7, s > 0 are integers. In particular, we suppose
that g and h are non-constant polynomials. In fact, since 4,(h*) (i > 0)
induces the identity mapping on Vj,/pp, the (gh’, h)-system has the same
dynamics as the (g, h)-system. Consequently, we may assume that i does
not divide g. Additionally, we impose the further constraint that g and h
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are relatively prime, which however may not be altogether necessary. The
result is as follows.

Theorem 1.1 Let g and h be monic and relatively prime non-constant
polynomials in Fx|. Let n > 1 and k > 0 be integers. Then there exist
infinitely many classes A € Vi, / pr, which, with respect to the action of A,(g)
definied in (1.2), have primitive period n and preperiod k.

To complete this introduction we mention a simplification. If g = g{ (I > 2),
the existence of an element A in V},/pp, with primitive period in and prepe-
riod Ik with respect to the (go, h)-system guarantees that A\ has primitive
period n and preperiod & in the (g, 2)-system. Hence, we may assume that
g is a non-power, i.e., g is different from gf, for I > 2, an integer.

2. Additive order and its uses

The notion of the additive order or F-order of an element o € F' is funda-
mental to our study. References relevant to the present context are [H1],
[CH].

By Section 1, #' can be interpreted as an F[z]-module wherein the action
of f € Flz] on a € F is given by o/ := A,(f)(a) (see (1.1)). Let Pr denote
the set of all monic polynomials of F[z] which are indivisible by z. The
finite F[z]-submodules of F' correspond bijectively to the members of Pp:
f € Pp corresponds to the set of roots of A,(f) in F. Moreover, every
finite F[z]-submodule is cyclic, i.e., free on one generator. For any o € F,
the F-order or additive order of a (denoted by Ordg(«)) is the polynomial
f € Pr of least degree for which of = 0. In particular Ordp(0) = 1.
The generators of the submodule corresponding to f € Pp are exactly the
elements o € F such that Ordp(a) = f. There are precisely ®,(f) (> 0)
such generators, where ®, denotes the finite field Euler function. For more
details about F'[z]-submodules, we refer to [H1, H2].

We state some simple properties of additive orders. For o,3 € F,
Ordr(a + 8) is a divisor of Ordp(a) - Ordp(3) with equality if Ordg(a)
and Ordp(3) are coprime. A crucial result for the dynamics of linearized

polynomials is the following.

Lemma 2.1 Let a € F. If Ordp(a) = f and g € Flx], then Ordp(a9) =
f/ged(g, ) (where ged denotes the greatest common (monic) divisor). O

Let h € F[z] be monic. We are now prepared to deduce a description of
the subset Vj}, of F' comprising exactly the purely periodic elements of the
dynamical system (F, A,(h)) (see Section 1).
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Proposition 2.2 For any polynomial h € Flz],

Vi = {a € F|ged(Ordp(a), h) = 1}. (2.1)

Moreover, Vj, is an F[z]- submodule of F.

Proof. Let Cj, be the right hand side of (2.1), i.e., the set of all elements
a € F whose F-order is coprime to h. If o € F and f € F[x] then, by
Lemma 2.1, the F-order of o/ is a divisor of Ordy(a). Thus, C}, is invariant
under the action of A,(f) for all f € F[z]. Now, if & € V,, then o"" = o
for some integer n > 1. Thus, a further application of Lemma 2.1 shows
that a € C}. Conversely, if a € Cy, let | be the multiplicative order of h

modulo Ordp(a), ie., | > 1 is the least integer such that h! — 1 is divisible

by Ordp(a). Then ah = «, whence a € V},. O
For simplicity, throughout let My, := V},/pp. As in the proof of Proposition
2.2, Lemma 2.1 shows that, for a,ﬁ € Vi, Ordp(a) = Ordp(8) whenever

~ A (A Wanan far an ) we - de
& © Pupio). nence, ior aily A S 1V1n, we may define

Ordp(A) := Ordp(a), where a € A. (2.2)

This shows that each member of M}, is periodic. We next proceed to demon-
strate the pre-eminence of additive order for the preperiod and primitive
periods of elements of M}, in the (g, h)-dynamical system for arbitrary poly-
nomials g and h. Clearly, A = p, (@) (a € V},) is purely periodic if and only

{

F nq — n,h far anmo intoonra » > 1T and 7 >N Tn thic ragco tha nrimitive
—_— V) S LU U B L ) lllch\/lO e -/_ 4 allu ¢ < U. 1L ULlilo L/GJD vile Pllllllhl AAY

period of X is the minimal such value of n, denoted by m,,{A}. Then,
clearly,

Tgn{iA} = min {n | Ordp()) divides g" — k! for some [ > 0}. (2.3)

Combining (2.2) and Lemma 2.1
wa darive a dagerintion o
WT UTlIlvOC a uCDLlle <

(g, h)-system.

t D . Af 1’\117'(\

similarly to the proof of Proposition 2.2,
rg,h Ol pUre 1Yy p i

Proposition 2.3 Let Pg n be the set of purely periodic elements of My, in

LHrC \g,lb} bybLCTIL U,”tlr l,Cl, Vgh UC LILC UILLUN UJ (LLL /\ € .rgh (Icgulu,lny CU(JIL
such X as a subset of V). Then Vg =V, N Vi =V, dee., Vg, is the set
of all « € F whose F-order is coprime to gh. O

~.

Following Proposition 2.3, for any n > 1, we define P, ;(n) as the subset
of P, comprising all elements of primitive period n. From (2.3), if A €
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(1) If v(g) divides h, then Py = M.
(N T A Oee not dinide h then for each \ c D, (‘l'l"lld e
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assume that all additive orders f are co-prime to gh Becaus of (2.4) we
tend to work with F-orders rather than members of P, j,.

We ﬁnally remark that for the (g, 1)-system (with M; = F), Chou and

Cohen lV\“J further clas ‘Ly the prepe eriodic structure. Similar details car
certainly be set down for the general (g, h)-system.

3. Infinitely many F-orders f with 7,,(f) = n from one

Consider a (g, h)-system, where g and h are non-constant monic polynomi-
als over F. Following Section 2, define P, ;(n) as the set of all F-orders
f € Pr prime to gh such that ng’h(f) = n. The aim of this section is
to show that, under the assumption of Theorem 1.1, P, (n) is infinite
provided it is non-empty.

Nhanrva Arat +hat (D2 and /9 A ~n
T U tilat (£.0) alld (4.4) Can

rAanaQ

mo.n(f) = min {n| f divides g" — h! for some [ > 0 }. (3.1)

Thus, 7y ,(f) can be interpreted as the group order of g + fF[z| in the
group of units U fx modulo f factorized by the subgroup [h] generated by
h + fF[z]. In fact, our main problem concerning the primitive periods in
the (g, h)-system can be formulated as follows.

Given polynomials g, h over F and n > 1 an integer, do there exist

infinitely many f € Pr, relatlvely prime to gh, such that the group order
of g+ fF[z] in U /[R] is equal to n?

Lemma 3.1 Assume that f, f* € Pr are relatively prime to gh. Let n > 1
and m > 0 be integers. Then the following hold.

(1) f divides g™ — k' if and only if 7, 1(f) divides n.

(2) If f divides f*, then my 1, (f) divides 7y, (f*). O

We are now prepared to prove the main result of this section. Note that it
1s convenient to assume that g and h are coprime.

Theorem 3.2 Let g, h be monic non-constant polynomials in Flz] which
are relatwely prime. Assume that f is a polynomial in Pp relatively prime

to gh. If my 4 (f) = n, then Py p(n) is infinite.
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Proof. Because 7, ;(f) =

n,
fo:=g" — h™. Since g aud "

therefore a member of P, ;. Moreover, from Lemma 3. 1, mg.n(fo) = n. Let
d be the multiplicative order of h modulo f. Forl > 0, let f; :=¢" — hm”d
(relatively prime to gh). Since f divides both g" — A" and h? — 1, it also
divides f; = g" —h™ —h™(h'Y—1). Thus, again by Lemma 3.1, 7, 1 (fi) = n
for all I. Since the f; are all distinct (¢ > 0), we conclude that Py p(n) is
infinite. a

™~

jab]

v (2.3) there exists m > 0 such that f divides

A
uul:, JU is yu.ﬁ‘? g’/ G

!
"C’_S

4. Irreducible F-orders with primitive period coprime to p

Let p be the characteristic of ¥ = GF(g). In this section we consider
again the {a h)-system with g and h non-constant and relatively prime
as in the statement of Theorem 1.1. Further, without loss of generality
(as noted at the end of Section 1), we suppose that g is a non-power. The
polynomial A, however, may be a power and we define m to be the maximal
integer indivisible by p such that h = A" for some hy € Flz]. Note that,
additionally, h may be a p°th power for some e > 0. If m = 1 we shall say
that h is at most a p-power.

Given any n (> 1) indivisibe by p we prove directly that P, p(n) is
infinite (and so certainly non-empty, cf. Theorem 3.2). To accomplish this
goal, we seek to enumerate those F-orders f with m,,(f) = n for which
f is an drreducible polynomial over F' of degree d, where n is a divisor of
¢®—1 and f is coprime to gh. Let N (d) be the number of such f. We can
take d to be any integer such that the least common multiple of m and n
is a divisor of ¢% — 1.

Suppose f is irreducible of degree d and # is a root of f. Then F(8) =
GF(q%) =: Fy, say. Moreover, by (3.1) we have

7g.n(f) = min{n| g"(8) = h'(8) for some I >0 }. (4.1)

Now, for the next part, suppose that h is at most a p-power. We shall
indicate later modifications which treat the general case. Introducing yet
one further notion of order - this time the multiplicative order ord(w) of
non-zero elements w of F - we consider the relationship to (4.1) of the
following conditions involving an element 8 of Fy;; namely

¢’ 1

ord(h(8)) = , h(8) #0 (4.2)
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n) =1, g(6) #0. (4.3)

\

]
Assume that (4.2) and (4.3) hold for # € F;. Suppose, in fact, that 8 € Fy,,
where dj divides d. Then ¢(8), h(0) € F,, and ord(g(¢)) and ord(h(f)) are

. a_
divisors of g% — 1. Hence, from (4.2), n is a multiple of fﬁ, whereas,

from (4.3), n is relatively prime to this number. Hence d = dy and F; =
F(6). Consequently, f is irreducible of degree d. Furthermore, (4.2) implies
that h(0) is a generator of the (cyclic) group of nth powers in F;. Hence

g"(6) = h'(8) for some | > 0. Moreover, (4.3) guarantees that g(6) is not
any kind of nth power in Fy, i.e., g(8) = ¢ for e dividing n implies e = 1.
Thus, (4.1) holds and 7, 4(f) = n. We conclude that if N,(d) denotes the

cardinality of the subset of Fy satisfying (4.2) and (4.3) then, clearly,

X 1
Ni(d) 2 5 Nald),

and it suffices to show that N, (d) is positive.
To state our results we repeat some notation frorn [CH]. Define n; as

the part of n involving primes common to n and g1 . More precisely, write
n = ning, where n; and no are relatively prlme the squarefree part v(ny)
of n; is equal to the squarefree part of ged(4— ! n) and gcd(g— ny) = 1.

In this section ¢ and p are the regular Euler and Moblus functlons
respectively, and, if w(k) is the number of distinct prime factors of k&, then
W (k) := 2¢%) is the number of squarefree factors of k.

The crucial resu the following.

Proposition 4.1 Let g and h be non-constant monic polynomials in F|x],
where F' = GF(q). Assume that g and h are relatively prime and that g

md K ot + Th »~
is a Non-power ana n ai mMosv G p-power. inen, J()’/" any 27306’9‘6’7‘3 n (/> 1/

indivisible by the characteristic p of F and d such that n divides ¢* — 1, we
have

a?

P(L)e(m)

Nold) = Sy '+ B, (4.4)

where
IR| < nMq"*W(g* — 1)W (ny) (4.5)
and M = deg(g) + deg(h) — 1. (The trivial case Mq? = 2 is excluded.)

Proof. Employing the characteristic functions F, and Fs for the sets of
elements of F; satisfying (4.3) and (4.2), respectively, we obtain
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Nu(d) = Y Ei(a)Ea(a).

ac k.

Here, see e.g., [Col,
Ei(a) = £y 40 S oo, (4.6)
n rln plr )ord

where the sum over x is over all ¢(r) multiplicative characters of Fy of
order r. The sum F»(a) (associated with (4.2)) is rather more awkward
but has the shape (taken from Lemma 2 of Carlitz [C]) given by

Accordingly,

No(d) = so(n)«(m iZZWMS) T Y Sten). (48)

n r|n s|gd— I(P( )gp ord(x)=rord(n)=s

where S(x,7n) denotes the character sum

St.m) = Y x(g(a))n(h(a)).

a€Fy

- ; g9—1 e . .- ] . \
Because ng and “—— are relatively prime, it is easy to see that, in (4.8), ny

may replace n in w(n)go(qdn_ L
character sums S(x,7n) for the characters which appear in (4.8). Clearly, if
x = xo and 7 = ng are the trivial characters (of order 1), then

S(Xa 77) = qd - M07 (49)

where My < M +1 is the number of zeros of gh in F;. Otherwise, by Weil’s
Theorem, see [L] (Chapter 6, Theorem 3, part (1)),

1S(x, M| < Mg/, (4.10)

[P s 1

Ads a aranhaciead P A 10N Lo 11
At Llllb pUlllb ll., lllubl; Le Cllpllaslsced tlld-t (1.1

4 e valid for all
relevant characters x, n (not both trivial) if the conditions g, h relatively

;__.
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prime, or h at most a p-power, were to be relaxed and a discussion of the
general situation has to overcome such difficulties.
We deduce from (4.8) to (4.10) that N, (d) has the form (4.4), where

—~~
1SN
—
'—l

g

and A = u? here denotes Liouville’s function. Evidently,

Ty = MW {(n)Ts,
where
Bo 3 A w12)
a1 Ps7)
Now, let @ be the part of ¢ — 1 prime to n. Then, by the multiplicativity
of the functions involved, 73 can be expressed as

n=a Y AU,
tQ ulg?=1, v(u)lv(n)

where the definition of ™ is analogous to that of s* and where

b

A(u™)p(u

Ty = Z (u™)p(u)

ujnv(ny)

since A(u*) = 0 unless u divides nv(n;). Somewhat surprisingly perhaps,
T3 can be evaluated exactly (see [CH]) as

T3 = ’I‘LW(TLl),
leading to a precise evaluation of 7). Using the fact that W(n)W(Q) =
W (g% — 1) we deduce the bound (4.5) for |R|. O

By means of Proposition 4.1 and the explicit bound W (k) < 5k/* (see
Lemma 3.3 of [CH]) we obtain the following result which establishes The-
orem 1.1 for n indivisible by p and h at most a p-power (because we can
choose any value of d larger than the stated bound to guarantee that Py 5 (n)
is infinite).

Theorem 4.2 Let g and h be non-constant monic polynomials in F[z],
where F' = GF(q). Assume that g and h are relatively prime and that g
is a non-power and h at most a p-power. Then, for any integer n (> 1)
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indivisible by the characteristic p of F' and any integer d such that n divides
d - 2
¢“ —1 and

5
d> 4log(25n1 M)
log(q)
(where M = deg(g) + deg(h) — 1), we have that N, (d) and N}(d) are
positive. a

To complete this section we outline the modifications to the above discus-
sion when h is a power. Assume h = h{* with m indivisible by p as described
at the beginning of the section. The other assumed conditions remain in
force. In particular, we suppose that ¢¢ — 1 is divisible by the least common
multiple L of m and n. Let [ := ged(n,m), then n’ := n/l and m’ := m/I
are relatively prime. We claim that the followmg extensions of (4.2) and
(4.3) guarantee that 8 € Fy is the root of an irreducible polynomial f of

degree d such that (4.1) holds (so that 7, (f) = n), they are

¢'—1
ord(ho(9)) = T ho(6) # 0, (4.13)

ord(g(8)) divides L= L, , gcd(m(g(e)),m n’) =1, g(0) #0. (4.14)

Observe that (4.13) means that h(f) generates the Lth powers of Fj. Fur-
ther, (4.14) implies that g(f) is an m’th power but no higher power which
is a divisor of L. Note that hy is at most a p-power and we could carry
out a calculation similar to that of Proposition 4.1 to yield a satisfactory
estimate for the cardinality of the subset of F; satisfying (4.13) and (4.14).

An alternative to the above procedure is to replace (4.14) by the more
stringent condition

¢’ 1

m/

ord(g(9)) = (4.15)

and employ some of the estimates used in Proposition 4.1.
To illustrate the above, take n = 12 and m = 8: thus ¢% — 1 is divisible
by L = 24. Further n’ = 3 and m’ = 2. Also (4 13) means that h0(0) is the

I3 e alavsamd ~F T2 N 1 [ L

\,ubc Uf a PlillllblVC Clclllclll‘ o1 If d. Vil hllC Ubllb’l lldllu, K’i l&) llllplleb blldb
g(0) is a square but neither a cube nor a 4th power, whereas (4.15) simply
means that g(6) is the square of a primitive element.

Denote by N (d) the cardinality of the subset of F; satisfying (4.13)
and (4.15). Then, by following the proof of Proposition 4.1, but using a
further analogue of (4.12) for T as well as T3, we obtain an expression for
N/ (d) of the form
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NT’l(d) = C(qd + R)~ c> O:
where

d d
1 1
R| < mnMq*?w (4 - ywi(L—2,

m

Though this is not the best possible lower bound for N, (d), it leads to a
satisfactory extension of Theorem 4.2 that suffices to establish that P, j(n)
is infinite for n indivisible by p.

5. Generating F-orders with primitive period divisible by p

Once more consider the (g, h)-system where g and h are non-constant and
relatively prime. We know from Sections 3 and 4 that P, 4(n) is infinite
whenever n is indivisible by the characteristic p of F' = GF(q). Given n not

divisible by p, we shall show in this section that from any fEe 'D L(fn\ can be
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derived a distinct F-order f; in ’Pg,h(np) foreach [ > 1. As a consequence
of this, Theorem 1.1 is completely proved. Assume throughout that f and
gh are relatively prime.

First, some remarks are offered on where to look for F-orders with
primitive periods divisible by p. In Section 4, for any n indivisible by p,
we found irreducible polynomials f in P, 4(n). Although this is far from a
comprehensive treatment, it is the case that, in broad terms, such periods
are assoclated with square-free F-orders f.

On the one hand, 7, ,(f) = n is indivisible by p whenever f is square-
free. To justify this, suppose p divides n. Let N be the multiplicative order
of g modulo f. Then f divides ¢"¥ — 1 and so, by the definition of n and
Lemma 3.1 (1), n divides N. Consequently, p divides N and f divides
g™/P — 1 (since f is square-free). This contradicts the definition of N.

On the other hand, if p does not divide n and f € P, ,(n), we claim
that the square-free part v(f) of f also lies in P, »(n). To justify this, let
mon(V(f)) = k and let f divide v(f)?', where I > 0. Then v(f) divides
g" — ™, say, and so v(f )pl divides gkpl — k™' Tt follows from Lemma 3.1
that n = 7wy, (f) divides 7y p(v(f )pl) and the latter divides kp'. Since n is
indivisible by p we conclude that k& = n.

The above argument also reveals that, if f € P, p(n) and j > 0 is an
integer, then 7,5 (f?') is of the form np' with (I;);>0 being an increasing
sequence of nonnegative integers. Thus it is sensible to search for members
of Py p(np') of the form fP'. The key result is as follows.
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Proposition 5.1 Let g and h be relatively prime and monic polynomials
in Fx] of degree at least 1. Letn > 1 be an integer and assume that 7y 4 ( f)
divides n where f € Py is relatively prime to gh. Then there exists a power
P > 1 of the characteristic p of F such that m,,(f") does not divide n.

Proof. Observe first that by (1) of Lemma 3.1, if & = 74, (f) divides n,
then f divides ¢" —h™ for some m > 0. Now assume by way of contradiction
that m,,(fF) divides n for each power P > 1 of p. Let h™ = h{'*, where
ho is a divisor of h which is not a pth power and analogously let g™ = g;°,
where gy divides g and is not a pth power. Then g 1, ( fT) divides ng for
each power P > 1 of p, and therefore the assumption of the proposition is
satisfied for the (go, ho)-system, f and ng > 1. From now on, we assume
that ¢ and h are not pth powers and shall derive a contradiction.

For a power P > 1 of p, let m(P) be the unique nonnegative integer
bounded by the multiplicative order of k modulo f* such that ¢" — R
is divisible by f”. Let r = r(P) be the largest power of p dividing
ged(n,m(P)) and write N := N(P) = n/r, M(P) := m(P)/r. Observe
that r is bounded since n is fixed. Moreover, N or M(P) is not divisible
by p. We assume that r divides P and let Q := P/r. Then f9 divides
gV — hMP) a5 well as ¢g"? — D@ Consequently, letting for simplicity
M = M(P) and m = m(1), f¢ divides
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A= A(P) — _(gN . hM)g"Q_N + gnQ - th — hz’\"lgnQ—N - th.
If a € Flz] is such that A = af? and Q is larger than 1, then the formal
derivative A’ of A is equal to

A = a/fQ — hM—lgnQ—N—l(Mh/g _ Ng'h).

If B(P) := Mh'g— Ng'h # 0 then A" # 0, whence the relative primeness
of f and gh implies that f< divides B(P). Since the degree of B(P) is
bounded for all P, this gives a contradiction for sufficiently large P (and
Q). Thus, B(P) = 0 for large P, which we now assume. If A = 0 mod p
then p does not divide N and therefore g’h = 0, whence ¢’ = 0. This is a
contradiction to the assumptions that deg(g) > 1 and that g is not a pth
power. Similarly, if N = 0 mod p, then p does not divide M and therefore
h'g = 0, whence h’ = 0. Again, this is a contradiction. We deduce that
p does not divide NM and therefore h'g = vg'h for some nonzero v € F.
But this cannot happen, as g and h are assumed to be relatively prime and
neither ¢’ nor A’ is zero. This completes the proof of Proposition 5.1. O

We now resume the discussion of the (g, h)-system described at the begin-
ning of the section. Assume from now on that f € P, ,(n) for a given n > 1
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(we know the existence of f when n is indivisible by p). An application of
Proposition 5.1 shows that there exists an integer j > 1 such that m, 4 ( 7
does not divide n. In fact, 7, (f?) = np! for some { > 1. Now let x(f) be
the p-index of f, i.e., the least integer k > 1 such that np divides 7rg|h(fpk).
Then it is clear that fi := f5(/) € Py n(np). If, by induction, f; € Pgih(npi)
for some ¢ > 1, then fi1; := ff ) ¢ Pgﬂh(npi“). This finally completes
the proof of Theorem 1.1, since P, ;(n) is known to be nonempty (in fact
infinite) if p does not divide n.

L\ PR I [N oJEGE A I &) SR P S [ [ SRR N S S
INevertneless I0r 1 1Ol a ptil pOwer, we give a Iinal result representing
a more precise version of the above. There is also a small restriction of f,

namely that its degree be at least that of h.
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which are relatively prime. Assume that h is not a pth power. Assume fur-
ther that. for a given n, f € Pyn(n) and deg(f) > deg(h). Let k := k(f)
be the p-index of f. Then

K+l)

Tan(f77) =np™t for alll > 0. (5.1)

Proof. The condition on h means that A’ is non-zero. By the definition of
K, (5.1) is valid for [ = 0. Assume by induction that the assertion holds for
all 7 <1 and some [ > 0. Assume further that, for some ¢ € F[z] and some
m > 0,
S R UV | .
Cf‘u — gnp — ™,
Differentiating, we obtain that f””' divides mh™ 'h’. Using the facts
that f and h are relatively prime and deg(f) > deg(h), we deduce that

- n et i g nph

m is divisible by p. Thus, f divides g7 — R™/P 4 contradiction to
Ton(fFT) = np! 1. This completes the proof. O
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