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Abstract. Let E be a finite degree extension over a finite field F = GF(g), G

the Galois group of E over F and leta € F be nonzero. We prove the existence
of an element w in E satisfying the following conditions:

- w is primitive in E, i.e., w generates the multiplicative group of E (as a
module over the ring of integers).

- the set {w® | g € G} of conjugates of w under G forms a normal basis of
E over F.

- the (E, F)-trace of w is equal to a.

This result is a strengthening of the primitive normal basis theorem of Lenstra
and Schoof[10] and the theorem of Cohen on primitive elements with prescribed
trace [3]. It establishes a recent conjecture of Morgan and Mullen [14], who,
by means of a computer search, have verified the existence of such elements
for the cases in which ¢ < 97 and n < 6, n being the degree of E over F. Apart
from two pairs (F, E) (or (q, n)) we are able to settle the conjecture purely
theoretically.

Keywords: Finite field, Primitive element, Normal basis, Free element, Trace,
Character sum

1 Introduction

Let E be a finite field. It is well-known that the multiplicative group (E*, -) of
E 1s cyclic, i.e., free on one generator as a module over the ring of integers.
Every generator of (E*, -) is called a primitive element of E.
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If F = GF(q), the Galois field with cardinality g, is a subfield of E, then E
is a Galois extension over F with cyclic Galois group G. A canonical generator
of G is the Frobenius automorphism o which maps each element of E onto its
gth power. It was first proved by Hensel [8] that E admits a normal basis over
F, i.e., there exists an element in E such that its conjugates under G form an
F-basis of E. The additive group (E, +) of E carries a module structure over
the polynomial ring F[x] with respect to o' the scalar multiplication is defined
by

foa:= f(o)a), fe Flx],aekE. (1.1)

The normal basis theorem simply states that (£, +) is free on one generator
as F[x]-module. Since the normal bases for E over F are precisely the sets of
G-conjugates of F[x]-generators of (E, +), every such generator is called a
normal element of E over F. (The terminology is not consistent; the term free
in E over F is frequently used in [7]; primitive of the second kind is used in
(1)

The combination of primitivity and normality was first studied by Carlitz
[1]. He proved that there are at most finitely many pairs (F, E) of finite fields
(with E an extension of F) for which there does not exist an element in £
which is primitive and normal over F. Such an element is called primitive of
the third kind in [1]): we shall use the term primitive F-normal element. In
the case where the cardinality g of F is a prime number, the existence of a
primitive F-normal element was proved in Davenport [5]. Lenstra and Schoof
[10] affirmatively settled the existence of primitive F-normal elements for all
finite fields F and all finite extensions E over F.

Coding Theory [12] motivated the study of primitive elements with pre-
scribed trace by several workers [3,9,13,14]. Recall that the (E, F)-trace (or
F-trace or simply trace) Tr(w) of w € E is the sum of the G-conjugates of w,
ie.,

n—1 n—1

Tr(w) := Trg r(w) = Z ol (w) = Z w?, (1.2)

=0

where n := [E : F] denotes the degree of E over F = GF(q). The complete
answer was given by Cohen [3]: if n > 3 and (g, n) # (4, 3), then, for every
a € F, there exists a primitive element w € E such that Tr(w) = a. Moreover,

i = Varfa Y — 4 2 than far avyary nanzarn 4 = L thara avigte a
11 Ii - 4 Ul \q, ) — "7y JJ, Ullll, 1UL \.«V(d_y HUVIILNLIY (4 T 1, UIviv CAIDW a

primitive element w € E such that Tr(w) = a.

In respect of primitive elements with nonzero trace, parts of the latter result
were independently proved by Jungnickel and Vanstone [9] existence was set-
+1ad far avar: nanzams o vt e e 2 hasana fhe s D it wag chn
uca 101 CVUly 11UiLIZC1IvV U ﬁ l WHRCNCver 71 / Jy winercas 161 7i — < ll wasd bllUWll

that there are at most 143 exceptional values for ¢. The case of nonzero trace
and g = 2 had been handled already by Moreno [13].
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The aim of the present work is the combination of primitivity, normality and
prescribed trace. Our main result is a strengthening of both the primitive normal
basis theorem of Lenstra and Schoof and the theorem of Cohen on primitive
elements with prescribed trace. Evidently, the universality of the result makes
it of great potential use for constructions dependent on the existence of such
bases.

Main Theorem. Let E be a finite extension over a finite field F and leta € F
be nonzero. Then there exists an element w in E which is primitive and F-
normal and has F-trace equal to a.

Observe (e.g., by (1.2)) that a normal element never has trace equal to zero,
whence the assumption on a is necessary.

The existence of primitive F-normal elements with prescribed trace has
been conjectured recently by Morgan and Muilen {14, Conjecture 1] (see also
Conjecture 8 in [15]") and this has been the motivation for our work. In [14] it is
mentioned that existence holds whenever g < 97 andn < 6: given F = GF(g)
with ¢ < 97, a nonzero element a € F and n < 6, they have determined a
monic polynomial f, , € F[x]of degree n, irreducible over ', with roots being
primitive and F-normal, whose x"~!-coefficient is equal to —a (of course this
solves the problem for the triple (g, n, a)).

Apart from two pairs (g, n) we are able to settle the conjecture of Morgan
and Mullen purely theoreticaily, i.e., without searching in the underiying fields.
The two exceptional pairs are covered by their computational work, though we
include our independent verification in these particular cases.

In Section 2 we prove preliminary existence results, i.e., for some classes
of pairs (g, n) the problem is reduced to the existence of primitive elements
with prescribed trace (which is covered by [3]), or to the existence of primitive
F-normal elements (in which case [10] applies). For example, if n = 2, then
every primitive element is already normal (e.g., see [6]) whence all pairs (g, 2)
are covered by [3]. Or, if ¢ = 2, then nonzero trace is the same as trace equal
to 1, whence the problem is a particular instance of [10].

The essential ingredients for the main part of the proof are (estimates of)
character sums. The use of character sums for the study of primitive elements
with additional properties already goes back to the work of Carlitz [1] and Dav-
enport [5]; itis of fundamental importance in [3], [9], [13] and [10], also. Further
applications of this method can be found in Cohen’s survey [4]. In Section 3
we determine an expression in terms of character sums for the characteristic
function of the set of primitive F-normal elements with prescribed trace a. This
formula is used in Section 4, where a sufficient number-theoretical condition
for this set to be nonempty is derived. For moderate sizes for ¢ and n this condi-

! There have been attempts by others to resolve this conjecture. These have not been substan-
tiated.
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tion can be checked with the aid of a computer algebra package equipped with
algorithms for factorizing integers. For our calculations, we have used Maple
(in the version Maple V, Release 4). Whereas our estimate is efficient forn > 6,
the cases n = 3, 4 and 5 are handled in Section 5 by applying a basic counting
argument in combination with effective estimates for the number of primitive
elements with prescribed trace. The outcome of Section 4 and Section 5 is a
concrete list of 38 pairs (g, n) containing aii for which the conjecture of Morgan

and Mullen fails. Apart from the two cases (7, 3) and (13, 4), all entries of this
list are ruled out theoretically in Section 6. Fortunately, the remaining two pairs

have parameters allowing direct verification in the fields.

2 Preliminary Existence Results

Throughout, let ¢ > 1 be a prime power and n > 2 an integer. By & we denote
the set of all pairs (g, n) for which the following statement is true:

Jor every nonzero a € F = GF(q) there exists a primitive F-normal
element w € E = GF(q") whose (E, F)-trace is equal to a.

When considering E as F[x]-module, the notion of F-order is of funda-
mental importance (see [10] or [6,7]; it is the additive analogue of that of the
multiplicative order of a nonzero field element): for w € E the F-order of w

ig the mnnin nn]vnr\rrnnl f of leact deoree in FIx1 cuch that f(rr\(-nn\ — 0
llllllllllll VIJ AANJALALGA2 J WA AWUOL “vblvv A1k x L-"VJ O WWal LA J \ W, — V

is denoted by Ordr(w) or Ord, (w). Since wi" —w=0forallw € E, the
F-order of each w € E isa divisor of x” — 1. In fact, x" — 1 is the minimal
polynomial of E as an F-vector space with respect to 0. Then w € E is normal

— N
over F ifandonly if Ordp(w) = x" — L. Slmalarly, the multiplicative order of

w is denoted by ord (w); 1t d1v1des the exponent g” — 1 of (E*, -); w is primitive
if and only if ord(w) = ¢" — 1.
Throughout, let p be the characteristic of F and
n
primpy = 1 (2.3)
x—1

Then 1 (0)(w) = Tr(w). Moreover, Tr(w) = 0 if and only if Ord ¢ (w) divides
t. Again, this shows that a normal element necessarily has nonzero trace. The
converse of the latter however is not true in general. In fact, it holds precisely
when n is a power of the characteristic p. Consequently, in that case, the ex-
istence of primitive F-normal elements with prescribed trace already follows
from Cohen [3]. Proposition 2.2 is a generalization of the latter argument. We
require the following lemma which is proved in [7, Proposition 5.5].

Lemma 2.1 Let n = mn’ where m > 1 is a power of p and n’ is prime to p.
Let K be the intermediate field of degree n’ over F. Then w € E is normal over
F ifand only if Trg g (w) is normal in K over F. O
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Proposition 2.2 If p divides n, then (q,n) € .

I’FOOJ iletn = JTP'Z ana De as lﬂ Lemma 2.1 UlVCl’] a NoNnzZero ClCanI a OI
F, choose v € K, normal over F with (K, F)-trace a. By Cohen’s theorem
there exists a primitive w € E with Trg g (w) = v. By Lemma 2.1, w is normal
over F. The transitivity of the trace mappings shows that Tr(w) = a. O

We continue with a sufficient condition for normality. It follows immediately
from our short discussion on F-order and the definition of 7.

Lemma 2.3 Assume that the F-order of w € E is divisible by t and that Tr(w)
is nonzero. Then w is normal over F. m|

We have already mentioned that for n = 2 primitivity implies normality. On
the other hand, n = 2 is the most difficult instance when considering primitive
elements with prescribed trace and demands particular attention (see [2], [3]
and also [9]). The following reduction to Cohen’s theorem incorporates the case
n=2.

Proposition 2.4 Ifn is a prime different from p and if the multiplicative order
of g modulo n is equal ton — 1, then (q,n) € &.

Proof. The assumption that ¢ is a primitive root modulo »n implies that ¢ is
irreducible over F. Moreover, since n is prime, x” — 1 = (x — 1)r is the
complete factorization of x” — 1 over F. If w is an element of E but not of F
(e.g., a primitive element of E) then Ordr(w) does not divide x — 1. Thus, ¢
divides Ordr(w). If additionally w has nonzero trace, then w is normal over
F by Lemma 2.3. In particuiar, if w is primitive with nonzero trace, then w is
normal over F. Hence, (g, n) € & by Cohen’s theorem. 0

So far, we have made considerable use of the existence of primitive elements

with nracerihad traca In tha fallawing wa chall caa that cnmeo fathar) inctansac
¥viiil l.ll\dc\/l LUV LLAavh, 111 LIV 1VLIVYY 1]15 YYVL Olldll OLL lial DullIv \Ulll\«l, IDLaLIvVVO

of our problem can be reduced to the existence of primitive F-normal elements,
i.e., the theorem of Lenstra and Schoof is applicable.

T amma ) & ¢ D ho tho £ anzitann st s ol nsma nsnbe A I 41 ~ &

LOINA &5 Let 2 pe tne set oj pr imitive elements Oj L ana A € L d Ronzer
element. Then AP = 2 if and only if the square-free part of (¢" — 1)/ord(X) is
equal to the square-free part of ¢" — 1.

Proof. Let [], r* be the prime power factorization of ¢” — 1. In accordance
with this, let
E ) =[]s
r

be the decomposition of the multiplicative group of £ into the product of its
Sylow subgroups (S, being the Sylow r-subgroup). For a nonzero y of F
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let [ ], - be the decomposition of y into its Sylow-components. Since every
subgroup of (E*, -) is cyclic and the function ord is multiplicative, then y is
primitive if and only if each y, generates S, i.e., if and only if ord(A,) = r®
for each r.

Let A = [], A, be nonzero. If A, generates S, then so does AL Ify s
a primitive element with S,-component A~! then Ay is not primitive since its
S,-component is equal to 1 and thus not a generator of S,. Assume conversely
that no S,-component of A has (maximal) multiplicative order r® . Letting y
again be primitive, we see that for each r, A,y, is a generator of the S,: this
is because the subgroups of cyclic groups of prime power order are linearly
ordered by inclusion and A, lies in the unique maximal subgroup of S, but y,
does not.

Summarizing, we have proved that Ay is primitive for all y € Zif and only
if all prime divisors of ¢" — 1 divide (¢” — 1)/ord(}). ]

As an application of Lemma 2.5, we obtain the following result which is The-
orem4 in [14].

Proposition 2.6 [f the square-free part of g — 1 divides n, then (g, n) € &.
Proof. Let r be a prime divisor of ¢ — 1. By assumption, r divides n and
therefore the maximal power of r dividing ¢” — 1 exceeds the maximal power
of r dividing g — 1 (the latter is covered e.g. by [7, Lemma 19.5]). Consequently,
Lemma 2.5 applies to all A € F*. Now let a be a nonzero element of F. Take
any primitive F-normal w in E (which exists by the theorem of Lenstra and
Schoof). A suitable choice of A € F* gives that Tr(Aw) = a. Of course, since
A € F*, Aw is normal over F. The crucial fact is that by the assumption on the
parameters g and n, Aw likewise is primitive. Thus, everything is proved. O

We finally summarize the results of the present section as follows:

Theorem 2.7 If(q, n) is not contained in &, then, necessarily, all the following
conditions hold:

Hn=3;

2)q = 3;

(3) n and q are relatively prime;

(4) the square-free part of g — 1 does not divide n;

(5) if n is prime, then q is not a primitive root modulo n. |

3 Character Sums and Characteristic Functions
If S is a set and R a subset of S, the characteristic function of R (in S) is the

mapping S — C of S into the field C of complex numbers defined by x — 1
if x € R and x — 0, otherwise.
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Let again n > 2, F = GF(q), p be the characteristic of F and £ =
GF(g"). Fora € F, let 72, and .4", be the sets of primitive elements and F-
normal elements, respectively, in E with F-trace a. In the present section we
shall give an expression for the characteristic function of 2, N .47, in terms of
character sums. Our considerations include a multiplicative, an additive and a
trace part, and indeed combinations of these. The contents of the multiplicative
and additive parts and the (remarkable) analogy between them go back to the
work of Carlitz [1] and of Davenport [5] (see also Section 2 in [10]). For the
basic theory of characters of finite fields, we refer to [11].

The multiplicative part

Let e be a divisor of ¢” — 1 and let v € E*. Then v is said to be not any kind of
eth power (see [4]) if e and (¢" — 1)/ord (v) are relatively prime. For w € E*
let

w(e)zu(d)z (w). G.1)

dle ( .d)

where ¢ denotes the Euler totient function, u the Mobius function, the first sum
runs over all positive divisors of e and the second sum runs over all multiplicative
characters of E having order exactly d. The following derives from Carlitz [1]

s N

(though the original idea in this context is attributed to I. M. Vinogradov).

Proposition 3.1 M, is the characteristic function of the set of all w in E*
which are not any kind of eth power. In particular, My (w) = 1 if and only
if w is primitive. Moreover, with the convention that M.(0) := 0, we have that
Y wer Mgn_1(w) = @(g" — 1) is the total number of primitive elements of E.
O

The additive part

Let f be a monic F-divisor of x” — 1 and let v € E. Then v is said to be not
any kind of fth multiple if f and (x" — 1)/Ordg(v) are relatively prime. Of
course, if n is indivisible by the characteristic p (the situation with which we
are principally concerned), then this is equivalent to Ordg(v) being divisible
by f.Forw € E let

() — 10 (8) A
Ap(w) = qdee(D 2. ¢, (2) L x (W), (3.2)

glf (x.8)

where ¢, and i, denote the Euler function and the Mébius function, respec-
tively, for the ring F[x], deg the degree of a polynomial; the first sum runs over
all monic F-divisors of f and the second sum runs over all additive characters
of E having F-order exactly g. The latter makes sense, since (see [10]) the
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character group E of (E, +) is turned into a module over F[x] with respect to
o by defining

(gox)(w):= x(gow), ge Flx], weE,er (3.3)

(compare this with (1.1)). With respect to this action, the F-order of an addi-

tive character is defined analogously as the F-order of a field element. Also F'

T VALGLI GV A0 VAL S QUGAV VWS Y QLU UL LI IR 4 bt

is annihilated by x" — 1; moreover, it is free on one generator, whence E and
(E, +) are isomorphic as F[x]-modules. As for elements of (the additive group
of) E, for every monic F-divisor g of x" — 1, there are precisely ¢, (g) additive

charactare havinog F.onrder o The following 1ic the additive analaone of Prono-
ViIALUWwiIvLI O llu"‘ls 1 AV A 6 A LIV ANJALVUYY Illé AN LAAW UWNANRILL Y W “L‘ulv&“v i LVIJV

sition 3.1. We shall include a proof, since this generalizes the corresponding
aspect in [10], where a proof is omitted.

P‘r‘l‘)p(ﬁbluon 3.2 ﬂf is the cnar'aCfé‘rmm,Juncu(m gj fthe set Q/ all w in E which
are not any kind of fth multiple. In particular, Ay (w) = 1 ifand only if w is
normal over F. Moreover, Zwe g Av—1(w) = ¢, (x" — 1) is the total number
of normal elements of E over F.

Proof. Observe first that
¢q(f) _ ¢ (v(f))

qdeg(f) qdeg(v(f))

3.4)

where v( f) denotes the square-free part of f. Since u,(g) = 0 if and only if g
is not square-free, it follows that A ; = A, ). Using the multiplicativity of the
mappings ¢, and i, as well as that of the function Ordr (see e.g. [7, Theorem
8.6]), we obtain

Ar(w) = l—[ WO 1_[ (1 deg(g Z X(w)) (3.5)
£\

o
&

where the products run over all monic irreducible F-divisors of f.

Now, if w is “some kind of fth multiple”, i.e., if w = g(o)() for some
irreducible F-divisor g of f and some @ € E, then, by (3.2), x(w) = 1 for
all x having F-order g. Thus the factor in the second product of A;(w) in
(3.5) corresponding to g is equal to zero, whence A ;(w) = 0. Conversely, if
w is not any kind of fth multiple, we claim that Z(X_ ¢ X (w) = —1 for every
irreducible F-divisor g of f. Were this true, then A s(w) = 1 would follow
readily.

To prove the claim we first introduce some useful terminology: for a monic
divisor g of x" — 1 let Cr ; be the set of additive characters of £ having F-order
dxmdmg g. This set is an Flx]- submodule of F' Its dual qnhm-mm

C,i:'g ={we E|x(w)=1forall x € Cr,} (3-6)
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is exactly the set Ur («n_1),, of all elements of E whose F-orders divide (x" —
1)/g. The latter is an F[x]-submodule of E (see [7, Theorem 8.3]). By an
elementary result on character sums,

Yo ox= deé(g > x 3.7)

X€Cry Xx€Cry

ICFgI

is the characteristic function of Ur (or_1)/,.

We now return to our situation above. If w is not any kind of fth multiple,
then for every irreducible F-divisor g of f, w is not contained in the dual
subgroup of Cg. . Consequently, observing that y € Crg has F-order either

equal to 1 or g, we have

0= Y xw)= Y xw)+ o)=Y x(w)+1,
X€Cre x.8 (x.8)
where xo denotes the trivial additive character, i.e., the characteristic function
of E. Thus, everything is proved. O

The trace part

If A is an additive character of F, then A /iffs to an additive character Aof E by
setting

Aw) 1= A(Tr(w)). (3.8)
Moreover, A € C r.x—1 and, in fact, Cr ,_; is the submodule of E corresponding
to the lifted additive characters of F. Furthermore, Cz , _, isequalto U, (where
t is as in (2.1)) which is the kernel of Tr. Fora € F let

To(w) := ZA(Tr(w)»a) Zx(wn(a)- (3.9)

AeF AGF

Proposition 3.3 7, is the characteristic function of the set of w in E having
F-trace equal to a. O

Combining the mappings 7, and A,, where ¢ again is as in (2.1), we obtain the
following criterion for normality over F, as a reformulation of Lemma 2.3.

Lemma 3.4 Leta € F be nonzero and assume that T,(w)A,(w) # 0. Then w
is normal over F.

Proof If p divides n then v(x" — 1) divides ¢ and therefore A, (w) # 0 implies

that x” — 1 divides Ordr(w) whence w is normal over F. If p and n are
prime then A;(w) jé 0 is equivalent to the fact that ¢ divides Ordz(w). Since

18388 e vois O valClll 10O UIC 1801 Ulal ¢ Gl VG E (o) 38 L%
r 1™

T,(w) # 0, w has nonzero F-trace. Thus, Ordg(w) # t and w is normal over
F. ]
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Of course, pointwise multiplication of the functions M, ._; and A, gives
the characteristic function of the set of primitive and F-normal elements. We
remark that an important tool in [10] is that

> Myr—i(w)Asi (w) # 0

wek
(equivalent to the existence of a primitive and F-normal element) is implied
already by

Z Mp(w)Ae_1(w) # 0,

wekE

where

n—1
P = 1

(- Nordl, 1 )
\g — 18\g — 1,71

In our problem, wherein the trace is fixed, this device unfortunately cannot be

used. We therefore must work with the following description of the number of
primitive and F-normal elements with prescribed trace.

Theorem 3.5 Let a be a nonzero element of F = GF(q). Consider the n-
dimensional extension E = GF(q") over F and let t be as in (2.1). Then the
characteristic function of the set of primitive F -normal elements with prescribed
F-traceain E isequalto My«_, - A, - T,. Moreover, the total number PN,(q, n)
of primitive F-normal elements in E with prescribed F-trace a is equal to

PNa(g,m) = )  Mpow)- Aw)-T,). 0 (3.10)

wekE

4 The Method of Lenstra and Schoof

Let & be as at the beginning of Section 2. In the present section we use the
characteristic functions and character sum estimates to derive a sufficient exis-
tence criterion for a pair (g, n) to belong to . It turns out to be efficient for
the case in which n > 6 (and indivisible by the characteristic p of F).

We introduce some further number-theoretical notations. Foraninteger N >
1 let w (N) be the number of distinct prime divisors of N and O(N) := ¢(N)/N.
Analogously, for a monic polynomial f € F[x] let ,(f) be the number of
distinct irreducible monic F-divisors of f and 6,(f) := ¢,(f)/q%e /.

Proposition 4.1 Assume that n and q are relatively prime. If (q, n) is not in
&, then, necessarily. with t being as in (2.1),

q%~l < 20" =1+ (0) (%)
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Proof. By the results of the previous section, we have

PNo(gin) 1 (@) 14 (8)
= = P Pq 8 Gy, xA), (4.1
T D8M = 7 2 2 @ dute) 2 A 2 Gk (4D

1 dlg"-1 git (n.d) (x.8) AeCrxn

where (see [11, Section 5.2]) G(n, x A) denotes the Gauss sum

G, xM) = Y n(w)(xA)w). 4.2)

wekE

The additive characters x occuring in (4.1) all have F-order dividing . Since
Cr.: + Cr -1 1s a direct decomposition of E, we see that x A is trivial if and
only if both x and X are trivial. If n = ng is trivial (i.e.,d = 1) and x* = xqg is
trivial (i.e.,, g = 1 and A = Ay is trivial) then (with the convention 79(0) = 1)
the corresponding term in (4.1) is equal to
G(no. xoro) !
q

If n = no but x A is nontrivial, then G (5, xA) = 0. The same holds when 7 is
nontrivial, but x A is trivial. If n and x A both are nontrivial, then the absolute
value of the corresponding Gauss sum is equal to ¢"/?, i.e.,

G, xM)| = g% @4
(More details on Gauss sums can be found in [11, Section 5.2].) Subtracting
the term ¢"~! from both sides of (4.1) gives the left side
PN,(q,n) _
vg” — 1)uyll)

(4.3)

l(q,n) = qg" . 4.5)
By the triangle inequality, the above discussion yields an estimate of the fol-
lowing type

ll(g. m| < clg.n)-q".

This expression is made more precise in the following. By the definition of the
Mbébius functions, in (4.1), one has only to form the sums over divisors of the
square-free parts of g” — 1 and ¢, respectively. Observing that there are precisely
¢(d) multiplicative characters of order precisely d (for each d) and precisely
¢,(g) additive characters of F-order precisely g (for each g), we deduce that
{(q, n) does not exceed

g 2 2. 2. vtg 2, ) e

9 1 2divq"~1) 1%l 2eCroy 1] v(g"—1) 1#AeCr

An easy calculation now shows that

1
g, ) = 2% =1 (29 - 21—>q7, (4.6)
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where, for simplicity, @ = w(g" — 1) and @ = (). Consequently, if
PN,(gq,n) =0, then

/ 1\
il <@°-1) (29 - i) < 291% 4.7)
q
From that, (*) readily follows and the proof is complete. O
From now on, let #* be the set of pairs (g, n), relatively prime, for which (*)

holds. We remark that (*) does not provide any information when n = 2, and
a determination of all ¢ such that (g, 3) € #* seems to be hopeless. We are,
however, able to determine all (g, n) € #* withn > 6. To that end we proceed

basically as Lenstra and Schoof did in [10]. The next two lemmas give upper
bounds for w(¢" — 1) and 2, (¢), respectively. For proofs we refer to [10].

Lemmad4.2 Let N > 1,1 > 1 be integers and A be a set of primes all less or

eaual tol. Let I = T1 _ r. Accume that everv nrime divisor r < | an is
1 1 1reA” EAY
contained in A. T hen
log N —log L
w(N) < 2282 LA .
log!

Lemma 4.3 Let n be relatively prime to q and let t be as in (2.1). Then the
Jollowing hold, where for simplicity Q := Q,(t).
()< 1(n + ged(n, g — 1)) — L. Inparticular Q <n-—1(with equality

lf‘nrgf] nnlv an — 1 is divisible by n) )\/fnrﬂnvor O 2n—1 ifg —1isnot

Selel U AVAUITUY i, 4y Yy L e

b-w

divisible by n.

QQ<in+5ifqg=5.

B)Q=<in+1ifqg=4andn # 15.

#Q<=<in+1ifg=3andn #4,8,16. O
Note that, generally, the upper bounds for € in Lemma 4.3 are of the form
an + B.

Lemma 4.4 Let (q,n) € F*. Then, for every choice for the values «, f,
[, L, A, we have

logg logq ) logq logL
(10g4 Tlogl %) < PHIAY S el @Y
and
n n 1 log L
- ~ 1 A . .
(log4 log! 10g2) 0gq < antf+I[Al- log! 49)

Proof. The result follows easily from (*) using the bounds of Lemma 4.2 and
Lemma 4.3. O

We continue with an analysis of the bounds given in Lemma 4.4. Throughout,
we assume that n and ¢ are relatively prime and that ¢ > 3. For a given degree
n, a suitable choice of A and !/ yields that
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n n 1

b(A L) =

= - — (4.10)
log4 log! log2

is greater than 0, whence ¢ is bounded. For the remaining values of g, utilizing
Maple (in version Maple V, Release 4), we test the condition (*). Similarly, if ¢
is fixed, after choosing a bound for €2, (¢), a suitable choice of A and/ yields that

1 1
_ logq _logqg (4.11)

Al =
a(A. D) logd logl

is greater than 0, whence n is bounded. This analysis results in a concrete list
of pairs (g, n) which are members of #* and therefore might not lie in .

Part 1. Assume that ¢ — 1 is divisible by n and that n > 6.

Then Q,(t) =n —1.Leta = 1and B = —1. Take ! = 54 and A as the set of
primes less than /. Then |A| = 16 and b(A,[) > 0. We obtain the following
data.

| n | g=< | (g.n) e F* for g equalto |
6 1151 7,13, 19, 25,31, 37,43,49, 61, 121
7 329 8
8 156 9
9 95 -
10 67 11
i1 51 -
12 42 13
13<n<19 35 —
> 20 contradiction -

Part 2. Assume that ¢ — 1 is not divisible by n,n > 6 and ¢ > 11.
Take o = 2, = —1 and A, [ as in Part 1. This gives the data

S

| 11<g < |(g.n) e #* for q equal to|

388 11,29
128 —
66 —
42 —
31 —
24 —
20 —
17 -
15 —
14 —
19 13 —
contradiction —

e e e
N Wk = OO oo~

x

,__

CN
v A
oS
S A
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Part 3. Let ¢ = 9 and assume n > 3.

First, (9,4), (9, 8) € #*. If n does not divide 8, take & = 2, f = —1,/ = 32
and A the set of primes less than /. Then |A| = 11 and a(A, [) > 0. We obtain
n < 28: testing (*) shows that only (9, 5) survives.

Part 4. Let ¢ = 8 and assume n > 3.

We have already seen that (8, 7) satisfies (*). Assume therefore that n # 7.
Take @ = 3 and B = —1 and A and / as in Part 3. Then n < 36 but (*) is
satisfied only for (8, 3).

Deset & T at ~ A 2 2
rarto. L&t g = 7/ and assume n = J.

Then (7, 3), (7, 6) € F*. Assuming that g — 1 is not divisible by n, we take
again o = i— and B = —1, A the set of all primes less than 54 and let / = 54.
Thena(A,!) > 0and n < 39. Test of (*) shows that only (7, 4), (7, 12) € #*.

3

Part 6. Let g = 5 and assume n > 3.

Then (5,4) € #*. Assuming that ¢ — 1 is not divisible by n, with a = %
and B = 4, A and [ as in Part 5, gives n < 26. Test of (*) shows that only
(5.3), (5,6), (5,8). (5, 12) € 7*.

Part 7. Let ¢ = 4 and assume that n > 3.

The pairs (4, 3) and (4, 15) are members of #*. Assuming that n # 3 and
n # 15, we may take a = -; and § = 1. Let A and ! be as in Part 5. Then
n < 24 and test of (*) shows that only (4, 5), (4,9) € F*.

Part 8. Let g = 3. Assume thatn > 4.

Then (3,4), (3,8) € #* but (3, 16) is not in .#*. For all other values of n we
may take @ = } and 8 = }. With A and [ as in Part 5 we obtain n < 36. Test
of (*) shows that only (3, 5) € #*.

For completeness, we remark that (2, 3), (2, 5), (2,7), (2,9) and (2, 15) are

the only members of #* with ¢ = 2 and n odd (this is achieved by taking

Oels UL 2 el QUILILVRL VY Waxlll

o = ;= f, A and/ as in Part 5, which shows n < 77).

Summarizing the results of the present section, we have proved the following.

Theorem 4.5 Let g and n be relatively prime. Assume thatn > 6 if g > 11
and thatn > 3 if3 < q < 9. If (g, n) does not belong to &, then, necessarily,
(q, n) is one of the following pairs:

,12), (5, 12), (11, 1
(4,9),(9.8),(5.8),3,8),@,7),
(121, 6), (61, 6), (49, 6), (43, 6), (37, 6), (31, 6),
(29, 6), (25, 6), (19, 6), (13, 6), (11,6), (7, 6), (5, 6),
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(9,5),(4,5), 3,5, 0.4, (7,4, 5,4, G, 4),
(8,3),(7.3), (5,3), 4, 3).

5 Variations of a Counting Argument

In the present section we study primitive normal bases with prescribed trace

Avtnnmoinng ~f dagean 2 A and & TL A langion ~risiatse ey

fUl Cl(lCllbiUllb O1 UCEIvL O, ana J. 11c uxaux UIEJUUICUL lb a Uablb DUUHUUE
argument that turns out to be very efficient for these (low) degrees. Let Z, and
A" be as at the beginning of Section 3 and let P, and N,, respectively, denote
the cardinalities of these sets. Moreover, let PN,(q, n) be as in Theorem 3.5.

Lemma 5.1 Leta € F be nonzero. Then

PN,(g,n) > Na+Pa—qn_]- (5.1)

Proof. We have
PNll(q$ l’l) = '/Va mg)ai = Na + Pa - 'L/Va U?“f.

Since A7, U 2, is a subset of the set 7, of elements of E with F-trace equal

to a and [J «l = q" !, the result follows. ]
Then sult shows that P N, (g, n) is nonzero provided that 2, is sufficiently
large.

Lemma$.2 Letn > 2. If

P, > (n—1)g" 2, (5.2)
then PN,(q,n) > 0.
Proof. Since ¢, (x" — 1) > (g — 1)" (e.g., a consequence of [7, Theorem 10.57),
then

_ ¢q(xn -1

L= > ___ln—l'
(g1 z@-b

Now, if P, satisfies the assumption (5.2), then
PN, = (q— 1" +(n—1g""~q"".

Using induction on n, we see easily that the latter number is greater than zero
for all ¢ > 2 whenever n > 3. For n = 2, (5.2) implies P, > 1. Indeed, since
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conjugates have the same trace and the same orders, it follows that P, > 2.
Thus, again, PN,(g, n) > 0 and everything is proved. O

To verify the bound (5.2) for P,, we again consider (estimates of) character
sums. From Section 3 we know that

Po=Y My ((w)Ta(w). (5.3)

wekE

This expression was analysed in [3] and [9]: the outcome is that P, = 0 implies
" =@ -2")9T + (2P - 1) T, (5.4)

where, throughout, v = w(¢" — 1) and ® = a)(%"_;]l). The noteworthy feature
of (5.4) is the occurence of the exponent % in the main term in the right side
instead of 5 as, for instance, in the right side of (4.6). Indeed, using estimates for
the relevant terms in /(q, n) (defined in (4.5)) leads to a marginal improvement
of (4.6). More importantly, one can deduce a lower bound for P, itself. Granted
the above, the details are obvious and are left to the reader.

Lemma 5.3 We have

Piz0q" -1 (¢ = 2°-29¢'T —2°-1)g'T). o (535

We now combine the Lemmas 5.1-5.3 to obtain a further sufficient criterion
for (g, n) to be in &.

Proposition 5.4 Assume that (q, n) is not contained in &. Then, necessarily,

Ay A 5 2-n n—
g <Q2Y-2%q7 +(2° - 1)‘122 +m- (%)

Proof. 1If PN,(q,n) = 0 then,by Lemma 5.2, P, < (n—1)q"~* and therefore,
by Lemma 5.3,

n—1 w 5y n=l o n=2 (n—1Dgq n=2
— (29 —2g"T — (29 — g™ = A
q ( )q ( g <5 @ -1
An easy calculation shows that (**) is satisfied in that situation. O

Let #** be the set of all pairs (g, n) for which (xx) is satisfied. We shall
determine all pairs (g, n) of #** with n = 3,4, or 5 and where n and g are
relatively prime. We require a further auxiliary result, first. For an integer k > 1
let px denote the kth prime.
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Lemma 5.5 Let (q, n) € F**. Assume that, for some integer k > 1, p; > 2"

and i
k p k n
k 3z i
2% “”‘”H(p,.-l)f(g”f) . (5.6)

IID"
<

I.\/l/
ATICTE W N v

Proof. 1If (g, n) € #**, then, in particular,
g <2°gT + (5.7)

Since generally

nl - qn,,— 1 < ﬁ( pi ) (5.8)

0(g" = 1) ¢lq"

(5.7) implies that

~
wn
\O
~—

@
205 4 -T2,
I.J \pi-1)

Assume now that (5.6) holds for some kg > 1. If p;, > 2", then, by induction,
(5.6) holds for all £ > ky. Now, if w > kg, then

141 M Th thn £ 3
and combining (5.6) and (5.9) produces a contradiction. Thus, the proof is
complete. ]

We are now ready to analyse the cases n = 3, 4 and 5, respectively. Throughout,
we assume that (g, n) € F**.

Part 1. Assume that n = 3,
Inequality (5.7) becomes

2
0(g>— 1)

The assumptions of Lemma 5.5 are satisfied for k = 9 whence w < 8. Since
generally

g <294 (5.10)

1
no__ = 2
6(g" — 1)

(5.10) implies g < 2% + 2% = 768. Checking (**) for all these values of ¢, we

get the following list of members of .#**:

2,3),4,3).(5,3),(7,3), (11, 3).

(9]
L]
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Part 2. Assume that n = 4.
Inequality (5.7) becomes

2¢ 3

. (5.11)

=73 0@ D
Since 1/.,/G < (g* — 1)™% < 27%,(5.11) implies that

3
2% +

“= 6(g" — 1)
IfL — 17 than n. > 1A anAd
11 N — 14 Livill l_}k : AU QAlliul

whence the condition of Lemma 5.5 is satisfied for k > 12. Thisimpliesw < 11.
Finally, (5.11) and (5.8) give a concrete upper bound 822 for g. A test of all g
in that range shows that the pairs (g, 4) in #** with ¢ odd are exactly

(3,4),(5,4), (7,4), (11, 4), (13, 4).

Part 3. Assume that n = 5.

Inequality (5.7) implies
2% 4

PRRIZEES 42

q <

Since 1/q < (g° — 1)75 < 27%, (5.12) implies

[ pi \
(7o7) < \,-in} : (5.13)

whence Lemma 5.5 is in particular satisfied for ¢ > 16. Thus, @ < 15. Finally,
(5.8) and (5.12) imply an upper bound 4129 for g. A test of all g in that range
shows that the pairs (g, 5) in #** with ¢ not divisible by 5 are exactly

(2,5),(3,5),(4,5), (7,5), (9,5).

Altogether, we have proved the following.



Primitive Normal Bases with Prescribed Trace 401

Theorem 5.6 Let g and n be relatively prime. Assume thatn = 3,4 or 5 and
that ¢ > 3. If (g, n) does not belong to &, then, necessarily, (g, n) is one of
the following pairs:

(9,5),(7,5).(4,5). 3. 5),
(13,4), (11,4),(7,4), (5,4), 3. 4),
(11,3),(7,3), (5,3), (4. 3).

So far, we have proved that the assertion of the Main Theorem is valid except
for at most 38 pairs (g, n), namely, those listed in Theorem 4.5 and 5.6. In the
present section, we shall rule out all these pairs and complete the proof of the
Main Theorem.

By the first three parts of Theorem 2.7, we may assume that ¢ > 3,n > 3

and that ¢ and n are relatively prime.

Part 1. We consider the lists in Theorem 4.5 and 5.6.
Application of Proposition 2.6 excludes all 10 entries with n > 7 as well as the
pairs

(49, 6), (37, 6), (25, 6), (19, 6), (13, 6), (7, 6), (5,6), (5,4), (3, 4), (4, 3).

Further, application of Proposition 2.4 excludes the pairs (7, 5), (3, 5), (11, 3),
(8, 3) and (5, 3).

A rATIATN o et

£ila £TL
1tn

1. T s ~ eorem <o
l or tne 1Ciainug CIiric e llb 01 1 NCOITIM 4.0 W 11ave

condition (**) of Section 5 is satisfied. This excludes the pairs
(121, 6), (61, 6), (43, 6), (31, 6), (29, 6), (11, 6), (9, 4).

The remaining entries of the lists of Theorem 4.5 and 5.6 satisfying (¥), (¥¥)
and all conditions of Theorem 2.7 are

9,5), 4,5),(13,4),(11,4), (7,4), (7, 3).

Part 2. We reconsider the counting argument of Section 5.

By Lemma 5.1 we have PN,(¢,n) > 0,if P, > ¢"~! — N,. In the discussion
of Section 5, we always used the worst lower bound (g — 1)"~! for N, (see the
proof of Lemma 5.2). In fact, with ¢ as in (2.1), N, = ¢,(t) and so equality
holds in this bound if and only if n divides ¢ — 1. This is not so for the pairs

9,5),4,5),(11,4), (7, 4).

airs, the right hand side of (5.5)1i

11 S14€ Of

f 1S
hat the assertion of the Main Theorem ho

greater t than
Ids also for

3

these cases.
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Part 3. The remaining pairs (13, 4) and (7, 3).

We shall ﬁnally complete the proof of the Main Theorem by verifying the exis-
tence of primitive normal elements with prescribed trace by direct calculation
in these fields.

For given (g, n), let F = GF(g) and P, , € F[x] be the monic polynomial
whose roots are exactly the elements in £ = GF(g") which are normal over F'.
(Based on the factorization of x” — 1 over F it is demonstrated in [6] how P, ,
can be determined by calculating in F[x].) Furthermore, let Q, , denote the
(g" — Dth cyclotomic polynomial over F. Then the roots of Q,, , are precisely
the primitive elements of E. Let R, , be the greatest common divisor of P, , and
Q,.»- Then the roots of R, , are precisely the primitive and F-normal elements
of E.

Using Maple (in version Maple V, Release 4), we have determined R, , and
its complete factorization over the field GF (¢ ) for the pairs (7, 3) and (13, 4). An
inspection of the irreducible factors shows that indeed every nonzero element
of the ground field occurs as a second highest coefficient. This completes the
proof of the Main Theorem.

For convenience, we provide the reader with some data from the latter
calculation. A polynomial f = f,x" + f,_1x"~' 4+ -+ + fix + fo is written
as (fus fo-1s -5 1, So)

R7 3 has degree 72 and possesses the irreducible factors
(1,1,1,2),(1,2,4,2),(1,3,2,2),(1,4,4,4), (1,5,5,2),(1,6,6,4)

v}

aq

R34 has degree 4342 and possesses the irreducible factors
(1,1,6,10,7),(1,2,8,12,11), (1, 3,12,2,7),(1,4,7, 2, 6),
(1,5,12,4,11),(1,6,10,4,7),(1,7,12,0,11), (1, 8, 6, 5, 2),
(1,9,11,5,7),(1,10,4,7,6), (1, 11, 12,7, 6), (1, 12, 12, 10, 7).
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