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Optimization of ECG Classification by Means of
Feature Selection

Tanis Mar∗, Student Member, IEEE, Sebastian Zaunseder, Juan Pablo Martı́nez, Mariano Llamedo, and Rüdiger Poll

Abstract—This study tackles the ECG classification problem by
means of a methodology, which is able to enhance classification
performance while simultaneously reducing the computational re-
sources, making it specially adequate for its application in the im-
provement of ambulatory settings. For this purpose, the sequential
forward floating search (SFFS) algorithm is applied with a new
criterion function index based on linear discriminants. This crite-
rion has been devised specifically to be a quality indicator in ECG
arrhythmia classification. Based on this measure, a comprehensive
feature set is analyzed with the SFFS algorithm, and the most suit-
able subset returned is additionally evaluated with a multilayer
perceptron (MLP) to assess the robustness of the model. Aiming
at obtaining meaningful estimates of the real-world performance
and facilitating comparison with similar studies, the present con-
tribution follows the Association for the Advancement of Medical
Instrumentation standard EC57:1998 and the same interpatient
division scheme used in several previous studies. Results show that
by applying the proposed methods, the performance obtained in
similar studies under the same constraints can be exceeded, while
keeping the requirements suitable for ambulatory monitoring.

Index Terms—Association for the Advancement of Medical In-
strumentation (AAMI), classification, ECG, feature selection (FS),
linear discriminant analysis (LDA), multilayer perceptron (MLP),
sequential forward floating search (SFFS).

I. INTRODUCTION

AUTOMATED classification provides inestimable aid for
long-term electrocardiography, which is a commonplace
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in patient monitoring, both in bedside and in ambulatory set-
tings. Indeed, a large number of approaches using a variety of
techniques have been proposed for this task, easing the diag-
nosis of arrhythmic changes as well as further inspection, e.g.,
heart rate variability or heart rate turbulence analysis. How-
ever, due to the huge amount of data and/or the need for on-
line classification present in these situations, additional require-
ments arise concerning the complexity of classification algo-
rithms. Especially during online ambulatory monitoring, the
computational resources are very limited in order to fulfill the
requirement of low energy consumption to enhance running
times [1], [2]. Therefore, suited methods are required to en-
able high performance classification even in these unfavorable
environments.

Simple classifiers, such as linear discriminants (LD) [3]–[7]
or K-nearest neighbor classifiers [8], [9], have been used suc-
cesfully up to our days. Other researchers have made use of
more complex classifiers, based on techniques such as fractal
analysis [10], chaotic modeling [11], bispectral coherence anal-
ysis [12], or artificial neural networks (ANN). The latter tech-
nique deserves to be mentioned aside due to the large number
of studies that make use of it. Multilayer perceptrons (MLPs)
are the most popular family of ANN within ECG classifica-
tion [13]–[18], but other ANN paradigms, such as fuzzy neural
networks [14], [19]–[25], radial basis networks [26], [27], sup-
port vector machines [28], [29], and self-organizing maps [13],
[25], [30], [31], have been also widely applied.

Likewise, a large number of possibilities have been proposed
about which features to use to describe the ECG. Apart from the
RR interval, which is used in most studies, almost every single
published paper proposes a new set of features to be used, or a
new combination of the existing ones. Among others, morpho-
logical features extracted directly from the ECG like amplitudes
and peak widths [9], [32], features based on different transforms,
e.g., wavelet transform (WT) [15], [33], [34], principal compo-
nent analysis [26], [35] and Hermite functions [23], [29], [31],
as well as statistical features, e.g., variances [14], [36], have
been proposed.

Due to the large number of available features, some au-
thors have already availed themselves of feature selection (FS)
methods to reduce the dimensionality of the classification prob-
lem [6], [7], [15], [23], [29], [37], [38]. These methods involve
a process wherein a number of subsets of the available features
are evaluated, and the best one is selected for application on the
learning algorithm. The best subset contains the least number
of dimensions that most contribute to the application’s perfor-
mance; the remaining, unimportant dimensions, are discarded.
However, none of the aforementioned studies has thoroughly
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tackled the issue within the ECG classification field by using a
comprehensive feature set and a complex FS procedure.

Finding the right feature combinations is, indeed, a hard task.
The computational requirements of exhaustive search methods
(those which test all possible subsets) increase exponentially
with the number of features in the original set. This effect, called
the curse of dimensionality [39], makes this kind of methods im-
practicable for sets with over a dozen or so features. Suboptimal
methods have, thus, to be used. From the many available, the
sequential forward floating search (SFFS) algorithm, proposed
by Pudil [40], has been found to outperform both sequential
and fixed parameter FS algorithms [41], [42], finding in most
occasions solutions very close to the optimal one thanks to the
automatic control of the search method.

The rest of this paper is organized as follows: Section II
introduces the chosen database together with the use that it
was given throughout in this study. Also, it presents results of
previously published studies on the topic, with a brief analysis of
the performance measures used for these results. In Section III,
the feature sets used in this study are described, and the method
used for the FS process, as well as the applied criterion, is
explained. Section IV deals with the classifier models applied.
In section V, results are exposed, leading to the discussion in
Section VI. Finally, a conclusion is drawn in Section VII.

II. DEVELOPING AND COMPARING CLASSIFIERS

Even considering that most approaches described in the liter-
ature use the same source for ECG recordings, there are several
factors that render the comparison of these studies’ results al-
most impossible. Moreover, the obtention of a realistic estima-
tion about the real-world performance of the algorithms must
also be regarded. In what follows, these problems are addressed
and good practices to cope with them, which consequently have
been also used in this study, are outlined.

A. Data Preparation

In this study, all the ECG data used have been obtained from
the MIT-BIH Arrhythmia Database (MITDB) [43]. Originally,
over 109 000 beats that the database contains are individually
labeled as belonging to one of 15 possible beat types. However,
in order to foster common proceedings, the Association for the
Advancement of Medical Instrumentation (AAMI) proposed a
standard for the evaluation of ECG classifiers [44], which rec-
ommends to group all present morphologies in six classes ac-
cording to their physiological origin (see Table I). From these six
classes, the standard recommends to ignore records containing
paced beats when evaluating classifiers, and some authors have
proposed to ignore unknown beats too, for being too poorly rep-
resented and of no help for further classification purposes [6],
[7], [28], [29].

Applied to the MITDB, this standard leaves 44 records which
should be divided using an interpatient division scheme such
as the one proposed in [5] if a realistic estimation of the real-
world performance is desired. Thus, following this scheme, we
devoted 22 records (DS1) of the MITDB for development and
training, while the other 22 records (DS2) are used only for

TABLE I
AAMI GROUPING SCHEME

TABLE II
MITDB DIVISION SCHEME FOR INTERPATIENT CLASSIFICATION

final performance evaluation so they have no influence on the
selection of the final classifier model (see Table II).

To conform DS1 and DS2, information from both ECG leads
present in the MITDB was considered throughout in this study.
Prior to feature acquisition, the same preprocessing as in [5] was
applied: first, two median and a low-pass filter were used in order
to remove noise and baseline wander. Afterward, QRS fiducial
points were read from the MITDB annotation files. Further,
heartbeat segmentation was achieved by executing ecgpuwave1

separately on each ECG channel.

B. Performance Measures

The confusion matrix provides a complete description of any
classification results. However, results are usually displayed us-
ing indices or factors that describe specific aspects of the clas-
sification. In the ECG classification field, those studies which
follow the AAMI standard and interpatient division scheme have
preferred indices such as the multiway accuracy [5], [7], [29],
the j index [6], or the unweighted mean of sensitivities [28], [29]
to summarize their results on a single value and thus facilitate
the selection of the best performing model. A mathematical
description of these indices is displayed in Table III.

However, due to the large imbalance found between the num-
ber of beats in each class, multiway accuracy was found not to be
the most representative index for the overall quality of the clas-
sification. The number of true positive N beats, which indeed
says little about the detection of most important arrhythmias
(V and S beats, according to the AAMI standard), dominates
the final value of the accuracy index. In fact, if all beats were
labeled as normal, multiway accuracy would still retain a high
value of over 89%. The j index, sum of the sensitivities and pos-
itive predictivities of V and S classes, is much more appropriate

1ecgpuwave: found at http://www.physionet.org/physiotools/softwareindex.
shtml.
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TABLE III
DESCRIPTION OF PREFERRED PERFORMANCE MEASURES IN HEARTBEAT

CLASSIFICATION

to assess the effectiveness in discriminating ECG arrhythmias.
This value, however, ignores how well F and N beats have been
classified. The unweighted mean of sensitivities is computed
giving the same importance to each of the classes. This not only
accounts for the class size imbalance, but also makes the relative
influence of F beats much bigger than for any other class, being
its identification not as critical as that of S or V beat.

In order to avoid the aforementioned drawbacks, in this study
we proposed an alternative performance measure, which is de-
scribed in Section III-B.

C. Results of Recommendation Conform Studies

Until present time, most studies apply training and evaluation
schemes that are not conform to the methodology described ear-
lier, impeding the objective comparison of the achieved results.
Fortunately, since the publication of the AAMI standard, the
number of works in which the recommended practices are fol-
lowed has been increasing steadily. Moreover, a small number
of authors have also employed an interpatient division scheme
in their studies in the last few years. The results obtained by this
last group of authors, which are, thus, directly comparable, can
be found in Table IV.

III. FEATURES

A. Feature Sets

The larger the number of features in a feature set, the most
likely it is that for any given task an optimal subset exists among
them. Therefore, aiming at having greater chances of finding the
best subset of features for classification, a very comprehensive
feature set was desired. However, if all features found in the
literature were introduced, the number will be indeed too large,
rendering a complete FS to be computationally unfeasible, so a
constraint of some type was necessary to keep the number within
reasonable limits. Having in mind the aim of this study to be
most useful for ambulatory classification, the constraint was to
use only causal features, which do not have to wait until the
end of the recording to be computed. Hence, only those features
that used information available at the moment of analysis were
used, admitting at most information from the next beat to be
considered for classification.

The resulting set, named C, contains a total of 71 features,
divided (as shown in Table V) into the following categories.

1) Temporal features, which already proved in different stud-
ies to be the most relevant [29]. This category includes
heart rate features, which were the only features com-
puted just once for both channels, and features obtained
from the segmentation information yielded by ecgpuwave.

2) Morphological features, also previously assessed as be-
ing of great relevance, made the bulk of the feature set.
Direct samples from the ECG signal and computed mea-
surements such as area, power, or extrema were included.

3) Statistical features completed the feature set, includ-
ing different order moment-based indexes and histogram
variance.

Unlike in temporal features, which were acquired from time-
domain signals exclusively, the WT of the ECG signal was used
to obtain some of the features belonging to the morphological
and statistical categories. WT features were based on the same
heartbeat intervals as the features obtained from the time do-
main, but using the scales 2, 3, 4, and 5 of the WT ECG signal.
The wavelet used was the quadratic spline wavelet, as it allows
a very efficient implementation as a filter bank, and its suit-
ability for ECG processing has already been proved by other
authors [2], [6], [7], [46].

Additionally, to enable comparative evaluation of the pro-
posed methods, an already proposed feature set was built up. De
Chazal et al.’s realization [5] was chosen as it was the first one
to propose interpatient dataset distribution scheme, and hence a
referent for all posterior studies using this scheme. This feature
set consists of RR intervals, heartbeat intervals, and morphology
features, obtained from both ECG channels after the preprocess-
ing and segmentation procedures described before. However, in
order to comply with the same constraint as feature set C, the
original set was slightly modified to contain only causal features.
The resulting dataset, containing 26 features, was named H .

Finally, all features both in C and in H were individually
normalized, by computing the necessary scaling to make the
features from DS1 signals be mean 0 and variance 1, and nor-
malizing the corresponding features from DS2 with the obtained
scaling factors.
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TABLE IV
RESULTS OF AAMI CONFORM, INTERPATIENT TRAINED CLASSIFIERS, EVALUATED WITH DS2

TABLE V
FEATURES IN C , DISTRIBUTED BY CATEGORIES

B. FS Procedure

The SFFS procedure, mathematically described in [40], can
be explained as follows.

Let X be the original set, of size |X| = n features, and J(Xk )
the evaluation measure to be maximized, where J() represents
the criterion function to be used (defined as J : Xk ⊆ X → R),
and Xk the subset of size k < n to which it is applied. Let Xk

be, on any given point, the subset that has higher J(Xk ) from all
the subsets of size k evaluated up to that point. Then, on any k
except for k = n, a forward step is accomplished by evaluating
J(Xk + x) for all possible x, x being any of the features not
already included in Xk , and keeping as the best subset of size
k + 1 features the subset that maximizes J(Xk + x), named as
Xk+1 . Afterward, backtracking is executed by evaluating those
subsets X ′

k of size k that are obtained by removing any of the
k + 1 features from subset Xk+1 one at a time. If for any of
these subsets J(X ′

k ) > J(Xk ), then X ′
k is kept as the new best

subset of size k, substituting Xk . Backtracking steps are carried
out as long as the results improve, reducing each step the size
of the evaluated subsets by one feature. Whenever the results
stop improving through backtracking, a forward step is carried
out again, and the whole process is repeated again until a better
subset at any possible level is found.

As a result, the SFFS procedure returns n subsets; each of
which yields the highest criterion function value for its size.
These subsets are, henceforth, named SFFS subsets.

C. Optimization Criterion Function

Unless intrinsically embedded in the system (like weights in
some ANN), the FS process can follow two schemes: filter and
wrapper [47]. The criterion function J() used in filter schemes
to evaluate the candidate subsets is independent of the classifier
model, being typically simplified probabilistic measures. Wrap-

per schemes, on the contrary, use some kind of performance
measure based on the results of testing the candidate subsets
with the classifier itself. Although wrapper schemes tend to be
much more computationally expensive than filters, they take
into account the structural characteristics imposed by the classi-
fier [40], and thus can be easily tailored to the specific problem
to solve. Therefore, a wrapper scheme based on the linear dis-
criminant classifier (LDC) was applied in this study (further
described in Section IV-A).

Whatever be the method used to obtain the confusion matrix,
an evaluation by means of a performance measure is necessary,
so that subsets’ performances can be compared. As described in
Section II-B, none of the available performance measures fully
represents the quality of the classification in the ECG analysis
context. Therefore, we propose a new performance measure that
tackles specifically the problem of providing in a single value
complete information about how good an ECG classification
has been. To this end, this new index was chosen to be a com-
bination of two values: the j index, which specifically evaluates
the discrimination of the most important ECG arrhythmias (S
and V beats), and the Kappa (κ) index, which globally evaluates
the confusion matrix [48].

This index, despite having been proposed as an evaluation
coefficient several decades ago, and its potential convenience
had never been applied before in the heartbeat classification.
From its definition,

κ =
∑

∀I TPI −
∑

∀I D̄I

XT ot −
∑

∀I D̄I
(1)

where

D̄I = Ponderated Detections = (OI AI ) /XT ot (2)

it can be seen that it evaluates the global quality of the clas-
sification much better than other aforementioned performance
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measures: like the multiway accuracy, it represents also a com-
plete evaluation of the confusion matrix (in a single value and
weighting each beat equally), but it is much less influenced by
imbalance.

The resulting combined index, which we named jκ index
Ijκ , takes into account the misclassification and the imbalance
present between all the considered classes, thanks to the in-
cluded κ index, and at the same time emphasizes the discrimi-
nation of the most important arrhythmias (S and V), thanks to
the j index (Ij )

Ijκ = w1κ + w2Ij . (3)

As j takes values in the 0–4 range and κ in the 0–1 range, w1 was
set to 1/2 and w2 to 1/8, so that both factors influence equally
the overall result. Consequently, Ijκ takes values between 0 and
1, where 1 indicates perfect classification.

IV. CLASSIFIER MODELS

A. LDC

As mentioned earlier, a serious hurdle for wrapper methods,
which apply a direct classifier performance measure as a cri-
terion function, is that many classifiers require a considerable
amount of time to be trained and evaluated. This makes a com-
plete FS procedure, where maybe thousands of different subsets
have to be tested upon the classifier, unfeasible in a reasonable
time period.

Nevertheless, the LDC has not only been already applied suc-
cessfully in heartbeat classification [4]–[7], but also its simplic-
ity enables the training and evaluation process to be completed
very quickly, rendering the whole FS procedure feasible in an
acceptable period of time, and the classifier suitable for eventual
implementation in ambulatory low-power devices. Thus, LDC
has been applied in this study as the classifier upon which the
confusion matrix Ijκ was obtained to guide the SFFS.

As in [5], a slight modification was introduced, weighting
the likelihood function so that all classes influenced equally the
classifier’s train process, in spite of the difference in the number
of examples between them. Also, our tests showed that the best
results were achieved when the prior probability was set equal
for all the considered classes.

B. MLP

The MLP belongs to the class of supervised learning net-
works, in which the discriminative power is gained through
a preliminary learning phase, where labeled examples are pre-
sented to the network. The most common training strategies, also
used in this study, is the backpropagation (BP) algorithm [49].
It works by computing the error between the returned and the
known, desired output, employing it to adjust the MLP weights.
Although the training process requires a rather long time, the
implementation and execution of a trained MLP are very sim-
ple, making this paradigm very much suited for classification
on ambulatory settings. On the other hand, its characteristics
make this paradigm very inadequate to guide the FS process.
The random initialization makes MLPs’ results not constant,

TABLE VI
DS1 DIVISION SCHEME FOR MLP EVALUATION

which renders the FS procedure unreliable if only one MLP
is evaluated for each tested subset. The unreliability could be
overcome by training many MLPs for each tested subset, and
performing statistical analysis to obtain a result that would lead
to the next step in the FS process. Unfortunately, due to the many
subsets tested by the SFFS procedure, plus the relatively long
time that training each MLP requires, the time and resources
that a reliable MLP–SFFS procedure would take are beyond our
capabilities.

Therefore, in this study, the MLP paradigm was only applied
to classify ECG arrhythmias with the best suited SFFS subsets
both from C and from H datasets. The values of the different
parameters governing the MLP were determined by applying
twofold cross-validation on DS1, training with onefold the MLP
parametrized with the desired combination, and evaluating with
the remaining one, and vice versa, averaging the results. Again,
this subdivision was performed interpatiently in such a way that
all heartbeat classes were similarly represented in each of the
folds, as shown in Table VI. MLPs with a single hidden layer of
25 neurons were used, and trained with a learn rate of 0.25 and
a momentum of 0.03 to avoid getting stuck into local minima.
The number of training cycles was chosen to be the one for
which the mean results from the twofold evaluation began to get
worse, i.e., when symptoms of overlearning appeared.

C. Classifier Combination

As mentioned earlier, information from both ECG leads was
considered throughout the whole study. Except for the heart rate
ones, all features were obtained separately for each channel, and
the two resulting feature sets applied independently to perform
classification. The posterior probabilities obtained after clas-
sification with each feature set were then combined using the
Bayesian product integration scheme [5] and finally, each heart-
beat was labeled with the class with higher posterior probability
after the combination.

V. RESULTS

The described LD-based SFFS procedure was executed both
on H and on C feature sets. Interpatient division scheme was
applied in order to avoid positively biased results, conducting
the whole procedure using signals just from DS1, and reserving
the data in DS2 for posterior evaluation. The SFFS algorithm run
on H dataset tested around 1200 possible feature combinations,
while when analyzing the C dataset, over 39 500 combinations
were evaluated. Both quantities are much larger than those re-
ported in previous FS attempts for ECG classification, but still
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Fig. 1. Performance achieved on DS1 data by LDC for each of the subsets in (a) SFFS subsetsH and (b) SFFS subsetsC . The dashed line represents the
performance achieved with the complete feature set in each case. The circles point out the smaller SFFS subsets with which these performances are exceeded:
HS F F S and CS F F S , respectively.

small if compared to the total number of possible combinations,
226 and 271 , respectively.

As mentioned earlier, the SFFS algorithm does not yield a
single result, but rather a collection of them for each of the fea-
ture sets where it is applied, SFFS subsetsH and SFFS subsetsC

in this study. In order to assess the suitability of this feature re-
duction procedure for our data, a single LDC was retrained and
evaluated with DS1 for each of the SFFS subsets, separately on
H and on C. The results, displayed in Fig. 1, exhibit a common
drawback of applying FS procedure on comprehensive sets: in
many occasions, the subset with the highest criterion value has
still a very large number of features. Therefore, in this study,
aiming at reducing the classifier complexity as much as possible,
but without making its performance worse, we selected as the
most suited for our purposes the classifier with the smaller num-
ber of features that achieved at least the performance obtained
with the original feature set on DS1.

The smaller subset accomplishing this criterion contains eight
features in SFFS subsetsH , and nine in SFFS subsetsC . These
subsets, which we named HSF F S and CSF F S , respectively,
comprise the following features.

1) HSF F S : Previous RR, current RR, RR average, down-
sampled QRS (samples 2, 5, and 8), QRS duration, down-
sampled T-wave (sample 9).

2) CSF F S : Previous RR, current RR, RR average, beat min,
beat max, QRS max–min ratio, peak slope, max–min dif-
ference on WT scale 3.

After evaluating the performance of the SFFS procedure with
the matched classifier (LD) on DS1, the original feature subsets
(H and C) and the most suited ones (HSF F S and CSF F S ) were
tested on DS2 to carry out the final evaluation of the classifier
model. Additionally, these subsets were also tested on DS2 with
the MLP classifier, in order to analyze the generalizing capabil-
ity of the FS procedure in the case where the criterion function
and the classifier paradigm do not match. At the same time,
this analysis also tackles the suitability of the MLP for heart-
beat classification, in direct comparison to the LD classifier. In

TABLE VII
CONFUSION MATRICES FOR CS F F S ON (a) LDA Classification Paradigm and

(b) MLP Classification Paradigm

Table VII, complete classification description is displayed in the
form of the confusion matrices for the results obtained by apply-
ing the CSF F S feature set with either classifier paradigm. These
matrices provide insight into the beat-by-beat performance and
ease future comparison attempts by other authors. For the rest
of studied feature sets, results for both LDA and MLP classifi-
cations are given through the considered performance measures
in Table VIII.

VI. DISCUSSION

A. ECG Feature Optimization

The results of the FS procedure displayed in Fig. 1 show that in
both evaluated feature sets, being able to find the most adequate
combinations of features, allow us to improve the performance
even when classification is carried out with a fraction of the
original number of features. The original performance is already
exceeded with 8 out of 26 features in the H feature set, and
with 9 out of 71 in the C feature set. The capability of the
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TABLE VIII
CLASSIFIER PERFORMANCES ON DS2 OBTAINED FOR THE MOST RELEVANT STUDIED CLASSIFIER MODELS

TABLE IX
RELEVANT INDICES FOR AAMI STANDARD AND INTERPATIENT DIVISION

CONFORM STUDIES, INCLUDING PRESENT STUDY’S ONES

method to successfully narrow down large feature sets is, thus,
demonstrated.

It is also worth noticing that although the performance of
the reduced feature sets (HSF F S and CSF F S ) is just over the
one achieved with the complete feature sets (H and C) on
the evaluation with DS1, the former sets exhibit much higher
performance in the final test with DS2, as shown in Table VIII.
This is in accordance with the well-known fact that models with
a smaller number of features tend to generalize much better
than those with many features, as they are less conditioned by
the distribution of the training data. Moreover, the fact that the
performance achieved with the reduced feature sets also exceeds
the one obtained with the complete ones when using the MLP to
classify shows that the improvement obtained through FS does
not only hold for the classifier used as criterion, but for other
classifier paradigms too.

In addition to the analysis of the FS process itself, it is also
interesting to identify the most relevant features. Inspecting
HSF F S and CSF F S subsets, we can observe that in both cases
the previous RR, current RR, and RR average features were
present. This indicates the uttermost importance that heart rate
features have on ECG classification. Looking at the results from
H separately, and even considering that the isolated samples
make no sense as individual features in a complete classifier
model, the fact that four out of the five morphology features
in HSF F S belong to the QRS, and just one to the T-wave, re-
veals the greater importance for ECG classification that the QRS
morphology has over the T-wave morphology.

Regarding the results for the C feature set, which contained a
much larger number of features, including many statistical ones,
it is remarkable to observe that the six nonheart rate features that
complete CSF F S are all morphological features too, and, even

more noteworthy, that five of them represent extrema. This fact
suggests that extrema value posses the highest discriminative
power among all morphological features. Also worth noticing is
the fact that just one of the features is a WT value, pointing out
that although features obtained through this transformation al-
low a more robust detection of heartbeat segments, they add little
information to the one provided by the untransformed temporal
ECG features, at least for heartbeat classification purposes.

These results reinforce, upon a more comprehensive analysis,
the outcomes of previous FS experiments conducted on ECG [5],
[29], where temporal and morphological features were found
out to be the most adequate ones to perform ECG classification.
Moreover, they further detail the characteristics of the most
relevant features, beyond their category.

B. Classification Performance

Table VIII displays a detailed description of the performances
achieved by the most relevant classifier models studied. As al-
ready stated in the previous section, the comparison between
the results obtained with the complete feature sets and the ones
obtained with their respective reduced feature sets confirms that
applying the SFFS procedure with a suitable criterion function
leads to an improvement in the final performances. Although
some performance descriptors are not very conclusive (consid-
ering the LD classifier, the SFFS procedure enabled an increase
of the unweighted mean sensitivity, while the multiway accu-
racy practically retained its value, but for the MLP classifiers it
happens almost the opposite), the κ and j indices, and hence the
Ijκ index achieved improve with the feature subsets returned
from the FS procedure, for both original feature sets and both
classifier paradigms.

In spite of the large number of studies in which the MLP clas-
sifier paradigm has been applied for ECG classification, none
among them could be found in which the results were evalu-
ated in conformance with the AAMI standard and interpatient
dataset distribution. Yet, results show that, when applying re-
duced feature sets, the MLP can clearly outperform LD in the
task of heartbeat classification. Comparing the results of both
paradigms when working with CSF F S , an improvement in the
range of 4% can be observed in the multiway accuracy and in
the unweighted mean sensitibity, and some points are gained
in the other indices. Nevertheless, it should be noted that these
numbers are just orientative of the possible improvement, as,
due to their random initialization, successive evaluations of the
MLP with the same feature set could yield different results.
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C. Comparison With Previous Studies

Comparing the achieved performance results with those of
previous studies provides further insight on the suitability of
the proposed techniques. As mentioned, this comparison can
only be objectively done among those studies following the
same constraints. Thus, the performances obtained in this study
on both classifier paradigms with the CSF F S feature set have
been only compared with the results of the other AAMI con-
form studies that followed the interpatient division scheme (see
Table IX).

First of all, by comparing the results published in [5] with
the ones obtained for the H dataset using LDC (see Tables IV
and VIII), it can be observed that the former are clearly better,
although both measure the same features applied on the same
classifier. The difference in performance is likely to be due to
the modification carried out to adapt the features in [5] to the
causality criteria described in Section III-B. That is probably the
reason why, even after applying the aforementioned optimiza-
tion techniques, the results obtained with LD do not represent a
clear improvement with respect to previous studies.

However, the ones achieved with the MLP outperform all pre-
vious nonadapting proposed methods. These results evince that
the nonlinear classification capabilities of this type of ANN are
extremely suitable to perform heartbeat classification, which is
intrinsically nonlinear too. Moreover, they also show, in the con-
text of this study, a greater generalization capability of ANNs
when compared to algorithmic methods such as LDA, suggest-
ing that they may be a more appropriate tool for ECG heartbeat
classification.

VII. CONCLUSION

In this study, we have studied how the application of a suitable
FS procedure can lead to the improvement of classifier’s perfor-
mances and simultaneously reduce their complexity, which can
be of great help to improve online ECG monitoring, especially
in ambulatory settings. To this end, a new performance measure
index was introduced, which deals specifically with two major
issues in heartbeat classification measurements: class imbalance
and relative importance of the possible arrhythmias. Using this
criterion function, the algorithm was executed upon two sets of
26 and 71 causal features, respectively. The first set contained
features used in a previous study; it served to evaluate the capa-
bility of the method to improve previously proposed classifier
systems. The second had a twofold purpose: first, the capabil-
ity of the method to narrow down comprehensive datasets was
assessed; second, by including only features suitable for online
monitoring in the examined set, further insight into which are
the most suited features for this kind of setting was accom-
plished. In what follows, the returned subsets were used to carry
out ECG classification using two different classifier paradigms.
The achieved performance results on both models prove the
suitability of the Ijκ index driven SFFS algorithm to improve
performance while reducing classifier complexity, and reveal
the capability of the MLP to outperform linear classifiers in the
heartbeat classification field.
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