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a b s t r a c t 

The data envelopment analysis (DEA) model is extensively used to estimate efficiency, but no study has 

determined the DEA model that delivers the most precise estimates. To address this issue, we advance 

the Monte Carlo simulation-based data generation process proposed by Kohl and Brunner (2020). The 

developed process generates an artificial dataset using the Translog production function (instead of the 

commonly used Cobb Douglas) to construct well-behaved scenarios under variable returns to scale (VRS). 

Using different VRS DEA models, we compute DEA efficiency scores with artificially generated decision- 

making units (DMUs). We employ five performance indicators followed by a benchmark value and rank- 

ing as well as statistical hypothesis tests to evaluate the quality of the efficiency estimates. The procedure 

allows us to determine which parameters negatively or positively influence the quality of the DEA esti- 

mates. It also enables us to identify which DEA model performs the most efficiently over a wide range 

of scenarios. In contrast to the widely applied BCC (Banker-Charnes-Cooper) model, we find that the As- 

surance Region (AR) and Slacks-Based Measurement (SBM) DEA models perform better. Thus, we endorse 

the use of AR and SBM models for DEA applications under the VRS regime. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In order to save resources and to detect inefficient perform- 

rs, efficiency evaluations are the central component of decision- 

aking management. There are two main classes of efficiency 

nalysis methods in the literature: parametric and non-parametric. 

arametric approaches usually use the econometric ordinary least 

quares method, which shifts regression towards more efficient 

nits to estimate the efficient frontier. This approach is primarily 

ampered by the assumption about the form of the production 

unction. 1 Contrary to this, non-parametric methods measure ef- 

ciency as the distance to an empirical frontier function whose 

hape is determined by the most efficient decision-making units 

DMUs) of the observed dataset. This approach is, without a doubt, 
∗ Corresponding author. 

E-mail addresses: mansour.zarrin@gmail.com (M. Zarrin), jens.brunner@uni-a.de , 

otbr@dtu.dk (J.O. Brunner) . 
1 An equation that describes the relationship between the number of produc- 

ive factors (e.g., labor and capital) consumed and the number of outputs produced 

 ( x, y ) . Production functions can also be used to calculate technical efficiency mea- 

ures. Suppose that x is used to produce y . The DMU has reached its maximum 

evel of production if D ( x, y ) = 1 , given its current level of resources used. 
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est represented by data envelopment analysis (DEA) introduced 

y Charnes, Cooper and Rhodes (1978) . This model is known as the 

CR (Charnes, Cooper, and Rhodes) DEA model. Since the CCR’s in- 

roduction, a substantial amount of research has been conducted 

n various aspects of the theory and applications of DEA mod- 

ls. One of these aspects is the economic concept of returns to 

cale (RTS). There has been much emphasis on the importance 

f returns-to-scale settings in DEA literature ( Dellnitz, Kleine & 

ödder, 2018 ). In this framework, the BCC (Banker, Charnes, and 

ooper) DEA model, introduced by Banker, Charnes and Cooper 

1984) , is the first to assume variable returns to scale (VRS), rather 

han the CCR’s constant returns to scale (CRS). In the literature, 

oth CRS and VRS forms have been developed for almost all up- 

oming DEA models. Despite this considerable progress over the 

ast five decades, there is still no superior DEA method. Basic 

odels (CCR and BCC) still dominate in various applications, such 

s healthcare ( Kohl, Schoenfelder, Fügener & Brunner, 2019 ), de- 

pite known concerns including slacks and zero weights. Neverthe- 

ess, the development of a gold standard can hardly be achieved 

ithout a reasonable benchmark with which to compare different 

EA models. Due to this lack of operational relevance, DEA is of- 

en seen primarily as a scientific topic instead of an operational 

ool. 
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The lack of robustness in results and ambiguity regarding the 

recision of DEA models’ estimates are deemed to be the major 

uality-related issues. Within the DEA literature, the accuracy and 

uality analysis of different DEA models have become an attrac- 

ive area of research over the last two decades. To evaluate the 

uality of DEA estimates, the first challenge is the absence of true 

fficiency values. DEA estimates in real applications therefore can- 

ot be investigated without these values. Researchers have applied 

onte Carlo simulations to create artificial datasets based on cer- 

ain assumptions and regimes ( Cordero et al., 2015 ) to address this 

ssue. A random distribution function cannot be directly used to 

erive the scale effect values to reflect the VRS property, so gener- 

ting well-behaved data is a complicated task. In the following, we 

ummarize the studies conducted on the assessment of the qual- 

ty of DEA models using Monte Carlo simulations over the last two 

ecades in the interest of brevity. We also discuss the main char- 

cteristics of these studies, including the production function used, 

he number of scenarios, the number of replications, inputs, and 

utputs. Cobb-Douglas (CD) production functions were most em- 

loyed by previous studies in the Data Generation Process (DGP) 

 Holland & Lee, 2002 ; López, Ho & Ruiz-Torres, 2016 ; Resti, 20 0 0 ;

uggiero, 2005 ; Simar & Wilson, 2002 ; van Biesebroeck, 2007 ). The 

eason for this can be attributed to the complexities of the alter- 

atives imposing microeconomic regularity conditions like mono- 

onicity and convexity. The limitations of CD for imposing the input 

ubstitution elasticity of one and fixed-scale economies have been 

ointed out by several researchers such as Siciliani (2006) and 

erelman and Santín (2009) . The Translog 2 production function has 

merged as a generalization of the CD that allows the generation 

f more testable production data. 

Most studies only use one adjustment to account for the num- 

er of inputs ( López et al., 2016 ; Ruggiero, 2005 ). Generally, sce-

ario generation has not been given sufficient attention. Most stud- 

es only vary three or fewer characteristics of the employed DGP. 

ext, previous studies have mainly focused on the properties of 

he basic DEA models, i.e., CCR and BCC, and comparisons between 

hem and (in some cases) parametric methods ( Santín & Sicilia, 

017 ). However, model evaluations other than the basic ones are 

ather scarce. So far, only about one-third of previous studies have 

onsidered alternative DEA models, and none have utilized more 

han one model ( Kohl & Brunner, 2020 ). Another concern is the 

obustness of the results obtained in previous studies. Since the 

EA estimations rely on randomly generated data, it is unquestion- 

ble that each scenario can be replicated. In this context, Krüger 

2012) criticizes the low replication rate of many studies, which 

hanges from 5 to 10 0 0. To our knowledge, the study by Kohl and

runner (2020) represents the only attempt to date to assess the 

uality of DEA models by developing meaningful production sce- 

arios using Translog production functions in a CRS setting. The 

uthors develop a sophisticated DGP allowing them to hypothe- 

ize some general statements regarding parameters that affect the 

uality of DEA models through defining some performance indica- 

ors. Their results show that the Assurance Region (AR) and Slacks 

ased Measurement (SBM) models outperform the CCR model un- 

er the CRS setting. Kohl and Brunner (2020) primarily discuss the 

RS, even though the BCC model remains widely used in most DEA 

pplications ( Kaffash, Azizi, Huang & Zhu, 2020 ; Kohl et al., 2019 ;

ahmoudi, Emrouznejad, Shetab-Boushehri & Hejazi, 2020 ). 

Last but not least, the literature on DEA focuses mostly on oper- 

tions research, where the DEA is viewed as a non-econometric or 

on-statistical approach ( Banker, Natarajan & Zhang, 2019 ; Simar 

 Wilson, 2015 ). Thus, a DEA model constructed for assessment 

eeds to move beyond simply explaining and predicting data in 
2 Translog stands for transcendental logarithmic. u

1287 
he most effective way possible. In the same way that statisti- 

al tests validate a statistical model developed to reproduce accu- 

ately the underlying data generation process, basic properties of 

roduction economics such as economies of scale and convexity, 

ree disposability, the engineering logic of the production structure, 

he importance of identified peers to industry participants, etc., 

erve to validate the model ( Banker & Natarajan, 2011 ; Bogetoft & 

tto, 2011b ). By identifying conditions under which DEA estima- 

ors are statistically consistent and likelihood-maximizing, Banker 

1993) provided a formal statistical basis for DEA. Accordingly, 

EA estimates are capable of providing interesting insights with- 

ut heavily relying on statistical testing. However, most of the lit- 

rature ignores the statistical properties of the estimators and lacks 

onsistent statistical tests to compare the efficiencies between two 

amples. These researchers compare their improvements to the ba- 

ic model and highlight properties such as a shift in the average 

fficiency scores or a better discrimination power. Even if a cer- 

ain problem can be solved through development, there is no guar- 

ntee that the overall results (from a quality perspective, for ex- 

mple) will also be improved. The main flaw here is comparing 

ifferences in DEA estimations through the mean value of the ef- 

ciency scores rather than the distribution of them. However, in 

ases where the distribution of efficiency scores is skewed, the 

ean value becomes an ineffective measure of central tendency 

 Weisberg, 1992 ). Several studies have been performed on com- 

aring differences in DEA estimation 

3 distributions for two groups 

f DMUs through developing statistical tests including paramet- 

ic and non-parametric ones. For example, Cummins, Weiss and 

i (1999) use a regression-type parametric test with a dummy 

ariable indicating the groups, regressing the efficiency scores on 

he dummy variable. However, many researchers (e.g., Golany and 

torbeck (1999) and Lee, Park and Choi (2009) ) believe that non- 

arametric tests such as the Mann–Whitney and Kruskal–Wallis 

ests are more appropriate since they do not make assumptions 

n the distribution of efficiency scores. One pioneering study in 

his direction has been conducted by Banker, Zheng and Natara- 

an (2010) . They develop two sets of parametric and three non- 

arametric tests and compare them against the F-tests introduced 

y Banker (1993) . They show that their developed tests outper- 

orm the F-tests in Banker (1993) when noise plays an important 

ole in the data generating process. However, the F-tests in Banker 

1993) remain effective if efficiency dominates noise. In our study, 

e integrate the idea of comparing two groups of DMUs with the 

erformance indicators. 

The purpose of this study is to address these issues by pro- 

iding a method for evaluating the accuracy of DEA models un- 

er the VRS assumption. A sophisticated DGP must be designed 

o create well-behaved data for the DMUs to study the quality of 

EA models. In the next step, we generate artificial data so that 

he true efficiency of each DMU can be compared with the es- 

imations obtained from the different DEA models. Through this, 

e are able to evaluate the DEA models’ quality. We then con- 

ider a variety of scenarios to arrive at generally sound conclu- 

ions. With these characteristics, it is possible to generate mean- 

ngful data through Monte Carlo Simulations. We use two aggre- 

ated benchmark values: benchmark value (B-Value) and bench- 

ark rank (B-Rank). Combined with multiple performance indica- 

ors, these benchmark values cover all relevant properties of an ef- 

ciency estimator, such as identifying efficient and inefficient units 

nd ranking the efficiency score of each unit in a set of DMUs. 

he B-Value and B-Rank provide additional insight into the per- 

ormance of the procedure by using SBM, AR, the basic CCR DEA, 
3 In many studies, the terms “inefficiency” and “efficiency” are interchangeably 

sed with each other to describe the scores obtained by DEA models. 
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nd uniformly distributed random numbers (Rand). Based on our 

ndings, we conclude that the environment of a DEA application 

nfluences its results significantly. We do this by casting doubt on 

he reliability of DEA results and analyzing the efficiency assess- 

ent process of the DEA model. We analyze the VRS settings as 

he most prevalent setting in the literature for DEA applications 

nd try to find out whether the predominant BCC position is jus- 

ified. Our study addresses the statistical properties of DEAs’ esti- 

ators by applying a consistent statistical test to compare the es- 

imations calculated based on different DEA models with the true 

fficiencies. The details of our analysis will be presented in subse- 

uent sections. As a summary, this paper contributes the following 

o the pertinent literature: 

I. The main question this study seeks to answer is whether 

BCC’s dominant position was indeed vindicated. To do this, 

we analyze and compare the BCC model estimates with two 

other DEA models: AR and SBM. Comparisons with the basic 

model for BCC DEA and uniformly distributed random num- 

bers (i.e., Rand) reveal also the accuracy of the procedure. 

II. Two approaches are used to conduct the comparison: bench- 

mark scores based on multiple performance indicators and 

DEA-based hypothesis tests. Benchmark scores cover many 

aspects of a measure of efficiency introduced by Pedraja- 

Chaparro, Salinas-Jiménez and Smith (1999) , such as iden- 

tifying the most efficient DMUs and ordering their efficiency 

scores within a sample. We acknowledge the need for a sta- 

tistical foundation for DEA as pointed out by Banker (1993) , 

Banker et al. (2010) , and Simar and Wilson (2015) , and test 

the estimations of DEA models with their actual efficiencies 

by running statistical tests. 

III. In order to improve the general validity of our results, we 

advance the scenario variation significantly. In our study, 

each generated scenario represents an arrangement of vary- 

ing values for different characteristics of the DGP (e.g., num- 

ber of inputs, number of DMUs, the importance of input). 

With 7776 scenarios generated based on the VRS setting, we 

attain the highest level of validity in the quality assessment 

of VRS DEA models in comparison to the literature. To de- 

termine whether the environment of the DEA study influ- 

ences the accuracy of results, we also consider the coverage 

of different characteristics. By utilizing ten different charac- 

teristics with varying levels, we provide another significant 

contribution to the literature. 

IV. The general form of Translogs has the consequence of not 

being monotonic or globally convex like CDs. For generating 

well-behaved data under the VRS setting, we need to impose 

the necessary curvature requirements on a Translog, which 

is a challenging problem ( Greene, 2008 ). Then we propose a 

mathematical model that directly enforces monotonicity and 

curvature requirements and generates valid scenarios with 

VRS properties. Using our methodology, one can modify the 

input substitution in order to ensure a more sensible DGP. 

According to the literature, a handful of studies, like Krüger 

(2012) , consider different input substitutions using Constant 

Ratio of Elasticity of Substitution Homothetic or Constant 

Elasticity of Substitution production functions. Through sev- 

eral adjustable parameters, the Translog production function 

offers greater control over setting input substitutions. Set- 

ting these parameters to generate valid scenarios (or well- 

behaved data), however, is a complicated process. As a re- 

sult, only a few studies use it in a limited form to generate 

the data. For example, Cordero et al. (2015) , who focus on 

generating data under decreasing returns to scale (DRS), or 

Perelman and Santín (2009) , who define the parameters ar- 

bitrarily. We advance the approach used by Kohl and Brun- 
1288 
ner (2020) for the CRS setting so that realistic scenarios un- 

der the VRS regime can be generated systematically. 

V. By decomposing the input substitution into two terms: sub- 

stitutability and distribution of substitutions, we are able 

to guarantee the generation of realistic and well-behaved 

DMUs under the VRS, along with a variety of scenarios. We 

find a high correlation between the number of replications 

for each scenario and the number of DMUs from the per- 

spective of the robustness of the results. A scenario with 450 

DMUs may need 50 replications while a small size scenario 

(e.g., 50 DMUs) might need over 200 replications. We, there- 

fore, define an elastic stopping condition for replications of 

each scenario based on the moving standard deviation (StD) 

of the benchmark value. Finally, we examine the impact of 

the characteristics considered in the generation of the dis- 

tinctive scenarios (e.g., sample size) on the quality of esti- 

mations calculated using the different DEA models. 

The rest of this study is structured as follows. Section 2 de- 

cribes in detail the steps of developing a DGP, statistical tests, per- 

ormance indicators, and study design. In Section 3 , the results of 

omparisons are presented and discussed in detail. Finally, the pa- 

er is concluded in Section 4. 

. Methodology 

We describe all steps within the proposed framework thor- 

ughly in the following subsections, in order to compare and ana- 

yze the accuracy of DEA models within a VRS context. Fig. 1 de- 

icts the eight steps of the DGP for every DMU. 

.1. Performance indicators 

Following the purpose of evaluation and comparison of differ- 

nt DEA models, we utilize five performance indicators defined 

y Kohl and Brunner (2020) (see Appendix A ) based on Pedraja- 

haparro et al. (1999) for Monte Carlo DEA analyses. The DEA’s 

stimates are the core of any judgment on the quality. Therefore, 

or defining the performance indicators, we address the four main 

urposes of a DEA containing recognizing inefficient DMUs, rank- 

ng the efficiency of DMUs, assessing efficiencies and rooms for 

mprovement, and investigating the overall efficiency of a com- 

any/organization. 

.2. Hypothesis tests for comparing efficiency 

We compare the efficiency distribution of two groups of DMUs 

sing DEA-based hypothesis tests in addition to the performance 

ndicators. Constructing statistical tests allows us to evaluate the 

ull hypothesis of no difference in the distributions of true ef- 

ciency ( θ) and estimated efficiency ( ̂  θ) obtained from the DEA 

odels. The null hypothesis of no difference in efficiency distri- 

utions of true efficiency can be tested using the procedure pro- 

osed by Banker (1993) . The first step of this method is to deter- 

ine whether the efficiency scores are normally or exponentially 

istributed. The true efficiency in our DGP is normally distributed. 

ow suppose both θ and 

ˆ θ are distributed as normal with param- 

ters ρ1 and ρ2 , respectively. Then, the test statistic can be cal- 

ulated as ( 
∑ 

j ( θ j ) 
2 
/n ) / ( 

∑ 

j ( ̂
 θ j ) 

2 
/n ) under the null hypothesis of 

o difference between them (i.e., H 0 : ρ1 = ρ2 ), and compared with 

he critical value of the F distribution with ( n , n ) degrees of free-

om at the significance level of 5%. Banker et al. (2010) evaluate 

he performance of this test against the other parametric (e.g., T- 

est) and non-parametric (e.g., Mann–Whitney’s U test) tests used 

raditionally in the DEA literature ( Banker & Natarajan, 2011 ). Their 
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Fig. 1. Developed DGP for each artificial DUM. 
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4 A region where is consistent with all properties defined for the production 

function such as monotonicity. 
5 The corresponding output scale efficiency value SE O j ( x j , y j ) for DMU j can be 

calculated by ln SE O j ( x j , y j ) = −( D O ( x j , y j ) − 1 ) 
2 
/ 2 

∑ m 
i =1 

∑ m 
h =1 βih , ∀ j as indicated by 

Balk (2001) . 
imulation results indicate this test is adequate for detecting devi- 

tions from the efficiency frontier caused by a single inefficiency 

erm. 

.3. Data generation process under VRS setting 

This paper extends the sophisticated DGP proposed by Kohl 

nd Brunner (2020) for the CRS setting to generate well-behaved 

roduction data with the VRS system. The DGP produces a 

ingle output (y ) based on the generated meaningful inputs 

 x i , i ∈ M = { 1 , . . . , m } ) and true efficiency values ( θ j ) for each 

MU in which the regularity conditions are met. According to this 

nformation, the technology can be shown by the graph set T = 

 ( x, y ) : x can produce y } . The hyperbolic output distance function 

an be introduced as the maximum equiproportionate expansion 

f an output vector and reduction of an input vector that places an 

bservation within the boundary of a technology T , i.e., D O ( x , y ) =
nf { θ : θ > 0 , ( x, y/θ ) ∈ T } , if the graph production possibility set 

atisfies the axioms described in Coelli, Prasada Rao, O’Donnell and 

attese (2005) . We generate the well-behaved dataset by using the 

logarithmic) Translog production function presented by Eq. (1) . 

his technology has become the gold standard for Monte Carlo 

imulations ( Bogetoft & Otto, 2011a ). 

n D oj ( x , y ) = α0 + ln y j + 

m ∑ 

i =1 

αi ln x i j 

+ 

1 

2 

m ∑ 

i =1 

m ∑ 

h =1 

βih ln x i j ln x h j , ∀ j = 1 , .., n (1) 

here, α0 is the efficiency parameter (can be set as 0), y is the 

nitial output, parameters αi and βih show respectively the impor- 

ance of an input i , and the substitution possessions of the pro- 

uction procedure between two inputs i and h . These parameters 

re defined to acquire a well-behaved production function within 

he boundaries imposed by the inputs ( x i ). We develop a seven- 

tep DGP for each DMU under the VRS setting (depicted in Fig. 1 )

y ensuring adherence to the properties defined by Coelli et al. 

2005) for well-behaved VRS data. In our DGP, apart from gener- 

ting the parameters α and β, true efficiency ( θ), input vector x 

including the number of inputs ( m ), input range, and input corre- 

ation), and the regularity conditions (monotonicity, curvature, and 

uasi-convexity) are meticulously taken into consideration to gen- 

rate valid scenarios. 

The value of true efficiency ( θ ) is drawn from a truncated nor- 

al distribution and then multiplied by the raw output value. We 

nclude different true efficiency distributions in our DGP as an ad- 

ustable characteristic to examine whether the true efficiency level 

nfluences the accuracy of VRS DEA models. The truncation is al- 

ays set at 1.0 for the upper-efficiency values. Different lower 

ounds can be set to imitate diverse economies of scale. By adjust- 

ng the mode and standard deviation (StD) of the true efficiencies, 

 comparable distribution shape can be preserved. We then calcu- 

ate the final output ȳ by multiplying the initial output by the true 

fficiency value: ȳ j = θ j · y j . 

Adjusting the number of inputs, the range of inputs, and the 

orrelation among inputs all lead to the generation of the input 

ector x . Adjustments are generally straightforward, for example, 
1289 
hanging the number of inputs and parameters of the uniform dis- 

ribution function used for the level of inputs. The wide range of 

nputs indicates a more heterogeneous production environment. 

nstead, the small range of inputs suggests a very homogeneous 

ataset with entities of similar sizes. A correlation between the in- 

ut values also seems logical as larger entities usually use more 

nputs than smaller ones. A Cholesky decomposition method de- 

cribed in Hazewinkel (1992) accounts for this fact when generat- 

ng inputs. 

An authentic VRS production data requires the change of scale 

ffects with the size of the DMU. Therefore, an optimal size must 

e defined within the economically feasible region 

4 of production, 

t which the average product is maximized. For example, in the 

ase of a single-input single-output production function, the aver- 

ge product is y 1 / x 1 
where graphically represents the slope of the 

ine (ray) that passes through the origin and that point. This point 

s known as the point of optimal scale (of operations) where units 

xhibit CRS, smaller units work under increasing returns to scale 

IRS) and bigger ones work under the DRS setting ( Coelli, Rao & 

attese, 1998 ). We represent units that have exactly the optimal 

cale of operations as x CRS . Then, the necessary conditions of VRS 

etting for returns to scale can be written as Eq. (2) by straightfor- 

ard operations on Eq. (1) ( Balk, 2001 ). The scale elasticity value 

f DMU j of the output distance function defined in Eq. (1) ( Balk, 

001 ) is: 

O j 

(
x j , y j 

)
= 

∑ 

i ∈ M 

∂ ln y j 

∂ ln x i j 

= 

∑ 

i ∈ M 

αi + 

∑ 

i ∈ M 

( 

βii + 

∑ 

h ∈ M \ { i } 
βih 

) 

ln x i j 

⎧ ⎪ ⎨ 

⎪ ⎩ 

! 
> 1 ↔ IRS 
! = 1 ↔ CRS 
! 
< 1 ↔ DRS 

, ∀ j = 1 , ..n (2) 

here φO j ( x j , y j ) represents the (output distance function based) 

cale elasticity value of DMU j at point ( x j , y j ) . Note that the 

ymbol “!” above the equal and unequal signs means “must 

old”. If this value is greater than, equal to, and lower than 

, we respectively have IRS, CRS, and DRS. 5 The scale elas- 

icity in Eq. (2) is decomposed into two terms 
∑ 

i ∈ M 

αi and 

 

i ∈ M 

( βii + 

∑ 

h ∈ M \{ i } βih ) ln x i j . The first term represents the im- 

ortance of inputs and the second one sets input substitutability 

nd substitution distribution. According to these two terms, we 

an define the sufficient conditions for satisfying the global VRS 

egime that still allows the implementation of substitution effects 

or each DMU j as: 
∑ 

i ∈ M 

αi > 1 ∩ 

∑ 

i ∈ M 

( βii + 

∑ 

h ∈ M \{ i } βih ) ln x i < 

 ( ∩ means AND). 

For the data generation process, we want to test different op- 

imal sizes as well as the extent of the economics scale effects. 

or that reason, we can reformulate 
∑ 

i ∈ M 

αi > 1 as 
∑ 

i ∈ M 

αi = 1 + 

, ω > 0 which satisfies the first sufficient condition we need to 
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uarantee the global VRS regime. The parameter ω can be used 

o adjust the extent of scale effects. A small ω implies weak scale 

ffects, while the revert is true for a large value. We can imple- 

ent different adjustments for the input importance by altering 

he value of α. We here apply two different adjustments contain- 

ng equal and equidistant importance. In both settings, we must 

old 

∑ 

i ∈ M 

αi = 1 + ω, ω > 0 to guarantee the implementation of 

he VRS regime. In the first adjustment (hereafter referred to as 

YM), every input is identically important in the production func- 

ion. This can be achieved by Eq. (3) . The definition provided in 

q. (3) for αi fulfills the condition of 
∑ 

i ∈ M 

αi > 1 . It is proven in

ppendix B (Proposition 1) . 

i = 

1 + ω 

m 

, ∀ i (3) 

The second setting (hereafter referred to as ASYM) generates a 

roduction function with inputs of varying importance yet equidis- 

ant (see Eq. (4) ). In this adjustment, the first input ( x 1 ) is always

he one with the lowest influence on production, and the impor- 

ance of the other inputs increases with their indices. Consider 

hree inputs x 1 , x 2 , and x 3 , since x 1 has the smallest importance

smallest index) to the production process, one unit increase in 

t would lead to a lesser rise in the output level than one unit 

ncrease in either x 2 or x 3 does. Of these, x 3 would lead to the

argest growth in output. Since we only consider abstract inputs 

hat can be rearranged, there will be no misrepresentation of the 

esults due to this regularity. The definition provided in Eq. (4) ful- 

lls the condition of the VRS setting (i.e., 
∑ 

i ∈M 

αi > 1 ) as proven 

n Appendix B (Proposition 2) . 

i = 

( 1 + ω ) · ( i + m ) 

1 . 5 m 

2 + 0 . 5 m 

, ∀ i (4) 

The second term of Eq. (2) i.e., 
∑ 

i ∈ M 

( βii + 

∑ 

h ∈ M \{ i } βih ) ln x i , 

hich deals with β parameters should be less than or equal 

o zero to ensure the VRS regime. β represents the substitu- 

ion of two inputs and must satisfy the symmetry condition 

ih = 

! βhi , ∀ i, h ( Coelli et al., 1998 ). Note that the condition of lin-

ar homogeneity of degree + 1 in outputs is automatically satis- 

ed in a single-output case ( Coelli et al., 1998 ). Having in mind
 

i ∈ M 

αi = 1 + ω, the second term of Eq. (2) must be exactly equal

o − − ω, in other words, 
∑ 

i ∈ M 

( βii + 

∑ 

h ∈ M \{ i } βih ) ln x i = 

! − − ω

o achieve CRS at x CRS , i.e., the optimum technical efficient size. 

his property can be fulfilled by Eq. (5) where it is assumed that 

he optimum technical efficient size of all inputs is at the same 

oint, x CRS (i.e., x CRS 
i 

= x CRS , ∀ i ). 

 

i ∈ M 

( 

βii + 

∑ 

h ∈ M \ { i } 
βih 

) 

= − ω 

ln x CRS 
i 

(5) 

The β parameters are responsible for satisfying two main eco- 

omic regularity properties: monotonicity (or non-decreasing) and 

oncavity (or non-increasing) in all inputs ( Coelli et al., 2005 ). Tak- 

ng into account these properties, β cannot be set freely. We de- 

ompose β into two terms: substitution distribution ( σih ) and sub- 

titutability ( ν), mathematically, βih ∝ σih · ν, ∀ i, h . This decompo- 

ition advantages us in adjusting both characteristics substitutabil- 

ty and substitution distribution separately in our DGP as well as 

n examining their possible effects on the accuracy of DEA esti- 

ates. The substitution distribution ( σih ) deals with the fact that 

he inputs substitution might be identical between all inputs and 

t is responsible for the distribution of β . The substitutability ( ν) 

haracteristic determines the magnitude of β to be able to con- 

ider fluctuating capabilities to substitute inputs. Since the final 

agnitude of β should be regulated by its substitutability ( ν), the 

ubstitution distribution ( σih ) are normalized between −1 and 1. 

eferring to the symmetry condition, it must hold σ
! = σ , ∀ i, h . 
ih hi 

1290 
e can reflect the possible effects of the substitution distribution 

 σih ) by defining two different settings: equal where the substitu- 

ion between all inputs is equal ( Eq. (6) ); and unequal where we 

dvance the pattern proposed by Kohl and Brunner (2020) to gen- 

rate unequal yet symmetric values for βih , ∀ i, h . In both equal

nd unequal settings, we need to satisfy the condition presented 

y Eq. (5) as well as the symmetry to guarantee the implementa- 

ion of the VRS setting through the substitution distribution ( σih ). 

For the equal substitution distribution, we have 
 

i ∈ M 

( βii + 

∑ 

h ∈ M \{ i } βih ) = m · ( βii + 

∑ 

h ∈ M \{ i } βih ) by construc- 

ion, as a result, we can rewrite Eq. (5) as βii + 

∑ 

h ∈ M \{ i } βih = 

ω 
m ·ln x CRS 

i 

, ∀ i . Definitions provided in Eq. (6) respecting Eq. (5) are 

roven in Appendix B (Proposition 3) . 

ii = 

−ν · ω 

m · ln x CRS 
i 

, ∀ i and βih = 

( ν − 1 ) · ω 

m · ( m − 1 ) · ln x CRS 
i 

, ∀{ i, h | i � = h } 
(6) 

Imposing the equal or identical substitution distribution is sim- 

le and can be accomplished by defining σii = − 1 
m 

, ∀ i and σih = 

1 
m ·( m −1 ) 

, ∀{ i, h | i � = h } . Therefore, we can rewrite the definitions of

provided in Eq. (6) as follows: 

ii = 

ν · ω 

ln x CRS 
i 

· σii , ∀ i and βih = 

( ν − 1 ) · ω 

ln x CRS 
i 

· σih , ∀{ i, h | i � = h } (7)

For modeling the unequal substitution scenario, we develop the 

attern presented by Kohl and Brunner (2020) , to create symmetric 

ut unequal values for β via formulas presented in Eq. (8) with 

′ 
ii = − m ·( 1 . 5 − i −1 

m −1 
) −( 2 −2 · i −1 

m −1 
) 

1 . 5 ·m −2 , ∀ i and σ ′ 
ih = 

2 − h −1 
m −1 

− i −1 
m −1 

1 . 5 ·m −2 , ∀{ i, h | i � =
 } given in Kohl and Brunner (2020) . These definitions also respect 

q. (5) as shown in Appendix B (Proposition 4) . 

βii = −
ω ·

(
1 − ν · σ ′ 

ii 

)
m · ln x CRS 

i 

, ∀ i and 

ih = 

ω · ν
m · ln x CRS 

i 

· σ ′ 
ih , ∀{ i, h | i � = h } (8) 

Now, we turn to the substitutability of inputs controlled by 

arameter ν . Substitutability boundaries differ for certain inputs. 

gain, the monotonicity of the production function is the source 

f the substitutability conditions. For single-output multi-input, 

onotonicity implies constraints on partial derivatives of distance 

unctions. These constraints can be expressed by Eq. (9) . The 

andatory curvature and monotonicity conditions of the produc- 

ion function are key factors in the characteristics of well-behaved 

roduction data ( Cordero et al., 2015 ; Perelman & Santín, 2009 ). 

he partial derivatives of distance functions must satisfy one con- 

ition for monotony: for D O as a single output, all marginal prod- 

cts ( f i ) must be non-negative across all inputs ( x i ) as outlined by

q. (10) . 

 i = 

∂ ln D O 

∂ ln x i 
= αi + 

∑ 

h 

βih ln x h , ∀ i (9) 

f i = 

∂D O 

∂x i 
= 

∂ ln D O 

∂ ln x i 

D O 

x i 
= s i 

D O 

x i 
≥ 0 ↔ s i ≥ 0 , ∀ i (10) 

Curvature guarantees that all marginal products must be declin- 

ng, i.e., the law of diminishing marginal productivity ( Coelli et al., 

005 ). The condition can be satisfied by fulfilling Eq. (11) which is 

he second partial derivative obtained by applying the chain rule 

o Eq. (1) . 

f ii = 

∂ 2 D O 

∂ x i ∂ x i 
= 

∂ f i 

∂x 2 
i 

= 

∂ 
(
s i 

D O 
x i 

)
∂x i 

= ( βih + s i s i − s i ) 

(
D O 

x 2 
i 

)
< 0 ↔ β + s s − s < 0 , ∀ i (11) 
ih i i i 
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Table 1 

Defined characteristics for generating scenarios. 

Characteristic Value/Level 

Returns to scale VRS 

True efficiencies (θ ) Low, Medium, High 

# DMUs (n ) 50, 150, 450 

# Inputs (m ) 2, 5, 7 

Importance of inputs ( αi ) SYM and ASYM 

Input substitutability (ν) Low and High 

Input substitution distribution ( βih ) Equal and Unequal 

Input range U[100; 1100] and U[100; 10,100] 

Input correlation 0.0, 0.4, 0.8 

Efficient size ( x CRS 
i 

) 300, 600 

Extent of scale effects (ω) 0.2, 0.4, 0.8 

Total Number of Scenarios 7776 
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6 Since we deal with different input elasticities, we apply virtual weight restric- 

tions (the product of weight and input/output) in the AR model. We set k to limit 

the virtual weights to 2 as Pedraja-Chaparro et al. (1997) did. 
or quasi-convexity in inputs, the corresponding bordered Hessian 

atrix F ( x i ) ( Eq. (12) ) on inputs needs to be evaluated. 

 ( x i ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 f 1 f 2 · · · f i 
f 1 f 11 f 12 · · · f 1 i 
f 2 f 21 f 22 . . . f 2 i 
. . . 

. . . 
. . . 

. . . 
. . . 

f i f i 1 f i 2 · · · f ii 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(12) 

here, f ih = 

∂ 2 D O 
∂ x i ∂ x h 

= 

∂ f i 
∂ x i ∂ x h 

= 

∂( s i 
D O 
x i 

) 

∂x h 
= ( βih + s i s h )( 

D O 
x i x h 

) , ∀{ i, h | i � =
 } , f i and f ii have been already defined by Eqs. (10) and ( 11 ), re-

pectively. The isoquants are strictly quasi-convex on inputs if this 

ordered Hessian matrix is negative definite ( Coelli et al., 2005 ). 

 ( x i ) is negative definite if the successive principle minors alter- 

ate in sing. Defining the i + 1 principle minor by F ( x i ) , F is nega-

ive definite if ( −1 ) i | F i (x ) | > 0 . 

The expressive DGP should ensure that an increase in inputs 

oes not lead to a decline in output despite changing the substi- 

utability of inputs. It echoes the concept of input-free disposability 

ound in the vast majority of DEA models. Keeping the curvature 

nd monotonicity constraints is critically dependent on the mag- 

itude of β . Therefore, we present the mathematical programming 

pproach as Model (13) to derive the optimum value of ν that al- 

ows modifying the substitutability between inputs. Having a min- 

mum value of ν gives a nearly flat substitution curve, resulting in 

igh substitutability, while a maximum value of ν results in low 

ubstitutability. 

min / max ν (13a) 

.t. s i ≥ 0 , ∀ i (13b) 

βih + s 2 i − s i < 0 , ∀ i (13c) 

( −1 ) 
i 
∣∣F i ( x ) ∣∣ > 0 , ∀ i (13d) 

Values of the first and second partial derivatives, i.e., s i and 

f ii , fluctuate with input levels then, we cannot generally guarantee 

hat the isoquants are strictly convex ( Coelli et al., 1998 ). However, 

s explained by Coelli et al. (1998) , there are areas in the input

pace where Eqs. (10) and ( 11 ) are satisfied. Providing that these 

onditions can be satisfied for every data point for any proposed 

ranslog function, the well-behaved area may be large enough to 

dequately represent the corresponding production function. Note 

hat the constraints of Model (13) change according to the num- 

er of inputs as the bordered Hessian matrix changes. The cur- 

ature and quasi-convexity inequalities ( Eqs. (13c) and ( 13d )) are 

uadratic and nonlinear, respectively. These constraints make solv- 

ng the optimization problem considerably more difficult. In the 

wo-input single-output case ( i = 1 , 2 ), the model and the bordered

essian matrix in the quasi-convexity (the third constraint, i.e., 

13d)) can be rewritten by considering the definitions of βii and 

ih provided in Eq. (6) , as follows: 

min / max ν (14a) 

.t. s 1 = α1 + β11 ln x 1 + β12 ln x 2 ≥ 0 (14b) 

s 2 = α2 + β22 ln x 2 + β21 ln x 1 ≥ 0 (14c) 

f 11 = β11 + s 2 1 − s 1 < 0 (14d) 

f 22 = β22 + s 2 2 − s 2 < 0 (14e) 
1291 
( −1 ) 
1 
∣∣F 1 ∣∣ > 0 ↔ 

∣∣F 1 ∣∣ = 0 ∗ f 11 − f 1 ∗ f 1 = − f 2 1 < 0 (14f) 

( −1 ) 
2 
∣∣F 2 ∣∣ > 0 ↔ 

∣∣F 2 ∣∣ = f 1 f 12 f 2 − f 1 f 1 f 22 

+ f 2 f 1 f 21 − f 2 f 11 f 2 > 0 (14g) 

We reformulate the model to transform the nonlinear con- 

traints into a minimal number of conjunctive linear constraints 

hat have the same admissible marking area as the nonlinear 

ne does. The first quasi-convexity condition ( Eq. (14f) ) is ful- 

lled since the first principal minor | F 1 | , is always negative. For 

 = 2 , the second principal minor | F 2 | ( Eq. (14g) ), can be writ-

en as 2 f 1 f 2 f 12 − f 2 
1 

f 22 − f 2 
2 

f 11 . This expression should be posi-

ive to guarantee the necessary and sufficient condition of quasi- 

onvexity in inputs. The term − f 2 1 f 22 − f 2 2 f 11 , which is equivalent 

o −s 2 
1 

D 3 
O 

x 2 
1 

x 2 
2 

( β22 + s 2 
2 

− s 2 ) − s 2 
2 

D 3 
O 

x 2 
1 

x 2 
2 

( β11 + s 2 
1 

− s 1 ) , is always positive 

y construction. Consequently, we can simply show that one suffi- 

ient condition to fulfill Eq. (14g) is that the term f 1 f 2 f 12 be non-

egative. From Eqs. (14b) and ( 14c ), we know that f 1 and f 2 are

on-negative. Therefore, one sufficient condition to assure quasi- 

onvexity is: 

f 12 = ( β12 + s 1 s 2 ) 

(
D O 

x 1 x 2 

)
≥ 0 ↔ β12 ≥ 0 (15) 

The impositions of the α and β values play the main role in 

he design of scale elasticity as well as in the computation of scale 

fficiency scores. A well-behaved production function can be ob- 

ained with the proposed model by imposing desirable assump- 

ions. There is no doubt that increasing the number of inputs also 

ncreases the number of regularity conditions to which the pro- 

osed mathematical model must submit. Nevertheless, the proce- 

ures described for the two-input sample can be adapted to cases 

ith higher multi-input dimensions. By sizing up the dimension of 

he problem, the proposed model can be used to generate regular 

ehaved data, which would otherwise become cumbersome. Now 

hat all the characteristics are adjustable, a well-behaved DMU can 

e generated under the VRS setting. 

.4. Study design 

The characteristics used in this study are listed in Table 1 along 

ith their values/levels. After creating one scenario as an exam- 

le, the obtaining dataset is assessed using four different output- 

riented DEA models: CCR ( Charnes et al., 1978 ), BCC ( Banker et

l., 1984 ), VRS AR 

6 ( Pedraja-Chaparro, Salinas-Jimenez & Smith, 
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Table 2 

An example scenario for the two-input single-output case. 

Characteristics Value/Level 

True efficiencies (θ ) Medium 

# DMUs (n ) 50 

# Inputs (m ) 2 

Input range U[100; 1100] 

Input correlation 0 

Efficient size ( x CRS 
i 

) 300 

Extent of scale effects (ω) 0.2 

Importance of inputs ( αi ) SYM 

Input substitutability (ν) Low 

Input substitution distribution ( βih ) Equal 
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Table 3 

Results of the two-input single-output instance. 

Characteristics Values 

Importance of inputs ( αi ) α = [ 0 . 6 , 0 . 6 ] 

Input substitutability (ν) ν = 12 . 3514 

Input substitution distribution ( σih ) σ = 

[
−1 1 

1 −1 

]

Input substitution ( βih ) β = 

[
−0 . 2165 0 . 1990 

0 . 1990 −0 . 2165 

]
Monotonicity conditions ( s i ≥ 0 ) s 1 = 0 . 8758 and s 2 = 0 . 1312 

Curvature conditions ( f ii < 0 ) f 11 = −0 . 3252 and f 22 = −0 . 3305 

Quasi-convex in inputs ( ( −1 ) 
i | F i (x ) | > 0 ) | F 1 | = −0 . 7671 and | F 2 | = 0 . 3314 
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=  
997 ), and VRS SBM ( Tone, 2001 ). The DEA models under study are

escribed in Appendix C . Moreover, we compute the benchmark 

odel Rand, which consists of randomly drawn values similar to 

he real efficiency distribution, to ensure a thorough comparison 

f VRS DEA models with Monte Carlo simulated data. In theory, 

and provides a lower bound for benchmark values and allows the 

lassification of B-Values derived from DEA models. DEA applica- 

ions fall into three categories according to the number of DMUs: 

mall (50 DMUs), medium (150 DMUs), and large (450 DMUs). 

The number of DMUs in the generated scenarios can be mod- 

fied by simply running the DGP for one DMU n times. The true 

fficiency score θ , as mentioned before, is drawn from the trun- 

ated normal distribution and multiplied by the raw output y j for 

ach DMU. Using true efficiency distributions as characteristics, we 

xamine whether the level of true efficiencies influences the ac- 

uracy of DEA models. In the true efficiency score distributions, 

he upper bound is always set at 1.0, but the lower bound can be

ustomized based on three different values: low (0.25), medium 

0.40), and high (0.55). These levels reflect the reality that poor- 

fficiency DMUs cannot survive. Changing the modes and StD of 

rue efficiencies will result in similar curves. Therefore, we use 

odes of 0.75 (low), 0.80 (medium), and 0.85 (high) and StDs of 

.27 (low), 0.25 (medium), and 0.23 (high). For each DMU, the 

alue of m inputs is randomly selected from two uniform distri- 

utions: U[ 100 ; 1 , 100 ] and U[ 100 ; 10 , 100 ] . The ranges used here 

ave been derived from a study conducted by Kohl and Brun- 

er (2020) ; they compared various ranges to determine the most 

eaningful ones. In addition, the Cholesky decomposition is ap- 

lied to impose the correlation coefficients of 0.0, 0.4, and 0.8 be- 

ween the raw inputs as described in Hazewinkel (1992) . 

. Results and discussions 

Our main objective is to evaluate the accuracy of four main DEA 

odels and to determine the scale efficiency of generating scenar- 

os based on the defined characteristics. The results are divided 

nto three parts. First, we intend to make the results more under- 

tandable by introducing some numerical illustrations explaining 

he characteristics used for generating scenarios. Our next task is 

o present the results of our main computational study. This will 

nable us to figure out which models of DEA based on the VRS 

etting perform best and to explore the driving factors. Our final 

ection provides guidelines on how to apply DEA models in VRS 

ettings based on our computational results. 

.1. Numerical illustrations 

For the two-input single-output case, we generate the well- 

ehaved production function based on the Translog output dis- 

ance function described before. Considering the settings given in 

able 2 , we calculate the values of αi , ν , βih using Eq. (3) , Model

14), and Eq. (6) , respectively. For a given input vector (e.g., x =
1292 
 100 ; 1 , 100 ] ), the obtained values are presented in Table 3 . In 

ppendix D , we provide the dataset generated for this instance. If 

e set x CRS 
i 

close to the minimum of our input range (100), the 

hange of scale effects according to the size of the DMU starts 

t the beginning of the production function. This effect of x CRS 
i 

is 

hown in Fig. 2 (a) in which we represent the production func- 

ion of 10 0 0 DMUs under two different values of 300 and 600 

nd the same setting for the other characteristics as reported in 

able 2 . The effect of ω which is responsible for adjusting the 

xtent of scale effects, for two different values of 0.2 and 0.4 is 

hown in Fig. 2 (b). As the value of ω increases, the curvature 

f the production function also increases. According to the mini- 

um and maximum of ν , which allow the adjustment of the sub- 

titutability, high and low substitutability are recommended be- 

ween inputs. Fig. 2 (c) shows the effect of substitutability on the 

roduction function. We see that the minimum value of ν pro- 

uces almost a level surface without large raised areas or inden- 

ations, while the maximum value of it produces a curve-shaped 

urface. 

.2. Results of analyzing the accuracy of DEA models 

In the following sections, we discuss the results of the evalu- 

tion of four VRS DEA models and the Rand data gathered from 

776 scenarios. In Table 4 , we report the minimum (Min), maxi- 

um (Max), mean, and StD values of the performance indicators 

ver all scenarios. In addition, boxplots depict the main descriptive 

tatistics of B-Values and B-Ranks for each model in Fig. 3 . We use

he Rand model as a lower bound for our benchmarks. The aver- 

ge, maximum, and minimum number of replications required for 

ach scenario are respectively 111, 270, and 50. We define the stop- 

ing criterion for the replication based on the moving StD of the 

-Value for the DEA models. If the moving StD of the B-Value of 

ll four DEA models is less than 0.001, the replication terminates. 

here are over 434,0 0 0 replications in all, and each replication is 

ested using all four DEA models. By construction, we impose VRS 

echnology on the DGP so that the efficiency scores calculated with 

EA models under the VRS setting should be better than those 

alculated with CRS DEA models. To compute scale inefficiency as 

ell as evaluate the potential bias associated with computing ef- 

ciency scores under CRS when true technology is represented by 

RS, we run the CCR model. CCR results emphasize the importance 

f using an accurate return to scale before conducting a practical 

EA efficiency analysis. Consider, for instance, the mean B-Value 

f the CCR, which is equal to 0.295, and its VRS counterpart (BCC), 

hich is almost double, 0.574. 

The small value of Mean Absolute Error (MAE) suggests the es- 

imated efficiency scores are on average close to their true counter- 

arts, and therefore, high 1 − MAE values are preferred. According 

o Table 4 , the MAE cannot provide information about the devi- 

tion because of the small mean value of this indicator for Rand 

 0 . 824 ) which is very close to the VRS DEA models. In order to
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Fig. 2. Effect of x CRS 
i 

(a), ω (b), and ν (c) on the form of the production function. 

Fig. 3. Boxplots of B-Values and B-Ranks obtained from the models. 

h

t

e

m

fi

e

C

c

E

q

 

b

e

m

o

(

o

c

v

o

s

B

w

v

s

a

e

v

S

p

b

t

m

t

t

a

m

t

andle this issue, we use CORRI to represent the mean value of es- 

imated inefficiencies within a margin of δ = 0 . 05 around the true 

fficiencies. Using this indicator, the estimated efficiency of each 

odel can be distinguished within 5% of its corresponding true ef- 

ciency. Compared to the basic DEA models, the AR and SBM mod- 

ls perform better. It is evident from the SPEAR indicator that the 

CR model is barely able to mimic the true efficiency scores. In 

ontrast, the AR and SBM indicate acceptable results. TOP and IN- 

FF indicators provide the same result: AR and SBM exhibit high 

uality and outperform other models. 

On the basis of Fig. 3 , the accuracy of the VRS DEA models can

e explained as follows. In the first place, the AR and SBM mod- 

ls perform significantly better than the BCC model, while it is the 

ost popular model in DEA applications. BCC has a mean and StD 

f 0.649 and 0.201, respectively, indicating superior quality to CCR 

mean of 0.574 and StD of 0.238) which is not surprising since 

ur DGP is implemented using the VRS setting. However, it is a 

lear indication of the reliability of the results of the DGP and pro- 

ides insight into the mechanism by which it operates. In terms 
1293 
f the StD of the B-Values, the SBM and AR exhibit less disper- 

ion from the corresponding mean values than the basic CCR and 

CC DEA models. In light of the high B-Values for AR and SBM, 

hich are close to 1.0, it can be said that these two models pro- 

ide (nearly) accurate estimates. This result becomes even more 

ignificant when considering that these results represent the aver- 

ge over at least 50 replications of each scenario. Conversely, an 

xamination of the minimum B-Values sheds some light on the 

ulnerable performances of all four models in some scenarios. Both 

BM and AR models that have a minimum B-Value of 0.150 are 

erforming better than the basic DEA models. The B-Rank, whose 

est value is equal to 1.0, is in agreement with the majority of cer- 

ain findings testified by the B-Value. This indicator is not only a 

easure of dominance at the average level of scenarios but also 

akes into account every performance indicator in each replica- 

ion. Overall, the AR model (with mean and StD of B-Rank of 1.479 

nd 0.354, respectively) performs marginally better than the SBM 

odel (mean and StD of 1.877 and 0.568) and significantly better 

han the basic DEA models. 
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Table 4 

Statistical values of performance indicators calculated for each model under the VRS setting. 

Indicator Statistics Rand CCR DEA BCC DEA AR DEA ( k = 2 ) SBM DEA 

1-MAE Max 0.866 0.987 0.984 0.986 0.986 

Min 0.782 0.245 0.376 0.253 0.257 

Mean 0.824 0.764 0.836 0.904 0.898 

StD 0.030 0.191 0.122 0.133 0.130 

Rank (1-MAE) Max 5.000 5.000 4.318 4.318 4.441 

Min 1.000 1.000 1.042 1.000 1.000 

Mean 3.901 3.625 3.257 1.809 2.379 

StD 1.290 1.621 0.705 0.712 0.830 

SPEAR Max 0.048 0.996 0.971 0.987 0.987 

Min −0.041 0.057 −0.054 0.077 0.067 

Mean 0.000 0.634 0.703 0.858 0.841 

StD 0.011 0.269 0.277 0.186 0.188 

Rank (SPEAR) Max 5.000 4.154 4.711 2.422 3.077 

Min 3.244 1.000 2.339 1.000 1.018 

Mean 4.922 3.096 3.498 1.408 1.979 

StD 0.220 1.056 0.525 0.325 0.507 

TOP Max 0.198 0.924 0.885 0.905 0.905 

Min 0.118 0.155 0.133 0.158 0.155 

Mean 0.154 0.448 0.616 0.695 0.692 

StD 0.010 0.218 0.184 0.181 0.183 

Rank (TOP) Max 5.000 4.359 4.351 3.170 3.244 

Min 2.206 1.014 1.110 1.000 1.000 

Mean 4.681 3.314 2.612 1.447 1.540 

StD 0.538 0.963 0.562 0.406 0.471 

INEFF Max 0.193 0.972 0.910 0.973 0.973 

Min 0.117 0.168 0.123 0.188 0.187 

Mean 0.154 0.617 0.598 0.835 0.821 

StD 0.010 0.211 0.207 0.159 0.160 

Rank (INEFF) Max 5.000 4.083 4.531 1.868 2.656 

Min 2.580 1.048 1.706 1.000 1.000 

Mean 4.834 2.891 3.287 1.133 1.329 

StD 0.357 0.923 0.553 0.157 0.332 

CORRI Max 0.428 0.999 0.969 0.986 0.986 

Min 0.269 0.008 0.021 0.005 0.006 

Mean 0.344 0.405 0.494 0.737 0.707 

StD 0.053 0.333 0.279 0.265 0.264 

Rank (CORRI) Max 5.000 4.154 4.711 2.422 3.077 

Min 3.244 1.000 2.339 1.000 1.018 

Mean 4.922 3.096 3.498 1.408 1.979 

StD 0.220 1.056 0.525 0.325 0.507 

Table 5 

Results of conducting hypothesis tests. 

Model Number of Rejected Scenarios (%) 

Rand 0 (0%) 

CCR 3930 (50.5%) 

BCC 2368 (30.5%) 

AR 870 (11.2%) 

SBM 829 (10.7%) 

3

s

a

a

a

t

w

0

b

b

e

r

i

S

i

h

a

s  

a

p

i

f

a

t

S

 

t

e

m  

d

t

c

f

r  

a

t

t

p

.3. Results of hypothesis tests for comparing efficiency 

The results of the statistical tests evaluating the null hypothe- 

is that there is no difference in the distributions of true efficiency 

nd estimated efficiency determined by the four VRS DEA models 

re presented in this section. The test statistic and critical value 

re calculated for each scenario, and if the test statistic is greater 

han the critical value, the null hypothesis is rejected. In Table 5 , 

e report the distribution of the rejected scenarios. The value of 

.0 reported for the Rand can serve as a valid indicator of the ro- 

ustness of the hypothesis tests conducted. This value is equal to 0 

ecause both the true and estimated efficiencies by Rand are gen- 

rated from the same distribution function. These findings also cor- 

oborate the main conclusions drawn from analyzing performance 

ndicators. The total number of rejected scenarios in the AR and 
1294 
BM models (870 and 829, respectively) is considerably less than 

n the basic DEA models. Moreover, only 10% (11%) of scenarios 

ave efficiency scores that are different from their true efficiency 

s calculated by the SBM (AR) model. By examining the rejected 

cenarios in more detail (see Tables E4 and E5 in Appendix E ), it is

pparent that the majority of them have fewer DMUs and more in- 

uts. Moreover, these results underscore the importance of select- 

ng the right RTS. This is because on average, the CCR DEA model 

ails to estimate the efficiency scores of 50% of scenarios gener- 

ted under the VRS setting. BCC, which has been widely used in 

he DEA literature, is unquestionably outperformed by the AR and 

BM models under the VRS setting. 

In addition to k = 2 , we set k = 3 , 4 in the AR model to study

he effect of the AR weight restrictions on the quality of efficiency 

stimates. The results of B-Value and B-Rank obtained from the AR 

odel with k = 3 , 4 against k = 2 are presented in Fig. 4 . The me-

ians are all at the same level. Therefore, it can be concluded that 

he AR models perform under setting different k ’s almost identi- 

al. However, the box plots in these examples show relatively dif- 

erent distributions of B-Values and B-Ranks. The total number of 

ejected scenarios in the AR models with k = 3 , 4 are 944 (12.1%)

nd 930 (11.9%), respectively, which are still considerably less than 

hose obtained from the basic DEA models. The main reason for 

he better performance of the AR model is that the weights of in- 

uts and outputs obtained from the basic DEA models are freely 
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Fig. 4. Boxplots of B-Values and B-Ranks obtained from AR model where k = 2 , 3 , 4 . 
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hosen. Therefore, they can get zero, which means they are ex- 

luded from the production possibilities set. This issue is evaded 

n AR models by restricting the weights. 

.4. Analysis of characteristics considered in the DGP 

The purpose of this section is to investigate the identification of 

rends and patterns prompted by the ten different characteristics 

onsidered in the DGP. In Appendix E , we provide the descriptive 

tatistics of the aggregated performance indicators and hypothesis 

ests according to the various values/levels defined for each charac- 

eristic. Based on the main drivers of these results, several consis- 

ency patterns emerge. Studies indicate that the size of the dataset, 

.e., the number of DMUs and inputs, has a significant effect on 

he accuracy of DEA models. As reported subsequently, the results 

f our study confirm that increasing the size of the dataset results 

n decreasing the mean B-Values and in increasing the rejections. 

hese two characteristics, however, are not the only ones respon- 

ible for the distinct influences. The use of more inputs and a low 

umber of DMUs both negatively affect the mean B-Value. This re- 

ults in more rejected scenarios as well. The mean B-Value of the 

CC DEA model (see Table E3 in Appendix E ) is reduced by 25%

rom 0.750 to 0.560 when we use 7 inputs instead of 2 and the 

umber of rejections is almost doubled from 529 to 1134. 

The lower bounds of 0.25 (low), 0.40 (medium), and 0.55 (high) 

or true efficiency levels reflect the fact that units with extremely 

oor efficiency cannot survive in the real world. B-Values and 

he number of rejected scenarios reported in Appendix E can be 

sed to determine how true efficiency levels affect the quality of 

he DEA models. Increasing the lower bounds of true efficiencies 

auses a slight decline in the mean B-Values and a slight rise in 

he number of rejections in the DEA models. The quality of the 

EA models is marginally diminishing by allocating a larger share 

f DMUs to the true efficiency frontier (efficiency score of 1.0). 

his may be partly explained by the fact that scaling down the 

ower bounds of the true efficiency results in a broader range of 

cores. Resulting in more DMUs are moving closer to the efficiency 

rontier. Due to this, the discrimination power of DEA models is 

educed, while the negative effects are marginally present. When 

he importance of every input is different (ASYM), we see that the 

ean B-Values of all DEA models are to some extent less than 

hen all inputs have equal importance in the production function. 

ccordingly, fewer scenarios are rejected under the SYM setting 

han under ASYM. According to our results, DEA estimations are 

ot affected significantly by input importance. 

Taking a look at the input substitution distribution, it is evident 

hat when the input substitution is considered unequal, the per- 

ormance of all DEA models is significantly better than when it is 

qual. In reality, substitution between all inputs utilized by DMUs 

oes not need to be identical. The situation is different when in- 
1295 
uts differ in substitutability. The AR and SBM DEA models are al- 

ost insensitive to substitutability variations. The high input sub- 

titutability adversely affects the performance of basic DEA models 

CCR and BCC). Another two characteristics that are crucial to the 

orm of the production function are the efficient size ( x CRS 
i 

) and 

he extent of scale effects ω. In Appendix E , we demonstrate that 

hen the efficient size is near the lower bound of the input range, 

.e., 300, the performance of the VRS DEA models is marginally re- 

uced since the scale effect starts at the beginning of the produc- 

ion function. As expected, this reduction in performance is more 

pparent in the CCR model. When the extent of the scale effect is 

ncreased, the performance of the basic DEA models CCR and BCC 

s diminished as the B-Values decrease and the number of rejected 

cenarios increases substantially. Once again, AR and SBM models 

erform better when the curvature of the production function is 

ncreased by increasing the extent of scale effects. Across all mod- 

ls, it is evident that larger input ranges result in less satisfactory 

esults. This is very well reflected in the substantial increase in re- 

ected scenarios. The results also reveal the trivial influence of the 

orrelation of inputs upon the results of all DEA models. In real 

ife, it is likely that there is a strong correlation between inputs, 

nd that a complete lack of correlation is unlikely. 

In summary, this set of results leads to a soundly clear ranking 

f the DEA models: AR ≈SBM > BCC > CCR . As a result of comparing

he superior SBM and AR models, it is evident that despite almost 

dentical B-Values and the number of rejections, some differences 

xist on the performance indicator level. Additionally, the results 

f B-Rank confirm the dominance of the AR model over the SBM 

odel. The SBM model, however, shows almost the same perfor- 

ance as the AR model. The usage of both AR and SBM models as 

tandard VRS DEA models can therefore be endorsed. However, the 

uality of the AR model might (strongly) depend on the setting of 

he weight restrictions and special attention should be given. 

. Conclusions 

In this paper, we propose a method based on Monte Carlo sim- 

lation to assess the quality of DEA model estimates. Our method 

nvolves generating data by using a flexible technology (Translog 

roduction function) that satisfies microeconomic regularity condi- 

ions such as convexity and monotonicity. Prior studies have lacked 

iversity in the DGPs, which is a serious handicap when evaluating 

he quality of DEA model estimations. We generate 7776 distinct 

cenarios under the VRS setting by defining a variety of charac- 

eristics. Our evaluations of the quality of estimates obtained from 

EA models are based on five performance indicators, as well as 

EA-based hypothesis tests. Furthermore, we demonstrate how a 

alid range of characteristics and parameters can be derived when 

he necessary and sufficient microeconomic conditions are all met. 
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To our knowledge, this is the first study that compares the qual- 

ty of VRS DEA models to date. We show that the BCC model, 

hich is the most commonly used VRS DEA model in the liter- 

ture, is outperformed by AR and SBM models. According to the 

ypothesis test’s results, we find that more than 30% of BCC model 

stimations differ from the distribution of the true efficiency, but 

his rejection percentage is 11% for AR and 10% for SBM models. 

t is noteworthy that the AR model emerged at the top without 

pplying any special tuning to the virtual weight restrictions. How- 

ver, it may be too complex to explicitly articulate weights in some 

pplications. We, therefore, endorse the establishment of the SBM 

odel as the standard VRS DEA model in which there are no prior 

onditions to be comprehended on weights since its performance 

s almost equal to that of the AR model. From our perspective, 

he dominance of the AR and SBM models can be explained by 

he presence of slacks. While the BCC model ignores slacks en- 

irely in reporting the efficiency score, the SBM model calculates 

he efficiency score directly based on the slacks. Furthermore, the 

R model prevents the emergence of slacks by assigning bound- 

ries to the weights. We also examine the impact of characteristics 

sed for generating scenarios on the quality of the DEA estimates. 

ccording to our results, the most important factors affecting the 

uality of VRS DEA models are the number of inputs, range of in- 

uts, distribution of input substitution, and scale effects. Our re- 

ults may also be useful for decision-makers who might use them 

s a guideline for their own DEA studies to ensure acceptable re- 

ults and accuracy. 

Consideration of the single-output case is one of the limita- 

ions of our DGP. The methodology may therefore be generalized to 

eaningful multi-input multi-output cases in the future. The goal 

f our DGP is to generate artificial datasets that fulfill the mono- 

onicity and curvature conditions for every single generated sce- 

ario. In order to secure a similar guarantee in the multi-output 

ase, the formulation of the Translog production function needs to 

e updated as the importance of outputs and their substitutions 

ust be considered. In particular, this means the necessary condi- 

ions for guaranteeing the VRS setting with respect to outputs such 

s imposing homogeneity of degree + 1 and convexity in outputs 

eed to be modeled and considered. 

Furthermore, the proposed DGP identifies the deviation of the 

utput from the efficiency frontier as a single inefficiency term. 

 stochastic framework is another method of extending the DGP. 

he DGP can then be extended by defining the inefficiency score 

s the sum of two terms: inefficiency and noise. Another line of 

nvestigation would be extending our method for panel data with 

 time trend. Using this, we can assess and improve the accuracy 

f Malmquist productivity index calculations and their decomposi- 

ion. In addition, we believe the methodology presented here can 

lso be used to investigate other multi-input multi-output produc- 

ion functions, such as the one presented by Färe, Grosskopf, Noh 
Table A 

Performance indicators used for quality evaluation of DEA models

Indicator Symbol Form

Mean absolute error MAE 1 
n 

∑
Spearman Correlation Coefficient SPEAR √ ∑
Best-performing DMUs TOP 

| { j: θ

Worst-performing DMUs INEFF 
| { j: θ

Mean value over the results of the corridor CORRI 
∑ γ

k =

Benchmark value B-Value ( 1 −M

Benchmark rank B-Rank rank

1296 
nd Weber (2005) . All of this may eventually make DEA models 

ore practical by increasing their reliability and showing how ac- 

urate their estimations are to decision-makers. 

ppendix A. Performance indicators 

In Table A , θ j and 

ˆ θ j denote the true efficiency and efficiency 

core calculated by the DEA model for jth DMU ( j ∈ { 1 , . . . , n } ) , re- 

pectively. There are two important points to consider when defin- 

ng performance indicators. First, DEA estimates ˆ θ j = 1 for some 

MUs while their corresponding true efficiency scores obtained 

rom the DGP might be less than (but close to) one, i.e., θ j = 

 . 90 < 1 . 0 since they are based on a random continuous function.

econd, in the small-size samples, it is expected that only a few 

MUs (or no DMU) with a true efficiency score of 1.0 have been 

roduced. These two points preclude using a simple indicator that 

nly evaluates whether DMUs with an estimated efficiency score 

f 1.0 ( ̂  θ j = 1 . 0 ) also have a corresponding true efficiency score of

.0 ( θ j = 1 . 0 ). Our objective is therefore to determine whether the

EA models are capable of identifying the top-performing DMUs 

n a sample, although, not all of them have a true efficiency score 

f 1.0 but are close to it. In light of these two points, TOP and IN-

FF are performance indicators based on the quantiles of worst- 

nd best-performing DMUs, respectively. This study defines an ef- 

cient DMU as one that has at least as high a true efficiency value 

s a specific quantile ( Q(ε) ) of the distribution of true efficiency. 

n the same manner, a DMU is inefficient if and only if its true ef-

ciency is less than or equal to Q( 1 − ε ) . For example, consider 50 

MUs ( n = 50 ) where ε = 0 . 8 . In the ascending order of true ef-

ciencies, Q(ε) = θ j where j = 40 . The same logic can be applied

o Q( 1 − ε ) . In this way, we can handle multiple efficiency distri- 

utions in the DGP as well as compare different scenarios. Ideally, 

arameter ε should be large enough to serve as a satisfactory limit 

or efficient DMUs. We also employ the CORRI to track the mean 

alue of estimates in certain corridors around the true efficiencies, 

ince MAE cannot provide information on the deviation. 

The parameters δ and γ determine the tightness of the cor- 

idors and the number of corridors, respectively. As in Kohl and 

runner (2020) , we also use a corrugated line of δ = 0 . 05 to test an

stimated model’s efficacy at most 5% points. This is in addition to 

he corresponding true score. Having generated the data (includ- 

ng inputs, outputs, and a true efficiency score) of a scenario and 

alculated the efficiency scores by DEA models, we constructed the 

erformance indicators. To aggregate and represent all the perfor- 

ance indicators with a single score we use B-Value. To capture 

he influence of dominance, we also introduce a second aggregated 

ndicator called B-Rank. In Table A , the last two rows give the for- 

ulas for these two aggregated indicators. 
 ( Kohl & Brunner, 2020 ). 

ula 

 n 
j=1 | θ j − ˆ θ j | 
∑ 

j ( Rg ( θ j ) −Rg (θ ) )( Rg ( ̂ θ j ) −Rg ( ̂ θ ) ) 

 

j ( Rg ( θ j ) −Rg (θ ) ) 
2 
√ ∑ 

j ( Rg ( ̂ θ j ) −Rg ( ̂ θ ) ) 
2 

j ≥Q (ε) ∩ ̂ θ j ≥Q (ε) } | 
| { j: θ j ≥Q(ε) } | · ( 1 − max { | { j: ̂ θ j ≥Q(ε) } |−| { j: θ j ≥Q(ε) } | , 0 } 

n 
) 

j ≤Q ( 1 −ε ) ∩ ̂ θ j ≤Q ( 1 −ε ) } | 
| { j: θ j ≤Q( 1 −ε ) } | · ( 1 − max { | { j: ̂ θ j ≤Q( 1 −ε ) } |−| { j: θ j ≤Q( 1 −ε ) } | , 0 } 

n 
) 

1 
1 
γ

| { j: | θ j − ˆ θ j |≤k ·δ} | 
n 

AE ) +SPEAR+EFF+INEFF+CORRI 
5 

 ( 1 −MAE ) + rank(SPEAR ) +rank(EFF ) +rank(INEFF ) +rank(CORRI ) 
5 
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ppendix B. Propositions and proofs 

roposition 1. The definition provided in Eq. (3) for αi fulfills the 

ondition of 
∑ 

i ∈M 

αi > 1 . 

roof. We need to prove that the definition provided for αi in 

q. (3) guarantees the implementation of the first condition of 

he VRS regime. Mathematically speaking, 
∑ m 

i =1 αi = 

∑ m 

i =1 
1+ ω 

m 

= 

 m 

i =1 ( 
1 
m 

+ 

ω 
m 

) = ( m · 1 
m 

+ m. ω m 

) = 1 + ω 

→ 

ω> 0 
∑ m 

i =1 αi > 1 . �
roposition 2. The definition provided in Eq. (4) for αi fulfills the 

ondition of 
∑ 

i ∈ M 

αi > 1 . 

roof. We show that the definition provided for αi 

n Eq. (4) respects the first condition of the VRS, i.e., 
 m 

i =1 αi = 

∑ m 

i =1 
( 1+ ω ) ·( i + m ) 

1 . 5 m 

2 +0 . 5 m 

= 

∑ m 

i =1 
( 1+ ω ) ·i 

1 . 5 m 

2 +0 . 5 m 

+ 

∑ m 

i =1 
( 1+ ω ) ·m 

1 . 5 m 

2 +0 . 5 m 

= 

 1 + ω ) · [ 
1 
2 

m ·( m +1 ) 

1 . 5 m 

2 +0 . 5 m 

+ 

m ·m 

1 . 5 m 

2 +0 . 5 m 

] = ( 1 + ω ) · [ 1 . 5 m 

2 +0 . 5 m 

1 . 5 m 

2 +0 . 5 m 

] = 

 + ω 

→ 

ω> 0 
∑ m 

i =1 αi > 1 . �
roposition 3. Definitions provided in Eq. (6) fulfill βii + 

 

h ∈ M \{ i } βih = − ω 
m ·ln x CRS 

i 

, ∀ i . 

roof. By replacing βii and βih in βii + 

∑ 

h � = i βih and operating it, 

e have 

βii + 

∑ 

h ∈ M \{ i } βih = 

−ν·ω 
m ·ln x CRS 

i 

+ 

∑ 

h � = i 
( ν−1 ) ·ω 

m ·( m −1 ) ln x CRS 
i 

= 

−ν·ω 
m ·ln x CRS 

i 

+ 

( m −1 )( ν−1 ) ·ω 
m ·( m −1 ) ln x CRS 

i 

= − ω 
m ·ln x CRS 

i 

→ βii + 

∑ 

h � = i βih = − ω 
m ·ln x CRS 

i 

, ∀ i. �
roposition 4. Definitions provided in Eq. (8) fulfill Eq. (5) . 

Proof. We call the unequal substitution distribu- 

ion defined by Kohl and Brunner (2020) , i.e., σ ′ 
ii = 

m ·( 1 . 5 − i −1 
m −1 

) −( 2 −2 · i −1 
m −1 

) 

1 . 5 ·m −2 , ∀ i and σ ′ 
ih = 

2 − h −1 
m −1 

− i −1 
m −1 

1 . 5 ·m −2 , ∀{ i, h | i � = 

 } . From the proof provided by them, we know that 
′ 
ii + 

∑ 

h ∈ M \{ i } σ ′ 
ih = 0 , ∀ i . 7 Now, by replacing these two expres- 

ions in Eq. (5) and operating, we have: 
∑ 

i ∈ M 

(
βii + 

∑ 

h ∈ M \{ i } βih 

)
= 

 

i ∈ M 

(
−ω·( 1 −ν·σ ′ 

ii ) 

m ·ln x CRS 
i 

+ 

∑ 

h ∈M\{ i } ω·ν
m ·ln x CRS 

i 

· σ ′ 
ih 

)
= 

 

i ∈ M 

(
− ω 

m ·ln x CRS 
i 

+ 

ω·ν·σ ′ 
ii 

m ·ln x CRS 
i 

+ 

ω·ν
m ·ln x CRS 

i 

· ∑ 

h ∈M\{ i } σ ′ 
ih 

)
 

∑ 

i ∈ M 

(
− ω 

m ·ln x CRS 
i 

·
(
1 + ν · σ ′ 

ii + ν · ∑ 

h ∈ M \{ i } σ ′ 
ih 

))
= 

 

i ∈ M 

(
− ω 

m ·ln x CRS 
i 

·
(
1 + ν · ( σ ′ 

ii + 

∑ 

h ∈ M \{ i } σ ′ 
ih ) 

))
= 

 

i ∈ M 

(
− ω 

m ·ln x CRS 
i 

· ( 1 + 0 ) 
)

 

∑ 

i ∈ M 

(
− ω 

m ·ln x CRS 
i 

· ( 1 + 0 ) 
)

= 

∑ 

i ∈ M 

− ω 
m ·ln x CRS 

i 

= − ω 
ln x CRS . �

ppendix C. DEA models under evaluation 

The basic DEA model (known as CCR) was introduced by 

harnes et al. (1978) . They define a measure of efficiency by 

aximizing the ratio of the weighted sum of outputs over the 

eighted sum of inputs for each DMU. Consider input vector X = 

 x 1 o , . . . , x mo ) and output vector Y = ( y 1 o , . . . , y so ) , then the rela- 

ive efficiency of DMU j ∀ j = 1 , . . . , n can be formulated as T E j =
 s 
r=1 u r y r j / 

∑ m 

i =1 v i x i j where, u r and v i are the weights of output r

nd input i , respectively. The mathematical formulation of the CCR 

EA model can be presented as follows: 

ax θo (C.1) 

 . t . 

n ∑ 

j=1 

x i j λ j ≤ x io , ∀ i (C.2) 

n 
 

j=1 

y r j λ j ≥ θo y ro , ∀ r (C.3) 
7 A detailed derivation of σ ′ 
ii and σ ′ 

ih can be found in Kohl and Brunner (2020) . 
m
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j ≥ 0 , ∀ j (C.4) 

here, θo shows the technical efficiency of DMU o and λ j are the 

ntensity variables. In the CCR DEA model, the assumption of CRS is 

nderlined. The BCC (Banker-Charnes-Cooper) model ( Banker et al., 

984 ) is the most representative extension of the CCR DEA model 

n which VRS technology is accommodated. The BCC DEA model 

an be formed by adding the convexity constraint 
∑ n 

j=1 λ j = 1 to 

he CCR DEA model (C). 

There might be many zeros in the optimal weights of the CCR 

nd BCC models, indicating that the evaluating DMU may have a 

eakness in the factors (inputs and outputs) compared to the ef- 

cient DMUs. Having no control over the boundaries of optimal 

eights leads to the emerging AR DEA model, which constrains the 

eight of special inputs/outputs relative to others ( Thompson, Sin- 

leton, Thrall & Smith, 1986 ). In the literature (see Allen, Athanas- 

opoulos, Dyson and Thanassoulis (1997) and Pedraja-Chaparro et 

l. (1997) ), several approaches have been developed to restrict the 

eights of DEA models. There are two dimensions for the weight 

estrictions in the AR models. The first dimension relates to the 

eights to be constrained i.e., raw or virtual weight restriction. 

he second dimension is about the limits placed on the weights 

hich can have either absolute or relative weight restrictions. A 

aw weight restriction limits just the weight within the primal 

ultiplier model, whereas a virtual weight restriction limits the 

roduct of weight and input, i.e., v i · x i j . The ratio between two 

eights is affected by relative restrictions, as opposed to absolute 

estrictions, which affect only one weight. The focus of our analysis 

s on relative weight restrictions following Pedraja-Chaparro et al. 

1997) . Since we deal with different input elasticities, we chose to 

pply virtual weight restrictions. To determine whether the quality 

f the AR model is affected by weight restrictions, we consider rel- 

tive virtual weight constraints by setting k = 2 , 3 , 4 in our com-

utational study (see Section 3.3 ). 

in 

m ∑ 

i =1 

v i x io (C.5) 

 . t . 

m ∑ 

i =1 

v i x i j −
s ∑ 

r=1 

u r y r j ≥ 0 , ∀ j (C.6) 

s 
 

r=1 

u r y ro = 1 (C.7) 

 r , v i ≥ 0 , ∀ r, i (C.8) 

v i x io 
v h x ho 

≤ k, ∀ i, h, i � = h (C.9) 

Both CCR and BCC DEA models are radial where inputs are 

roportionally reduced, and outputs are proportionally expanded. 

his assumption can be restrictive. For example, when labor, cap- 

tal, and material are employed as inputs, some of them may not 

hange proportionally and may be substituted. A further shortcom- 

ng of radial models is that they do not consider slacks when re- 

orting efficiency scores. There are often loads of non-radial slacks 

eft. These limitations lead to the expansion of non-radial mod- 

ls. SBM DEA is a non-radial model that deals directly with slacks 

n reporting efficiency scores ( Tone, 2001 ). The non-oriented SBM 

EA model under the VRS setting is a non-linear model that can 

e reformulated as a linear counterpart by using Charnes–Cooper 

ransformation approach ( Charnes & Cooper, 1962 ) as follows: 

in ρo = t − 1 

m 

m ∑ 

i =1 

s −
i 

x io 
(C.10) 
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Table D 

One scenario (50 DMUs, two inputs, and one output) generated by the developed DGP. 

DMU Input 1 Input 2 Output 1 True Eff. DMU Input 1 Input 2 Output 1 True Eff. 

1 996.00 722.00 1147.38 0.7879 26 234.00 610.00 474.28 0.7814 

2 295.00 964.00 641.16 0.7908 27 259.00 1015.00 629.63 0.8469 

3 122.00 997.00 215.45 0.5526 28 985.00 974.00 1254.82 0.7422 

4 863.00 173.00 264.04 0.5058 29 894.00 583.00 1172.46 0.9484 

5 307.00 948.00 821.23 0.9880 30 816.00 978.00 621.86 0.4032 

6 1092.00 122.00 372.20 0.9502 31 989.00 814.00 1197.65 0.7737 

7 143.00 565.00 323.09 0.7819 32 961.00 362.00 528.62 0.5639 

8 1045.00 310.00 495.89 0.5783 33 628.00 10 02.0 0 695.69 0.5156 

9 1075.00 573.00 933.06 0.7117 34 249.00 132.00 233.94 0.7640 

10 102.00 832.00 219.42 0.6729 35 1051.00 939.00 1708.48 0.9983 

11 514.00 399.00 544.08 0.6858 36 808.00 962.00 970.23 0.6369 

12 812.00 151.00 424.62 0.9202 37 749.00 638.00 1107.77 0.9195 

13 814.00 724.00 792.67 0.5937 38 390.00 862.00 685.65 0.7191 

14 535.00 228.00 383.96 0.6706 39 939.00 867.00 1383.95 0.8863 

15 227.00 311.00 295.18 0.6347 40 997.00 149.00 268.93 0.5748 

16 146.00 1058.00 365.69 0.7916 41 923.00 995.00 1384.13 0.8365 

17 906.00 534.00 1095.83 0.9283 42 258.00 380.00 520.20 0.9540 

18 813.00 715.00 1023.81 0.7721 43 765.00 835.00 1250.16 0.90 0 0 

19 783.00 686.00 738.67 0.5788 44 709.00 359.00 606.92 0.7170 

20 230.00 418.00 515.33 0.9751 45 985.00 954.00 1316.94 0.7868 

21 1091.00 826.00 1219.96 0.7496 46 773.00 1079.00 1494.10 0.9561 

22 243.00 275.00 346.09 0.7584 47 356.00 991.00 468.93 0.5017 

23 1093.00 674.00 1141.91 0.7857 48 660.00 297.00 315.07 0.4310 

24 651.00 992.00 1112.20 0.8106 49 111.00 613.00 198.47 0.5828 

25 970.00 1025.00 1364.69 0.7938 50 1090.00 1083.00 1573.86 0.8430 

s

t

t

∑

s  

w

p

a

m

{
m

A

A

T

R

 . t .t + 

1 

s 

s ∑ 

r=1 

s + r 

y ro 
= 1 (C.11) 

 · x io = 

n ∑ 

j=1 

x i j λ j + s −
i 
, ∀ i (C.12) 

 · y ro = 

n ∑ 

j=1 

y r j λ j − s + r , ∀ r (C.13) 

n 
 

j=1 

λ j = 1 (C.14) 

 

−
i 
, s + r , λ j ≥ 0 , ∀ i, r, j and t > 0 (C.15)
able E1 

and Model. 

Model Characteristic Value/Level B-Value 

Max Min 

Rand True efficiency 

level 

Low 0.299 0.25

Medium 0.320 0.27

High 0.339 0.30

#DMU 50 0.339 0.26

150 0.332 0.25

450 0.330 0.26

#Inputs 2 0.339 0.25

5 0.335 0.26

7 0.332 0.26

Input Importance ASYM 0.335 0.26

SYM 0.339 0.25

Input substitution 

distribution 

Equal 0.335 0.26

Unequal 0.339 0.25

Input 

substitutability 

High 0.339 0.25

Low 0.335 0.26

Efficient size 300 0.339 0.25

600 0.335 0.26

Input range [100; 1100] 0.339 0.25

[100; 10,100] 0.335 0.26

Extent of scale 

effects 

0.2 0.339 0.26

0.4 0.332 0.25

0.8 0.332 0.26

Input correlation 0 0.335 0.25

0.4 0.335 0.26

0.8 0.339 0.26

1298 
here ρo is the SBM-efficiency. s − and s + are the vector of in- 

ut and output slacks, respectively. t is a positive scalar vari- 

ble used during the transformation process. Consider the opti- 

al solution system as of the non-oriented SBM DEA model be 

 ρ∗, t ∗, λ∗, s −∗, s + ∗} then, the optimal solution of the SBM DEA 

odel can be defined as { ρ∗, t ∗, λ∗/t ∗, s −∗/t ∗, s + ∗/t ∗} . 

ppendix D. One sample scenario 

Table D . 

ppendix E. Detailed results of analysis of characteristics 

Table E1 , Table E2 
Rejection 

Mean StD Mean StD Sum 

9 0.276 0.005 0 0 0 

7 0.293 0.005 0 0 0 

1 0.317 0.005 0 0 0 

4 0.298 0.017 0 0 0 

9 0.294 0.017 0 0 0 

1 0.295 0.017 0 0 0 

9 0.295 0.017 0 0 0 

2 0.295 0.017 0 0 0 

2 0.295 0.017 0 0 0 

1 0.295 0.017 0 0 0 

9 0.295 0.017 0 0 0 

2 0.295 0.017 0 0 0 

9 0.295 0.017 0 0 0 

9 0.295 0.017 0 0 0 

2 0.295 0.017 0 0 0 

9 0.295 0.017 0 0 0 

2 0.295 0.017 0 0 0 

9 0.295 0.017 0 0 0 

1 0.295 0.017 0 0 0 

2 0.295 0.017 0 0 0 

9 0.295 0.017 0 0 0 

2 0.296 0.017 0 0 0 

9 0.295 0.017 0 0 0 

2 0.295 0.017 0 0 0 

1 0.295 0.017 0 0 0 
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Table E2 

CCR DEA Model. 

Model Characteristic Value/Level B-Value Rejection 

Max Min Mean StD Mean StD Sum 

CCR True efficiency 

level 

Low 0.974 0.192 0.614 0.223 0.484 0.500 1254 

Medium 0.967 0.169 0.576 0.236 0.505 0.500 1310 

High 0.958 0.140 0.532 0.246 0.527 0.499 1366 

#DMU 50 0.973 0.154 0.573 0.227 0.577 0.494 1495 

150 0.974 0.142 0.573 0.240 0.522 0.500 1352 

450 0.973 0.140 0.575 0.246 0.418 0.493 1083 

#Inputs 2 0.965 0.164 0.627 0.232 0.402 0.490 1042 

5 0.934 0.140 0.571 0.238 0.406 0.491 1052 

7 0.974 0.236 0.523 0.233 0.708 0.455 1836 

Input Importance ASYM 0.974 0.140 0.573 0.238 0.508 0.500 1977 

SYM 0.973 0.148 0.574 0.238 0.502 0.500 1953 

Input substitution 

distribution 

Equal 0.974 0.140 0.456 0.200 0.717 0.450 2789 

Unequal 0.973 0.240 0.691 0.214 0.293 0.455 1141 

Input 

substitutability 

High 0.974 0.146 0.629 0.234 0.409 0.492 1590 

Low 0.965 0.140 0.518 0.229 0.602 0.490 2340 

Efficient size 300 0.973 0.140 0.553 0.236 0.540 0.498 2101 

600 0.974 0.153 0.594 0.238 0.470 0.499 1829 

Input range [100; 1100] 0.974 0.215 0.677 0.231 0.344 0.475 1337 

[100; 10,100] 0.892 0.140 0.471 0.197 0.667 0.471 2593 

Extent of scale 

effects 

0.2 0.974 0.236 0.667 0.218 0.341 0.474 883 

0.4 0.960 0.193 0.574 0.229 0.525 0.499 1360 

0.8 0.950 0.140 0.480 0.229 0.651 0.477 1687 

Input correlation 0 0.973 0.148 0.576 0.232 0.461 0.499 1196 

0.4 0.974 0.142 0.574 0.238 0.513 0.500 1329 

0.8 0.973 0.140 0.572 0.243 0.542 0.498 1405 

Table E3 

BCC DEA Model. 

Model Characteristic Value/Level B-Value Rejection 

Max Min Mean StD Mean StD Sum 

BCC True efficiency 

level 

Low 0.938 0.138 0.654 0.209 0.284 0.451 736 

Medium 0.928 0.154 0.650 0.201 0.307 0.462 797 

High 0.926 0.162 0.644 0.192 0.322 0.467 835 

#DMU 50 0.889 0.148 0.634 0.184 0.391 0.488 1013 

150 0.923 0.141 0.652 0.204 0.365 0.482 946 

450 0.938 0.138 0.662 0.212 0.158 0.365 409 

#Inputs 2 0.938 0.558 0.715 0.137 0.204 0.403 529 

5 0.880 0.138 0.673 0.202 0.272 0.445 705 

7 0.830 0.160 0.560 0.220 0.438 0.496 1134 

Input Importance ASYM 0.938 0.141 0.647 0.203 0.310 0.463 1206 

SYM 0.935 0.138 0.652 0.199 0.299 0.458 1162 

Input substitution 

distribution 

Equal 0.938 0.138 0.556 0.232 0.462 0.499 1798 

Unequal 0.935 0.561 0.742 0.096 0.147 0.354 570 

Input 

substitutability 

High 0.938 0.138 0.688 0.213 0.196 0.397 762 

Low 0.876 0.141 0.611 0.179 0.413 0.492 1606 

Efficient size 300 0.938 0.138 0.634 0.209 0.328 0.469 1274 

600 0.935 0.146 0.665 0.191 0.281 0.450 1094 

Input range [100; 1100] 0.938 0.196 0.688 0.174 0.210 0.408 818 

[100; 10,100] 0.931 0.138 0.611 0.217 0.399 0.490 1550 

Extent of scale 

effects 

0.2 0.938 0.423 0.739 0.119 0.162 0.369 420 

0.4 0.925 0.160 0.653 0.195 0.303 0.460 786 

0.8 0.875 0.138 0.556 0.228 0.448 0.497 1162 

Input correlation 0 0.935 0.150 0.641 0.190 0.271 0.444 702 

0.4 0.938 0.143 0.651 0.202 0.311 0.463 807 

0.8 0.933 0.138 0.657 0.210 0.331 0.471 859 
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Table E4 

AR DEA Model ( k = 2 ). 

Model Characteristic Value/Level B-Value Rejection 

Max Min Mean StD Mean StD Sum 

AR True efficiency 

level 

Low 0.962 0.208 0.812 0.165 0.109 0.311 282 

Medium 0.963 0.185 0.806 0.179 0.111 0.315 289 

High 0.962 0.150 0.798 0.193 0.115 0.320 299 

#DMU 50 0.907 0.164 0.775 0.165 0.124 0.330 322 

150 0.947 0.152 0.812 0.181 0.114 0.318 296 

450 0.963 0.150 0.831 0.188 0.097 0.296 252 

#Inputs 2 0.963 0.854 0.919 0.029 0.000 0.000 0 

5 0.931 0.216 0.796 0.160 0.103 0.305 268 

7 0.923 0.150 0.703 0.216 0.232 0.422 602 

Input Importance ASYM 0.963 0.150 0.799 0.184 0.121 0.327 472 

SYM 0.962 0.160 0.812 0.175 0.102 0.303 398 

Input substitution 

distribution 

Equal 0.962 0.150 0.746 0.233 0.224 0.417 870 

Unequal 0.963 0.687 0.866 0.056 0.000 0.000 0 

Input 

substitutability 

High 0.963 0.158 0.806 0.180 0.112 0.315 435 

Low 0.961 0.150 0.806 0.179 0.112 0.315 435 

Efficient size 300 0.962 0.150 0.795 0.192 0.124 0.330 482 

600 0.963 0.175 0.816 0.165 0.100 0.300 388 

Input range [100; 1100] 0.963 0.284 0.846 0.123 0.055 0.229 215 

[100; 10,100] 0.954 0.150 0.765 0.214 0.168 0.374 655 

Extent of scale 

effects 

0.2 0.962 0.681 0.869 0.056 0.000 0.000 0 

0.4 0.963 0.280 0.823 0.143 0.086 0.280 223 

0.8 0.958 0.150 0.726 0.250 0.250 0.433 647 

Input correlation 0 0.961 0.160 0.789 0.176 0.102 0.303 265 

0.4 0.963 0.152 0.808 0.179 0.117 0.322 304 

0.8 0.962 0.150 0.820 0.182 0.116 0.320 301 

Table E5 

SBM DEA Model. 

Model Characteristic Value/Level B-Value Rejection 

Max Min Mean StD Mean StD Sum 

SBM True efficiency 

level 

Low 0.962 0.206 0.798 0.165 0.101 0.301 262 

Medium 0.963 0.185 0.793 0.178 0.107 0.309 278 

High 0.962 0.150 0.786 0.192 0.111 0.315 289 

#DMU 50 0.907 0.165 0.759 0.165 0.121 0.326 314 

150 0.947 0.153 0.799 0.180 0.107 0.309 277 

450 0.963 0.150 0.818 0.186 0.092 0.289 238 

#Inputs 2 0.963 0.854 0.919 0.029 0.000 0.000 0 

5 0.908 0.213 0.781 0.154 0.096 0.294 248 

7 0.881 0.150 0.676 0.204 0.224 0.417 581 

Input Importance ASYM 0.963 0.150 0.788 0.183 0.114 0.318 443 

SYM 0.962 0.161 0.796 0.175 0.099 0.299 386 

Input substitution 

distribution 

Equal 0.962 0.150 0.737 0.231 0.213 0.410 829 

Unequal 0.963 0.645 0.847 0.068 0.000 0.000 0 

Input 

substitutability 

High 0.963 0.159 0.793 0.179 0.106 0.308 413 

Low 0.961 0.150 0.791 0.178 0.107 0.309 416 

Efficient size 300 0.962 0.150 0.782 0.191 0.117 0.322 456 

600 0.963 0.175 0.802 0.165 0.096 0.295 373 

Input range [100; 1100] 0.963 0.283 0.828 0.126 0.049 0.216 191 

[100; 10,100] 0.954 0.150 0.756 0.213 0.164 0.370 638 

Extent of scale 

effects 

0.2 0.962 0.645 0.851 0.066 0.000 0.000 0 

0.4 0.963 0.279 0.809 0.144 0.079 0.271 206 

0.8 0.958 0.150 0.716 0.248 0.240 0.427 623 

Input correlation 0 0.962 0.161 0.776 0.177 0.094 0.292 244 

0.4 0.963 0.153 0.794 0.179 0.112 0.315 290 

0.8 0.962 0.150 0.806 0.180 0.114 0.318 295 

1300 



M. Zarrin and J.O. Brunner European Journal of Operational Research 308 (2023) 1286–1301 

R

A

B

B

B

B  

B

 

B

B  

B  

C

C  

C  

 

C  

C  

C  

D  

F  

G  

G

H

H

K  

K

K  

K  

L

L  

M

P

P

P

R

R

S

S

S

S

T  

T

v

W

eferences 

llen, R., Athanassopoulos, A., Dyson, R. G., & Thanassoulis, E. (1997). Weights re- 

strictions and value judgements in data envelopment analysis: Evolution, devel- 

opment and future directions. Annals of Operations Research, 73 , 13–34 . 
alk, B. M. (2001). Scale efficiency and productivity change. Journal of Productivity 

Analysis, 15 (3), 159–183 . 
anker, R., Natarajan, R., & Zhang, D. (2019). Two-stage estimation of the impact 

of contextual variables in stochastic frontier production function models using 
Data Envelopment Analysis: Second stage OLS versus bootstrap approaches. Eu- 

ropean Journal of Operational Research, 278 (2), 368–384 . 

anker, R. D. (1993). Maximum likelihood, consistency and data envelopment anal- 
ysis: A statistical foundation. Management Science, 39 (10), 1265–1273 . 

anker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating tech-
nical and scale inefficiencies in data envelopment analysis. Management Science, 

30 (9), 1078–1092 . 
anker, R. D., & Natarajan, R. (2011). Statistical tests based on DEA efficiency scores. 

In W. W. Cooper, L. M. Seiford, & J. Zhu (Eds.), Handbook on data envelopment
analysis (eds) (pp. 273–295). Boston, MA: Springer US . 

anker, R. D., Zheng, Z., & Natarajan, R. (2010). DEA-based hypothesis tests for com- 

paring two groups of decision making units. European Journal of Operational Re- 
search, 206 (1), 231–238 . 

ogetoft, P., & Otto, L. (2011a). Additional Topics. In Bogetoft P. SFA, & L. Otto (Eds.),
Benchmarking with DEA, SFA, and R (eds) (pp. 233–262). New York, NY: Springer 

New York . 
ogetoft, P., & Otto, L. (2011b). Statistical Analysis. In Bogetoft P. DEA, & L. Otto

(Eds.), Benchmarking with DEA, SFA, and R (eds) (pp. 155–196). New York, NY: 

Springer New York . 
harnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. 

Naval Research Logistics, 9 (3–4), 181–186 . 
harnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision

making units. European Journal of Operational Research, 2 (6), 429–4 4 4 . 
oelli, T., Rao, D. S. P., & Battese, G. E. (1998). Review of production economics. In

T. Coelli, D. S. P. . Rao, & G. E. Battese (Eds.), An introduction to efficiency and

productivity analysis (eds) (pp. 11–37). Boston, MA: Springer US . 
oelli, T. J., Prasada Rao, D. S., O’Donnell, C. J., & Battese, G. E. (2005). An introduction

to efficiency and productivity analysis eds.. Boston, MA: Springer US . 
ordero, J. M., Santín, D., & Sicilia, G. (2015). Testing the accuracy of DEA estimates

under endogeneity through a Monte Carlo simulation. European Journal of Oper- 
ational Research, 244 (2), 511–518 . 

ummins, J. D., Weiss, M. A., & Zi, H. (1999). Organizational form and efficiency: The

coexistence of stock and mutual property-liability insurers. Management Science, 
45 (9), 1254–1269 . 

ellnitz, A., Kleine, A., & Rödder, W. (2018). CCR or BCC: What if we are in the
wrong model? Journal of Business Economics, 88 (7), 831–850 . 

äre, R., Grosskopf, S., Noh, D. W., & Weber, W. (2005). Characteristics of a polluting
technology: Theory and practice. Journal of Econometrics, 126 (2), 469–492 . 

olany, B., & Storbeck, J. E. (1999). A data envelopment analysis of the operational

efficiency of bank branches. INFORMS Journal on Applied Analytics, 29 (3), 14–26 . 
reene, W. H. (2008). The econometric approach to efficiency analysis. The measure- 

ment of productive efficiency and productivity change . New York: Oxford Univer- 
sity Press . 

azewinkel, M. (1992). Encyclopaedia of mathematics . Springer Netherlands, Dor- 
drecht . 
1301 
olland, D., & Lee, S. (2002). Impacts of random noise and specification on esti- 
mates of capacity derived from data envelopment analysis. European Journal of 

Operational Research, 137 (1), 10–21 . 
affash, S., Azizi, R., Huang, Y., & Zhu, J. (2020). A survey of data envelopment anal-

ysis applications in the insurance industry 1993–2018. European Journal of Op- 
erational Research, 284 (3), 801–813 . 

ohl, S., & Brunner, J. O. (2020). Benchmarking the benchmarks – Comparing the 
accuracy of data envelopment analysis models in constant returns to scale set- 

tings. European Journal of Operational Research, 285 (3), 1042–1057 . 

ohl, S., Schoenfelder, J., Fügener, A., & Brunner, J. O. (2019). The use of data en-
velopment analysis (DEA) in healthcare with a focus on hospitals. Health Care 

Management Science, 22 (2), 245–286 . 
rüger, J. J. (2012). A Monte Carlo study of old and new frontier methods for effi-

ciency measurement. European Journal of Operational Research, 222 (1), 137–148 . 
ee, H., Park, Y., & Choi, H. (2009). Comparative evaluation of performance of na- 

tional R&D programs with heterogeneous objectives: A DEA approach. European 

Journal of Operational Research, 196 (3), 847–855 . 
ópez, F. J., Ho, J. C., & Ruiz-Torres, A. J. (2016). A computational analysis of the

impact of correlation and data translation on DEA efficiency scores. Journal of 
Industrial and Production Engineering, 33 (3), 192–204 . 

ahmoudi, R., Emrouznejad, A., Shetab-Boushehri, S.-. N., & Hejazi, S. R. (2020). 
The origins, development and future directions of data envelopment analysis 

approach in transportation systems. Socio-Economic Planning Sciences, 69 , Article 

100672 . 
edraja-Chaparro, F., Salinas-Jimenez, J., & Smith, P. (1997). On the Role of Weight 

Restrictions in Data Envelopment Analysis. Journal of Productivity Analysis, 8 (2), 
215–230 . 

edraja-Chaparro, F., Salinas-Jiménez, J., & Smith, P. (1999). On the quality of the 
data envelopment analysis model. Journal of the Operational Research Society, 

50 (6), 636–644 . 

erelman, S., & Santín, D. (2009). How to generate regularly behaved production 
data? A Monte Carlo experimentation on DEA scale efficiency measurement. Eu- 

ropean Journal of Operational Research, 199 (1), 303–310 . 
esti, A. (20 0 0). Efficiency measurement for multi-product industries: A comparison 

of classic and recent techniques based on simulated data. European Journal of 
Operational Research, 121 (3), 559–578 . 

uggiero, J. (2005). Impact assessment of input omission on DEA. International Jour- 

nal of Information Technology & Decision Making, 4 (03), 359–368 . 
antín, D., & Sicilia, G. (2017). Dealing with endogeneity in data envelopment anal- 

ysis applications. Expert Systems with Applications, 68 , 173–184 . 
iciliani, L. (2006). Estimating technical efficiency in the hospital sector with panel 

data. Applied Health Economics and Health Policy, 5 (2), 99–116 . 
imar, L., & Wilson, P. W. (2002). Non-parametric tests of returns to scale. European 

Journal of Operational Research, 139 (1), 115–132 . 

imar, L., & Wilson, P. W. (2015). Statistical approaches for non-parametric frontier 
models: a guided tour. International Statistical Review, 83 (1), 77–110 . 

hompson, R. G., Singleton, F. D., Thrall, R. M., & Smith, B. A. (1986). Comparative
site evaluations for locating a high-energy physics lab in Texas. INFORMS Journal 

on Applied Analytics, 16 (6), 35–49 . 
one, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. 

European Journal of Operational Research, 130 (3), 498–509 . 
an Biesebroeck, J. (2007). Robustness of productivity estimates. The Journal of In- 

dustrial Economics, 55 (3), 529–569 . 

eisberg, H. (1992). Central tendency and variability (Thousand Oaks, California). 

http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00942-0/sbref0040

	Analyzing the accuracy of variable returns to scale data envelopment analysis models
	1 Introduction
	2 Methodology
	2.1 Performance indicators
	2.2 Hypothesis tests for comparing efficiency
	2.3 Data generation process under VRS setting
	2.4 Study design

	3 Results and discussions
	3.1 Numerical illustrations
	3.2 Results of analyzing the accuracy of DEA models
	3.3 Results of hypothesis tests for comparing efficiency
	3.4 Analysis of characteristics considered in the DGP

	4 Conclusions
	Appendix A Performance indicators
	Appendix B Propositions and proofs
	Appendix C DEA models under evaluation
	Appendix D One sample scenario
	Appendix E Detailed results of analysis of characteristics
	References


