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The data envelopment analysis (DEA) model is extensively used to estimate efficiency, but no study has
determined the DEA model that delivers the most precise estimates. To address this issue, we advance
the Monte Carlo simulation-based data generation process proposed by Kohl and Brunner (2020). The
developed process generates an artificial dataset using the Translog production function (instead of the
commonly used Cobb Douglas) to construct well-behaved scenarios under variable returns to scale (VRS).
Using different VRS DEA models, we compute DEA efficiency scores with artificially generated decision-
making units (DMUs). We employ five performance indicators followed by a benchmark value and rank-
ing as well as statistical hypothesis tests to evaluate the quality of the efficiency estimates. The procedure
allows us to determine which parameters negatively or positively influence the quality of the DEA esti-
mates. It also enables us to identify which DEA model performs the most efficiently over a wide range
of scenarios. In contrast to the widely applied BCC (Banker-Charnes-Cooper) model, we find that the As-
surance Region (AR) and Slacks-Based Measurement (SBM) DEA models perform better. Thus, we endorse
the use of AR and SBM models for DEA applications under the VRS regime.
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1. Introduction

In order to save resources and to detect inefficient perform-
ers, efficiency evaluations are the central component of decision-
making management. There are two main classes of efficiency
analysis methods in the literature: parametric and non-parametric.
Parametric approaches usually use the econometric ordinary least
squares method, which shifts regression towards more efficient
units to estimate the efficient frontier. This approach is primarily
hampered by the assumption about the form of the production
function.! Contrary to this, non-parametric methods measure ef-
ficiency as the distance to an empirical frontier function whose
shape is determined by the most efficient decision-making units
(DMUs) of the observed dataset. This approach is, without a doubt,
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T An equation that describes the relationship between the number of produc-
tive factors (e.g., labor and capital) consumed and the number of outputs produced
D(x,y). Production functions can also be used to calculate technical efficiency mea-
sures. Suppose that x is used to produce y. The DMU has reached its maximum
level of production if D(x,y) = 1, given its current level of resources used.
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best represented by data envelopment analysis (DEA) introduced
by Charnes, Cooper and Rhodes (1978). This model is known as the
CCR (Charnes, Cooper, and Rhodes) DEA model. Since the CCR’s in-
troduction, a substantial amount of research has been conducted
on various aspects of the theory and applications of DEA mod-
els. One of these aspects is the economic concept of returns to
scale (RTS). There has been much emphasis on the importance
of returns-to-scale settings in DEA literature (Dellnitz, Kleine &
Rédder, 2018). In this framework, the BCC (Banker, Charnes, and
Cooper) DEA model, introduced by Banker, Charnes and Cooper
(1984), is the first to assume variable returns to scale (VRS), rather
than the CCR’s constant returns to scale (CRS). In the literature,
both CRS and VRS forms have been developed for almost all up-
coming DEA models. Despite this considerable progress over the
last five decades, there is still no superior DEA method. Basic
models (CCR and BCC) still dominate in various applications, such
as healthcare (Kohl, Schoenfelder, Fiigener & Brunner, 2019), de-
spite known concerns including slacks and zero weights. Neverthe-
less, the development of a gold standard can hardly be achieved
without a reasonable benchmark with which to compare different
DEA models. Due to this lack of operational relevance, DEA is of-
ten seen primarily as a scientific topic instead of an operational
tool.

0377-2217/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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The lack of robustness in results and ambiguity regarding the
precision of DEA models’ estimates are deemed to be the major
quality-related issues. Within the DEA literature, the accuracy and
quality analysis of different DEA models have become an attrac-
tive area of research over the last two decades. To evaluate the
quality of DEA estimates, the first challenge is the absence of true
efficiency values. DEA estimates in real applications therefore can-
not be investigated without these values. Researchers have applied
Monte Carlo simulations to create artificial datasets based on cer-
tain assumptions and regimes (Cordero et al., 2015) to address this
issue. A random distribution function cannot be directly used to
derive the scale effect values to reflect the VRS property, so gener-
ating well-behaved data is a complicated task. In the following, we
summarize the studies conducted on the assessment of the qual-
ity of DEA models using Monte Carlo simulations over the last two
decades in the interest of brevity. We also discuss the main char-
acteristics of these studies, including the production function used,
the number of scenarios, the number of replications, inputs, and
outputs. Cobb-Douglas (CD) production functions were most em-
ployed by previous studies in the Data Generation Process (DGP)
(Holland & Lee, 2002; Lopez, Ho & Ruiz-Torres, 2016; Resti, 2000;
Ruggiero, 2005; Simar & Wilson, 2002; van Biesebroeck, 2007). The
reason for this can be attributed to the complexities of the alter-
natives imposing microeconomic regularity conditions like mono-
tonicity and convexity. The limitations of CD for imposing the input
substitution elasticity of one and fixed-scale economies have been
pointed out by several researchers such as Siciliani (2006) and
Perelman and Santin (2009). The Translog? production function has
emerged as a generalization of the CD that allows the generation
of more testable production data.

Most studies only use one adjustment to account for the num-
ber of inputs (Lépez et al., 2016; Ruggiero, 2005). Generally, sce-
nario generation has not been given sufficient attention. Most stud-
ies only vary three or fewer characteristics of the employed DGP.
Next, previous studies have mainly focused on the properties of
the basic DEA models, i.e., CCR and BCC, and comparisons between
them and (in some cases) parametric methods (Santin & Sicilia,
2017). However, model evaluations other than the basic ones are
rather scarce. So far, only about one-third of previous studies have
considered alternative DEA models, and none have utilized more
than one model (Kohl & Brunner, 2020). Another concern is the
robustness of the results obtained in previous studies. Since the
DEA estimations rely on randomly generated data, it is unquestion-
able that each scenario can be replicated. In this context, Kriiger
(2012) criticizes the low replication rate of many studies, which
changes from 5 to 1000. To our knowledge, the study by Kohl and
Brunner (2020) represents the only attempt to date to assess the
quality of DEA models by developing meaningful production sce-
narios using Translog production functions in a CRS setting. The
authors develop a sophisticated DGP allowing them to hypothe-
size some general statements regarding parameters that affect the
quality of DEA models through defining some performance indica-
tors. Their results show that the Assurance Region (AR) and Slacks
Based Measurement (SBM) models outperform the CCR model un-
der the CRS setting. Kohl and Brunner (2020) primarily discuss the
CRS, even though the BCC model remains widely used in most DEA
applications (Kaffash, Azizi, Huang & Zhu, 2020; Kohl et al., 2019;
Mahmoudi, Emrouznejad, Shetab-Boushehri & Hejazi, 2020).

Last but not least, the literature on DEA focuses mostly on oper-
ations research, where the DEA is viewed as a non-econometric or
non-statistical approach (Banker, Natarajan & Zhang, 2019; Simar
& Wilson, 2015). Thus, a DEA model constructed for assessment
needs to move beyond simply explaining and predicting data in

2 Translog stands for transcendental logarithmic.
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the most effective way possible. In the same way that statisti-
cal tests validate a statistical model developed to reproduce accu-
rately the underlying data generation process, basic properties of
production economics such as economies of scale and convexity,
free disposability, the engineering logic of the production structure,
the importance of identified peers to industry participants, etc.,
serve to validate the model (Banker & Natarajan, 2011; Bogetoft &
Otto, 2011b). By identifying conditions under which DEA estima-
tors are statistically consistent and likelihood-maximizing, Banker
(1993) provided a formal statistical basis for DEA. Accordingly,
DEA estimates are capable of providing interesting insights with-
out heavily relying on statistical testing. However, most of the lit-
erature ignores the statistical properties of the estimators and lacks
consistent statistical tests to compare the efficiencies between two
samples. These researchers compare their improvements to the ba-
sic model and highlight properties such as a shift in the average
efficiency scores or a better discrimination power. Even if a cer-
tain problem can be solved through development, there is no guar-
antee that the overall results (from a quality perspective, for ex-
ample) will also be improved. The main flaw here is comparing
differences in DEA estimations through the mean value of the ef-
ficiency scores rather than the distribution of them. However, in
cases where the distribution of efficiency scores is skewed, the
mean value becomes an ineffective measure of central tendency
(Weisberg, 1992). Several studies have been performed on com-
paring differences in DEA estimation® distributions for two groups
of DMUs through developing statistical tests including paramet-
ric and non-parametric ones. For example, Cummins, Weiss and
Zi (1999) use a regression-type parametric test with a dummy
variable indicating the groups, regressing the efficiency scores on
the dummy variable. However, many researchers (e.g., Golany and
Storbeck (1999) and Lee, Park and Choi (2009)) believe that non-
parametric tests such as the Mann-Whitney and Kruskal-Wallis
tests are more appropriate since they do not make assumptions
on the distribution of efficiency scores. One pioneering study in
this direction has been conducted by Banker, Zheng and Natara-
jan (2010). They develop two sets of parametric and three non-
parametric tests and compare them against the F-tests introduced
by Banker (1993). They show that their developed tests outper-
form the F-tests in Banker (1993) when noise plays an important
role in the data generating process. However, the F-tests in Banker
(1993) remain effective if efficiency dominates noise. In our study,
we integrate the idea of comparing two groups of DMUs with the
performance indicators.

The purpose of this study is to address these issues by pro-
viding a method for evaluating the accuracy of DEA models un-
der the VRS assumption. A sophisticated DGP must be designed
to create well-behaved data for the DMUs to study the quality of
DEA models. In the next step, we generate artificial data so that
the true efficiency of each DMU can be compared with the es-
timations obtained from the different DEA models. Through this,
we are able to evaluate the DEA models’ quality. We then con-
sider a variety of scenarios to arrive at generally sound conclu-
sions. With these characteristics, it is possible to generate mean-
ingful data through Monte Carlo Simulations. We use two aggre-
gated benchmark values: benchmark value (B-Value) and bench-
mark rank (B-Rank). Combined with multiple performance indica-
tors, these benchmark values cover all relevant properties of an ef-
ficiency estimator, such as identifying efficient and inefficient units
and ranking the efficiency score of each unit in a set of DMUs.
The B-Value and B-Rank provide additional insight into the per-
formance of the procedure by using SBM, AR, the basic CCR DEA,

3 In many studies, the terms “inefficiency” and “efficiency” are interchangeably
used with each other to describe the scores obtained by DEA models.
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and uniformly distributed random numbers (Rand). Based on our
findings, we conclude that the environment of a DEA application
influences its results significantly. We do this by casting doubt on
the reliability of DEA results and analyzing the efficiency assess-
ment process of the DEA model. We analyze the VRS settings as
the most prevalent setting in the literature for DEA applications
and try to find out whether the predominant BCC position is jus-
tified. Our study addresses the statistical properties of DEAs’ esti-
mators by applying a consistent statistical test to compare the es-
timations calculated based on different DEA models with the true
efficiencies. The details of our analysis will be presented in subse-
quent sections. As a summary, this paper contributes the following
to the pertinent literature:

I. The main question this study seeks to answer is whether
BCC's dominant position was indeed vindicated. To do this,
we analyze and compare the BCC model estimates with two
other DEA models: AR and SBM. Comparisons with the basic
model for BCC DEA and uniformly distributed random num-
bers (i.e., Rand) reveal also the accuracy of the procedure.

. Two approaches are used to conduct the comparison: bench-
mark scores based on multiple performance indicators and
DEA-based hypothesis tests. Benchmark scores cover many
aspects of a measure of efficiency introduced by Pedraja-
Chaparro, Salinas-Jiménez and Smith (1999), such as iden-
tifying the most efficient DMUs and ordering their efficiency
scores within a sample. We acknowledge the need for a sta-
tistical foundation for DEA as pointed out by Banker (1993),
Banker et al. (2010), and Simar and Wilson (2015), and test
the estimations of DEA models with their actual efficiencies
by running statistical tests.
In order to improve the general validity of our results, we
advance the scenario variation significantly. In our study,
each generated scenario represents an arrangement of vary-
ing values for different characteristics of the DGP (e.g., num-
ber of inputs, number of DMUs, the importance of input).
With 7776 scenarios generated based on the VRS setting, we
attain the highest level of validity in the quality assessment
of VRS DEA models in comparison to the literature. To de-
termine whether the environment of the DEA study influ-
ences the accuracy of results, we also consider the coverage
of different characteristics. By utilizing ten different charac-
teristics with varying levels, we provide another significant
contribution to the literature.

. The general form of Translogs has the consequence of not
being monotonic or globally convex like CDs. For generating
well-behaved data under the VRS setting, we need to impose
the necessary curvature requirements on a Translog, which
is a challenging problem (Greene, 2008). Then we propose a
mathematical model that directly enforces monotonicity and
curvature requirements and generates valid scenarios with
VRS properties. Using our methodology, one can modify the
input substitution in order to ensure a more sensible DGP.
According to the literature, a handful of studies, like Kriiger
(2012), consider different input substitutions using Constant
Ratio of Elasticity of Substitution Homothetic or Constant
Elasticity of Substitution production functions. Through sev-
eral adjustable parameters, the Translog production function
offers greater control over setting input substitutions. Set-
ting these parameters to generate valid scenarios (or well-
behaved data), however, is a complicated process. As a re-
sult, only a few studies use it in a limited form to generate
the data. For example, Cordero et al. (2015), who focus on
generating data under decreasing returns to scale (DRS), or
Perelman and Santin (2009), who define the parameters ar-
bitrarily. We advance the approach used by Kohl and Brun-
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ner (2020) for the CRS setting so that realistic scenarios un-
der the VRS regime can be generated systematically.

. By decomposing the input substitution into two terms: sub-
stitutability and distribution of substitutions, we are able
to guarantee the generation of realistic and well-behaved
DMUs under the VRS, along with a variety of scenarios. We
find a high correlation between the number of replications
for each scenario and the number of DMUs from the per-
spective of the robustness of the results. A scenario with 450
DMUs may need 50 replications while a small size scenario
(e.g., 50 DMUs) might need over 200 replications. We, there-
fore, define an elastic stopping condition for replications of
each scenario based on the moving standard deviation (StD)
of the benchmark value. Finally, we examine the impact of
the characteristics considered in the generation of the dis-
tinctive scenarios (e.g., sample size) on the quality of esti-
mations calculated using the different DEA models.

The rest of this study is structured as follows. Section 2 de-
scribes in detail the steps of developing a DGP, statistical tests, per-
formance indicators, and study design. In Section 3, the results of
comparisons are presented and discussed in detail. Finally, the pa-
per is concluded in Section 4.

2. Methodology

We describe all steps within the proposed framework thor-
oughly in the following subsections, in order to compare and ana-
lyze the accuracy of DEA models within a VRS context. Fig. 1 de-
picts the eight steps of the DGP for every DMU.

2.1. Performance indicators

Following the purpose of evaluation and comparison of differ-
ent DEA models, we utilize five performance indicators defined
by Kohl and Brunner (2020) (see Appendix A) based on Pedraja-
Chaparro et al. (1999) for Monte Carlo DEA analyses. The DEA’s
estimates are the core of any judgment on the quality. Therefore,
for defining the performance indicators, we address the four main
purposes of a DEA containing recognizing inefficient DMUs, rank-
ing the efficiency of DMUs, assessing efficiencies and rooms for
improvement, and investigating the overall efficiency of a com-
pany/organization.

2.2. Hypothesis tests for comparing efficiency

We compare the efficiency distribution of two groups of DMUs
using DEA-based hypothesis tests in addition to the performance
indicators. Constructing statistical tests allows us to evaluate the
null hypothesis of no difference in the distributions of true ef-
ficiency (@) and estimated efficiency (67) obtained from the DEA
models. The null hypothesis of no difference in efficiency distri-
butions of true efficiency can be tested using the procedure pro-
posed by Banker (1993). The first step of this method is to deter-
mine whether the efficiency scores are normally or exponentially
distributed. The true efficiency in our DGP is normally distributed.
Now suppose both € and 6 are distributed as normal with param-
eters p; and p,, respectively. Then, the test statistic can be cal-

culated as (Zj ( Gj)z/n)/(zj (éj)z/n) under the null hypothesis of
no difference between them (i.e., Hy : p; = p3), and compared with
the critical value of the F distribution with (n, n) degrees of free-
dom at the significance level of 5%. Banker et al. (2010) evaluate
the performance of this test against the other parametric (e.g., T-
test) and non-parametric (e.g.,, Mann-Whitney’s U test) tests used
traditionally in the DEA literature (Banker & Natarajan, 2011). Their
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Draw m raw Input correlation:
Set the input values from Adjust the raw
number of a uniform inputs using the
inputs (m) distribution Cholesky
function transformation

Set the inputs
importance a;, Vi
and substitutability
and substitution
distribution
Bin, Vi, h

Generate the
true efficiency
value 6;, Vj via

truncated normal

distribution

Calculate the
initial (single)
output y

Compute the
final output y as
3 =6y,

Fig. 1. Developed DGP for each artificial DUM.

simulation results indicate this test is adequate for detecting devi-
ations from the efficiency frontier caused by a single inefficiency
term.

2.3. Data generation process under VRS setting

This paper extends the sophisticated DGP proposed by Kohl
and Brunner (2020) for the CRS setting to generate well-behaved
production data with the VRS system. The DGP produces a
single output (y) based on the generated meaningful inputs
(x.ieM={1,....m}) and true efficiency values (6;) for each
DMU in which the regularity conditions are met. According to this
information, the technology can be shown by the graph set T =
{(x,y) : x can produce y}. The hyperbolic output distance function
can be introduced as the maximum equiproportionate expansion
of an output vector and reduction of an input vector that places an
observation within the boundary of a technology T, i.e., Dg(x,y) =
inf{60: 6 >0, (x,y/0) e T}, if the graph production possibility set
satisfies the axioms described in Coelli, Prasada Rao, O’'Donnell and
Battese (2005). We generate the well-behaved dataset by using the
(logarithmic) Translog production function presented by Eq. (1).
This technology has become the gold standard for Monte Carlo
simulations (Bogetoft & Otto, 2011a).

m
InDyj(X.y) = ag +Iny; + Y o;lnx;;
i1

m m
+% >3 Bulnxijlnx,, ¥Vj=1,..n
i=1 h=1
where, « is the efficiency parameter (can be set as 0), y is the
initial output, parameters «; and f;, show respectively the impor-
tance of an input i, and the substitution possessions of the pro-
duction procedure between two inputs i and h. These parameters
are defined to acquire a well-behaved production function within
the boundaries imposed by the inputs (x;). We develop a seven-
step DGP for each DMU under the VRS setting (depicted in Fig. 1)
by ensuring adherence to the properties defined by Coelli et al.
(2005) for well-behaved VRS data. In our DGP, apart from gener-
ating the parameters o and B, true efficiency (@), input vector x
(including the number of inputs (m), input range, and input corre-
lation), and the regularity conditions (monotonicity, curvature, and
quasi-convexity) are meticulously taken into consideration to gen-
erate valid scenarios.

The value of true efficiency (@) is drawn from a truncated nor-
mal distribution and then multiplied by the raw output value. We
include different true efficiency distributions in our DGP as an ad-
justable characteristic to examine whether the true efficiency level
influences the accuracy of VRS DEA models. The truncation is al-
ways set at 1.0 for the upper-efficiency values. Different lower
bounds can be set to imitate diverse economies of scale. By adjust-
ing the mode and standard deviation (StD) of the true efficiencies,
a comparable distribution shape can be preserved. We then calcu-
late the final output y by multiplying the initial output by the true
efficiency value: y; = 0; - y;.

Adjusting the number of inputs, the range of inputs, and the
correlation among inputs all lead to the generation of the input
vector x. Adjustments are generally straightforward, for example,

(1)
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changing the number of inputs and parameters of the uniform dis-
tribution function used for the level of inputs. The wide range of
inputs indicates a more heterogeneous production environment.
Instead, the small range of inputs suggests a very homogeneous
dataset with entities of similar sizes. A correlation between the in-
put values also seems logical as larger entities usually use more
inputs than smaller ones. A Cholesky decomposition method de-
scribed in Hazewinkel (1992) accounts for this fact when generat-
ing inputs.

An authentic VRS production data requires the change of scale
effects with the size of the DMU. Therefore, an optimal size must
be defined within the economically feasible region® of production,
at which the average product is maximized. For example, in the
case of a single-input single-output production function, the aver-
age product is ¥ 1/x1 where graphically represents the slope of the
line (ray) that passes through the origin and that point. This point
is known as the point of optimal scale (of operations) where units
exhibit CRS, smaller units work under increasing returns to scale
(IRS) and bigger ones work under the DRS setting (Coelli, Rao &
Battese, 1998). We represent units that have exactly the optimal
scale of operations as X°RS, Then, the necessary conditions of VRS
setting for returns to scale can be written as Eq. (2) by straightfor-
ward operations on Eq. (1) (Balk, 2001). The scale elasticity value
of DMU; of the output distance function defined in Eq. (1) (Balk,
2001) is:

dlny;
Poi(®;71) = D e = 24+ 2 | Bit X P
ieM U ieM ieM heM\{i}
11 IRS
Inx;j{<1ocrs .Vji=1,.n (2)
1< DRS

where ¢g;(x;,y;) represents the (output distance function based)
scale elasticity value of DMU; at point (x;,y;). Note that the
symbol “!” above the equal and unequal signs means “must
hold”. If this value is greater than, equal to, and lower than
1, we respectively have IRS, CRS, and DRS.> The scale elas-
ticity in Eq. (2) is decomposed into two terms ) ;g ¢; and
Y iem(Bii + X hemn(iy Bin) Inx;;. The first term represents the im-
portance of inputs and the second one sets input substitutability
and substitution distribution. According to these two terms, we
can define the sufficient conditions for satisfying the global VRS
regime that still allows the implementation of substitution effects
for each DMU; as: 3~ o @i > 10 3 i (Bii + 22 pen g3y Bin) Inx; <
0 (N means AND).

For the data generation process, we want to test different op-
timal sizes as well as the extent of the economics scale effects.
For that reason, we can reformulate Y ;o > 1 as Y ;0 =1+
w, o > 0 which satisfies the first sufficient condition we need to

4 A region where is consistent with all properties defined for the production
function such as monotonicity.

> The corresponding output scale efficiency value SE;(x;,y;) for DMU; can be
calculated by InSEo;(x;.y;) = —(Do(;.y;) — 1)22ym, M B ¥ as indicated by
Balk (2001).
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guarantee the global VRS regime. The parameter w can be used
to adjust the extent of scale effects. A small w implies weak scale
effects, while the revert is true for a large value. We can imple-
ment different adjustments for the input importance by altering
the value of o. We here apply two different adjustments contain-
ing equal and equidistant importance. In both settings, we must
hold Y ;i =1+ w, w> 0 to guarantee the implementation of
the VRS regime. In the first adjustment (hereafter referred to as
SYM), every input is identically important in the production func-
tion. This can be achieved by Eq. (3). The definition provided in
Eq. (3) for «; fulfills the condition of Y ; ;o > 1. It is proven in
Appendix B (Proposition 1).

1+o .
(XjZL, Vi

_ (3)

The second setting (hereafter referred to as ASYM) generates a
production function with inputs of varying importance yet equidis-
tant (see Eq. (4)). In this adjustment, the first input (x{) is always
the one with the lowest influence on production, and the impor-
tance of the other inputs increases with their indices. Consider
three inputs xq, X, and x3, since x; has the smallest importance
(smallest index) to the production process, one unit increase in
it would lead to a lesser rise in the output level than one unit
increase in either x, or x3 does. Of these, x3 would lead to the
largest growth in output. Since we only consider abstract inputs
that can be rearranged, there will be no misrepresentation of the
results due to this regularity. The definition provided in Eq. (4) ful-
fills the condition of the VRS setting (i.e., > ;.\ ; > 1) as proven
in Appendix B (Proposition 2).

(1+w) (i+m)
T T15m2105m ° vi (4)

The second term of Eq. (2) i.e., 3 jam(Bii + 2 newn iy Bin) Inxi,
which deals with B parameters should be less than or equal
to zero to ensure the VRS regime. B represents the substitu-
tion of two inputs and must satisfy the symmetry condition
Bin="Bpi» Vi, h (Coelli et al., 1998). Note that the condition of lin-
ear homogeneity of degree +1 in outputs is automatically satis-
fied in a single-output case (Coelli et al., 1998). Having in mind
Yiem @i = 1 + o, the second term of Eq. (2) must be exactly equal
to — —w, in other words, 3" i (Bii + X pern (i Bin) INXi=! — — @
to achieve CRS at %S, j.e., the optimum technical efficient size.
This property can be fulfilled by Eq. (5) where it is assumed that
the optimum technical efficient size of all inputs is at the same

point, xRS (i.e., xRS = xRS i),
SBi+ Y. Ba —ﬁ (5)

ieM heM\{i}
The B parameters are responsible for satisfying two main eco-
nomic regularity properties: monotonicity (or non-decreasing) and
concavity (or non-increasing) in all inputs (Coelli et al., 2005). Tak-
ing into account these properties, 8 cannot be set freely. We de-
compose f into two terms: substitution distribution (o;,) and sub-
stitutability (v), mathematically, B;, o« oy, - v, Vi, h. This decompo-
sition advantages us in adjusting both characteristics substitutabil-
ity and substitution distribution separately in our DGP as well as
in examining their possible effects on the accuracy of DEA esti-
mates. The substitution distribution (oj,) deals with the fact that
the inputs substitution might be identical between all inputs and
it is responsible for the distribution of 8. The substitutability (v)
characteristic determines the magnitude of 8 to be able to con-
sider fluctuating capabilities to substitute inputs. Since the final
magnitude of B should be regulated by its substitutability (v), the
substitution distribution (oj,) are normalized between —1 and 1.

Referring to the symmetry condition, it must hold oy, éa,ﬂ-, Vi, h.
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We can reflect the possible effects of the substitution distribution
(oi,) by defining two different settings: equal where the substitu-
tion between all inputs is equal (Eq. (6)); and unequal where we
advance the pattern proposed by Kohl and Brunner (2020) to gen-
erate unequal yet symmetric values for B;,, Vi, h. In both equal
and unequal settings, we need to satisfy the condition presented
by Eq. (5) as well as the symmetry to guarantee the implementa-
tion of the VRS setting through the substitution distribution (o).

For the equal substitution distribution, we have
Yiem Bii + Lnewngiy Bin) = m - (B + ZheM\ Bi) by construc-
tion, as a result, we can rewrite Eq. as Bii + Xhewfi) Bin =

T ing CR57 Vi. Definitions provided in Eq ( ) respecting Eq. ( ) are

proven in Appendix B (Proposition 3).

v-

m-(m-—

1) o
1) - Inx

)
m - InxcRS”

/3,',‘ = Vi and IBih = V{l, h|l 75 h}

CRS *
1
(6)

Imposing the equal or identical substitution distribution is sim-
ple and can be accomplished by defining o;; = —%, Vi and oy, =
m, V{i, h|i # h}. Therefore, we can rewrite the definitions of
B provided in Eq. (6) as follows:

Bii =

V- -1 w
1n xCRS

Inx l xCRS

For modeling the unequal substitution scenario, we develop the
pattern presented by Kohl and Brunner (2020), to create symmetric
but unequal values for 8 via formulas presented in Eq (8) with

m-(1.5- 1) (2-2. =) bk
an_—T Vzando,h_ﬁ V{i, h|i #
h} given in Kohl and Brunner (2020). These definitions also respect

Eq. (5) as shown in Appendix B (Proposition 4).

-0y, Vi and By, = oy, V{i,hli#h} (7)

w-(1-v-o's) Vi and
Pi = A Y an
- , .
Bin = o'in, V{i, hli # h} (8)

m - In xcRS

Now, we turn to the substitutability of inputs controlled by
parameter v. Substitutability boundaries differ for certain inputs.
Again, the monotonicity of the production function is the source
of the substitutability conditions. For single-output multi-input,
monotonicity implies constraints on partial derivatives of distance
functions. These constraints can be expressed by Eq. (9). The
mandatory curvature and monotonicity conditions of the produc-
tion function are key factors in the characteristics of well-behaved
production data (Cordero et al., 2015; Perelman & Santin, 2009).
The partial derivatives of distance functions must satisfy one con-
dition for monotony: for Dy as a single output, all marginal prod-
ucts (f;) must be non-negative across all inputs (x;) as outlined by
Eq. (10).

dlnD .
= Ty, =%+ 2 Bnlnxy. Vi 9)
h
_aDo_alnDoDo_ Do .
f,-_a—xi_alnxix—i_s,x—i>0<—>s,>0, Vi (10)

Curvature guarantees that all marginal products must be declin-
ing, i.e., the law of diminishing marginal productivity (Coelli et al.,
2005). The condition can be satisfied by fulfilling Eq. (11) which is
the second partial derivative obtained by applying the chain rule

Do

to Eq. (1).
0?Dp  0f; 3(5, x.) Do
Ixdx  9x2  0x x2

<0<—>/3ih+5,'5i—5i<0, Vi

fi =

= (Bin +sisi — 51’)(
(11)
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For quasi-convexity in inputs, the corresponding bordered Hessian
matrix F(x;) (Eq. (12)) on inputs needs to be evaluated.

o A L i
fii ' fuo S o i
Faxy= |2 fo Jf2 fai (12)
fio fa fa o i
92 af: 35 59) .
where, fiy = 500 = goft = 5 = (B +sis) (£2), V(i hli

h}, f; and f; have been already defined by Eqs. (10) and (11), re-
spectively. The isoquants are strictly quasi-convex on inputs if this
bordered Hessian matrix is negative definite (Coelli et al., 2005).
F(x;) is negative definite if the successive principle minors alter-
nate in sing. Defining the i + 1 principle minor by F(x;), F is nega-
tive definite if (—1)'|F/(x)| > O.

The expressive DGP should ensure that an increase in inputs
does not lead to a decline in output despite changing the substi-
tutability of inputs. It echoes the concept of input-free disposability
found in the vast majority of DEA models. Keeping the curvature
and monotonicity constraints is critically dependent on the mag-
nitude of 8. Therefore, we present the mathematical programming
approach as Model (13) to derive the optimum value of v that al-
lows modifying the substitutability between inputs. Having a min-
imum value of v gives a nearly flat substitution curve, resulting in
high substitutability, while a maximum value of v results in low
substitutability.

min / maxv (13a)
s.t.s;>0, Vi (13b)
Bin+s?—s; <0, Vi (13c)
(-D)|Fi@)| >0, Vi (13d)

Values of the first and second partial derivatives, i.e. s; and
fii, fluctuate with input levels then, we cannot generally guarantee
that the isoquants are strictly convex (Coelli et al., 1998). However,
as explained by Coelli et al. (1998), there are areas in the input
space where Egs. (10) and (11) are satisfied. Providing that these
conditions can be satisfied for every data point for any proposed
Translog function, the well-behaved area may be large enough to
adequately represent the corresponding production function. Note
that the constraints of Model (13) change according to the num-
ber of inputs as the bordered Hessian matrix changes. The cur-
vature and quasi-convexity inequalities (Eqgs. (13c¢) and (13d)) are
quadratic and nonlinear, respectively. These constraints make solv-
ing the optimization problem considerably more difficult. In the
two-input single-output case (i = 1, 2), the model and the bordered
Hessian matrix in the quasi-convexity (the third constraint, i.e.,
(13d)) can be rewritten by considering the definitions of 8; and
Bin provided in Eq. (6), as follows:

min / maxv (14a)
st. sy =01+ B lnx; + Bialnxy >0 (14b)
Sy =0 + P Inxy + By Inx; >0 (14¢)
fu=PBu+si—s51<0 (14d)
fro=Pn+s5-5<0 (14e)
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Table 1

Defined characteristics for generating scenarios.
Characteristic Value/Level
Returns to scale VRS
True efficiencies (6) Low, Medium, High
# DMUs (n) 50, 150, 450
# Inputs (m) 2,57
Importance of inputs (¢;) SYM and ASYM
Input substitutability (v) Low and High

Input substitution distribution (B;,)
Input range

Equal and Unequal
U[100; 1100] and U[100; 10,100]

Input correlation 0.0, 0.4, 0.8
Efficient size (x{FS) 300, 600
Extent of scale effects (w) 0.2, 0.4, 0.8
Total Number of Scenarios 7776

(D'|F'| >0« [F'|=0xfiu— fixfi=—fi <0  (14f)
(~1?|F?| >0 |F?| = fifnfs — fififa
+ fafifa— Lfufa>0 (14g)

We reformulate the model to transform the nonlinear con-
straints into a minimal number of conjunctive linear constraints
that have the same admissible marking area as the nonlinear
one does. The first quasi-convexity condition (Eq. (14f)) is ful-
filled since the first principal minor |F!|, is always negative. For
i=2, the second principal minor |F%| (Eq. (14g)), can be writ-
ten as 2f1f>f12 — f? f2o — f2 fu1. This expression should be posi-
tive to guarantee the necessary and sufficient condition of quasi-
convexity in inputs. The term — f12 for — f22 f11, which is equivalent

3 3
to fs%)g—g%(ﬂzz +5%—57) - s%)g—g%(ﬂu +52 —s1), is always positive
by construction. Consequently, we can simply show that one suffi-
cient condition to fulfill Eq. (14g) is that the term f; f, fi; be non-
negative. From Egs. (14b) and (14c), we know that f; and f, are

non-negative. Therefore, one sufficient condition to assure quasi-
convexity is:

fiz = (B2 +S152)<X?7§2) >0« B12>0 (15)

The impositions of the o and B values play the main role in
the design of scale elasticity as well as in the computation of scale
efficiency scores. A well-behaved production function can be ob-
tained with the proposed model by imposing desirable assump-
tions. There is no doubt that increasing the number of inputs also
increases the number of regularity conditions to which the pro-
posed mathematical model must submit. Nevertheless, the proce-
dures described for the two-input sample can be adapted to cases
with higher multi-input dimensions. By sizing up the dimension of
the problem, the proposed model can be used to generate regular
behaved data, which would otherwise become cumbersome. Now
that all the characteristics are adjustable, a well-behaved DMU can
be generated under the VRS setting.

2.4. Study design

The characteristics used in this study are listed in Table 1 along
with their values/levels. After creating one scenario as an exam-
ple, the obtaining dataset is assessed using four different output-
oriented DEA models: CCR (Charnes et al., 1978), BCC (Banker et
al., 1984), VRS AR® (Pedraja-Chaparro, Salinas-Jimenez & Smith,

6 Since we deal with different input elasticities, we apply virtual weight restric-
tions (the product of weight and input/output) in the AR model. We set k to limit
the virtual weights to 2 as Pedraja-Chaparro et al. (1997) did.
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Table 2 Table 3

An example scenario for the two-input single-output case. Results of the two-input single-output instance.
Characteristics Value/Level Characteristics Values
True efficiencies (6) Medium Importance of inputs (¢;) a =[0.6, 0.6]
# DMUs (n) 50 Input substitutability (v) v =12.3514
# Inputs (m) 2 o e -1 1
Input range U[100; 1100] Input substitution distribution (oj;) o= 1
Input correlation 0
Efficient size (x{%) 300 Input substitution (8;,) B= [},Oiffg?f 061319(?5]
Extent of scale effects (w) 0.2 . . : e
Importance of inputs (;) SYM Monotonicity C(')r}dltlons (si>0) s; =0.8758 and s, = 0.1312
Input substitutability (1) Low Curv;jlture con'dm'ons (fi < O)i ‘ fn1 =-0.3252 and f222: —0.3305
Input substitution distribution (B;,) Equal Quasi-convex in inputs ((-1)'|F'(x)] > 0)  |F'| =-0.7671 and |F?| = 0.3314

1997), and VRS SBM (Tone, 2001). The DEA models under study are
described in Appendix C. Moreover, we compute the benchmark
model Rand, which consists of randomly drawn values similar to
the real efficiency distribution, to ensure a thorough comparison
of VRS DEA models with Monte Carlo simulated data. In theory,
Rand provides a lower bound for benchmark values and allows the
classification of B-Values derived from DEA models. DEA applica-
tions fall into three categories according to the number of DMUs:
small (50 DMUs), medium (150 DMUs), and large (450 DMUs).

The number of DMUs in the generated scenarios can be mod-
ified by simply running the DGP for one DMU n times. The true
efficiency score 6, as mentioned before, is drawn from the trun-
cated normal distribution and multiplied by the raw output y; for
each DMU. Using true efficiency distributions as characteristics, we
examine whether the level of true efficiencies influences the ac-
curacy of DEA models. In the true efficiency score distributions,
the upper bound is always set at 1.0, but the lower bound can be
customized based on three different values: low (0.25), medium
(0.40), and high (0.55). These levels reflect the reality that poor-
efficiency DMUs cannot survive. Changing the modes and StD of
true efficiencies will result in similar curves. Therefore, we use
modes of 0.75 (low), 0.80 (medium), and 0.85 (high) and StDs of
0.27 (low), 0.25 (medium), and 0.23 (high). For each DMU, the
value of m inputs is randomly selected from two uniform distri-
butions: U[100; 1, 100] and U[100; 10, 100]. The ranges used here
have been derived from a study conducted by Kohl and Brun-
ner (2020); they compared various ranges to determine the most
meaningful ones. In addition, the Cholesky decomposition is ap-
plied to impose the correlation coefficients of 0.0, 0.4, and 0.8 be-
tween the raw inputs as described in Hazewinkel (1992).

3. Results and discussions

Our main objective is to evaluate the accuracy of four main DEA
models and to determine the scale efficiency of generating scenar-
ios based on the defined characteristics. The results are divided
into three parts. First, we intend to make the results more under-
standable by introducing some numerical illustrations explaining
the characteristics used for generating scenarios. Our next task is
to present the results of our main computational study. This will
enable us to figure out which models of DEA based on the VRS
setting perform best and to explore the driving factors. Our final
section provides guidelines on how to apply DEA models in VRS
settings based on our computational results.

3.1. Numerical illustrations

For the two-input single-output case, we generate the well-
behaved production function based on the Translog output dis-
tance function described before. Considering the settings given in
Table 2, we calculate the values of «;, v, B, using Eq. (3), Model
(14), and Eq. (6), respectively. For a given input vector (e.g., X =
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[100; 1,100]), the obtained values are presented in Table 3. In
Appendix D, we provide the dataset generated for this instance. If
we set xFS close to the minimum of our input range (100), the
change of scale effects according to the size of the DMU starts
at the beginning of the production function. This effect of xFS is
shown in Fig. 2(a) in which we represent the production func-
tion of 1000 DMUs under two different values of 300 and 600
and the same setting for the other characteristics as reported in
Table 2. The effect of w which is responsible for adjusting the
extent of scale effects, for two different values of 0.2 and 0.4 is
shown in Fig. 2(b). As the value of w increases, the curvature
of the production function also increases. According to the mini-
mum and maximum of v, which allow the adjustment of the sub-
stitutability, high and low substitutability are recommended be-
tween inputs. Fig. 2(c) shows the effect of substitutability on the
production function. We see that the minimum value of v pro-
duces almost a level surface without large raised areas or inden-
tations, while the maximum value of it produces a curve-shaped
surface.

3.2. Results of analyzing the accuracy of DEA models

In the following sections, we discuss the results of the evalu-
ation of four VRS DEA models and the Rand data gathered from
7776 scenarios. In Table 4, we report the minimum (Min), maxi-
mum (Max), mean, and StD values of the performance indicators
over all scenarios. In addition, boxplots depict the main descriptive
statistics of B-Values and B-Ranks for each model in Fig. 3. We use
the Rand model as a lower bound for our benchmarks. The aver-
age, maximum, and minimum number of replications required for
each scenario are respectively 111, 270, and 50. We define the stop-
ping criterion for the replication based on the moving StD of the
B-Value for the DEA models. If the moving StD of the B-Value of
all four DEA models is less than 0.001, the replication terminates.
There are over 434,000 replications in all, and each replication is
tested using all four DEA models. By construction, we impose VRS
technology on the DGP so that the efficiency scores calculated with
DEA models under the VRS setting should be better than those
calculated with CRS DEA models. To compute scale inefficiency as
well as evaluate the potential bias associated with computing ef-
ficiency scores under CRS when true technology is represented by
VRS, we run the CCR model. CCR results emphasize the importance
of using an accurate return to scale before conducting a practical
DEA efficiency analysis. Consider, for instance, the mean B-Value
of the CCR, which is equal to 0.295, and its VRS counterpart (BCC),
which is almost double, 0.574.

The small value of Mean Absolute Error (MAE) suggests the es-
timated efficiency scores are on average close to their true counter-
parts, and therefore, high 1 — MAE values are preferred. According
to Table 4, the MAE cannot provide information about the devi-
ation because of the small mean value of this indicator for Rand
= 0.824) which is very close to the VRS DEA models. In order to
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Fig. 3. Boxplots of B-Values and B-Ranks obtained from the models.

handle this issue, we use CORRI to represent the mean value of es-
timated inefficiencies within a margin of § = 0.05 around the true
efficiencies. Using this indicator, the estimated efficiency of each
model can be distinguished within 5% of its corresponding true ef-
ficiency. Compared to the basic DEA models, the AR and SBM mod-
els perform better. It is evident from the SPEAR indicator that the
CCR model is barely able to mimic the true efficiency scores. In
contrast, the AR and SBM indicate acceptable results. TOP and IN-
EFF indicators provide the same result: AR and SBM exhibit high
quality and outperform other models.

On the basis of Fig. 3, the accuracy of the VRS DEA models can
be explained as follows. In the first place, the AR and SBM mod-
els perform significantly better than the BCC model, while it is the
most popular model in DEA applications. BCC has a mean and StD
of 0.649 and 0.201, respectively, indicating superior quality to CCR
(mean of 0.574 and StD of 0.238) which is not surprising since
our DGP is implemented using the VRS setting. However, it is a
clear indication of the reliability of the results of the DGP and pro-
vides insight into the mechanism by which it operates. In terms

1293

of the StD of the B-Values, the SBM and AR exhibit less disper-
sion from the corresponding mean values than the basic CCR and
BCC DEA models. In light of the high B-Values for AR and SBM,
which are close to 1.0, it can be said that these two models pro-
vide (nearly) accurate estimates. This result becomes even more
significant when considering that these results represent the aver-
age over at least 50 replications of each scenario. Conversely, an
examination of the minimum B-Values sheds some light on the
vulnerable performances of all four models in some scenarios. Both
SBM and AR models that have a minimum B-Value of 0.150 are
performing better than the basic DEA models. The B-Rank, whose
best value is equal to 1.0, is in agreement with the majority of cer-
tain findings testified by the B-Value. This indicator is not only a
measure of dominance at the average level of scenarios but also
takes into account every performance indicator in each replica-
tion. Overall, the AR model (with mean and StD of B-Rank of 1.479
and 0.354, respectively) performs marginally better than the SBM
model (mean and StD of 1.877 and 0.568) and significantly better
than the basic DEA models.
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Table 4
Statistical values of performance indicators calculated for each model under the VRS setting.
Indicator Statistics Rand CCRDEA BCCDEA ARDEA (k=2) SBM DEA
1-MAE Max 0.866 0.987 0.984 0.986 0.986
Min 0.782 0.245 0.376 0.253 0.257
Mean 0.824 0.764 0.836 0.904 0.898
StD 0.030 0.191 0.122 0.133 0.130
Rank (1-MAE)  Max 5.000 5.000 4318 4318 4.441
Min 1.000 1.000 1.042 1.000 1.000
Mean 3.901 3.625 3.257 1.809 2.379
StD 1.290 1.621 0.705 0.712 0.830
SPEAR Max 0.048 0.996 0.971 0.987 0.987
Min —0.041  0.057 —0.054 0.077 0.067
Mean 0.000 0.634 0.703 0.858 0.841
StD 0.011 0.269 0.277 0.186 0.188
Rank (SPEAR) Max 5.000 4.154 4.711 2422 3.077
Min 3.244 1.000 2.339 1.000 1.018
Mean 4.922 3.096 3.498 1.408 1.979
StD 0.220 1.056 0.525 0.325 0.507
TOP Max 0.198 0.924 0.885 0.905 0.905
Min 0.118 0.155 0.133 0.158 0.155
Mean 0.154 0.448 0.616 0.695 0.692
StD 0.010 0.218 0.184 0.181 0.183
Rank (TOP) Max 5.000 4.359 4.351 3.170 3.244
Min 2.206 1.014 1.110 1.000 1.000
Mean 4.681 3314 2.612 1.447 1.540
StD 0.538 0.963 0.562 0.406 0.471
INEFF Max 0.193 0.972 0.910 0.973 0.973
Min 0.117 0.168 0.123 0.188 0.187
Mean 0.154 0.617 0.598 0.835 0.821
StD 0.010 0.211 0.207 0.159 0.160
Rank (INEFF) Max 5.000 4.083 4.531 1.868 2.656
Min 2.580 1.048 1.706 1.000 1.000
Mean 4.834 2.891 3.287 1.133 1.329
StD 0.357 0.923 0.553 0.157 0.332
CORRI Max 0.428 0.999 0.969 0.986 0.986
Min 0.269 0.008 0.021 0.005 0.006
Mean 0.344 0.405 0.494 0.737 0.707
StD 0.053 0.333 0.279 0.265 0.264
Rank (CORRI) Max 5.000 4.154 4711 2.422 3.077
Min 3.244 1.000 2.339 1.000 1.018
Mean 4.922 3.096 3.498 1.408 1.979
StD 0.220 1.056 0.525 0.325 0.507

Table 5
Results of conducting hypothesis tests.

Model Number of Rejected Scenarios (%)
Rand 0 (0%)

CCR 3930 (50.5%)

BCC 2368 (30.5%)

AR 870 (11.2%)

SBM 829 (10.7%)

3.3. Results of hypothesis tests for comparing efficiency

The results of the statistical tests evaluating the null hypothe-
sis that there is no difference in the distributions of true efficiency
and estimated efficiency determined by the four VRS DEA models
are presented in this section. The test statistic and critical value
are calculated for each scenario, and if the test statistic is greater
than the critical value, the null hypothesis is rejected. In Table 5,
we report the distribution of the rejected scenarios. The value of
0.0 reported for the Rand can serve as a valid indicator of the ro-
bustness of the hypothesis tests conducted. This value is equal to 0
because both the true and estimated efficiencies by Rand are gen-
erated from the same distribution function. These findings also cor-
roborate the main conclusions drawn from analyzing performance
indicators. The total number of rejected scenarios in the AR and
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SBM models (870 and 829, respectively) is considerably less than
in the basic DEA models. Moreover, only 10% (11%) of scenarios
have efficiency scores that are different from their true efficiency
as calculated by the SBM (AR) model. By examining the rejected
scenarios in more detail (see Tables E4 and E5 in Appendix E), it is
apparent that the majority of them have fewer DMUs and more in-
puts. Moreover, these results underscore the importance of select-
ing the right RTS. This is because on average, the CCR DEA model
fails to estimate the efficiency scores of 50% of scenarios gener-
ated under the VRS setting. BCC, which has been widely used in
the DEA literature, is unquestionably outperformed by the AR and
SBM models under the VRS setting.

In addition to k = 2, we set k =3, 4 in the AR model to study
the effect of the AR weight restrictions on the quality of efficiency
estimates. The results of B-Value and B-Rank obtained from the AR
model with k = 3, 4 against k = 2 are presented in Fig. 4. The me-
dians are all at the same level. Therefore, it can be concluded that
the AR models perform under setting different k’s almost identi-
cal. However, the box plots in these examples show relatively dif-
ferent distributions of B-Values and B-Ranks. The total number of
rejected scenarios in the AR models with k=3, 4 are 944 (12.1%)
and 930 (11.9%), respectively, which are still considerably less than
those obtained from the basic DEA models. The main reason for
the better performance of the AR model is that the weights of in-
puts and outputs obtained from the basic DEA models are freely
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Fig. 4. Boxplots of B-Values and B-Ranks obtained from AR model where k = 2, 3, 4.

chosen. Therefore, they can get zero, which means they are ex-
cluded from the production possibilities set. This issue is evaded
in AR models by restricting the weights.

3.4. Analysis of characteristics considered in the DGP

The purpose of this section is to investigate the identification of
trends and patterns prompted by the ten different characteristics
considered in the DGP. In Appendix E, we provide the descriptive
statistics of the aggregated performance indicators and hypothesis
tests according to the various values/levels defined for each charac-
teristic. Based on the main drivers of these results, several consis-
tency patterns emerge. Studies indicate that the size of the dataset,
i.e.,, the number of DMUs and inputs, has a significant effect on
the accuracy of DEA models. As reported subsequently, the results
of our study confirm that increasing the size of the dataset results
in decreasing the mean B-Values and in increasing the rejections.
These two characteristics, however, are not the only ones respon-
sible for the distinct influences. The use of more inputs and a low
number of DMUs both negatively affect the mean B-Value. This re-
sults in more rejected scenarios as well. The mean B-Value of the
BCC DEA model (see Table E3 in Appendix E) is reduced by 25%
from 0.750 to 0.560 when we use 7 inputs instead of 2 and the
number of rejections is almost doubled from 529 to 1134.

The lower bounds of 0.25 (low), 0.40 (medium), and 0.55 (high)
for true efficiency levels reflect the fact that units with extremely
poor efficiency cannot survive in the real world. B-Values and
the number of rejected scenarios reported in Appendix E can be
used to determine how true efficiency levels affect the quality of
the DEA models. Increasing the lower bounds of true efficiencies
causes a slight decline in the mean B-Values and a slight rise in
the number of rejections in the DEA models. The quality of the
DEA models is marginally diminishing by allocating a larger share
of DMUs to the true efficiency frontier (efficiency score of 1.0).
This may be partly explained by the fact that scaling down the
lower bounds of the true efficiency results in a broader range of
scores. Resulting in more DMUs are moving closer to the efficiency
frontier. Due to this, the discrimination power of DEA models is
reduced, while the negative effects are marginally present. When
the importance of every input is different (ASYM), we see that the
mean B-Values of all DEA models are to some extent less than
when all inputs have equal importance in the production function.
Accordingly, fewer scenarios are rejected under the SYM setting
than under ASYM. According to our results, DEA estimations are
not affected significantly by input importance.

Taking a look at the input substitution distribution, it is evident
that when the input substitution is considered unequal, the per-
formance of all DEA models is significantly better than when it is
equal. In reality, substitution between all inputs utilized by DMUs
does not need to be identical. The situation is different when in-
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puts differ in substitutability. The AR and SBM DEA models are al-
most insensitive to substitutability variations. The high input sub-
stitutability adversely affects the performance of basic DEA models
(CCR and BCC). Another two characteristics that are crucial to the
form of the production function are the efficient size (x) and
the extent of scale effects w. In Appendix E, we demonstrate that
when the efficient size is near the lower bound of the input range,
i.e,, 300, the performance of the VRS DEA models is marginally re-
duced since the scale effect starts at the beginning of the produc-
tion function. As expected, this reduction in performance is more
apparent in the CCR model. When the extent of the scale effect is
increased, the performance of the basic DEA models CCR and BCC
is diminished as the B-Values decrease and the number of rejected
scenarios increases substantially. Once again, AR and SBM models
perform better when the curvature of the production function is
increased by increasing the extent of scale effects. Across all mod-
els, it is evident that larger input ranges result in less satisfactory
results. This is very well reflected in the substantial increase in re-
jected scenarios. The results also reveal the trivial influence of the
correlation of inputs upon the results of all DEA models. In real
life, it is likely that there is a strong correlation between inputs,
and that a complete lack of correlation is unlikely.

In summary, this set of results leads to a soundly clear ranking
of the DEA models: AR~SBM > BCC > CCR. As a result of comparing
the superior SBM and AR models, it is evident that despite almost
identical B-Values and the number of rejections, some differences
exist on the performance indicator level. Additionally, the results
of B-Rank confirm the dominance of the AR model over the SBM
model. The SBM model, however, shows almost the same perfor-
mance as the AR model. The usage of both AR and SBM models as
standard VRS DEA models can therefore be endorsed. However, the
quality of the AR model might (strongly) depend on the setting of
the weight restrictions and special attention should be given.

4. Conclusions

In this paper, we propose a method based on Monte Carlo sim-
ulation to assess the quality of DEA model estimates. Our method
involves generating data by using a flexible technology (Translog
production function) that satisfies microeconomic regularity condi-
tions such as convexity and monotonicity. Prior studies have lacked
diversity in the DGPs, which is a serious handicap when evaluating
the quality of DEA model estimations. We generate 7776 distinct
scenarios under the VRS setting by defining a variety of charac-
teristics. Our evaluations of the quality of estimates obtained from
DEA models are based on five performance indicators, as well as
DEA-based hypothesis tests. Furthermore, we demonstrate how a
valid range of characteristics and parameters can be derived when
the necessary and sufficient microeconomic conditions are all met.



M. Zarrin and J.O. Brunner

To our knowledge, this is the first study that compares the qual-
ity of VRS DEA models to date. We show that the BCC model,
which is the most commonly used VRS DEA model in the liter-
ature, is outperformed by AR and SBM models. According to the
hypothesis test’s results, we find that more than 30% of BCC model
estimations differ from the distribution of the true efficiency, but
this rejection percentage is 11% for AR and 10% for SBM models.
It is noteworthy that the AR model emerged at the top without
applying any special tuning to the virtual weight restrictions. How-
ever, it may be too complex to explicitly articulate weights in some
applications. We, therefore, endorse the establishment of the SBM
model as the standard VRS DEA model in which there are no prior
conditions to be comprehended on weights since its performance
is almost equal to that of the AR model. From our perspective,
the dominance of the AR and SBM models can be explained by
the presence of slacks. While the BCC model ignores slacks en-
tirely in reporting the efficiency score, the SBM model calculates
the efficiency score directly based on the slacks. Furthermore, the
AR model prevents the emergence of slacks by assigning bound-
aries to the weights. We also examine the impact of characteristics
used for generating scenarios on the quality of the DEA estimates.
According to our results, the most important factors affecting the
quality of VRS DEA models are the number of inputs, range of in-
puts, distribution of input substitution, and scale effects. Our re-
sults may also be useful for decision-makers who might use them
as a guideline for their own DEA studies to ensure acceptable re-
sults and accuracy.

Consideration of the single-output case is one of the limita-
tions of our DGP. The methodology may therefore be generalized to
meaningful multi-input multi-output cases in the future. The goal
of our DGP is to generate artificial datasets that fulfill the mono-
tonicity and curvature conditions for every single generated sce-
nario. In order to secure a similar guarantee in the multi-output
case, the formulation of the Translog production function needs to
be updated as the importance of outputs and their substitutions
must be considered. In particular, this means the necessary condi-
tions for guaranteeing the VRS setting with respect to outputs such
as imposing homogeneity of degree +1 and convexity in outputs
need to be modeled and considered.

Furthermore, the proposed DGP identifies the deviation of the
output from the efficiency frontier as a single inefficiency term.
A stochastic framework is another method of extending the DGP.
The DGP can then be extended by defining the inefficiency score
as the sum of two terms: inefficiency and noise. Another line of
investigation would be extending our method for panel data with
a time trend. Using this, we can assess and improve the accuracy
of Malmquist productivity index calculations and their decomposi-
tion. In addition, we believe the methodology presented here can
also be used to investigate other multi-input multi-output produc-
tion functions, such as the one presented by Fire, Grosskopf, Noh
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and Weber (2005). All of this may eventually make DEA models
more practical by increasing their reliability and showing how ac-
curate their estimations are to decision-makers.

Appendix A. Performance indicators

In Table A, 6; and éj denote the true efficiency and efficiency
score calculated by the DEA model for jth DMU (j € {1, ..., n}), re-
spectively. There are two important points to consider when defin-
ing performance indicators. First, DEA estimates éj =1 for some
DMUs while their corresponding true efficiency scores obtained
from the DGP might be less than (but close to) one, ie., 0;=
0.90 < 1.0 since they are based on a random continuous function.
Second, in the small-size samples, it is expected that only a few
DMUs (or no DMU) with a true efficiency score of 1.0 have been
produced. These two points preclude using a simple indicator that
only evaluates whether DMUs with an estimated efficiency score
of 1.0 (9j = 1.0) also have a corresponding true efficiency score of
1.0 (8 = 1.0). Our objective is therefore to determine whether the
DEA models are capable of identifying the top-performing DMUs
in a sample, although, not all of them have a true efficiency score
of 1.0 but are close to it. In light of these two points, TOP and IN-
EFF are performance indicators based on the quantiles of worst-
and best-performing DMUs, respectively. This study defines an ef-
ficient DMU as one that has at least as high a true efficiency value
as a specific quantile (Q(¢e)) of the distribution of true efficiency.
In the same manner, a DMU is inefficient if and only if its true ef-
ficiency is less than or equal to Q(1 — &). For example, consider 50
DMUs (n = 50) where ¢ = 0.8. In the ascending order of true ef-
ficiencies, Q (&) = 0; where j = 40. The same logic can be applied
to Q(1 —¢). In this way, we can handle multiple efficiency distri-
butions in the DGP as well as compare different scenarios. Ideally,
parameter ¢ should be large enough to serve as a satisfactory limit
for efficient DMUs. We also employ the CORRI to track the mean
value of estimates in certain corridors around the true efficiencies,
since MAE cannot provide information on the deviation.

The parameters § and y determine the tightness of the cor-
ridors and the number of corridors, respectively. As in Kohl and
Brunner (2020), we also use a corrugated line of § = 0.05 to test an
estimated model’s efficacy at most 5% points. This is in addition to
the corresponding true score. Having generated the data (includ-
ing inputs, outputs, and a true efficiency score) of a scenario and
calculated the efficiency scores by DEA models, we constructed the
performance indicators. To aggregate and represent all the perfor-
mance indicators with a single score we use B-Value. To capture
the influence of dominance, we also introduce a second aggregated
indicator called B-Rank. In Table A, the last two rows give the for-
mulas for these two aggregated indicators.

Table A
Performance indicators used for quality evaluation of DEA models (Kohl & Brunner, 2020).
Indicator Symbol Formula
Mean absolute error MAE 1 Y105 — éj\
Spearman Correlation Coefficient SPEAR i (Rg(oj)’m)mg@)’mL
/5, Re6)-Te@) /5, Re(l-Rg @)
Best-performing DMUs Top Hj:gﬁ%fz)gﬁﬁw - maxu(j:é,zmsmn—m:@zamn. oy
Worst-performing DMUs INEFF ‘U:HJs&ljﬁ;[—;&?ﬁ%ﬂks)” (1- f“‘”“‘U:éjSQ“**“”,1*“11915‘1(1*8”‘- Oy
Mean value over the results of the corridor ~ CORRI p %M
Benchmark value B-Value (]—MAE)+SPEAR§EFF+]NEFF+CORR[
Benchmark rank B-Rank rank(1-MAE) + rank(SPEAR) +l‘agk(EFF) +rank(INEFF)-+rank (CORRI)
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Appendix B. Propositions and proofs

Proposition 1. The definition provided in Eq. (3) for «; fulfills the
condition of Y ;_,,a; > 1.

Proof. We need to prove that the definition provided for «; in
Eq. (3) guarantees the implementation of the first condition of
the VRS regime. Mathematically speaking, /", o; = Y1, 1@ =
Z?i](%‘l’%): (m- %+m.%):l+a}—>“’>02}11a,~ >1.0
Proposition 2. The definition provided in Eq. (4) for «; fulfills the
condition of ) ; \ya; > 1.

Proof. We show that the definition provided for o;
in Eq. (4) respects the first condition of the VRS, i.e,
(14+w)-(i+m) _ x~m (1+w)-i m (14+w)-m

Yty o = Zt 1 15m2+05m = 2i=1 TsmZro5m T 2i=1 TsmZs05m —
Jm-(m+1) m-m _ 1.5m240.5m

(1+w)- [15m2+o45m Tsmzrosm] = 1+ @) - [35osn] =

1+ -0y o;>1. 1

Proposition 3. Definitions provided in Eq. (6) fulfill B;+

e\ (i) Bin = — pqrocws» Vi

Proof. By replacing B; and By, in B + >y Bin and operating it,
we have

Bii + Xhew\ (i) Bin = 1) In S

1

;nlml)il;lnx)ég = m lnxCRS ﬂll + Zh;ﬁl :Blh m’
Proposmon 4. Deﬁmtlons provided in Eq. (8) fulﬁll Eq. (5).

Proof. We call the wunequal substitution distribu-
tion defined by Kohl and Brunner (2020) ie, o';=

_ =1 i—1 h— i-1
_mOS T C2) i and oty = 2B v hli
h}. proof provided by know that

—is5m=2
From the them, we
o’ii + Xhern\(i) O i = 0 Vi.” Now, by replacing these two expres-

sions in Eq. (5) and operating, we have: "y (Bii + Lnera\ (i) Bin) =
2iem (‘% + 2 hem\ (i)

Liem ( G/ih)
=Yiem ( - lnXCRs (v -0+ v Chan 0’1‘11)) =
Z:eM( m]nxaas (140 05+ Thewny iy 'in) )) =
Siens (~eres - (1+0)

- Z’EM( mlnXCRS -1+ 0)) = YieM ~ minyl® =
1

v-1)-w )

= m-In xRS +
Vil

m_lr‘:,fks + Zh;éi
1

v ’
m-lnx.CRS O

wv-o'j
mlnxCRS + m-Inx¢RS + mlnxCRs

D hem\ (i)

w
" InxCRS -

Appendix C. DEA models under evaluation

The basic DEA model (known as CCR) was introduced by
Charnes et al. (1978). They define a measure of efficiency by
maximizing the ratio of the weighted sum of outputs over the
weighted sum of inputs for each DMU. Consider input vector X =
(X10, - --» Xmo) and output vector Y = (¥10,..., Vso0), then the rela-
tive efficiency of DMU; Vj=1,...,n can be formulated as TE; =
> h1 UrYrj/ g vix;; where, uy and v; are the weights of output r
and input i, respectively. The mathematical formulation of the CCR
DEA model can be presented as follows:

max 6, (C1)
n

S.t. ZX,‘]‘)\]' =< Xio» Vi (CZ)
j=1

n

ZYrj)\j > OoYro, VT (C3)

=1

7 A detailed derivation of ¢’; and ¢’;, can be found in Kohl and Brunner (2020).
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Aj=0, Vj (C4)
where, 6, shows the technical efficiency of DMU, and A]- are the
intensity variables. In the CCR DEA model, the assumption of CRS is
underlined. The BCC (Banker-Charnes-Cooper) model (Banker et al.,
1984) is the most representative extension of the CCR DEA model
in which VRS technology is accommodated. The BCC DEA model
can be formed by adding the convexity constraint 2’17:1 Aj=1to
the CCR DEA model (C).

There might be many zeros in the optimal weights of the CCR
and BCC models, indicating that the evaluating DMU may have a
weakness in the factors (inputs and outputs) compared to the ef-
ficient DMUs. Having no control over the boundaries of optimal
weights leads to the emerging AR DEA model, which constrains the
weight of special inputs/outputs relative to others (Thompson, Sin-
gleton, Thrall & Smith, 1986). In the literature (see Allen, Athanas-
sopoulos, Dyson and Thanassoulis (1997) and Pedraja-Chaparro et
al. (1997)), several approaches have been developed to restrict the
weights of DEA models. There are two dimensions for the weight
restrictions in the AR models. The first dimension relates to the
weights to be constrained i.e., raw or virtual weight restriction.
The second dimension is about the limits placed on the weights
which can have either absolute or relative weight restrictions. A
raw weight restriction limits just the weight within the primal
multiplier model, whereas a virtual weight restriction limits the
product of weight and input, i.e., v;-x;. The ratio between two
weights is affected by relative restrictions, as opposed to absolute
restrictions, which affect only one weight. The focus of our analysis
is on relative weight restrictions following Pedraja-Chaparro et al.
(1997). Since we deal with different input elasticities, we chose to
apply virtual weight restrictions. To determine whether the quality
of the AR model is affected by weight restrictions, we consider rel-
ative virtual weight constraints by setting k =2, 3, 4 in our com-
putational study (see Section 3.3).

m
min ) " vix;, (C.5)
i=1
m N
SEY UXj— Y Uy =0, Vj (C6)
i=1 r=1
S
Z UrYro = 1 (C7)
r=1
u,v; >0, Vr,i (C.8)
ViXio . .
——= <k, Vi,h,i#h c9
T = # (C9)

Both CCR and BCC DEA models are radial where inputs are
proportionally reduced, and outputs are proportionally expanded.
This assumption can be restrictive. For example, when labor, cap-
ital, and material are employed as inputs, some of them may not
change proportionally and may be substituted. A further shortcom-
ing of radial models is that they do not consider slacks when re-
porting efficiency scores. There are often loads of non-radial slacks
left. These limitations lead to the expansion of non-radial mod-
els. SBM DEA is a non-radial model that deals directly with slacks
in reporting efficiency scores (Tone, 2001). The non-oriented SBM
DEA model under the VRS setting is a non-linear model that can
be reformulated as a linear counterpart by using Charnes-Cooper
transformation approach (Charnes & Cooper, 1962) as follows:

5i
Ji C.10
X (C10)

m

. 1
minp,=t— —
mi3
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Table D
One scenario (50 DMUs, two inputs, and one output) generated by the developed DGP.
DMU Input 1 Input 2 Output 1 True Eff. DMU Input 1 Input 2 Output 1 True Eff.
1 996.00 722.00 1147.38 0.7879 26 234.00 610.00 474.28 0.7814
2 295.00 964.00 641.16 0.7908 27 259.00 1015.00 629.63 0.8469
3 122.00 997.00 215.45 0.5526 28 985.00 974.00 1254.82 0.7422
4 863.00 173.00 264.04 0.5058 29 894.00 583.00 1172.46 0.9484
5 307.00 948.00 821.23 0.9880 30 816.00 978.00 621.86 0.4032
6 1092.00 122.00 372.20 0.9502 31 989.00 814.00 1197.65 0.7737
7 143.00 565.00 323.09 0.7819 32 961.00 362.00 528.62 0.5639
8 1045.00 310.00 495.89 0.5783 33 628.00 1002.00 695.69 0.5156
9 1075.00 573.00 933.06 0.7117 34 249.00 132.00 233.94 0.7640
10 102.00 832.00 219.42 0.6729 35 1051.00 939.00 1708.48 0.9983
1 514.00 399.00 544.08 0.6858 36 808.00 962.00 970.23 0.6369
12 812.00 151.00 424.62 0.9202 37 749.00 638.00 1107.77 0.9195
13 814.00 724.00 792.67 0.5937 38 390.00 862.00 685.65 0.7191
14 535.00 228.00 383.96 0.6706 39 939.00 867.00 1383.95 0.8863
15 227.00 311.00 295.18 0.6347 40 997.00 149.00 268.93 0.5748
16 146.00 1058.00 365.69 0.7916 41 923.00 995.00 1384.13 0.8365
17 906.00 534.00 1095.83 0.9283 42 258.00 380.00 520.20 0.9540
18 813.00 715.00 1023.81 0.7721 43 765.00 835.00 1250.16 0.9000
19 783.00 686.00 738.67 0.5788 44 709.00 359.00 606.92 0.7170
20 230.00 418.00 515.33 0.9751 45 985.00 954.00 1316.94 0.7868
21 1091.00 826.00 1219.96 0.7496 46 773.00 1079.00 1494.10 0.9561
22 243.00 275.00 346.09 0.7584 47 356.00 991.00 468.93 0.5017
23 1093.00 674.00 1141.91 0.7857 48 660.00 297.00 315.07 0.4310
24 651.00 992.00 1112.20 0.8106 49 111.00 613.00 198.47 0.5828
25 970.00 1025.00 1364.69 0.7938 50 1090.00 1083.00 1573.86 0.8430
where p, is the SBM-efficiency. s~ and s* are the vector of in-
1 st put and output slacks, respectively. t is a positive scalar vari-
stt+—y =1 (C11) ; . ‘ )
S = Yro able used during the transformation process. Consider the opti-
= mal solution system as of the non-oriented SBM DEA model be
. N {p*, t*,A* s7* sT*} then, the optimal solution of the SBM DEA
b Xio = z;x"f)‘f +sp, Vi (C12) model can be defined as {p*, t*, A*/t*, s7*/t* sT" /t*}.
]:
n Appendix D. One sample scenario
t Vo= Zy,jkj —st, vr (C.13)
j=1 Table D.
n
Z)» i=1 (C14) Appendix E. Detailed results of analysis of characteristics
j=1
Table E1, Table E2
s;.87,Aj=0, Vir,jand t >0 (C.15)
Table E1
Rand Model.
Model Characteristic Value/Level B-Value Rejection
Max Min Mean StD Mean StD Sum
Rand True efficiency Low 0.299 0.259 0.276 0.005 0 0 0
level Medium 0.320 0.277 0.293 0.005 0 0 0
High 0.339 0.301 0.317 0.005 0 0 0
#DMU 50 0.339 0.264 0.298 0.017 0 0 0
150 0.332 0.259 0.294 0.017 0 0 0
450 0.330 0.261 0.295 0.017 0 0 0
#Inputs 2 0.339 0.259 0.295 0.017 0 0 0
5 0.335 0.262 0.295 0.017 0 0 0
7 0332 0.262 0.295 0.017 0 0 0
Input Importance ASYM 0.335 0.261 0.295 0.017 0 0 0
SYM 0.339 0.259 0.295 0.017 0 0 0
Input substitution Equal 0.335 0.262 0.295 0.017 0 0 0
distribution Unequal 0.339 0.259 0.295 0.017 0 0 0
Input High 0.339 0.259 0.295 0.017 0 0 0
substitutability Low 0.335 0.262 0.295 0.017 0 0 0
Efficient size 300 0.339 0.259 0.295 0.017 0 0 0
600 0.335 0.262 0.295 0.017 0 0 0
Input range [100; 1100] 0.339 0.259 0.295 0.017 0 0 0
[100; 10,100] 0.335 0.261 0.295 0.017 0 0 0
Extent of scale 0.2 0.339 0.262 0.295 0.017 0 0 0
effects 0.4 0.332 0.259 0.295 0.017 0 0 0
0.8 0.332 0.262 0.296 0.017 0 0 0
Input correlation 0 0.335 0.259 0.295 0.017 0 0 0
0.4 0.335 0.262 0.295 0.017 0 0 0
0.8 0.339 0.261 0.295 0.017 0 0 0
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Table E2
CCR DEA Model.
Model Characteristic Value/Level B-Value Rejection
Max Min Mean StD Mean StD Sum
CCR True efficiency Low 0.974 0.192 0.614 0.223 0.484 0.500 1254
level Medium 0.967 0.169 0.576 0.236 0.505 0.500 1310
High 0.958 0.140 0.532 0.246 0.527 0.499 1366
#DMU 50 0.973 0.154 0.573 0.227 0.577 0.494 1495
150 0.974 0.142 0.573 0.240 0.522 0.500 1352
450 0.973 0.140 0.575 0.246 0.418 0.493 1083
#Inputs 2 0.965 0.164 0.627 0.232 0.402 0.490 1042
5 0.934 0.140 0.571 0.238 0.406 0.491 1052
7 0.974 0.236 0.523 0.233 0.708 0.455 1836
Input Importance ASYM 0.974 0.140 0.573 0.238 0.508 0.500 1977
SYM 0.973 0.148 0.574 0.238 0.502 0.500 1953
Input substitution Equal 0.974 0.140 0.456 0.200 0.717 0.450 2789
distribution Unequal 0.973 0.240 0.691 0.214 0.293 0.455 1141
Input High 0.974 0.146 0.629 0.234 0.409 0.492 1590
substitutability Low 0.965 0.140 0.518 0.229 0.602 0.490 2340
Efficient size 300 0.973 0.140 0.553 0.236 0.540 0.498 2101
600 0.974 0.153 0.594 0.238 0.470 0.499 1829
Input range [100; 1100] 0.974 0.215 0.677 0.231 0.344 0.475 1337
[100; 10,100] 0.892 0.140 0.471 0.197 0.667 0.471 2593
Extent of scale 0.2 0.974 0.236 0.667 0.218 0.341 0.474 883
effects 0.4 0.960 0.193 0.574 0.229 0.525 0.499 1360
0.8 0.950 0.140 0.480 0.229 0.651 0.477 1687
Input correlation 0 0.973 0.148 0.576 0.232 0.461 0.499 1196
0.4 0.974 0.142 0.574 0.238 0.513 0.500 1329
0.8 0.973 0.140 0.572 0.243 0.542 0.498 1405
Table E3
BCC DEA Model.
Model Characteristic Value/Level B-Value Rejection
Max Min Mean StD Mean StD Sum
BCC True efficiency Low 0.938 0.138 0.654 0.209 0.284 0.451 736
level Medium 0.928 0.154 0.650 0.201 0.307 0.462 797
High 0.926 0.162 0.644 0.192 0.322 0.467 835
#DMU 50 0.889 0.148 0.634 0.184 0.391 0.488 1013
150 0.923 0.141 0.652 0.204 0.365 0.482 946
450 0.938 0.138 0.662 0.212 0.158 0.365 409
#Inputs 2 0.938 0.558 0.715 0.137 0.204 0.403 529
5 0.880 0.138 0.673 0.202 0.272 0.445 705
7 0.830 0.160 0.560 0.220 0.438 0.496 1134
Input Importance ASYM 0.938 0.141 0.647 0.203 0.310 0.463 1206
SYM 0.935 0.138 0.652 0.199 0.299 0.458 1162
Input substitution Equal 0.938 0.138 0.556 0.232 0.462 0.499 1798
distribution Unequal 0.935 0.561 0.742 0.096 0.147 0.354 570
Input High 0.938 0.138 0.688 0.213 0.196 0.397 762
substitutability Low 0.876 0.141 0.611 0.179 0.413 0.492 1606
Efficient size 300 0.938 0.138 0.634 0.209 0.328 0.469 1274
600 0.935 0.146 0.665 0.191 0.281 0.450 1094
Input range [100; 1100] 0.938 0.196 0.688 0.174 0.210 0.408 818
[100; 10,100] 0.931 0.138 0.611 0.217 0.399 0.490 1550
Extent of scale 0.2 0.938 0.423 0.739 0.119 0.162 0.369 420
effects 0.4 0.925 0.160 0.653 0.195 0.303 0.460 786
0.8 0.875 0.138 0.556 0.228 0.448 0.497 1162
Input correlation 0 0.935 0.150 0.641 0.190 0.271 0.444 702
0.4 0.938 0.143 0.651 0.202 0.311 0.463 807
0.8 0.933 0.138 0.657 0.210 0.331 0.471 859
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Table E4
AR DEA Model (k = 2).
Model Characteristic Value/Level B-Value Rejection
Max Min Mean StD Mean StD Sum
AR True efficiency Low 0.962 0.208 0.812 0.165 0.109 0.311 282
level Medium 0.963 0.185 0.806 0.179 0.111 0.315 289
High 0.962 0.150 0.798 0.193 0.115 0.320 299
#DMU 50 0.907 0.164 0.775 0.165 0.124 0.330 322
150 0.947 0.152 0.812 0.181 0.114 0.318 296
450 0.963 0.150 0.831 0.188 0.097 0.296 252
#Inputs 2 0.963 0.854 0.919 0.029 0.000 0.000 0
5 0.931 0.216 0.796 0.160 0.103 0.305 268
7 0.923 0.150 0.703 0.216 0.232 0.422 602
Input Importance ASYM 0.963 0.150 0.799 0.184 0.121 0.327 472
SYM 0.962 0.160 0.812 0.175 0.102 0.303 398
Input substitution Equal 0.962 0.150 0.746 0.233 0.224 0.417 870
distribution Unequal 0.963 0.687 0.866 0.056 0.000 0.000 0
Input High 0.963 0.158 0.806 0.180 0.112 0.315 435
substitutability Low 0.961 0.150 0.806 0.179 0.112 0.315 435
Efficient size 300 0.962 0.150 0.795 0.192 0.124 0.330 482
600 0.963 0.175 0.816 0.165 0.100 0.300 388
Input range [100; 1100] 0.963 0.284 0.846 0.123 0.055 0.229 215
[100; 10,100] 0.954 0.150 0.765 0.214 0.168 0.374 655
Extent of scale 0.2 0.962 0.681 0.869 0.056 0.000 0.000 0
effects 0.4 0.963 0.280 0.823 0.143 0.086 0.280 223
0.8 0.958 0.150 0.726 0.250 0.250 0.433 647
Input correlation 0 0.961 0.160 0.789 0.176 0.102 0.303 265
0.4 0.963 0.152 0.808 0.179 0.117 0.322 304
0.8 0.962 0.150 0.820 0.182 0.116 0.320 301
Table E5
SBM DEA Model.
Model Characteristic Value/Level B-Value Rejection
Max Min Mean StD Mean StD Sum
SBM True efficiency Low 0.962 0.206 0.798 0.165 0.101 0.301 262
level Medium 0.963 0.185 0.793 0.178 0.107 0.309 278
High 0.962 0.150 0.786 0.192 0.111 0.315 289
#DMU 50 0.907 0.165 0.759 0.165 0.121 0.326 314
150 0.947 0.153 0.799 0.180 0.107 0.309 277
450 0.963 0.150 0.818 0.186 0.092 0.289 238
#Inputs 2 0.963 0.854 0.919 0.029 0.000 0.000 0
5 0.908 0.213 0.781 0.154 0.096 0.294 248
7 0.881 0.150 0.676 0.204 0.224 0.417 581
Input Importance ASYM 0.963 0.150 0.788 0.183 0.114 0.318 443
SYM 0.962 0.161 0.796 0.175 0.099 0.299 386
Input substitution Equal 0.962 0.150 0.737 0.231 0.213 0.410 829
distribution Unequal 0.963 0.645 0.847 0.068 0.000 0.000 0
Input High 0.963 0.159 0.793 0.179 0.106 0.308 413
substitutability Low 0.961 0.150 0.791 0.178 0.107 0.309 416
Efficient size 300 0.962 0.150 0.782 0.191 0.117 0.322 456
600 0.963 0.175 0.802 0.165 0.096 0.295 373
Input range [100; 1100] 0.963 0.283 0.828 0.126 0.049 0.216 191
[100; 10,100] 0.954 0.150 0.756 0.213 0.164 0.370 638
Extent of scale 0.2 0.962 0.645 0.851 0.066 0.000 0.000 0
effects 0.4 0.963 0.279 0.809 0.144 0.079 0.271 206
0.8 0.958 0.150 0.716 0.248 0.240 0.427 623
Input correlation 0 0.962 0.161 0.776 0.177 0.094 0.292 244
0.4 0.963 0.153 0.794 0.179 0.112 0.315 290
0.8 0.962 0.150 0.806 0.180 0.114 0.318 295
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