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Given an extension E/F of Galois fields and an intermediate field K, we consider the
problem whether the (E, K)-trace of a primitive F-normal element of E can be
a prescribed F-normal element of K. An interesting application is the existence of
trace-compatible sequences of primitive F-normal elements for certain towers of
Galois fields. In this respect, particular emphasis is laid on extensions having prime
power degree< © 1999 Academic Press
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1. INTRODUCTION

Let g > 2 be a prime power and k, e > 1 integers. To (g, k, €) corresponds
a triple (F, K, E) of Galois fields: F = GF(g), and, in a fixed algebraic closure
of F, K is the k-dimensional extension over F and E is the e-dimensional
extension over K. Let 7 denote the set of triples (g, k, e) such that for the
corresponding (F, K, E) the following holds: for every ae K which is normal
over F, there exists a primitive w, in E which is normal' over F and whose
(E, K)-trace is equal to a.

Recently, Cohen and the author [CoHa] have proved that for any exten-
sion E/F of Galois fields (E # F) and for any nonzero a€ F there exists
a primitive element w, in E which is normal over F and whose (E, F)-trace 1s
equal to a. They thereby strengthened the primitive normal basis theorem of
Lenstra and Schoof [LeSc] as well as Cohen’s theorem on primitive elements

lwe E is called normal over F if its conjugates under the Galois group of E/F form an F-basis

of E. For the theory of normal bases we refer to [Hal].
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with arbitrary trace [Co], and proved a conjecture of Morgan and Mullen
[MoMu]. Thus, in the present notation, (g, 1,e)e 7 for all e > 2 and all
prime powers g > 2.

The motivation for studying the generalization, replacing F by an arbitrary
intermediate field K, is that it allows us to prove the existence of trace-
compatible sequences of primitive normal elements for certain towers of
Galois fields (see Section 6). The following preliminary result indicates that
the case k = 1 is the easiest instance of the problem considered here.

ProrosITiON 1.1.  Assume that (q,k, e)e T . Then (q,%, ed)e T for every
divisor d of k.

Proof. Let d be a divisor of k and ae L = GF(¢*) be normal over
F= GF(q) where x = &. Then there exists a be K = GF(g*), normal over F,
with (K, L)- Lrace equal to a. As (q, k, eje J by assumption, there exists a
we E = GF(¢*®), primitive in E and normal over F with (E, K)-trace equal to
b. The assertion now follows by the transitivity of the trace-mappings. B

We cnnclude that “nr\pc {n I 2\e 9*? a r‘;mr‘n]t hrgble

LAY conciuae tnat (42} p,'\..e/ G liliwul

given k is harder, the smallcr e is.? For example (g,k, 1)eT f nd only 1f
every normal element of GF(q*) over GF(q) is primitive in GF(g*). This holds
for instance when (¢* — 1)/(g — 1) is a prime (whence necessarily g and k are
primes), e.g. (2, k, 1)e.7 for all Mersenne primes 2* — 1. This indicates that
the case e = 1 is hopeless.

If e = 2, we can prove that (q, k, 2)e 7 for all k > 1 whenever q is a power
of 2 (see Section 2 for a generalization).

If ¢ > 3, we can provide a sufficient criterion for “(q, k, e)e 7 (see Sec-
tion 3), which enables us to prove an asymptotic result (in Section 4), stating
that in the range ¢ > 17, k > 1 and e > 3 there are at most finitely many

trinles which are not members nf 0-
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In Section 5 we shall concentrate on the case where k and e are powers
of a prime r and present existence results which hold without any restriction
for g.

2. SPECIAL EXTENSIONS

In the present section we consider the case where e is divisible by the
characteristic of the underlying fields. Theorem 2.1 generalizes Proposition
2.2 of [CoHal].

THEOREM 2.1. Let g > 1 be a prime power and let e > 1 be an integer which is
divisible by the characteristic p of F = GF(q). Then (q, k, e)e 7 for every k > 1.

2This corresponds to [CoHa], where extensions of small degree deserved particular attention.
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Proof. Write e = €’¢, where ¢ is a power of p and ¢’ is prime to p, and let E’
be the extension of degree ke’ over F. An application of Theorem 10.5 of
[Hal] shows that we E is normal over F if and only if the (E, E')-trace of w is
normal in E’ over F. Now, let ae K = GF(g*) be normal over F. Choose an
element ve E’ which is normal over F and whose (E', K)-trace is equal to a.
By [Co] there exists an element we E which is primitive in E and whose
(E, E')-trace 1s equal to v. The first part of the proof asserts that w is normal
over F, and the transitivity of the trace mappings implies that w has (E, K)-
trace equal to a, whence everything is proved. ®

3. A SUFFICIENT CRITERION

The aim of the present section is to provide a sufficient criterion for (g, k, €)
to belong to 7 (see Proposition 3.1). It is proved by means of characters and
Gauss sums and generalizes Proposition 4.1 of [CoHa]. We omit the proof
and refer to [Ha2] instead, where the relevant character sum formulation is
given in the course of studying the existence of primitive normal elements
with prescribed trace and norm.

Because of Theorem 2.1 we may assume that g and e are relatively prime.
Let Q = g* and

== ¥ (3.1)

Finally, let o = w(4q, k, e) be the number of distinct prime divisors of Q¢ — 1
and let Q = Q(q, k, e) be the number of distinct monic irreducible F-divisors

Af s
Ui LK.

ProposiTION 3.1. If Q9*7 1 > (2° — 1)+ (22 — {), then (q, k, e)e 7.

Observe that Proposition 3.1 gives no information fore = 1 or e = 2. For
e > 3, however, it provides a nontrivial criterion which is further studied in
the following section.

4. ASYMPTOTIC RESULTS

Based on Proposition 3.1, we shall here prove asymptotic results for
membership of 7. Throughout, let again w = w(q, k, ¢) and Q = Q(q, k, e).

THEOREM 4.1.  There are at most finitely many triples (q, k, e) with g > 17,
k > 1, and e > 3 which are not members of 7.
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Proof. With n=ke we have Q<n—k (see (3.1). Furthermore,
2¢ < d(g** — 1), the latter being the number of positive divisors of g** — 1. By
[HaWr, Sec. 18.1, Satz 315], it holds that for any ¢ > 0 there exists a constant
¢, > 0 such that 29 < ¢,4™. Thus, using Proposition 3.1, for (¢, k, e)€ .7 it is
sufficient that 2"7*c g™ < ¢"?7* Since k=2<4% it suﬁ’ices to have

2023me g~ (/6=8m 1 Assume therefore that ¢ é nd let 5:= % — 3¢. Then
36n = (; — £)n > 0, whence for (g, k, e)e 7 it is sufficient to have
2 (2/3)n
aol5] <1 (4.1)
q

The latter holds, independent of n = ke > 3, whenever ¢ is large enough, say
q > q., where g, 1s a constant depending only on &.
Observe moreover that 6 < —A whence for g > 17, the fraction 7/n is less

than 1, such that (4.1) is satlsﬁed whenever n is largc enough. Thus, 1f q is from
the interval [17, g,] there are only finitely many n = ke such that (g, k, e) is

not a member of 7, and everything is proved. ®

In order to obtain results of a more concrete nature, one can use Lemma
2.6 of [LeSc], giving rise to a variety of upper bounds for w. For an integer
I>1,let A b a set of primes s < [ containing each prime divisor r <! of

ke 1 4 1. rl \

— 1, and let L{A):= [[seas. Then

< kelogqg — logL(A)

Al
logl 1Al
Consequently, if
o a. g ke) 1 [ log L(A)\ o
A(q,K,e,t,/\):=’T+E~\|/\|— lvoglv 4.2)
and
e—2 e
M(e, | — 4.
(e, 1):= logd logl’ (43)

then the following holds.
LemMma 4.2, If M(e,l) - logqg > A(q, k, e, I, A), then (¢, k,e)e 7. 1

If Q <(e— 1)k/d for d > 1, then, for suitable | and A, we may replace
A(q, k, e, 1, A) in Lemma 4.2 by the larger

Bk e A= 1y L (1) - BL) (44

d log!

AN
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and obtain (g, k, e)e 7, if
M(ea l) Iqu > Bd(ka €, I, A) (45)

If A, is the set of all primes s </, then, for M(e, 1) > 0 the function
Byk.e. . ADM(e.l) ! is decreasing when e or k are increasing. We therefore
further obtain the following. (Observe that by Theorem 2.1, § and e may have
a nontrivial common divisor.)

Prorosition 4.3, Let e > 3 be relatively prime to g,k > 1, and let | > 1 be
such that M(e, 1) > 0. If M(e,l)-logq > B,(k, e, I, A)), then (g, k, &) T for all
prime powers q > q, all k > k, and all ¢ > e.

We finally remark that, e.g., M(e,[) > Ofor i > 64 and e > 3, 0or [ > 16 and
e>4. If | =149 then Proposition 4.3 shows that (q, k, e)e. 7 whenever
q=>3104, k>4, and e > 4.

5. PRIME POWER EXTENSIONS

In the present section, we apply the results of Sectio

he 1 u , tion 4
case where E/F is an extension of prime power degree and prove the
following.

TueoreMm 5.1.  Let q > 2 be any prime power, r a prime, and p the character-
is of F = GF(q). Then the following assertions hold.
(1) Ifr>5orifr=p then (q,r*,¥*)e T for all x >0 and all § > 1.
(2) (g,3%,3%)eT forall o >0 and all B > 2.
('%\ (n g-2% 2Wye T fnr all x> 0 and all R > 2.

,vv Vol W

We start with the proof of (1). By Theorem 2.1, the assertion holds if r = p
Let us therefore assume that r > 5, r # p. Since (g, 1,r)e 7 by [CoHa], and
by using Proposition 1.1, it remains to show that (g, 7"~ !,r)e . foralln > 2.
Let therefore k = r""! and e = r. Then tg (see (3.1)) is the r"th cyclotomic
polynomial ®,-, and therefore

n ) ( \
- Wi g L J
Q:Q(q, rn l,r)z = ,

where ord,~(q) denotes the multiplicative order of ¢ modulo r". If I > 17 then
M(r,1) > 0 (see (4.3)), and (4.2) specializes to

Alg.r i A) =~ Ly ] (|A| logL(A)) (5.1)

ord-(q) r"
r'\’ !
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Besides the set A, of all primes s < I, a suitable choice for A will be A(g, r*),
the set of all primes s < ! which are different from p and where the multiplica-
tive order of ¢ modulo s is a power of r. In the latter case it 1s important that
A remains suitable even for changing n. Moreover, as

A(Q5 rj: r, la AI(CL rﬁo)) = A(‘L ri:» ¥, 19 Al(qﬁ rw))a lf] < i’ (5'2)

we seck to find the condition in Lemma 4.2 satisfied for the smaliest possible
exponent n — 1. Now, if | = 191, then M(e, [)logq > B (k, e, I, A;) 1s satisfied
for all k> 11, all e> 11 and all ¢ > 11 (see Proposition 4.3). Thus, if
q = 1 modr it remains to consider the cases r = 5 and r = 7. If | = 131, then
M(r,D)logq < By(r,r, I, A}) holds only for ¢ = 8 if r = 7and g€ {11, 16, 31,41,
61, 71, 81, 101, 121, 131} if r = 5, but all these pairs satisfy

lqu > 14{(4’,:",1", by ‘A‘l(qarw}) (5 3)
- M(r, 1) '

Hence, (5.2) and Lemma 4.2 imply that (g, ¥~ !,r)e 7 for all n > 2 and all
(g, r), where g — 1 is divisible by r (and r > 95).

If ¢ — 1 is not divisible by r and if ¢ > 5, we choose d = 2 in (4.4). With
I = 131, a comparison of M(e, l) with B,(k, e, I, A;) shows that it remains to
consider the pairs (g, r)e {(7,5), (8,5),(9,5), (13,5),(17,5), (19, 5), (23, 5), (5, 7)}.
All these satisfy (5.3), whence (g, ¥~ !,r)e 7 for all n > 2 and all pairs (g, r)
under consideration.

If g = 4 or g = 3, we may choose d = 3 for r > 7. After applying (4.5) (with
[ = 68), it remains to check the four pairs (3,5), (3,7), (4,5), (4,7). But these
satisfy (5.3) (for the same {), whence (g, r" ', r)e 7 forallr > Sand all n > 2,
when g =3 or g = 4.

Assume finally that g = 2. Choose [ = 68. If r > 11, we may choose d = 4
for the test with (4.5). The remaining values of r are 5, 7, 11, 13. These satisfy
(5.3) and the proof of (1) 1s complete.

For the proof of (2) and (3), after applying Proposition 1.1 and the fact that
(g,1,9)e 7 for all g (see [CoHa]), it remains to show that (g, 3"~ %,9)e .7 for
all n > 3, and that (g, 2",4)€ .7 for all n > 3. Here, tx (see (3.1)) is equal to
®,» - D,», whence

) oY el
Q — Q , n 2, 2 — + ,
@ )= rde (g ordn(a)

and (4.2) specializes to

- — 1 rr — 1) 1 log L(A)
Alg. 1" 2 2 LA) = — 1A — .
(q7 r 2 r 2 ) Ordrn 1(‘]) + ordr,,(q) + rn__z (‘ | logl
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If r =3, take [ = 83. Then M(9,l)logq < B,(3,9,1, A;) implies g < 25. All
remaining values for g satisfy

A(qs 33 9a l’ Al(qs 300))

log(q) > —
M9, )

This completes the proof of (2) as
A(g, P, r3 LA(g, 37)) = Alg. r',r?, 1 Ay(q, 37)),  ifj <.

If r = 2, let I = 293. Then M(4, Dlogq < B,(16,4,1, A;) implies g < 178. For
all these g

A(qs 169 45 is Al(qs 260))
M(4,1)

log(q) = (5.4)

is satisfied, whence (g, 16- 2%, 4) € 7 for all a = 0, and it remains to consider
the triples (g, 8,4). If 1 =223 then M(4,))logqg < B,(8, 4,1, A;) implies
g < 517. Now (5.4) (with 16 replaced by 8) is satisfied for the remaining
g except ge {3, 17,97}. Since (3, 8, 4), (17, 8, 4), and (97, 8, 4) satisfy the condi-
tion in Proposition 3.1, the proof of Theorem 5.1 is complete. ®

6. TOWERS OF PRIMITIVE NORMAL BASES

We finally discuss interesting applications of Theorem 3.1 and Theorem

o o cpmd (O i it min e vz I oesr

5.1. A tower over a Galois field F is a set . of finite extensions over F which is
totally ordered by inclusion. Let 1, be the minimum degree of an extension
E/K, where K, E€.¥ such that K is a proper subfield of E. A sequence
w = (Wp)Lee 18 called trace-compatible for £ if the (E, K)-trace of wg 1s equal
to wg for all E, K € ¥ such that K 1s the subfield of E. Furthermore, w is called
normal over F if w; 1s normal in L over F for all Le %, and w is called
primitive if w; is primitive in L for all Le %.

THROREM 6.1. There exists a constant qq such that the following holds. If
2 is a tower over F = GF(q) with Fe ¥ and with u, > 3, then there exists

a trace-compatible sequence for & which is primitive and normal over F pro-
vided that g > g.
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Proof. Enumerate . such that Ly = F and L; 1s contained in L; for i <.
For n=0 let wy be a primitive element of L,. Assume by induction
that (wg,wy, ...,w,) 1is trace-compatible, primitive, and normal for
{Lo,Ly, ....L,} over F. As the degree of L,.,/L,, say e, is at least 3,
Theorem 4.1 guarantees the existence of a constant g, such that (g, k, e}e 7
whenever g > ¢, (independently from k). We can therefore extend the se-
quence by a primitive w, , ; in L, .y which is normal over F and whose (L, 1,

L,)-trace is equal to w,. Now the assertion follows by induction. ®

Our last result can also be proved via induction, yet applying Theorem 5.1.
It holds without any restriction on g.

THEOREM 6.2. Let F = GF(q) be any finite field with characteristic p and
lety beaprime. Let S =1ifr=porr>5letd=2ifr=3# p,andlet 6 =3
ifr =2+ p. For an integer n > 0, in a fixed algebraic closure of F, let E,_ , be
fr =2 # p. For an integer n 2 0, in a fixed alg f F, r.n be
the extension of degree r’" over F, and let ¥y, = {E, ,Jn > 0}. Then there
exists a trace-compatible sequence w for ¥, which is primitive and normal

over F.
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