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Abstract If F is an algebraic closure of a Galois field F, then for each integer
n > 1 there is exactly one subfield E,, of F' containing F and having degree n over
F. For a prime number 7, we consider the r-primary closure F := U,n>o Erm over
F and prove, under the assumption that > 7, but without any restriction on the
cardinality ¢ of F, the existence of a universal generator for F, over F: this is a
sequence w = (Wrm )m>0 in F, which satisfies all the following properties:

(1) wym is a primitive element of E,= (for all m > 0),
(2) wrm generates a normal basis for E,= over F' (for all m > 0),
(3) w is norm-compatible,
(4) w is trace compatible.
We prove furthermore that (2) can be strengthened to
(2°) w,m is completely free in E.m over F (for all m > 0),
which means that w,m simultaneously generates a normal basis for E.m over E,

for all 1 = 0,1, ..., m, whence w is called a complete universal generator for F; over
F. The results establish a (complete) primitive normal basis theorem for F, over

F.

1 (Complete) Universal Generators

It is well-known that the multiplicative group E* of a Galois field F is cyclic,
i.e., free on one generator as a module over the ring of integers. f u € Fis a
generator of E*, then v is called primitive in E.

A further classical result is the normal basis theorem: for every extension
E/F of Galois fields, there exists v € E such that v generates the additive
group of E as a module over the group algebra FG, i.e., v¢ = {v9]g € G} is
a basis of E as F-vector space (here, G denotes the (cyclic) Galois group of
E/F);vis called free or normal in E over F. (Unfortunately, the terminology
is not consistent. Since we also work with the norm-mapping, we shall here
use the term free.) In this generality the normal basis theorem for finite fields

was first proved by Hensel [He] in 1888.



Besides their theoretical importance, primitive and free elements are inter-
esting for some practical purposes as well, because they allow presentations
of Galois fields, which are useful for applications where the arithmetic in
the underlying fields has to be performed efficiently (such as the decoding
for error-correcting codes, the encryption and key-exchange in public-key-
cryptosystems, or the generation of pseudorandom numbers) For the basic
LIIBUI Y, appllLdEIUIlb dllu LHB d.I'llJIlIIlBEI(, OI HIIIEE Hel(lb we remr to JUIJ.gIllLKBl
[Ju] and Lidl and Niederreiter [LiNi]. For the early history of Galois fields we
refer to Liineburg [Lii]. For the theory of normal bases we refer to Hachen-
berger [Hal].

It is natural to ask, whether, for a Galois field extension E/F, there
exists a primitive element of £ which is additionally free over F'. Completing
previous work of Carlitz [Ca] and Davenport [Da], the final answer was only
given in 1987, when Lenstra and Schoof [LeSc| proved the primitive normal
basis theorem, which states that this is indeed the case for every extension
E/F.

In the present paper we are concerned with an (infinite) version of the
primitive normal basis theorem for the r-primary closure F, of a Galois field
F. Before stating our main results, Theorem 1.2 and its complete version
Theorem 1.2¢, we have to introduce some terminology.

Working in an algebraic closure £ of a Galois field F, for a nonempty set
N of positive integers, we denote by Exn the set {F,|n € N} of extensions
over F' (where E, is as in the abstract). Let w = (w,),en be a sequence in
F such that w, € E, for each n. Then w is called norm-compatible, if for all
l,n € N with { dividing n, the (En, Ej)-norm [[ ¢ , wy of wy, is equal to w;
(here Gn 1 denotes the Galois group of E,, over E)). Thus norm-compatibility
Jjust means that w belongs to the (multiplicative) projective limit of Fy with
respect to the norm-mappings of the extensions associated with N. Similarly,
w is called trace-compatible, if for all [,n € N with [ dividing n, the (E,, E;)-
trace > .o, wy of w, is equal to wy, i.e., w is a member of the (additive)
projective limit of Ey with respect to the trace- mapplngs of the extensions
associated with V.

A sequence w = (wp)nen is called a generator for Ey, if for all n € N,
F(wy,), the field obtained by adjoining w,, to F, is equal to E,. A generator
w is called primitive for En, if for each n € N, w, is primitive in E,,. Finally,
a generator w is called free for En over F, if for each n € N, w, is free in
E, over F.
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Deui’iitiﬁn 1.1. Let N be a non-empty set of posi itive 1

field and En the set of finite extensions of F' (in F) correspondlng to N. A
generator w of En which is primitive and free over F' as well as norm- and
trace-compatible is called a universal generator for En over F. O

From an algebraic point of view the most interesting sets N are those for
which Fn := U,enE, is a subfield of F (infinite, if N is infinite): a norm-
compatible primitive sequence can then be seen as a primitive element of Fi,
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while a trace-compatible free sequence can be interpreted as a free element
for Fy over F' (we refer to Lenstra [Le] for a rigorous justification of the
latter statement, see also Scheerhorn [Sche]). It holds that Fy is a field if
and only if for all n,m € N there exists an [ € N such that n and m divide
1. The latter is in particular the case, when N is closed, i.e., if for any two
members n and m of N, every divisor of the least common multiple of n and
m is again a member of N. Hence, for a closed set N, a generator for Ey
contains information for every finite subfield of Fjy .

It is not known at all for which closed sets there exist universal gener-
ators. In the present contribution, however, we prove the existence of such
an interesting object for certain infinite closed sets. For a prime r, let N, be
the closed set {r™|m > 0}, whence Ey, is a tower of extensions over F' and
Fy_ = F, is the r-primary closure of F' (in F).

LN, — 47 ¥ \:

Theorem 1.2. Let F' be any Galois field and let r > 7 be any prime. Then
there exists a universal generator for En, over F'. ,

We shall be able to strengthen the assertion of Theorem 1.2 even further
by requiring that all members w,= of the universal generator w are com-
pletely free over F' (an element v of E,, is called completely free over F if v

"is simultaneously free over Ej for every divisor d of n).

Definition 1.3. Let N be a non-empty set of positive integers and F a
Galois field. A generator w for Ey is called completely free for En over F, if
for each n € N, w, is completely free in E,, over F'. A universal generator for
Epn over F which is completely free is called a complete universal generator

for En over F. 0O

Theorem 1.2°. Let F' be any Galois field and let r > 7 _be any prime. Then
there ezists a complete universal generator for En_ over F.

We give an outline of the content of the present paper.

The basic technique for proving Theorem 1.2 is by induction (on the ex-
ponent m of 7). In order to accomplish the induction step (see Section 2)
we consider a problem which is interesting in itself, namely, whether for a
quadruple (F, K, L, E) of Galois fields (E an extension of F" and K, L inter-
mediate fields of E/F) and given elements a € K (free over F) and b € L
(primitive) there exists an element w,, € E which is primitive and free over
F, whose (E, K)-trace is equal to a and whose (E, L)-norm is equal to b. In
this context, our main result is Theorem 2.3 (from which Theorem 1.2 im-
mediately follows). Observe that Theorem 2.3 asserts more than is necessary
for provi—ng Theorem 1.2, because we show that (for all m) every universal
generator for E{y » .2, ,my can be extended to one of Ey,_ .

In order to prove Theorem 2.3, a sufficient criterion for the existence
of an element w, ; as above is derived in Section 3 by means of characters
and Gauss sums for E/F (see Proposition 3.1). The proof of Theorem 2.3 is
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completed in Section 4 by applying concrete versions of that criterion tO_ the
case where E/F has prime power degree and K = L is the unique maximal
intermediate field of that extension (see Section 4). _

We have assumed that r» > 7, because we seeked to obtain a result.Wh_‘Ch
holds independently from the cardinality g of the ground field F'. Qur criterion
is less effective when 7 = 5: in that case it yields only the asymptotic existence
of universal generators, i.e., as long as ¢ is large enough. If r = 2 or 7 = 3-the
criterion does not work at all with K = L being the maximal intermediate
field. However, when seeking for results with r = 2,3, 5, unrestricted in 9
one can study towers with relative degrees 8,9,25, i.e., with larger 3PS 111
the relative degrees. We shall not work out the latter here.! )

In Section 6, we shall prove Theorem 1.2°. We postpone a more detailed
discussion of completeness to Section 5.

Finally, in Section 7 we conclude with some remarks.

2 Universal Quadruples

Let (g, k,1,n) be a quadruple of nonnegative integers, where ¢ > 1is 2 prime
power and k,l are proper divisors of n, and let (F, K, L, E) be the corre-
sponding quadruple of Galois fields, i.e., F =GF(g), and, in a fixed algebraic
closure Fof F, K =Ey, L = E;and E = E,,.

Definition 2.1. (g, k,1,n) is called universal, if for the corresponding qua-
druple (F, K, L, E) it holds that for every b € L which is primitive i? L and
for every a € K which is free in K over F, there exists an element @ = Wa,b
in E which satisfies all the following properties:

(1) w is primitive in E,

(2) w is free in E over F,
(3Y N& (1) the (E. IN-norm of w. is eaual to b
AL V2] Wy 45 TYual W Y,
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(4) Trg i (w), the (E, K)-trace of w, is equal to a. O
As norms of primitive elements are primitive and traces of free elements
are free, the assumptions on a € K and b € L are necessary.
ed for the

So far, the universality of quadruples has only been consider
case where k = | = 1, which in view of Proposition 2.4 is the easiest instance
of the problem. (In this case K = L = F, a is any nonzero element of F' and
b is any primitive element of F.) First, in [CoHa], Cohen and Hachenberger
have proved that, for n > 9, (g,1,1,n) is universal for every primé POWeT
¢; moreover, for n = 7,8 the universality of (q,1,1,n) is proved except for
8 values of ¢.2 The main tool in [CoHa] is Proposition 3.1 of the present
s studied,
over

' We refer to Hachenberger [Ha2]; in that paper, a similar problem i
namely the existence of trace-compatible primitive free generators for EN,
F.

*In [CoHal, (g, n) is called a PFNT-pair, if, in the present notation, (g, 1,1,n) is

universal.
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paper, applied to the case k = [ = 1 (the corresponding result is not proved
in {CoHa] and neither is proved a character sum formulation, which, for the
general case is carried out in Section 3 of the present paper). By improving
the estimates for Gauss sums and by developing a sieving technique (both are
available for the case K = L = F, only), Cohen [Co] was able to prove the
universality of (¢,1,1,n) for all n € {5,6,7,8} and all ¢, whence altogether
the following holds.

Theorem 2.2. If n > 5 then (q,1,1,n) is universal for all prime powers
q2>2. U

Since we want to prove the existence of universal generators for primary
closures of Galois fields, we consider here the case where the degree of E/F'is
a power of a prime. The main result in this direction is the following theorem
(which is proved in Section 3 and Section 4).

Theorem 2.3. Assume thatr > 7 is a prime. Let ¢ > 1 be any prime power
and m > 0 be any integer. Then (q,r™,r™,r™+1) is universal.

Observe that the case m = 0 is covered by Theorem 2.2, and we therefore
restrict our attention to the case m > 1, later. Now, Theorem 1.2 follows at

once by induction from Theorem 2.3.

Proof of Theorem 1.2. If w; € F is primitive, then, trivially, (wn)neq1} is 2
universal generator for E; over F. For m > 0 assume that (wn)ne{lyr,.__,rm} is
a universal generator for Ey; ;. . ,m) over F. As (g,7™, 7™, r™*1) is universal,
“there exists v = w41 € E = E,m41 which is primitive in E, free over F' and

satisfies Trg, g,m (V) = wm = NE, g, (v). The transitivity of the trace- and
norm-mappings now implies that (wn)neq1,r,...,rm+1} iS @ universal generator
for Eq ... ;m+1) over F, and everything is proved. o

We finally mention that Theorem 2.3 can be strengthened as follows.

p
maz{a,f}. O

Vﬂ)

Then (g,r*,r8,r7) is universal for all o, 8 > 0 and all ¥

The latter is an immediate consequence of the following proposition.

Proposition 2.4. Assume that (¢, k,1,n) is universal. Let k' be a divisor of
k andl' a divisor of l. Then (q,k',l',n) likewise is universal.

n element a in

D’I"GG‘ Tf A~ —~ I, 1o fonn Avear ' — (IR A +han +hora ovicte a

Fd J. il w T Lups 15 11 Uvel 1 — L \(J}, U1IClL]l ULIITIT TAIOULO Qi - , E .s
Ey, free over F, whose (E}, Ey )-trace is equal to a'. Analogously, if b’ € £/
primitive, then there exists a primitive b € E; such that the (Ei, Ey)-norm O

b is equal to b'. Since (g, k,l,n) is universal by assumption, the result folloWDS

oo oottt 1 e - v - 2 e
using the transitivity of the norm- and trace-mappings.
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3 Character Sum Formulation and a Sufficient
Criterion

In the present section we shall prove a sufficient criterion for a quadruple
(g,k,1,n) to be universal (see Proposition 3.1). We have to introduce some
notation. Let P = P(q,n,!l) be the largest divisor of g™ — 1 which is relatively

nrime to nl —1and let w=w ,(P\ be the number of distinct prime divisors o of

22220 4 &uaaill iTv UiiT 2iwkii2as02

P. Let t = t(q,n, k) be the Iargest monic divisor of 2™ — 1 which is relatively
prime to zF — 1 and let. 2 = 2(¢,n, k) be the number of distinct monic

irreducible F-divisors of ¢.
Proposition 3.1. Assume that (q,k,l,n) is as at the beginning of Section
2. If

g 0 1Y\ (.. 1\ ,
2 v - 1
"(q~1) ( 7t ( q’—l)’ (3:1)

then (g, k,l,n) is universal.

ml:

The proof of Proposition 3.1 is based on the character-sum formulation of
the four conditions in Definition 2.1 and on an estimate for Gauss sums.
We let (F,K,L,E) be the quadruple of fields corresponding to (g, k,I,n),
throughout.

We first investigate the multiplicative part which comprises the primitivity
and the condition of prescribed (£, L)-norm, i.e., (1) and (3) in Definition
2.1. For simplicity let N denote the (F, L)-norm mapping.

For a divisor d of ¢" — 1 let C; be the unique (cyclic) subgroup of th
‘multiplicative group of E* having cardinality d. Let furthermore D denote
the cofactor of P in g™ — 1 and let § be the cofactor of ¢ —1 in D. Thus, L*

isa subgroup of Cp, and, as D and P are relatively prime, E* decomposes

4]

into the direct pfOuucb of uD with \/p This ueu)lupobxuuu is crucial for the
subsequent characterization of primitive elements in £ having (F,L)-norm

equal to b.
Since, for z € E, N(x) = z°F, Csp is the kernel of N. Restricting N

onto Cp induces an epimorphism onto L* with kernel equal to Cs. Now,
with ¢ denoting the Euler totient function, it holds that Cp has exactly
©(D) = ¢(q' —1) -8 generators (i.e., elements of E whose multiplicative order
is equal to D), whence for a primitive b of L*, the entire preimage of b under
N in Cp consists of generators of the group Cp. Consequently, if w € E~
with N(w) = b, letting w = wpwp (with wp € Cp and wp € Cp), we have
b = N(wp), and the above argument yields that wp is a generator of Cp.
We have proved the following.

Lemma 3.2. An element w € E is primitive in E if and only if the (E,L)-
norm of w s primitive in L and the multiplicative order of w is divisible by
P. O
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From Cohen and Hachenberger [CoHal] (or Carlitz [Ca], Davenport [Da],
Lenstra and Schoof [LeSc]) we know that the function Mp in (3.2) is the
characteristic function of the set of elements of E* whose multiplicative order

is divisible by P.

P
Mp(w) = ‘P; 5y "Ed; S nw),  weE (3.2)
. d|P ¢ (n,d)

(1 denotes the Mobius function and the first sum runs over all positive divisors
of P, while the second one runs over all p(d) multiplicative characters 7 € E*
whose multiplicative order is equal to d). '

The set of elements w € E* having (E, L)-norm equal to b can be de-

ribed hv its characteristic function N, which in (3 3) is given in terms of

AUS LIiQi QULTLASULL dwadLuall

SCr
the group L* of multiplicative characters of L.
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Thus, combining (3.2) with (3.3), we conclude that w € E* satisfies the ‘
conditions (1) and (3) of Definition 2.1 if and only if Mp(w)N,(w) = 1.

We next investigate the additive part, comprising the freeness and the pre-
scribed (FE, K)-trace, i.e., the conditions (2) and (4) of Definition 2.1. For
simplicity, let 7" denote the (E, K)-trace mapping. Then, with K being the
group of additive characters of K, the mapping T, in (3.4) is the characteristic
function of the set of all w € F such that T'(w) = a.

Z AT (w - weE. (3.4)
AEK

In order to cope with the freeness, we have to recall that the additive group
of E is equipped with a module structure over the polynomial ring F[z] by
defining f ow := f(o)(w) (for w € E and f € F[z]), where ¢ is a generator
of the Galois group of E/F, the Frobenius automorphism for instance. The
F-order of w € E is the monic polynomial f € F [z] of least degree such
that fow = 0. The group E of additive characters of E likewise carries the
structure of an F'[z]-module by defining (f o x)(w) := x(f ow) (where x € E,
and f,w are as above). Similarly, the F-order of x € FE is deﬁned to be the

monic nn]\mnmm] f f'r] of least Hpm‘pp such that fo X = Xo; the trivial

addmve character. As E and the addltlve group of E are 1somorph1c as Flz]-

modules (namely free on one generator with minimal polynomial z™ — 1),
for each monic divisor g € F[z] of 2™ — 1 there are exactly ¢,(g) characters
x € E whose F-order is equal to g, where ¢q(g) is the number of units in the
ring F[z]/gF[z] (i.e., ¢, is the g-analogue of the Euler totient function).
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Now, compare agam with [CoHal] (or [Cal, [Da], [LeSc]), with ¢ as in

Proposition 3.1, it holds that A; in (3.5) is the characteristic function of the
set of elements in £ whose F'-order is divisible by t.

Bq(t) ~— Hql9)
Ay(w) = =L > x(w), (3.5)
q¢ gt ¢q(g) (x.9)

where, the first sum runs over all monic F-divisors of ¢ and the symbol (x, g)
indicates that the second sum runs over all additive characters of E having
F-order equal to g.

The following is the additive analogue of Lemma 3.2. It implies that w € £
satisfies (2) and (4) of Definition 2.1 if and only if A;(w)T,(w) = 1.3

Lemma 3.3. An elementw € E is free in E over F if and only if its (E, K)-
trace is free in K over F and its F-order is divisible by t.

Proof. Let p be the characteristic of ' and let 7 be the largest power of p
dividing n/k. Then t is equal to (z” —1)/(z*™ — 1) (which is relatively prime
“to z¥ — 1). This leads to a decomposition of the additive group of E into
the direct sum K @ 7, where K is the extension of degree km over F, and
where 7T is the kernel of the (E, K )-trace mapping. For w € F, let wg + wr
be the decomposition of w corresponding to that of E. By Theorem 8.6 in
Hachenberger [Hal], it holds that w is free over F if and only if wy is free in
K over F and the F-order of wr is equal to ¢t (the latter means that wr is a
generator of 7 as F[z]-module). An application of Lemma 7.4 of [Hal] shows
that the F-order of the (E, K)-trace of w and the F-order of wg are equal.
Finally, since K /K has degree a power of p, an application of Theorem 10.5
in [Hal] gives that u € K is free over F' if and only if the (K, K)-trace of u
is free in K over F'. From all that the assertion follows. O

‘Combining the multiplicative and the additive part, we obtain that the total
number Y of elements in E which are primitive and free over F' with N(w) = b
and T'(w) = a, i.e., satisfying all conditions in Definition 2.1, is equal to

Y = ) Mp(w)Ns(w)As (w)Ta(w). (3.6)
weE

(As usual, we let (0 ) = 0 if 7 is a nontrivial multiplicative character, and

n0(0) := 1 for the trivial multiplicative character 7y.) Letting
6 . (‘p( ) 6 I ¢q (t)
- p q - qdegt’

and using (3.2)-(3.5), we have

? Lemma 3.2 is therefore also crucial for proving Proposition 3.1 in [Ha2].
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¢F-(¢-1 ., (9 b7, X\)
o, '~ %;%w(d PIDISIDY ?/(b\)\(a) (37)

b (n,d) (x,9) veL* \eK

where G, 5(n, x\) denotes the Gauss sum

G, xA) = D (10)(w)(x) (w), (338)

weE

and where 7€ E*and )\ € E denote the lifted characters of v E L* and
AeK, respectively, i.e,

b(w) := v(N(w)), A(w):=MNT(w)), weE.

The decompositions of E* and F in Lemma 3.2 and Lemma 3.3, respectively,

vield corresnondine decomnositions of the character groups £ > and P These

ALIN LULATOPIIINALLL S ULV PUOIVAVILG UL VAIT LiaGa Gu vl

are crucial for the analysis of (3.7), because n is trivial if and only if n and
v are both trivial, and similarly, xA is trivial if and only if x and A are both
trivial. We are now able to complete the proof of Proposition 3.1.%

Proof of Proposition 3.1. If ni and y A are both trivial, then

Gap(ni, X)) =q".

If either i or XA is trivial, then G’a,b(nﬁ,xi) = 0. Finally, if both 79 and xA

are nontrivial, then the absolute value of G, 4 (12, ¥A) is equal to ¢™/2.
Now, using properties of the Mdbius functions as well as the triangle

inequality in combination with the absolute values of the Gauss sums, we

obtain

q’°~(q’—1)~Y_qn
60,

where U = (2¢ = 1)(¢' = 1)(22 = )¢k, V = (2 = 1)(¢' — 1)(¢* — 1), W =
(¢ —2)(2? — 1)¢* and X = (¢ — 2)(¢* — 1). Thus, ¥ = 0 implies

g - (U+V+W+X),

and everything is proved. O

* For the basic properties of Gauss sums we refer to Section 5.2 of Lidl and Nieder-
reiter [LiNi] or Section 7.2 of Jungnickel [Ju].



Universal Generators for Primary Closures of Galois Fields 217

4 Proof of Theorem 2.3

In the present section, in order to complete the proof of Theorem 2.3, we
analyse the sufficient condition in Proposition 3.1 for quadruples (g,r™,r™,
r™*1)) where r > 7 is a prime number and where m > 1 (recall that m = 0
is covered by Theorem 2.2). Using the notation of the previous section, we
have t = 1 if r = p is the characteristic of F =GF(gq), whereas t = &, m+1 is

the 7™*H1st cyclotomic polynomial if r # p. In the following, |A| denotes the

AfF 4l + A
naub_y o1 tne set A.

Nor

A3
Lalrul

Proposition 4.1. Let ¢ > 1 be a prime power and r a prime. Let A > 1 be
an integer, A a set of primes s < X such that each prime divisor of P which
is less than X is contained in A, and let L(A) = [[,c 4 s (being equal to 1 if A
is empty). Finally, if r # p, let § = ord,m+1(q); if 7 = p, let § = p(r™+1). If

/ e A o \ o 1 1 Taee T/ \
T —4 T —1 r— 1 1 108 L /1)
- logq > — (A - ===}, 4.1
( ogg > —5—+ o (141 ), @y

" Proof. With w as in Section 3, it follows from Lemma 2.6 of Lenstra and
Schoof [LeSc]-that
log P — log L(A)

Al

Furthermore, {2 =1 if r = p and

2 = (™) Jord,mi () < (r — 1)

if r # p, where ord,m+1(g) denotes the order of ¢ modulo r™*!. Using these

upper bounds, an easy calculation shows that the validity of (4.1) implies
that of (3.1) (with kK = [ = r™), whence everything is proved. O

We next return to the case r > 7. In that case, a choice of A > 17 asserts
that the factor

r—4 r—1
" logd  logA

r

S

"~

-
—
e
[\
~—

of log g in the left hand side of (4.1) is greater than zero. In what follows,
we have always chosen A = 300. For r # p, we let a(g,r,m, A, A) denote the
right hand side of (4.1), and for r = p, let 8(r,m, A, A) be the right hand side
of (4.1). For an integer d > 1, let
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r—1 1 log L(A)\
A) = — (4] - _ _

Step 1. Assume first that ¢ — 1 is divisible by r.

Then, independently from m, each prime divisor s of P is congruent
to 1 modulo 2r, whence Proposition 4.1 is applicable with A being the
set of all primes s < A such that s — 1 is divisible by 2r. Now, logq <
y(r,1,1,X, A)/N(r,A) implies ¢ < 267 if r = 7; ¢ < 21 if r = 11 and
g < 13 if r > 13. Since y(r,1,1, A, A) is an upper bound for a(q,r, m, A, A)
for all m > 1, we are therefore left with the cases where r = 7 and ¢ €
{8,29,43,64,71,113,127,169,197,211 239} For each g of the latter set we

annlv Pranngifi ion A1 nth A — A (~ \ hoino +he ant Af all nrimong ¢ <« )
appiy + 10U lJUDquU 4.1 Wity 4 = L1\, UCLIE ULIC 50V Ul dil priiiits &6 N A

such that ords(g) is a power of 7: we obtaln that (4.1) is satisfied for all these
g with m = 1, except when ¢ = 197. But (4.1) is satisfied for ¢ = 197 and
m = 2. Now, it is important to observe that

a(gq,r,m, A, Ax(q, 7)) > alg,r, M, X, A\(q, 7)), if M <m. (4.4)

Since the left side of (4.1) is independent of m, it therefore remains to show
that (197,7,7,49) is universal. We apply Proposition 3.1: P has only one
prime divisor which is smaller than 10000 (namely 1373), whence w < 29;
since £2 = 42, (3.1) is valid for (197,7,7,49). Altogether, we have shown that
(g, 7™, 7™, r™*1) is universal for all m > 1, all r > 7 and all g such that ¢—1

is divisible by r.
Step 2. Assume that ¢ — 1 is not divisible by 7, that r # p and that ¢ > 4 if
r > 17.

Independently from m, we first choose A to be the set of all odd primes
s < A (recall that P is odd). Here, v(r,1,2,A, A) is an upper bound for
a(g,rym,\, A) forallm > 1,and logg < ¥(r, 1,2, A, A)/N(r, A) implies ¢ < 74
ifr=7¢<6ifr=11,¢ <4ifr =13 and ¢ < 3 if r > 17. For the remaining
values for ¢ and r, we apply Proposition 4.1 with 4 = A,(q, ) (see Step 1).
Here, (4.1) is satisfied for all the remaining cases with m = 1, and thus, using
again (4.4), we conclude that (g,r™,7™,r™%1) is universal for all m > 1, all
r > 7 and all ¢ as in the assumption. '

Step 8. Assume that ¢ = 2 or ¢ = 3 and that r > 17.
In either case for ¢, and independently from m, we first take A to be the set -

of odd primes s < A different from p. As r > 17, we have ord,(q) > 5, whence

~fr 1T 5 Y AYig an 1innar honnd far af o T, M A A\ for all m 5 1. Since ]no‘n >
,\' b ‘L, U, I\, ‘1} 1w €4l uyy\.z‘ [ WAL EE A ] M\q’ '0 \ ‘ll A\JL Caas . hJERAUNS A\I

v(r,5,1,\, A)/N(r,A) for all » > 17 and q € {2, 3}, Proposmon 4.1 yields the
universality of (g,r™,r™,r™*1) for all quadruples under consideration.

Step 4. Assume finally that r =p > 7.
We take A to be the set of odd primes s < A. Now, 3(gq,7,1,A, A) is an

upper bound for the right hand side of (4.1) for all m > 1. Since logr >
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B(r,1, A\, A)/N(r,A), for all 7, (4.1) is always satisfied, and this completes the
proof of Theorem 2.3. O

5 = Completeness

When considering a finite dimensional Galois extension E/F, then v € E
is called completely free in E over F °, if for each intermediate field K of
E/F it holds that {v9|g € Gk} is a K-(normal) basis of E over K (where
Gk denotes the Galois group of E/K). Completely free elements were first
studied in 1957 by Faith [Fa]; he proved their existence whenever F has
infinite cardinality. For finite fields the corresponding result was only proved
in 1986 by Blessenohl and Johnsen [BlJo]: the complete normal basis theorem
states that for every extension E/F of Galois fields, there exists an element
in E which is completely free over F. (For an extensive treatment of the
structure of completely free elements we refer to the monograph Hachenberger
[Hal).)

It is natural to ask, whether, for a Galois field extension E/F, there exists
a primitive element of E which is additionally completely free over F. By
means of a computer search, Morgan and Mullen [MoMu] have determined
primitive completely free elements for all extensions GF(¢™)/GF(gq) where
g < 97 and n < 9; they have therefore conjectured that such elements do
always exist (i.e., for all extensions of Galois fields). A considerable step
towards proving the primitive complete normal basis theorem is provided in
Hachenberger [Ha2|, where the existence is shown for a (large) class of so-
called regular extensions. The precise formulation is given in Theorem 5.1.

Theorem 5.1. Consider the extension GF(¢")/GF(q) of Galois fields. Let
n' be the largest divisor of n which is relatively prime to g and let v(n') be
the square-free part of n'. Assume that ord, (,)(q) and n are relatively prime.
Assume further that ¢ = 1 mod 4 if n' is even. Then there exists a primitive
element in GF(q") which is completely free over GF(g).

Observe that the assumption in Theorem 5.1 is satisfied whenever n is an
odd prime power, say n = r* with r being a prime. If r > 7, then for the

latter class of extensions, Theorem 1.2¢ is an improvement of Theorem 5.1.
The proof of Theorem 1.2¢ is the aim of the following section.

6 Proof of Theorem 1.2¢

Analogously to Theorem 2.1, the proof of Theorem 1.2° is established via
induction. We first have to formulate a complete version of Definition 2.1.

5 Again, the terminology is not consistent; such elements are also called completely
normal. ‘
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Definition 6.1. A quadruple (q,k,{,n) is called completely universal, if for
the corresponding quadruple (F, K, L, E) of Galois fields it holds that for
every b € L which is primitive in L and for every ¢ € K which is completely
free in K over F, there exists an element w = w,; in £ which satisfies (1),
(3) and (4) in Definition 2.1 as well as

(2°) w is completely free in E over F. O

As the trace of a completely free element is again completely free, the as-

sumption on a is necessary.
Now, Theorem 1.2° is an immediate consequence of Theorem 6.2.

Theorem 6.2. Assume thatr > 7 is a prime. Letq > 1 be any prime power
and m > 0 be any integer. Then the quadruple (g, r™,r™,r™%1) is completely

universal.

For the proof of Theorem 6.2 we shall use Theorem 2.3 in combination with
the characterization of completely free elements in prime power extensions
over finite fields as given in Section 17 of Hachenberger [Hal]. Throughout,
let E be the r™*!-dimensional extension over the Galois field F.

First, the assertion of Theorem 6.2 is valid if r is equal to the characteristic
p of F, in which case w € E is completely free over F if and only if w is free
over F' (see Theorem 5.7 in [Hal]). We may therefore assume that r # p. But
then the situation is totally different, because for every ¢ there exists a free

element in F over F' which is not free over GF(q") as long as m exceeds a
{con tha nranf of Thanram 14.5 in [Hall

certain bound depending on g and r (see the proof of Theorem 14.5 in [Hal)
or the discussion in Section 2 of Hachenberger [Ha3]). However, as we will
see below, Theorem 2.3 can nevertheless be used, when changing the ground
field F' to an appropriate intermediate field of E/F.

m+1 . Lol e
llle mumpucauve or UC[ ()I q IIlU(_lLU() [ AR ) Uf T,h(:‘ Orm

ord,m+1(g) = ord,(q) - r%, (6.1)

where ord,(q) divides r — 1 and where @ = a(g,7,m) < m. We define a
parameter 7 = 7(g,7,m + 1) as follows:

T = [gj. (6.2)

Now,

ience
ciiLe

Then 7 < m, whence M := E,- is a proper subfield of £ containing
I

AAAAAAAA Svnrinadindt s an

in combination with Theorem 2. o, Theorem 6.2 is an immediate ¢

of the following proposition.

F.
15equ

Proposition 6.3. Let q > 2 be a prime power r an odd prime number not

> Lettina T be as in (6 hslds that (g.v™ ™M pmt1)

ULULUtILg q, unu. L(’/'l» m (e U _Lleb Ly i vc ud it {U. 4/ I,L 1Hotas blbub \gyT 51 ,l )
T T

is completely universal, if (g" ,v™ 7, r™ 7 ™17} ¢s universal.
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Proof. Consider the quadruple (M, K, L, E) corresponding to (q’r, rmeTy
=7, pmH1=T) Let a € K = E,m be completely free over F (hence free over
M) and let b € L = K be primitive. Assuming the universality of (qrr , 7T
™7, ™17 there exists a primitive element w € E which is free over M
such that Trg g(w) = a and Ng r(w) = b. We claim that these conditions
already suffice for w to be completely free in E over F', whence everything is
proved.

Let T be the kernel of the (£, K)-trace mapping. Then, similar to the
proof of Lemma 3.3 (with K = K), K ® T is a decomposition of the additive
group of E as F'[z]-module with respect to a generator o of the Galois group
G of E over F. The decomposition likewise respects the action of M[z] with
respect to ¥ := ¢” , which is a generator of the Galois group of E over M
(in the latter context the scalar multiplication is given by g*u := g()(u) for
g € M[z] and u € E). In terms of this decomposition, we have the following
characterization of completely free elements for E over F' (see Section 17 in
[Hal]): v = vk +v7 (vk € K, v € T) is completely free in E over F' if and
only if vg is completely free in K over F' and the M-order of vy (i.e., the
monic polynomial g of least degree in M|[z] such that g x vy = 0) is equal to
®,m+1--, the 7™H1=Tth cyclotomic polynomial.

It therefore remains to verify the latter two conditions for the element
w given above. With w = wg + w7 we have (by assumption) that a =
Trp k(w) = rwg. Hence, wk is completely free in K over F, as a satisfies
this property by assumption. We also have chosen w to be free in E over M.
Consequently, an application of Theorem 8.6 of [Hal] shows that the compo-
nents wg and w7 are generators of the M [z]-modules K and 7, respectively.
But for wy this just means that the M-order of wr is equal to @,m+1--, which
is the minimal polynomial of 7 with respect to ¥ over M. Thus, everything

is proved. O

We finally remark that in general it is not known, whether the intermediate
trace of a completely free element can be prescribed, wherefore a complete
version of Proposition 2.4 is not (yet) available (see the proof of Proposition
2.4). The latter is however the case, when E/F is of prime power degree (for
more details on this problem see Section 26 in [Hal]). We therefore have the
following strengthening of Theorem 6.2.

Theorem 6.2°. Assume that r > 7 is a prime. Let ¢ > 1 be any prime
power. Then (q,r*,r2,r7) is completely universal for all a,3 > 0 and all

PR PSSR SN2 ) | m
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7 Concluding Remarks

We would finally like to remark that universal generators might be interesting
in view of representing finite fields and their arithmetic in Computer Algebra

systems.
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It was suggested by J. H. Conway to use norm- compatible primitive gen-

+ 'y A ki £alA + Tha +ha . £ +h a1
€rators Ior descriving neia extensions. The reason is uuau as tar as the mul-

tiplicative structure is concerned, such presentations include information on
the embeddings of the various subfields. This concept is used in the computer

algebra system Magma.

Analogously, as pointed out in Scheerhorn [Sche] (see also [CiD]), compu-
tationally simple embeddings relying on a normal-basis representation consist
of trace-compatible free generators. This additive presentation is used in the

computer algebra system Aziom.

It seems therefore to be of interest to have (complete) universal generators:
they yield a dynamic data structure for presenting finite fields. It seems also
that for finite sets Exn of small degree over small fields F' the existence of
these objects can only be decided experimentally. When searching for such
generators one should assume that the relative degrees of the fields are at

least three.
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