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Phononic heat conductance of gold atomic contacts: Coherent versus incoherent transport
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We present here a theoretical method to determine the phononic contribution to the thermal conductance
of nanoscale systems in the phase-coherent regime. Our approach makes use of classical molecular dynamics
(MD) simulations to calculate the temperature-dependent dynamical matrix, and the phononic heat conductance
is subsequently computed within the Landauer-Büttiker formalism with the help of nonequilibrium Green’s
function techniques. Tailored to nanostructures, crucial steps of force constant and heat transport calculations are
performed directly in real space. As compared to conventional density functional theory (DFT) approaches, the
advantage of our method is twofold. First, interatomic interactions can be described with the method of choice.
Semiempirical potentials may lead to large computational speedups, enabling the study of much larger systems.
Second, the method naturally takes into account the temperature dependence of atomic force constants, an aspect
that is ignored in typical static DFT-based calculations. We illustrate our method by analyzing the temperature
dependence of the phononic thermal conductance of gold (Au) chains with lengths ranging from 1 to 12 atoms.
Moreover, in order to evaluate the importance of anharmonic effects in these atomic-scale wires, we compare
the phase-coherent approach with nonequilibrium MD (NEMD) simulations. We find that the predictions of the
phase-coherent method and the classical NEMD approach largely agree above the Debye temperature for all
studied chain lengths, which shows that heat transport is coherent and that our phase-coherent approach is well
suited for such nanostructures.
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I. INTRODUCTION

Understanding and controlling heat transport due to
phonons in nanoscale systems and devices is of major
importance in a variety of disciplines [1–3]. Very recent ex-
perimental advances in nanothermometry have finally pushed
thermal conductance measurements all the way down to the
scale of single atoms and molecules [4–7]. Special attention
has been paid to the case of metallic atomic-size contacts,
which are known to be ideal systems to test basic theories
of the transport of charge and energy at the nanoscale [8,9].
In this respect, numerous transport properties have been thor-
oughly analyzed in the context of these atomic-scale wires
such as electrical conductance [10,11], shot noise [12–15],
photocurrent [16–19], thermopower [20–23], Joule heating
[24,25], or Peltier cooling [26], just to mention a few.

The description of the heat conductance of metallic atomic
contacts requires the use of fully atomistic methods [4,27–
29]. In particular, these methods have explained the observa-
tion of thermal conductance quantization in Au single-atom
contacts and the fact that the Wiedemann-Franz law, which
relates the electrical and thermal conductances in metallic
systems, is approximately fulfilled irrespective of the size
and material of the atomic contacts [4,27]. These theoretical
approaches show for metallic atomic contacts that elec-
trons largely determine the thermal conductance compared to

phonons, similar to the situation in bulk metals. This insight
was not obvious a priori because the transport mechanisms for
fermionic electrons and bosonic phonons are fundamentally
different in these nanoscale systems, as compared to bulk
wires. Indeed, Ref. [27] predicts that for aluminum single-
atom contacts, phonon thermal transport may contribute as
much as 40% to the total thermal conductance, yielding a
substantial deviation from the Wiedemann-Franz law. This
interesting theoretical prediction, which presently lacks ex-
perimental confirmation, shows that these metallic nanowires
are still very interesting from the point of view of phonon
transport.

Most theoretical calculations of the phonon contribution to
the heat conductance of metallic atomic-size contacts assume
that transport is fully coherent [4,27,28], i.e., that the inelastic
mean free path for phonons is larger than the contact size.
Other calculations [29] use the classical Fourier’s law, which
includes anharmonic transport mechanisms. For single-atom
contacts the coherent assumption appears to be reasonable.
However, this is not obvious for longer and thicker junctions,
since it is known that phonon mean free paths in metals can
be as small as a few nanometers [30]. Although the ab initio
methods based on DFT, which are used so far [4,27,28], are
very accurate, they are computationally demanding. Therefore
their use is practically restricted to relatively small contacts.
In this respect, it would be useful to develop more efficient
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methods to describe the phonon transport in systems con-
sisting of many atoms and to shed new light on the role of
inelastic interactions.

In this work, we present an efficient method to compute
the phononic heat conductance of any kind of nanojunction
in the coherent transport regime. This method is based on the
calculation of relevant atomic force constants, making use of
classical MD simulations in thermal equilibrium, while the
phonon transmission and related heat conductance are com-
puted in the framework of the Landauer-Büttiker picture with
the help of nonequilibrium Green’s function techniques. The
approach detailed here considers the temperature dependence
of the atomic force constants, which is in general important
to describe the temperature dependence of the phononic heat
conductance. We present a study of the phononic contribution
to the thermal conductance of Au chains in the phase-coherent
regime, systematically changing the length of the central chain
of the junction. Moreover, we present a comparison of these
calculations, which assume harmonic lattice distortions, with
the results obtained using a recently developed procedure
based on classical NEMD simulations that includes inelastic
effects, originating from anharmonic phonon-phonon scatter-
ing [29]. This comparison allows us to test the accuracy of the
phase-coherent approach for the description of phonon trans-
port in these metallic nanoscale wires and provides insights
into the regime, in which the harmonic description is valid.
We will show that the coherent assumption is very accurate
for all of the studied gold chains even for rather long ones,
as the differences between the phase-coherent calculations
and the NEMD are small at sufficiently high temperatures.
This implies that phononic heat transport is coherent and
that the ballistic assumption is valid for those atomic-size
systems.

The rest of this paper is organized as follows. In Sec. II, we
briefly describe the newly developed computational method.
We explain how we obtain the phononic thermal conductance
with the help of nonequilibrium Green’s function techniques
and how the dynamical matrix is extracted from equilibrium
MD. Furthermore, we recall in this section the basics of the
classical NEMD approach, which we recently established [29]
to take into account anharmonic effects in phonon heat flow.
We conclude Sec. II by discussing further technical details of
our MD simulations and by presenting some test calculations.
Section III contains the main results of this work on the
phononic heat conductance of Au single-atom contacts and
chains, and in Sec. IV, we summarize our main findings.

II. THEORETICAL METHODS

In this section, we describe in detail the two main transport
methods that we employ later on to compute the phononic
thermal conductance of atomic-scale metallic wires. We first
discuss the novel coherent transport method that is based on
the determination of the dynamical matrix from classical MD
simulations in thermal equilibrium. Then, we briefly review
the NEMD procedure that we have recently established to
study phonon transport, taking into account anharmonic ef-
fects. Finally, we conclude this section by presenting technical
details of our MD simulations and some simple test calcula-
tions.

FIG. 1. Typical geometry of a metallic atomic-size contact stud-
ied in this work. The contact is divided into three regions, namely the
central scattering region (C, orange), the left reservoir (L, red) and
the right reservoir (R, blue). In this example, the contact consists of
1784 atoms in total, with 20 atoms located in the central part. On the
left and right sides, two layers of fixed atoms (dark gray) stabilize the
system during MD simulations. In the coherent transport description,
the temperatures TL and TR differ infinitesimally, and no inherent heat
current occurs in the equilibrium MD runs. In NEMD with TL > TR,
the phononic heat current Jph flows from the hot reservoir on the
left at TL to the cold reservoir on the right at TR. Energies added or
subtracted to maintain a constant temperature gradient are denoted
by �EL and �ER.

A. Equilibrium molecular dynamics and phase-coherent
phonon heat transport

Let us start by describing, how the phononic heat conduc-
tance can be determined in the harmonic approximation and in
the phase-coherent transport regime, where all the scattering
events are elastic. Our goal is to compute the heat conductance
due to the transport of phonons in a nanocontact, as the one
depicted in Fig. 1.

Within the Landauer-Büttiker approach for coherent trans-
port the phononic heat conductance in the linear response
regime is given by [9,31]

κph = 1

h

∫ ∞

0
dE Eτph(E )

∂n(E , T )

∂T
, (1)

where τph(E ) is the energy-dependent phononic trans-
mission function, T is the temperature, and n(E , T ) =
[exp(E/kBT ) − 1]−1 is the Bose function. To compute the
transmission τph(E ), we use standard nonequilibrium Green’s
function techniques [9,31]. The basic ingredient is the dynam-
ical matrix D, which we assume to be given. Its determination
is discussed further below, and it is typically the most time-
demanding computational step.

We start by dividing the atomic contact into three regions,
as shown in Fig. 1: the left (L) and right (R) reservoirs,
which are semi-infinite, and the central (C) part. Following
this division, the dynamical matrix can be written as

D =
⎛
⎝DLL DLC 0

DCL DCC DCR
0 DRC DRR

⎞
⎠, (2)

where we assume that the reservoirs are not directly coupled.
This latter assumption can typically be satisfied, by choosing
the C region long enough. As discussed in Refs. [9,31], the
phonon transmission function can be expressed in terms of
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the phonon Green’s function G(E ) as follows:

τph(E ) = Tr[GCC(E )�L(E )G†
CC(E )�R(E )]. (3)

Here, the retarded phonon Green’s function of the C part is
given by

GCC(E ) = [(E + iη)21 − DCC − �L(E ) − �R(E )]−1, (4)

the embedding lead self-energies are

�Y (E ) = DCY g
YY

(E )DY C, (5)

and g
YY

(E ) is the retarded surface Green’s function of the
reservoir Y = L, R. Finally, the broadening matrices �Y (E ),
appearing in Eq. (3), are related to the self-energies via

�Y (E ) = i[�Y (E ) − �†
Y (E )]. (6)

The total transmission τph(E ) can be decomposed at each
energy E into contributions stemming from individual phonon
transmission eigenchannels, in analogy to the electronic de-
scription [9,32], as

τph(E ) = Tr[tph(E )t†
ph(E )] =

∑
i

τph,i(E ), (7)

where

tph(E ) = �
1/2
R (E )GCC(E )�1/2

L (E ) (8)

is the transmission amplitude matrix and τph,i(E ) are the cor-
responding eigenvalues of the transmission probability matrix
tph(E )t†

ph(E ).
With the knowledge of the dynamical matrix D we can

thus compute the phononic heat conductance κph in the phase-
coherent approximation. We now describe, how we obtain the
dynamical matrix of a mechanical system by making use of
classical MD in thermal equilibrium, assuming a harmonic
model for the lattice vibrations [33].

We consider an infinite crystal in three spatial dimensions,
where every atom i is located at its equilibrium position ri. The
corresponding displacement of the atom i from the equilib-
rium position is specified by the vector ui. If the displacement
is small for all atoms, we can use the harmonic approximation
and describe the potential energy of the crystal as follows

U = 1

2

∑
iα, jβ

(
∂2U

∂uiα∂u jβ

)
0

uiαu jβ . (9)

Here α, β = x, y, z indicate the spatial direction, and the sub-
script 0 reminds us that the derivatives are evaluated at the
equilibrium positions of the atoms i, j. For convenience, we
introduce the following notation for the second derivatives of
the potential:

	iα, jβ =
(

∂2U

∂uiα∂u jβ

)
0

, (10)

which are the atomic force constants. As usual, and due to
the translational symmetry of a crystal, the diagonal ele-
ments (i = j) in the previous equation can be related to the
off-diagonal elements (i �= j) by the so-called acoustic sum

rule

	iα,iβ = −
∑
i �= j

	iα, jβ . (11)

The equation of motion of the atoms in this harmonic model
reads

miüiα = −
∑
j,β

	iα, jβu jβ . (12)

This relation has wavelike solutions of the form

uiα (r, t ) = 1√
mi

Aiαei(q·r−ωt ), (13)

where Aiα is the amplitude and q the wave vector. Introducing
this ansatz into Eq. (12), we arrive at the secular equation

D − ω21 = 0, (14)

where

Diα, jβ = 1√
mim j

	iα, jβ (15)

are the elements of the dynamical matrix and mi is the mass
of atom i.

For the calculation of the dynamical matrix, we follow
Refs. [34–36] and compute it by monitoring the displacement
of the atoms in classical equilibrium MD simulations. In sim-
ple terms the central idea of this method can be understood
as follows. Let us consider a single particle attached to a
massless spring with spring constant k and moving in one
dimension along the x axis. The equipartition theorem relates
the particle’s elastic energy to the temperature T as follows:

1
2 k

〈
u2

x

〉 = 1
2 m

〈
v2

x

〉 = 1
2 kBT, (16)

which implies that

k = kBT〈
u2

x

〉 . (17)

Here, ux characterizes the fluctuations of the particle relative
to its equilibrium position, vx is the velocity, and 〈. . . 〉 de-
notes an ensemble average. This relation suggests that force
constants can be determined as the inverse of mean square
displacements.

To establish this connection, we introduce the correlation
matrix K that describes the pairwise correlations between
atomic displacements, defined as [34,36,37]

Kiα, jβ = 〈uiαu jβ〉 = 〈riαr jβ〉 − 〈riα〉〈r jβ〉. (18)

The dimension of the correlation matrix K is 3N × 3N , if N is
the number of atoms in the system. Following the idea above
and thanks to the equipartition theorem, we relate the force
constants to the spatial correlations in Eq. (18) as follows:

	iα, jβ = kBT [K−1]iα, jβ , (19)

where [K−1]iα, jβ denotes the element (iα, jβ ) of the inverse
of the correlation matrix K. Finally, the dynamical matrix is
obtained from Eq. (15). Since D is a thermodynamic quantity,
it is affected by thermal noise in a finite sample. To take this
into account, we introduce a cutoff rc such that if |ri − r j | >

rc, then Diα, jβ = 0 for our nanocontacts.
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In detail, we calculate interatomic force constants of nano-
junctions, see Fig. 1, directly in real space rather than in
reciprocal space. This is adequate, because the atomic junc-
tions do not possess any periodicity. The procedure delivers
the dynamical matrix in Eq. (2), however with finite regions
L and R. To compute the phonon transmission, we retain
only the parts DCC, describing the central part, and the cou-
plings to L and R electrodes, DCY = D†

Y C with Y = L, R. To
improve the description of the electrodes, we perform sepa-
rate calculations for bulk gold. For this purpose, we employ
periodic boundary conditions in three dimensions, construct
the correlation matrix and subsequently the force constants
in reciprocal space, as described in Refs. [34–36]. Through
a Fourier transformation they are used to construct the semi-
infinite electrodes in real space, effectively replacing the finite
reservoir matrices DLL and DRR of the simulated nanojunc-
tions with semi-infinitely extended ones. It should however be
noted that the electrodes enter only in terms of the electrode
surface Green’s functions in the calculation of the phononic
transmission and derived thermal conductance. Therefore we
compute electrode surface Green’s functions with the help of
the decimation technique from the bulk parameters [38]. The
required length and minimal width of the surface region is
determined by the couplings DCY = D†

Y C of the nanojunctions.
The procedure follows the idea of the cluster-based approach
to electronic quantum transport, described in Ref. [39], where
the nanojunction, simulated in real space, is considered as the
extended central cluster.

Thus we obtain the dynamical matrix from MD simula-
tions at a certain temperature, by monitoring the positions
of the atoms in time. This holds as long as the system un-
der study is in thermal equilibrium, and the atoms fluctuate
with small displacements around their equilibrium positions
so that the harmonic approximation and equipartition theorem
are valid. Since the molecular dynamics simulations, as we
perform them here, are purely classical, the equipartition the-
orem holds down to the lowest temperatures. We can thus use
Eqs. (18) and (19) to determine the dynamical matrix at any
temperature and are in particular not limited to temperatures
above the Debye temperature TD. Let us finally stress that
Refs. [34–36] calculate the correlation matrix and interatomic
force constants in reciprocal space, as we do for the bulk
parameters. However, the construction of the correlation and
force constant matrices directly in real space, as we per-
form it here for the atomic junctions of the form visible in
Fig. 1, has not been implemented before to the best of our
knowledge.

In the following, we refer to the procedure of force constant
determination through MD at a certain T and subsequent heat
conductance calculations in the Landauer-Büttiker frame-
work, using Eq. (1) at that same T , as MD@T -LB. An
approximation along the lines of typical DFT approaches [40]
is to compute the force constants at a single fixed temperature
Tfix, but to nonetheless determine κph at different T through
Eq. (1). This assumes that force constants depend only weakly
on temperature, and we refer to this simplified procedure as
MD@Tfix-LB.

MD@T -LB and MD@Tfix-LB are both applicable to any
system, where equilibrium MD simulations are available.
The MD simulations can be based on empirical interatomic

interactions to largely accelerate computations, but also ab
initio MD is possible.

B. Nonequilibrium molecular dynamics and incoherent
phonon heat transport

The method explained in the previous section describes
phonon flow in the phase-coherent transport regime, where
anharmonic effects are assumed to be small. To assess the im-
pact of inelastic phonon-phonon interactions on the phononic
heat conductance of metallic atomic-size contacts beyond
a temperature-dependent renormalization of harmonic force
constants, we employ a method that we have recently pre-
sented [29]. It is based on classical MD simulations under
an applied temperature gradient, referred to as NEMD. We
briefly describe it here, while details of the MD calculations
are explained in the next section.

We consider an atomic contact, as depicted in Fig. 1, fea-
turing a hot reservoir with temperature TL and a cold reservoir
with temperature TR < TL. A phononic heat current Jph thus
flows from left to right. Because we are only interested in
the phonon transport through the central region, the atom
dynamics of the reservoirs are of no direct importance. We
therefore apply a strong rescale thermostat to both reservoirs.
It rescales the velocities vi of the atoms, following the equipar-
tition theorem

〈EY 〉 =
NY∑
i=1

1

2
mi

〈
v2

i

〉 = 3

2
NY kBTY , (20)

where NY is the number of atoms in electrode Y . Rescaling
to a target temperature TY,t corresponds to a change �EY in
energy of the thermostatted group of atoms

�EY = 〈EY 〉
(

1 − TY,t

TY

)
. (21)

Heating therefore corresponds to a negative change in energy
and cooling to a positive one. Following Fourier’s law, the
phonon thermal conductance κph of the junction is given by

κph = Jph

�T
= 1

2�t

−�EL + �ER

TL − TR
. (22)

Since the energy and temperature of the reservoirs fluctuate,
we monitor �EY and TY over a sufficient long time to reach
reliable averages.

Using classical statistics, the NEMD method takes into
account both elastic and inelastic effects in phonon transport.
Therefore a comparison of this method with the phase-
coherent one, described above, will allow us to determine
the relevance of inelastic scattering in the phonon transport
through atomic contacts. We note that the NEMD description
is expected to break down at sufficiently low temperatures,
when quantum statistics play a role. Roughly, we expect that
T needs to be larger than the Debye temperature TD for the
classical approximation to hold. In comparison, the phase-
coherent method in the harmonic approximation MD@T -LB,
see Sec. II A, correctly incorporates Bose-Einstein quantum
statistics through Eq. (1), once a dynamical matrix has been
determined.
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C. Technical details of molecular dynamics simulations

The transport methods, described in the previous two sec-
tions, use classical MD simulations, either in equilibrium or
nonequilibrium. In this section, we explain in detail how we
carry out the simulations.

All the MD simulations presented in this work are per-
formed with the open-source package LAMMPS [41,42]. We
describe interatomic interactions with the embedded-atom
method [43], taking the potential for Au from Ref. [44]. The
use of the same interatomic interaction potential for MD@T -
LB, MD@Tfix-LB, and NEMD ensures the comparability of
the simulations. Junction geometries are oriented such that the
〈111〉 crystallographic direction coincides with the transport
direction. The central scattering region of the gold contacts
consists of two adjacent pyramids, connected by a chain of
atoms. To the left and right of the central part, see Fig. 1, semi-
infinite reservoirs with 630 atoms are followed by two atomic
layers of 252 atoms with fixed atoms. These outermost regions
are used to stabilize the junctions during the simulations.
For each junction geometry we did an energy minimization
run for the C part, see Fig. 1, using the conjugate gradient
method of LAMMPS prior to our MD simulations for force
constant extraction. The reservoirs L and R are subsequently
coupled to the optimized C part such that minimal pressure
or stress is exerted on the studied junctions. Orthogonal to the
transport direction we employ periodic boundary conditions
to model extended surfaces of the reservoirs. The studied
contacts with a variable number of chain atoms consist of
around 1800 atoms in total. The length of the junctions varies
from about 33 Å for the shortest contact up to 61 Å for the
longest one, measured from the leftmost layer of reservoir
L to the rightmost layer of reservoir R. The dimer contact
geometry, shown in Fig. 1, exhibits a junction length of about
35 Å.

For statistical analysis we provide random initial velocities
to the junction atoms in L, C, and R regions to obtain different
time evolutions during the simulations. For each temperature
and each geometry we perform 20 individual simulations and
average over the computed thermal conductances in this set.
Thermal equilibration is achieved by applying a Nosé-Hoover
thermostat to all junction atoms over a sufficiently long time
of 1 ns to reduce fluctuations in temperature. This is done for
the equilibrium MD and the NEMD simulations, respectively.
If not mentioned otherwise, we use a time step of 1 fs in the
MD simulations.

Following Sec. II A, the extraction of atomic force con-
stants for the individual nanojunction simulation in the
coherent transport method is done in the NVE ensemble with-
out a thermostat to avoid interactions with an external heat
bath. After thermal equilibration of the system the ensemble
average of Eq. (18) is taken over 200 000 atomic configu-
rations or frames to construct the correlation matrix, from
which the force constants are obtained via Eq. (19). The total
simulation time for the individual junction in the set amounts
to 20 ns, with a snapshot being taken every 0.1 ps to achieve a
good sampling.

Beside the force constants of the C part of the nanocon-
tact and the couplings to L and R electrodes, we need the
force constants for the bulklike electrodes. For this purpose,

we simulate bulk Au, using a primitive unit cell and pe-
riodic boundary conditions with a k grid of 16 × 16 × 16.
Starting with randomized velocities, an equilibration is per-
formed with a Nosé-Hoover thermostat for 1 ns, as for the
nanojunctions. Subsequently, correlations are determined in
reciprocal space every 1 ps during a total time interval of
20 ns for an MD run in an NVE ensemble. Through the time
average of the correlations, force constants are computed,
which are then transformed to real space through a Fourier
transformation, where we impose the FCC space group sym-
metry, as described for the electronic case in Ref. [39].
Using the symmetrized bulk parameters in real space, elec-
trode surface Green’s functions are constructed, assuming
transverse periodic boundary conditions of 32 × 32 lattice
constants.

To account for the thermal noise in our Landauer-Büttiker-
based transport calculations, we find it necessary to choose
a finite cutoff radius rc for the atomic force constant de-
termination of the nanocontacts, cf. Sec. II A. To find out,
which spatial cutoff is reasonable, we systematically studied
the phononic thermal conductance as a function of rc for
two junctions with chain lengths of 1, the monomer, and 8.
The cutoff was varied from 2 to 52 Å at T = 300 K. For
the monomer the phononic thermal conductance is basically
independent of the cutoff for 6 Å � rc � 14 Å, for the chain
with a length of 8 atoms κph is constant for 6 Å � rc � 28 Å.
Therefore rc = 10 Å appears to be a reasonable choice for
short as well as long chains.

The (targeted) temperature difference between the two
reservoirs in the NEMD method is chosen as �T = TL −
TR = 30 K. The temperature difference is established by
steadily heating the reservoir L, see Fig. 1, with a slope of
30 K/ns up to the target temperature TL,t, while the cold
reservoir R is kept at TR,t. The C part of the junction is
simulated in the NVE ensemble without applying an external
thermostat during this heating. After the heating process the
two reservoirs L and R of the junction are once more equi-
librated for 1 ns at their respective temperatures TL,t and TR,t

to reduce temperature fluctuations. Given the steadily main-
tained temperature difference, the changes of energy �EY and
temperature TY in the electrode Y = L, R are determined over
a sufficient long time of 200 ns in each individual junction
simulation, with a snapshot taken every 1 ps to achieve a
good sampling. For the calculation of the phononic thermal
conductance value of a single run in the set of 20, we av-
erage over the last 50,000 data points. Note that we always
specify phononic conductance values of the NEMD calcula-
tions with respect to the target temperature TR,t of the cold
reservoir.

Since we use a geometry, where the central part is directly
coupled to two thermostatted electrodes, see Fig. 1, finite
size effects need to be analyzed. Therefore we systematically
added 3, 6, 12, 18, and 36 atom layers with the lateral size of
those in L and R parts to the C part and studied the influence
on the phononic thermal conductance. We found the thermal
conductance to slightly increase with the size of the reservoirs,
but the changes in κph were only on the order of a few pW/K
at 300 K. For this reason and for the sake of computational
efficiency, we selected the contacts with the smallest number
of atoms in the C region, as shown in Fig. 1.
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FIG. 2. Bulk phonon DOS, calculated at 300 K (solid purple line)
with our approach, and experimental DOS (dashed black line) taken
from Ref. [45] at 297 K. Additionally we show a DOS determined at
300 K with existing functionality of LAMMPS [35,36,42] (solid green
line). DOS curves are normalized by the total area enclosed.

D. Test of the phase-coherent transport method

To test the accuracy of the phase-coherent transport method
MD@T -LB, we first assess the quality of the bulk description.
For this purpose we extracted bulk force constants in recipro-
cal space, as described in Secs. II A and II C, and compare the
computed density of states (DOS) with available experimental
data [45]. As it is visible in Fig. 2, the agreement is satisfac-
tory. The main difference is that the theory underestimates the
energy of the vibrational modes at the second peak of the DOS
by about 20%. The good agreement of our calculation with the
DOS, computed with LAMMPS directly [35,36,42], illustrates
that deviations between theory and experiment originate from
the employed potential itself.

As another analytically trackable test case we consider a
one-dimensional (1D) atomic chain. Employing MD within
the NVE ensemble, we simulated a chain containing 16 atoms,
assuming periodic boundary conditions, a mass of m per atom,
harmonic bonds with interatomic potentials U = 1

2 k(r − r0)2

and the spring constant k, see the inset of Fig. 3. The equilib-
rium bond distance in the chain was set to r0. Using a time step
of 5 × 10−3√m/k in the MD simulations, the equilibration
employed a Langevin thermostat at a temperature of T =
5 × 10−3kr2

0/kB for 5 × 106 steps. Correlations were recorded
regularly every 250 steps for a total of 2 × 107 steps, from
which we obtain the force constants and dynamical matrix.
Note that we specify all physical quantities of this model in
terms of reduced units of r0, m, k and kB. The 1D chain
was divided into L, C and R parts, as shown in Fig. 3, with
the C part containing NC = 6 atoms. The phononic transmis-
sion τph(E ) was then determined within the nonequilibrium
Green’s function formalism, as described in Sec. II A, using
the analytic solution for the surface Green’s function of a
semi-infinite chain with phononic nearest neighbor couplings
k. As it is evident from Fig. 3, our results compare in an
excellent manner to the fully analytical solution that can be
obtained for this simple model. The agreement holds in the
whole range of energies studied, and especially the edge at
2
√

k/m is reproduced very accurately.

FIG. 3. Phononic transmission function τph(E ) of a 1D chain
with harmonic bonds. We compare the curve computed with force
constants extracted from MD simulations (solid purple line and pur-
ple crosses) to the expected analytical behavior (dashed black line).
The different quantities are given in reduced units. Above the plot
we show the system under study, indicating L, C and R regions. The
blue-colored atoms are neighbors due to the assumed 1D periodic
boundary conditions.

III. RESULTS

In this section, we present the main results of this work.
We analyze quasi-1D Au chains coupled to three-dimensional
electrodes and discuss the influence of temperature and
chain length on the phononic heat conductance. In addi-
tion, we compare phase-coherent transport to the NEMD
method, which includes also inelastic effects from anhar-
monic phononic interactions.

A. Length dependence of the phonon thermal conductance
of Au chains

The main strength of our phase-coherent transport method
MD@T -LB is the inherent temperature dependence that MD
simulations take into account and the time-efficient descrip-
tion even of large systems of several thousand atoms, if
empirical interatomic interactions are used. We will demon-
strate these aspects in this section by applying MD@T -LB
and MD@Tfix-LB to quasi-1D Au chains. To analyze the
importance of inelastic scattering events for the phononic
thermal conductance, we consider different lengths of the
central chain of the junction by varying atom numbers from
1 to 12. We will compare the predictions of the three dif-
ferent methods, introduced in Sec. II: (i) the phase-coherent
method MD@T -LB, (ii) MD@Tfix-LB with Tfix = 100 K, and
(iii) classical NEMD. Method (ii) assumes that atomic force
constants are basically independent of temperature and cor-
respond to those at 100 K. It is comparable to a static DFT
ansatz, where force constants are for instance evaluated once
with density functional perturbation theory for the ground
state geometry [27,32].

Figure 4 shows the phononic thermal conductance as a
function of temperature for the different computational meth-
ods. Going from the top left to the bottom right, the length
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FIG. 4. Phonon thermal transport through gold junctions. Junction geometries are shown in the top panels. The length of the central atomic
chain ranges from 1 (top left) to 12 atoms (bottom right) between the two pyramids. Middle panels show phonon eigenchannel transmissions
τph,i(E ) with force constants determined at 100 K. Phononic thermal conductance κph, bottom panels, as a function of temperature for the
three studied methods: We compare the results of the coherent method MD@T -LB (green circles), a simplified coherent method with a
temperature-independent approximation for the dynamical matrix MD@100K-LB (blue triangles), and classical NEMD (purple squares).
Mean values solely consider junctions that did not break during the 20 simulations performed at each T in MD@T -LB and NEMD, and error
bars specify standard deviations in this set of thermal conductances. For MD@100K-LB predictions of κph are made at each T using the force
constants determined in different simulation runs at Tfix = 100 K, and error bars visualize the corresponding standard deviations. Since NEMD
is based on a classical theory, its results at sufficiently low temperatures are not meaningful. To visualize this, we grayed out data points for
T < TD ≈ 170 K.
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of the central chain increases. Junction geometries are dis-
played in the top panels of Fig. 4, middle panels show the
transmissions of phonon eigenchannels as a function of en-
ergy for the phase-coherent calculation using force constants
extracted at 100 K, and bottom panels depict phononic ther-
mal conductances as a function of temperature. Values of
κph represent averages over the 20 simulations performed in
MD@T -LB and NEMD for each nanocontact at a fixed T ,
while error bars characterize the standard deviation. The av-
erages solely consider junctions that did not break during the
simulation runs. Since we find breakage especially for longer
chains at elevated temperatures, the sample size for some data
points is less than 20. For example, for the junction with 12
chain atoms, every NEMD run at or above a temperature of
200 K broke before the end of the simulation time, and hence
no data is available at T � 200 K for this method. Similar
statements hold for MD@T -LB, but we generally find that
the metallic atomic contacts break at lower temperatures in
NEMD than in equilibrium MD. Since we specify the tem-
perature in NEMD with regard to the colder reservoir TR,t,
the applied temperature gradient leads to a higher effective
temperature of the nanostructures in NEMD than in equilib-
rium MD. This rationalizes the reduced stability observed in
the NEMD simulations. Since junctions are generally stable
at T = 100 K, MD@100K-LB yields data points throughout
the entire temperature range studied. The standard deviations
for MD@100K-LB characterize differences in predicted κph

values, resulting from the force constants determined in the
20 simulation runs at 100 K.

Concerning phonon transmission, Fig. 4 shows that for
all junctions only up to three transmission eigenchannels
contribute. While the three channels may exhibit a similar
transmission for energies E � 7 meV, a single channel de-
termines the transmission above. For short chains, second
and third channels range up to energies of 10 meV but tend
to vanish sooner for long chains. In general, a transmission
eigenchannel at a fixed energy is a linear combination of
many different local vibrations [32]. In the case of the studied
chain junctions, the narrowest part of the wire is one-atom
thick and can be assumed to be quasi 1D. In that limit the
transmission eigenchannels should reflect the three acoustic
phonon modes of a 1D chain, i.e., one longitudinal and two
transversal [27,32]. This behavior is confirmed by our results,
see the middle panels of Fig. 4, and conveys that we are
basically dealing with quasi-1D phonon transport.

Let us justify the choice of Tfix = 100 K in MD@Tfix-
LB for the approximation of the thermal conductance
with temperature-independent force constants. MD@T -LB in
Fig. 4 shows that the thermal conductance is well saturated at
this temperature, particularly for long chains. Hence, Tfix =
100 K allows us to identify crucial temperature-dependent
changes in force constants by comparison of MD@T -LB
and MD@100K-LB. Results of classical NEMD are only
valid at high enough temperatures T � TD. Above the De-
bye temperature TD, the statistics of phonons are basically
classical and quantum corrections can thus be neglected. For
sufficiently low temperatures T � TD, NEMD cannot predict
the correct temperature dependence of the phononic thermal
conductance. To signal caution, we have hence grayed out
NEMD results for T < TD ≈ 170 K in Fig. 4.

The thermal conductance predicted by MD@T -LB in-
creases rather monotonically with T in Fig. 4 for the short
chains, especially the monomer and dimer, while we typically
observe a saturation for longer chain lengths and subsequent
weak decay. For the monomer and dimer, κph of MD@T -LB
is larger for T > 100 K compared to the values predicted
with MD@100K-LB. This signals a significant dependence of
force constants on temperature. Indeed, we assign the increase
of the thermal conductance for short chain lengths and high
temperatures to the thermal expansion of electrode reservoirs.
Since we use fixed atoms to the left and right side, reser-
voirs can only expand towards the center of the junctions,
narrowing the gap distance between left and right electrode
surfaces. This decreases the mean spatial distance between
the atoms in the central scattering region and thus enhances
the phononic thermal conductance. For longer chains, starting
with the trimer, MD@T -LB and MD@100K-LB give very
comparable results. Indeed the heat conductance predicted by
MD@100K-LB overestimates those of MD@T -LB, which
slightly decays at high enough T � 150 K. We assign this
effect to disordered chains, which form due to the thermal
expansion of the electrode reservoirs. If we monitor the mean
displacement of the chain atoms transverse to the transport
direction, the chains are less linear at higher temperature,
increasing the elastic scattering and thus lowering the over-
all phononic transmission. In that sense, in MD@T -LB the
temperature affects the properties of the phonon modes and
subsequently the energy dependent phononic transmission as
the geometry of the nanojunctions changes. We note that for
MD@100K-LB, using a temperature-independent dynamical
matrix determined at Tfix = 100 K, the phononic transmission
is temperature independent and the phonon thermal conduc-
tances in Fig. 4 hence saturate at a constant value with
increasing T . The small deviations in κph of a few pW/K
between MD@T -LB and MD@100K-LB methods show that
a temperature-independent description of atomic force con-
stants is generally a good approximation for the studied
systems. Differences between MD@T -LB and MD@100K-
LB may be used to learn more about the mechanical and
thermal characteristics of a nanostructure.

The heat conductance determined with NEMD in Fig. 4 is
always larger than those of MD@T -LB. Quantitatively, within
the limits of applicability of classical statistics, i.e. T � TD,
deviations are relatively small and at most of the order of
10 pW/K. The qualitative behavior agrees very well, i.e.,
κph increases rather monotonically with T for short chains,
including the monomer, dimer and additionally the trimer,
while we observe a saturation for longer chain lengths and
a slight decay. The suppression of the heat conductance in
NEMD for long chain lengths and high T could in principle
be assigned both to the effect of increased elastic scattering
due to induced chain disorder by thermal reservoir expansion
and increased inelastic scattering due to phonon-phonon in-
teractions [46]. However, the quantitatively similar trends of
the phase-coherent method MD@T -LB suggest that the slight
suppression of κph at high T originates from elastic scattering
in an effectively disordered chain.

Overall, the agreement of results of the classical NEMD
and the temperature-dependent, coherent method MD@T -LB
in Fig. 4 is very good. We note that we are comparing two
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methods that are making completely different assumptions
about the theoretical description of phononic heat transport.
Let us also emphasize that our computational results are
statistically very stable, as can be seen by the small error
bars. Absolute differences are only about a few pW/K, and
we observe that differences between NEMD and MD@T -LB
tend to decrease with increasing chain length. While we use
large nanocontacts and a high sample size in our calculations,
differences may still arise from systematic numerical uncer-
tainties of our finite-size study.

The phononic thermal conductance of single-atom con-
tacts has already been studied and discussed intensively
in other works using DFT-based methods [4,27,28]. In
Ref. [4], phononic thermal transport was found to yield
only about 4% of the total thermal conductance κ = κel +
κph at room-temperature for a gold dimer junction. With a
prevalent electronic contribution of κel ≈ 0.59 nW/K this cor-
responds to a phononic thermal conductance of about κph ≈
0.025 nW/K at T = 300 K. Our results predict a phononic
thermal conductance of κph = 0.020 nW/K at T = 300 K for
the studied gold dimer junction in Fig. 4 using the MD@T -
LB approach, which is in excellent agreement with the one
calculated via DFT [4]. Another DFT-based calculation of
a gold dimer was presented in Ref. [27], where the validity
of the Wiedemann-Franz law was investigated for metallic
atomic-size contacts. In that case Klöckner et al. determined a
phononic thermal conductance of κph = 0.051 nW/K at room
temperature, which is about 2.5 times higher than our result in
this work. In both reports [4,27], the geometry of the studied
dimer junction slightly differs from the one that we are using
here. However, these comparisons show that our MD@T -LB
approach is a valid description of phononic thermal transport.

To get a more detailed view on the length dependence of
the thermal conductance, we show it as a function of the
number of atoms in the central chain of the junction for
selected temperatures in Fig. 5. Results of the three studied
methods are compiled in separate panels. In every case, we
see finite-size oscillations and a decline of κph with increasing
chain length. For larger chain lengths, κph is rather constant
and shows only weak oscillations, a clear signature of ballistic
conduction. For all three methods, the thermal conductance
is suppressed at a chain length of two atoms. This reduction
of the thermal conductance can be traced back to a suppres-
sion of the phonon transmission of the dominant transmission
eigenchannel in the energy range between 5 and 10 meV, see
the panels containing the phononic transmission coefficients
in Fig. 4. Whether this effect is real or an artifact of the em-
ployed embedded-atom method potential is unclear, however,
and remains as an interesting point for experimental examina-
tion. The plots for MD@T -LB and MD@100K-LB also show
that above about 100 K the thermal conductance depends only
weakly on temperature. For the thermal conductance of the
classical NEMD calculations in the bottom panel of Fig. 5,
we notice only a weak temperature dependence. Consistent
with Fig. 4, the thermal conductance at T = 25 K is very
similar to those at T = 100 K. This erroneous prediction
arises from classical statistics and differs from MD@T -LB
and MD@100K-LB, which both properly take Bose-Einstein
quantum statistics into account. We note that some data points
are missing from MD@T -LB and NEMD, since junctions

FIG. 5. Thermal conductance κph as a function of the number of
atoms in the chain at temperatures of 25, 100, 200, and 300 K. The
results of the three different methods are shown separately, namely
for MD@T -LB, MD@100K-LB and NEMD, going from top to
bottom.

with long atomic chains tend to break at elevated tempera-
tures, as already discussed in the context of Fig. 4.

DFT-based calculations of atomic junctions of Au for chain
lengths ranging from two to five atoms by Bürkle and Asai
[28] show that the ratio κph/κel between phononic and elec-
tronic thermal conductance at room-temperature depends only
weakly on the length of the junction. Apart perhaps from the
data point of the dimer, this is consistent with the results of
Fig. 5 in the sense that the phononic thermal conductance is
almost independent of the chain length.

To summarize, for T � TD the results of the three differ-
ent calculation methods differ only by a few pW/K for Au
metallic atomic contacts containing long chains. This strongly
suggests that the phononic thermal transport through the stud-
ied junctions is phase-coherent even for rather long chains
with up to 12 atoms. Longer chains could not be studied
here for practical reasons, since most of them broke during
simulations. While it would be interesting to investigate much
longer chains to see if there is a critical length above which
scattering is no longer elastic, experiments indicate that a
maximum length of up to eight chain atoms can be realized
[47–49]. Altogether our results corroborate that the harmonic
approximation used in the coherent transport calculations is
well suited for the studied atomic-size junctions.

B. Computational costs

To evaluate the efficiency of the newly introduced
phase-coherent phonon transport methods MD@T -LB and
MD@Tfix-LB, let us now compare the computational costs of
the presented simulation procedures. We do this exemplarily
for the monomer junction shown in the upper leftmost panel
of Fig. 4. The junction consists of 1783 atoms.
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At a fixed temperature we need about 288 core-h for one
NEMD run, including the MD simulation and calculation of
the phononic thermal conductance. With a total number of
20 individual runs per temperature to construct a sufficient
statistical data base and 14 different temperatures, this value
needs to be multiplied by a factor of 280 to obtain the total
amount of core-h. The study of a single junction type using
NEMD, as shown for κph in the upper leftmost panel of Fig. 4,
thus corresponds to a computational cost of about 80,640
core-h.

In the phase-coherent regime, using MD@T -LB, the cal-
culation of the phononic thermal conductance takes about
48 core-h. This includes 28 core-h for the equilibrium MD
simulation and additional 20 core-h for the calculation of force
constants and transport. With the same statistical sample of
20 individual simulations per temperature and 14 different
studied temperatures, this results in a total computational cost
of about 13,440 core-h. This is about 6 times faster than
NEMD. If we only compare the MD part of the calculations,
the coherent description is about 10 times faster than NEMD.

If we disregard the temperature dependence of the inter-
atomic force constants and use the simplified MD@Tfix-LB
procedure for the evaluation of phase-coherent phononic
conduction, a single geometry can be studied even more ef-
ficiently. As for MD@T -LB, the total computational cost of a
single transport calculation at Tfix = 100 K equals to about
48 core-h. With 20 individual simulations at this tempera-
ture for statistical relevance, this yields about 960 core-h for
a single junction geometry. Note that the transport calcula-
tions at the remaining 13 different temperatures correspond
to negligible computational demand, which we neglect here.
Hence, MD@Tfix-LB requires about a factor 14 less core-h
as compared to MD@T -LB and a factor of 84 as com-
pared to NEMD. Considering that results of MD@T -LB and
MD@Tfix-LB differ little for the metallic atomic contacts and
in relation to the computational costs, this approximation can
certainly be used to obtain an excellent first guess.

IV. CONCLUSIONS

In this work, we have introduced a method to calculate
atomic force constants of nanostructures directly from MD
simulations in thermal equilibrium by tracking atomic po-
sitions in real space. The force constants are then used to
evaluate the phononic contribution to the thermal conduc-
tance of nanocontacts. This step utilizes the framework of
the Landauer-Büttiker scattering theory for coherent transport,
expressed in terms of nonequilibrium Green’s function tech-
niques. At the example of monoatomic metallic nanocontacts,
we have confirmed the validity and accuracy of this novel
approach.

The advantage of the new coherent transport method
is twofold. On the one hand, if reliable semiempirical
interatomic interaction potentials are available, it is less time-
consuming than ab initio approaches, which facilitates the
modeling of large systems. We have illustrated this fact by
showing calculations for junctions with up to 1794 atoms,
which are difficult to handle with conventional DFT-based
methods. On the other hand, our MD-based approach auto-
matically takes into account the temperature dependence of
the dynamical matrix, which is usually ignored in static ab
initio procedures.

For gold metallic nanowires, featuring lengths of atomic
chains from 1 to 12 atoms, we have assessed the relevance of
inelastic effects due to anharmonic phonon-phonon scattering
by comparing results of the phase-coherent method to those
obtained with classical NEMD. While being applicable only
above the Debye temperature TD because of classical statis-
tics, the latter approach naturally takes inelastic effects into
account. At sufficiently high temperatures (T � TD), where
all relevant phonon modes are populated, the phononic heat
conductance is only weakly dependent on temperature and
chain length. Overall this behavior, which we observed con-
sistently for the MD@T -LB as well as the NEMD description,
clearly signals the ballistic nature of phonon conduction in the
studied metallic atomic-size contacts. Thus we conclude that
the nanojunctions are sufficiently stiff to suppress anharmonic
phonon interactions, leading to mainly elastic scattering and
phase-coherent phonon heat transport.

To conclude, we emphasize that the coherent transport
method MD@T -LB, introduced in this work, is by no means
restricted to metallic atomic-size contacts: it can be applied to
describe the coherent phonon transport in any nanostructure, if
MD simulations can be carried out. In this sense, we anticipate
that this method may become very useful to investigate differ-
ent questions related to heat flow through molecular junctions
[6,7], where the thermal conductance is determined by phonon
conduction.
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