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For the fight against the COVID-19 pandemic, it is particularly important to map the course of infection, in 
terms of patients who have currently tested SARS-CoV-2 positive, as accurately as possible. In hospitals, this 
is even more important because resources have become scarce. Although polymerase chain reaction (PCR) 
and point of care (POC) antigen testing capacities have been massively expanded, they are often very time- 
consuming and cost-intensive and, in some cases, lack appropriate performance. To meet these challenges, 
we propose the COVIDAL classifier for AI-based diagnosis of symptomatic COVID-19 subjects in hospitals 
based on laboratory parameters. We evaluate the algorithm’s performance by unique multicenter data with 
approximately 4,000 patients and an extraordinary high ratio of SARS-CoV-2-positive patients. We analyze 
the influence of data preparation, flexibility in optimization targets, as well as the selection of the test set on 
the COVIDAL outcome. The algorithm is compared with standard AI, PCR, POC antigen testing and man- 
ual classifications of seven physicians by a decision theoretic scoring model including performance metrics, 
turnaround times and cost. Thereby, we define health care settings in which a certain classifier for COVID-19 
diagnosis is to be applied. We find sensitivities, specificities, and accuracies of the COVIDAL algorithm of up 
to 90 percent. Our scoring model suggests using PCR testing for a focus on performance metrics. For turn- 
around times, POC antigen testing should be used. If balancing performance, turnaround times, and cost is 
of interest, as, for example, in the emergency department, COVIDAL is superior based on the scoring model. 
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Table 1. Number of Publications in Different Categories based on Literature Reviews on COVID-19 and AI 

Review Hospital 
admission 

Contact 
tracing 

Drugs and 
vaccination 

SARS-CoV-2 
prognosis 

SARS-CoV-2 
diagnosis 

Diagnsotic 
imaging 

Wynants et al. [ 2020 ] 1 – – 9 5 12 

Lalmuanawma et al. [ 2020 ] – 36 3 4 2 2 

Alballa and Al-Turaiki [ 2021 ] – – – 34 18 –
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ossible. In hospitals, this is even more important because resources such as nursing and med-
cal staff have become scarce [Melman et al. 2021 ]. Although polymerase chain reaction (PCR)
nd point of care (POC) antigen testing capacities for COVID-19 diagnosis have been massively
xpanded, they are often very time-consuming and cost-intensive, and in some cases, lack appro-
riate performance. PCR tests are generally known as the gold standard in COVID-19 diagno-
is in which a nasal or throat swab is drawn and analyzed in the laboratory. POC antigen tests
lso require a nasal or throat swab, but the test result can be autonomously interpreted using an
ntigen test kit. To meet the drawbacks of PCR as well as POC testing, many machine learning
nd Artificial Intelligence approaches have been proposed and reviewed by Wynants et al. [ 2020 ],
almuanawma et al. [ 2020 ], and Alballa and Al-Turaiki [ 2021 ]. Many articles, for example, Bert-
imas et al. [ 2021a ], Bertsimas et al. [ 2021b ], Avetisian et al. [ 2021 ], Wang et al. [ 2021 ], or
okaeinikoo et al. [ 2021 ], focus on the prognosis of COVID-19 patients in terms of the sever-
ty of the disease, contact tracing, or diagnostic imaging, and approximatelyimately 20 different
aper study digital SARS-CoV-2 diagnosis as we do (see Table 1 ). 
A detailed analysis of the 20 papers shows that most authors apply standard machine learning

echniques, such as Support Vector Machines, Logistic Regression, or Neural Networks (see, e.g.,
chwab et al. [ 2020 ] or Tschoellitsch et al. [ 2020 ]), to single-center data with a median data set
ize of 1,482 patients involving 280 SARS-CoV-2 positive cases (median). Usually, research on the
nfluence of concrete data processing plays a subordinate role. A minority of researchers, such as
rinati et al. [ 2020 ], for example, suggest a readily available tool for the application of their algo-
ithms or use alternative data for validation. Retrospective evaluation in terms of a head-to-head
omparison with physicians experienced in COVID-19 care is not in the focus of researchers, al-
hough providing an important benchmark for performance measurement. Applied features are,
or example, vital signs (e.g., Feng et al. [ 2020 ]), demographic characteristics (e.g., Shoer et al.
 2020 ]), symptoms (e.g., Feng et al. [ 2020 ]) or laboratory parameters (e.g., Goodman-Meza et al.
 2020 ]). Similarly, Alballa and Al-Turaiki [ 2021 ] find 18 frequently reported laboratory features.
n our study, we focus on laboratory data for the diagnosis of COVID-19 and review the state-of-
he-art in classification models and laboratory data for COVID-19 diagnosis. After that, we will
riefly identify significant conclusions and limitations discovered in our literature review. To be-
in, red blood cell images of 24 volunteers are used in a highly comparative time-series analysis,
o classify patients in COVID-19 positive and negative cases in O’Connor et al. [ 2022 ]. A deep
eural Network is used on routine blood tests in Rikan et al. [ 2022 ]. The authors find their algo-
ithm performs better than comparable studies in Brinati et al. [ 2020 ], Cabitza et al. [ 2020 ], and
lakus and Turkoglu [ 2020 ]. A limitation of the aforementioned articles is that large multicenter
ata and offline classification approaches, such as expert opinions or POC testing, for comparison
re not used. Thell et al. [ 2021 ] use blood test parameters to build a support tool to distinguish
etween COVID-19 positive and negative patients. They do not however evaluate their method
ith other potential approaches, concerning cost and turnaround times. Kukar et al. [ 2021 ] use
achine learning and blood tests to classify patients in a single center. Zhang et al. [ 2022 ] use dif-



14:4 

f  

a  

c  

s  

d  

T  

t  

c  

[  

a  

o  

a  

c  

a
 

c  

r  

t  

D  

m  

l  

s  

C  

c  

C  

o  

o  

c  

r  

fi  

s  

i  

f  

s  

w  

f  

l  

m  

t  

a  

m  

p  

w
 

c  

p  

S

erent machine learning models and blood tests to classify COVID-19 positive patients into mild
nd severe cases. Chadaga et al. [ 2022 ] use blood parameters and machine learning in a single
enter study. De Freitas Barbosa et al. [ 2022 ] use 24 different best-in-class blood tests to clas-
ify the COVID-19 status of patients. They determine their method saves time and cost. They
o not compare the quality of their support system with other offline means of classification.
himoteo et al. [ 2022 ] compare explainable machine learning models with black-box models for
he diagnosis of COVID-19, using blood counts. A limitation of their studies is that they do not
onsider other means of diagnosis and they do not discuss cost or turnaround times. AlJame et al.
 2020 ] propose an ensemble learning algorithm to determine the COVID-19 status of patients. The
uthors compare their results to other machine learning models but not to physician classification
r POC testing. The authors also provide the first comprehensive review into machine learning di-
gnosing models using routine laboratory/blood data for the classification of potential COVID-19
ases. We therefore advise their review to the interested reader for an in-depth look into different
dditional modelling approaches. 
To the best of our knowledge, no model has been trained using German data or German multi-

enter data. Quantitative performance measurement usually involves frequently applied AI met-
ics such as sensitivity, specificity, or positive predictive values without explicitly considering
urnaround times or classification cost. In our research, we introduce and evaluate the COVI-
AL classifier for diagnosing symptomatic COVID-19 subjects in German hospitals by unique
ulticenter data, with a strong focus on Germany. COVIDAL is a new, non-standard machine

earning algorithm based on laboratory parameters and optimizes, in its base version, the sen-
itivity and accuracy outcome. COVIDAL might be readily applied in German hospitals by our
OVIDAL-APP, depending on the results of wide multicenter training and validation. Our data
ontains approximately 4,000 patients and an extraordinary high ratio of subjects tested SARS-
oV-2 positive. We analyze the influence of data preparation, flexibility in optimization targets,
ther than sensitivity and accuracy, in addition to the selection of the test set on the COVIDAL
utcome. The algorithm is compared with standard AI, PCR, POC antigen testing and COVID-19
lassifications of seven physicians of the University Hospital of Augsburg. Besides classical met-
ics, i.e., sensitivity and specificity, we explicitly evaluate the performance of the different classi-
ers applied in our work, adding turnaround times and classification cost to a decision theoretic
coring model. With the help of the model, we aim at defining settings in which a certain classifier
s to be applied. We find high sensitivities, specificities, and accuracies of COVIDAL of up to 90%
or our multicenter data. In many cases, COVIDAL outperforms standard AI or physicians’ clas-
ification. Regarding data preparation, COVIDAL, other than standard AI techniques, works best
ith real-valued data and thus minimum data processing is necessary, which is a crucial finding
or future applications in hospitals. The optimization strategy has a minor influence on the overall
evel of the outcome while a decision maker is enabled to flexibly adjust for varying predefined
etrics. Our scoring model suggests using PCR testing for a focus on performance metrics as is
he case in elective surgery, for instance. For a focus on turnaround times as in hospital visitor
dmission, POC antigen testing should be used. If there is an interest on balancing performance
etrics, turnaround times and cost as, for example, in the emergency department, COVIDAL is su-
erior based on our scoring model and the COVIDAL-APP might support physicians in their daily
ork. 
Our work is structured as follows: Section 2 presents our data integration process, the different

lassifiers for COVID-19 diagnosis including a detailed description of the COVIDAL algorithm,
erformance metrics, and the scoring model. Section 3 depicts our results, which are discussed in
ection 4 . In Section 5 , we conclude and give an outlook to future research. 
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Fig. 1. Data harmonization process for real-valued data. 
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 METHODS 

.1 Data Preparation 

ata from different sources are included in our analyses: The University Hospital of Augsburg, the
lb Fils Kliniken, and the Lean European Open Survey on SARS-CoV-2 infected patients (LEOSS,
ttps://leoss.net/ ). Data from the University Hospital of Augsburg, Germany, contains data of
ymptomatic patients in the early days of the pandemic, when screening was not yet done in
erman hospitals (March to June 2020). By omitting screening, we guarantee that only sympto-
atic patients and their blood results are considered for classification and asymptomatic patients
o not distort the results. Symptomatic patients are defined in terms of respiratory infection/cold.
he data provided by the Alb Fils Kliniken, Göppingen, Germany, where we consider data for the
ame timeframe, is similar. 
While there are SARS-CoV-2-positive patients in both datasets, most patients are expected to test
egative, having the prevalence rates in Germany in mind. Therefore, we consider a data export of
EOSS. In our LEOSS baseline data, laboratory parameters of SARS-CoV-2-positive patients across
urope, with a strong focus on the first pandemic wave in Germany are included (March 2020 to
ovember 2020). Based on the LEOSS baseline definition, laboratory parameters of 48 hours after
he first positive test result are considered. Unlike the data of the University Hospital of Augsburg
nd the Alb Fils Kliniken, the LEOSS data does not provide real-valued, i.e., cardinally scaled blood
ounts, but ordinally scaled data where blood counts are provided in predefined ranges. Varying
ata structure enables us to research the influence of data preparations on our results in detail. In
he LEOSS protocol patients can be included via PCR confirmed diagnosis or rapid tests as an ac-
eptable alternative. Approval for LEOSS was obtained by the applicable local ethics committees of
articipating centers and registered at the German Clinical Trials Register (DRKS, No. S00021145).
he study at hand has been reported to the local ethics committee, too (20-465, BKF 2020-26). The
EOSS registry was supported by the German Centre for Infection Research (DZIF) and the Willy
obert Pitzer Foundation. To ensure anonymity in all steps of the analysis process, an individual
EOSS Scientific Use File (SUF) was created, which is based on the LEOSS Public Use File (PUF)
rinciples described in Jakob et al. [ 2020 ]. 
Figure 1 shows the harmonization process for real-valued data, i.e., cardinally scaled blood

ounts. The data of both Augsburg and Alb Fils Kliniken first requires identical naming of blood
ests and cleaning of implausible data. The LEOSS data is then translated from ordinal to real-
alued data. While the specific values of patients’ blood tests were not provided, the limits of
he different ordinal categories are known. Using the upper and lower limits for the intervals of

https://leoss.net/
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ifferent blood tests, random values are drawn from a uniform distribution. The number of labo-
atory tests as well as the number of data points varies between the three sources. Harmonization
herefore requires not only renaming, but also determining the most important test parameters,
hich are available in all three data pools. 
After discussions with clinical experts, restrictions for which patients and blood counts to in-

lude were implemented. For SARS-CoV-2 test results, we are mainly interested in the binary
nformation whether a patient is SARS-CoV-2 positive or negative. If the first test of a sympto-
atic patient is negative and a later test, within the same hospital stay, for the same patient is pos-

tive, the patient is designated as SARS-CoV-2 positive for data concerning Augsburg or Alb Fils
liniken. The logic behind this is that a test might be a false negative, but the blood counts might
lready indicate a SARS-CoV-2 positive patient. A patient’s individual blood counts are included
f they are taken 24 hours before or after the first PCR test. In case there are several laboratory
eterminations of the same kind for a patient within the period, the first value is included. For
ost of the included blood tests, we ensure that the specific blood test is done for more than 250
atients within 24 hours of the respective patient’s first PCR test. A patient is not included in the
ombined data pool if any of the C-reactive protein, serum lactate dehydrogenase, hemoglobin,
latelets, erythroblasts, or leukocytes tests is missing. These markers give important information
bout inflammation and cell death. Finally, three test codes, i.e., d-dimer, serum creatinine, and
erum alanine aminotransferase, which inform about potential organ failure, are included into the
et even if there are not 250 patient observations. 
The real-valued samples x lk for patient l = 1 , . . . , L and blood parameter k = 1 , . . . , K , prepared

s described before, are further processed using feature scaling or feature normalization. For
eature normalization, samples are transformed using mean μk and standard deviation σk for
eature k with x lk −μk 

σk 
. Minima and maxima transform the samples in case of feature scaling:

x lk −min l x lk 
max l x lk −min l x lk 

. Besides the three real-valued datasets, we also include a range dataset, defined
y the ranges of LEOSS. 
In a final step, we divide the data, for range (data preparation 1), real-valued (data preparation 2),

eature normalization (data preparation 3), and feature scaling (data preparation 4) preparations,
nto training and test data. The first test-split covers a randomly selected Augsburg subset with
pproximately 25% of Augsburg patients (test 1). Training data contains all data but the subset, i.e.,
raining 1. For the second training-test-split, results for a ratio of 65% training data (training 2) to
5% test data (test 2) for each of the individual data sources are provided. In case of missing values
f a patient’s blood counts these values are temporarily dropped if they belong to the training set
f COVIDAL whereas in the test set of COVIDAL and within standard AI they are filled with the
ean value of the respective blood count. 

.2 Classifiers for COVID-19 Diagnosis 

his work engages with COVID-19 diagnosis, i.e., the binary classification of symptomatic pa-
ients regarding an infection with SARS-CoV-2. For the implementation of the classification, we
ompare machine-learning, human and biochemical COVID-19 classifiers. Biochemical classifiers
onsidered are Polymerase-Chain-Reaction (PCR) and Point-of-Care (POC) antigen tests. While
CR tests are widely known as gold-standard of SARS-CoV-2 diagnosis, POC antigen tests with
eadily available results have developed notable meaning from the second and third pandemic
ave in Europe. Seven Augsburg physicians of different qualification levels and specialities, but
xperienced in the treatment of COVID-19 patients, function as our human classifiers. The physi-
ians have been provided with the patients in the 25% Augsburg test data set (test set 1), however
he dataset only contained blood parameters of the patients without their classification regard-
ng a present COVID-19 disease. Different standard supervised machine learning algorithms for
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lassification problems are considered regarding machine learning algorithms. We apply a Lo-
istic Regression model (LR), a Support Vector Machine (SVM) and an Artificial Neural Network
NN). In addition, we propose a new machine learning classifier, the COVIDAL algorithm, which
s specifically developed for SARS-CoV-2 diagnosis of symptomatic subjects in German hospitals.
With the new algorithm, we aim at an approach (1) based on minimum data pre-preparation
nly, (2) trustable, (3) readily applicable, and (4) highly sensitive in the base version. The distinct
onstruction of COVIDAL by the principle of Multiple Classifier Systems (MCS), which is reviewed
n detail by Britto et al. [ 2014 ], targets goals (1) and (2). Goal (3) is reached by our COVIDAL-APP
see Appendix A.1 ). Here, we used Flask framework to develop a web interface where users may
nter a patient’s blood parameters and receive a classification of this patient. Goal (4) targets the
act that the actual detection of SARS-CoV-2 positive cases (i.e., sensitivity) might be of particular
mportance due to infection-prevention in hospitals and, in turn, we focus a sensitivity-centred
ptimization routine. The advanced version of COVIDAL involves substituting goal (4) with goal
4*) flexible in performance metrics, for example, specificity. The pool of 10 different classifiers
mployed for COVIDAL, its input parameters, their combination, selection and a thereupon cal-
ulation of the SARS-CoV-2 diagnosis is defined in detail in the Appendix A.2 by the COVIDAL
lgorithm and a COVIDAL flowchart. 

.3 Performance Metrics and Evaluation 

e measure the performance of biochemical, machine learning and human classifiers by sensi-
ivity, specificity, accuracy, classification cost, and turnaround time. The turnaround time for the
ifferent categories is determined by the mean execution time of PCR, POC antigen, and other labo-
atory blood tests in the University Hospital of Augsburg as well as interviews with the physicians
hat classified patients by hand. Classification cost highlight the mean execution cost including ma-
erial and personnel cost resulting from either cost of physicians or health care workers per day in
he University Hospital of Augsburg. Sensitivity and specificity of PCR testing are based on manu-
acturer’s information. For POC antigen tests, we use clinical outcomes of a study at the University
ospital of Augsburg [Kahn et al. 2021 ] confirmed by broad findings in thereupon literature (e.g.,
cohy et al. [ 2020 ] or Torres et al. [ 2021 ]). Metrics for the machine learning and physician clas-
ifiers present the performance of the algorithms for the test dataset, while we select a superior
erformance based on balanced accuracy as our main performance metric. Balanced accuracy is

alculated by the average of sensitivity and specificity, i.e., Sensitivity +Specificity 2 . In addition, we report
rea under the Curve (AUC) and F1-statistics to provide a holistic view on COVIDAL. 
Note, a decision maker is basically interested in maximizing sensitivity and specificity while
inimizing classification cost and turnaround time. We provide insights on this tradeoff by incor-
orating a decision theoretic evaluation scheme, namely a scoring model under certainty, into our
nalyses [Parmigiani and Inoue 2009 ]. The different classifiers a i with i ∈ { 1 , . . . , I }, i.e., PCR test,
OC antigen test, physicians, standard machine learning and COVIDAL algorithms, and the per-
ormance metrics z j with j ∈ { 1 , . . . , J }, i.e., sensitivity ( j = 1 ), specificity ( j = 2 ), turnaround time
 j = 3 ), and classification cost ( j = 4 ), form the decision problem. Thereby, we score the alterna-
ives, i.e., the classifiers a i , by a weighted utility function 

∑ J 
j= 1 w j · u i j with varying weights w j and

 J 
j= 1 w j = 1 . Based on predefined weights and the performance metrics p i j , an optimal classifier

 ∗ is defined as follows: 

a ∗ = argma x 
i 

J ∑ 

j= 1 

w j · u i j with u i j = 
⎧ ⎪ ⎨ ⎪ ⎩

p i j − min i p i j 
max i p i j − min i p i j 

∀j ∈ { 1 , 2 }
p i j − max i p i j 

min i p i j − max i p i j 
∀j ∈ { 3 , 4 }
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Table 2. Blood Parameters and Abbreviations 

Abbr. Blood parameter Abbr. Blood parameter 

DDIM d-Dimer PTT partial thromboplastin time 

HGB hemoglobin cCRP C-reactive protein 

PLT platelets WBC leukocytes 

RBC erythroblasts cDBIL serum direct bilirubin 

cGGT serum gamma-glutamyl transferase cGPT serum alanine aminotransferase 

cHST serum urea cKREA serum creatinine 

cLDH serum lactate dehydrogenase 

Table 3. Overview on Training and Test Sets for Data Preparation 1 (Range Data), 2 (Real-valued Data 
without Feature Scaling), 3 (Real-valued Data Including Feature Normalization) 

and 4 (Real-valued Data Including Feature Scaling) 

Data 
preparation 

Type of data Test set Description of test set Positive Negative Training set Positive Negative 

1 Ordinally scaled 
blood counts in 
ranges 

Test 1 
Test 2 

25% of Augsburg data 
35% of combined data 

21 
888 

97 
363 

Training 1 
Training 2 

2,595 
1,728 

856 
590 

2, 3, 4 Cardinally scaled real 
valued blood counts 

Test 1 
Test 2 

25% of Augsburg data 
35% of combined data 

21 
890 

103 
396 

Training 1 
Training 2 

2,606 
1,737 

940 
674 
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The calculation of the utility u i j for classifier i and metric j scales the decision matrix p i j into
he interval of [ 0; 1 ] where values close to one highlight a superior outcome. The transformation is
ecessary, because p i j is a combined matrix with high values for superior sensitivity and specificity,
nd low values for superior execution time and classification cost. 

 RESULTS 

fter running data preparation, we arrive at a combined data set of 3,670 patients for which up to
3 blood parameters are given (see Table 2 ). We include 95 SARS-CoV-2-positive patients out of
92 in case of Alb Fils Kliniken, 68 SARS-CoV-2-positive patients out of 514 total patients in the
ata of Augsburg and 2,464 SARS-CoV-2 positive LEOSS cases. Table 3 depicts the test and training
ample sizes for the four different data preparations. Due to data harmonization, some samples are
xcluded in case of the range data (data preparation 1), for example slightly fewer patients than
,670 are included here. Physicians have been presented with 124 patients (test set 1) where a subset
f 21 patients tested SARS-CoV-2 positive. The data set contains a total of 3,546 patients with 940
egative correlates. In case of the training-test-split 2, 890 positive and 396 negative samples are
ested based on a training set with 1737 SARS-CoV-2 positive and 674 negative patients. 
The sensitivity of physicians presented with the 25% Augsburg test set (test set 1, data prepara-

ion 2) varies between 44.4% and 88.5%, while they achieved specificities from 50.4% to 89.8%. On
he same data, COVIDAL classifies 90.48% of SARS-CoV-2-positive patients as SARS-CoV-2 posi-
ive (i.e., sensitivity). 87.38% of negative patients are classified as SARS-CoV-2 negative (i.e., speci-
city), while AUC is 79.06% and the F1 statistic is 71.70%. The standard AI algorithms, namely the
eural Network, the Logistic Regression, and the Support Vector Machine, maintain sensitivities
rom 90.48% to 100.00% and specificities from 0.00% to 30.10%. While the accuracy of the standard
I algorithms is rather low (16.94%, 33.06%, and 40.32%), physicians vary from 57.0% to 871% accu-
acy. COVIDAL provides 87.90% accuracy for the real-valued data processing (data preparation 2).
n case of feature normalization (data preparation 3) and feature scaling (data preparation 4), the
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Table 4. Performance Metrics for COVIDAL, Standard AI and Physicians’ 
Classification, Different Data Preparations and Test Set 1 

Data preparation Algorithm Sensitivity [%] Specificity [%] Accuracy [%] 

1 NN 

LR 
SVM 

COVIDAL 

100.00 
57.14 
38.10 
100.00 

0.00 
80.41 
86.60 
49.48 

17.80 
76.27 
77.97 
58.47 

2 NN 

LR 
SVM 

COVIDAL 
Physician 1 
Physician 2 
Physician 3 
Physician 4 
Physician 5 
Physician 6 
Physician 7 

100.00 
95.24 
90.48 
90.48 
51.9 
88.5 
85.2 
51.9 
44.4 
70.4 
70.4 

0.00 
20.39 
30.10 
87.38 
78.4 
50.4 
76.1 
84.4 
88.8 
72.5 
89.8 

16.94 
33.06 
40.32 
87.90 
74.7 
57.0 
77.4 
79.9 
82.4 
72.2 
87.1 

3 NN 

LR 
SVM 

COVIDAL 

71.43 
95.24 
38.10 
85.71 

80.58 
30.10 
86.41 
84.47 

79.03 
41.13 
78.23 
84.68 

4 NN 

LR 
SVM 

COVIDAL 

52.38 
100.00 
19.05 
95.24 

84.47 
12.62 
93.20 
49.51 

79.03 
27.42 
80.65 
57.26 

Please see Table 3 for descriptions on data preparation and test set. 

Table 5. Performance Metrics of COVIDAL for Different Data Preparations and Test Sets 

Data 
preparation 

Algorithm Test set Sensitivity [%] Specificity [%] Accuracy [%] AUC [%] F1 [%] 

1 COVIDAL 
COVIDAL 

Test 1 
Test 2 

100.00 
83.78 

49.48 
80.44 

58.47 
82.81 

49.48 
67.40 

46.15 
87.38 

2 COVIDAL 
COVIDAL 

Test 1 
Test 2 

90.48 
89.66 

87.38 
90.40 

87.90 
89.89 

79.06 
81.06 

71.70 
92.47 

3 COVIDAL 
COVIDAL 

Test 1 
Test 2 

85.71 
89.78 

84.47 
89.90 

84.68 
89.81 

72.40 
80.71 

65.45 
92.42 

4 COVIDAL 
COVIDAL 

Test 1 
Test 2 

95.24 
89.78 

49.51 
89.90 

57.26 
89.81 

47.16 
80.71 

43.01 
92.42 

Please see Table 3 for descriptions on data preparation and test set. 
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erformance of the Neural Network is significantly improved which is no surprise to the known
eader. COVIDAL maintains high performance metrics for data preparation 3. Logistic Regression
nd Support Vector Machine show a high variability for the metrics. Compared to data preparation
, data preparation 1 leads to declining metrics for COVIDAL with 58.47% accuracy and increasing
erformance of the Logistic Regression model with 76.27% accuracy. The results are summarized
n Table 4 . 
If the performance of COVIDAL is compared for different test sets, i.e., the physician test set
ith 25% of Augsburg data (test set 1) and the 35% test split (test set 2), we find a balanced behavior
f COVIDAL on the latter. Sensitivities, specificities, and accuracies are similar to the performance
f COVIDAL for the real-valued physician preparation (test set 1, data preparation 2) with approx-
mately 90% in all metrics (see Table 5 ). 



14:10 

Table 6. Performance Metrics of COVIDAL for Different Optimization Strategies, 
Test Set 1 and Data Preparation 2 

Optimization strategy Sensitivity [%] Specificity [%] Accuracy [%] AUC [%] F1 [%] 

Sensitivity and Accuracy 90.48 87.38 87.90 79.06 71.70 

Specificity and Accuracy 71.43 86.41 83.87 61.72 60.00 

Sensitivity and Balanced Accuracy 90.48 82.52 83.87 74.66 65.52 

Specificity and Balanced Accuracy 95.24 71.84 75.81 68.42 57.14 

F1 Positive and Accuracy 95.24 83.50 85.48 79.52 68.97 

F1 Negative and Accuracy 85.71 69.90 72.58 59.92 51.43 

F1 Positive and Balanced Accuracy 95.24 70.97 75.00 67.50 56.34 

F1 Negative and Balanced Accuracy 95.24 78.64 81.45 74.90 63.49 

Please see Table 3 for descriptions on data preparation and test set. 

Table 7. Decision Matrix Based on the Results for Test Set 1 and Data Preparation 2 

Classifier Sensitivity [%] Specificity [%] Turnaround time [min] Classification cost [ €] 

POC antigen 59.00 99.00 20 15 

PCR 97.00 100.00 300 15 

Physicians 66.10 77.20 60 4.76 

COVIDAL 90.48 87.38 60 2.68 

Standard AI 95.24 16.83 60 2.68 

Please see Table 3 for descriptions on data preparation and test set. 
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A crucial characteristic of COVIDAL is the flexibility regarding an optimization strategy when
electing classifiers for the combination of two features, i.e., laboratory parameters. While the
ase version focuses a maximization of sensitivity and accuracy, we also research the impact of
arying such metrics (i.e., advanced version). In particular, we focus eight strategies based on
ensitivity, specificity, F1-Score, accuracy and balanced accuracy. Table 6 captures the results for
he physician test set (test set 1) and real-valued data preparation 2. For the base case (second line
n Table 6 ), the performance with 90.48% sensitivity, 87.38% specificity and 87.90% accuracy has
een discussed before. Sensitivities vary from 71.43% to 95.24%, specificities vary from 69.90% to
6.41% and accuracies vary from 72.58% to 85.48% for optimization strategies two to eight. Thus,
he optimization strategy has a minor influence on the overall level of the outcome while a decision
aker is enabled to flexibly adjust for varying predefined metrics. 
A summary of the performance metrics for all classifiers, data preparation 2 and the physician

est set (test set 1) is presented in the decision matrix in Table 7 . For physicians and standard AI
lgorithms, we average individual results. The turnaround time of POC antigen tests is 20 minutes,
00 minutes for the PCR test, i.e., 5 hours, and, for other classifiers, the turnaround time is approx-
mately 60 minutes including a five-minute actual classification time for physician’s decision or
pplication analysis by an experienced health care worker. Classification cost are given by 15 €
or POC antigen and PCR testing, 4.76 € for physician’s classification and 2.68 € personnel cost
or running an application. Per day, cost per physician in the University Hospital of Augsburg are
57.21 € and cost per health care worker are 257.06 €. We assume an eight-hour shift per employee
nd day. 
By the scoring model for the decision matrix given in Table 7 , PCR testing is superior for a sole

ensitivity, i.e., w = ( 1 , 0 , 0 , 0 ), or specificity perspective, i.e., w = ( 0 , 1 , 0 , 0 ). POC antigen testing
s suggested if one is interested in turnaround time, i.e., w = ( 0 , 0 , 1 , 0 ). A decision maker having a
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Table 8. Outcomes of the Scoring Model for Varying Weights 
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POC antigen 0.00 0.99 1.00 0.00 0.49 0.50 0.00 0.99 0.49 0.50 0.66 0.66 0.50 
PCR 1.00 1.00 0.00 0.00 1.00 0.50 0.50 0.50 0.50 0.00 0.66 0.33 0.50 
Physicians 0.19 0.73 0.86 0.83 0.46 0.52 0.51 0.79 0.78 0.84 0.58 0.80 0.65 
COVIDAL 0.83 0.85 0.86 1.00 0.84 0.84 0.91 0.85 0.92 0.93 0.84 0.89 0.88 

Standard AI 0.95 0.00 0.86 1.00 0.48 0.91 0.98 0.43 0.50 0.93 0.60 0.61 0.70 

Values printed in bold highlight respective maxima. 

Fig. 2. Boxplots of the outcomes of the scoring model for the different classifiers and varying weights w . 
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ost induced view, i.e., w = ( 0 , 0 , 0 , 1 ), will prefer COVIDAL or other AI testing. When considering
 balanced view on performance metrics (i.e., sensitivity and specificity), turnaround time and clas-
ification cost, i.e., w = ( 0 . 25 , 0 . 25 , 0 . 25 , 0 . 25 ), COVIDAL is superior for most weight combinations
ith utility scores varying from 0.83 to 1 (see Table 8 ). POC antigen, PCR and standard AI scores
ary from 0 to 1. The scores of physicians are in the range of 0.19 to 0.86 while being not optimal in
ny of the settings researched on. The rather low variability of COVIDAL scores including a high
core-level compared with the respective scores of physicians, POC antigen, PCR, and standard AI
see Figure 2 ) highlights the balance of the COVIDAL outcome considering performance metrics,
urnaround time, and classification cost. 

 DISCUSSION 

aking the results into consideration, COVIDAL maintains high performance rates, i.e., sensitiv-
ty, specificity, and accuracy, especially for minimal data preparation with real-valued cardinally
caled laboratory parameters. Standard AI techniques require elaborate data preparation including
ormalization, for example, to perform similar. From an application perspective, this is a crucial
nding because minimum data preparation is necessary to run COVIDAL, which might contribute
o trustworthiness and actual application. On the other hand, the algorithm depends on this ex-
ct data and the loss of information due to scaling does have an impact on specificity, especially.
est data and optimization strategies have a minor influence on the overall level of COVIDAL
utcomes. A decision maker can thus flexibly create an output under consideration of different
etrics. COVIDAL outperforms physicians’ classification, which is a unique comparison in the

iterature stream on SARS-CoV-2 diagnosis and AI. 
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A major motivation of AI-based SARS-CoV-2 diagnosis is to relieve hospital resources, in terms
f monetary aspects, personnel, testing, and other resources. We quantify this tradeoff by a
ecision-theoretic scoring model which captures performance metrics, turnaround time and clas-
ification cost. COVIDAL thereby guarantees a balance of the three measures while PCR tests are
uperior in case of an isolated view on performance metrics. In addition, the COVIDAL-APP may
e operated by experienced health care workers rather than by physicians themselves and thus
upports physicians in their daily work. From the user’s point of view, COVIDAL is therefore well
uited for situations in which a balance of the metrics is to be achieved and at the same time lab-
ratory parameters are usually determined routinely for symptomatic patients. The emergency
epartment with limited personnel capacity and time pressure could be a well-defined use case.
he focus is different for elective surgeries, for example, where the dates are usually fixed a certain
ime in advance and thus testing can be outsourced to test centres. Here, decision makers in hos-
itals might opt for PCR testing with a superior performance regarding sensitivity and specificity.
OC antigen testing functions as an option for situations in which the turnaround time plays an
mportant role as, for example, in hospital visitor admission with limited space capacities in the
ntrance area in hospitals [Bartenschlager et al. 2022 ]. Visitors usually stay in hospital a limited
ime and other protective measures such as N95 face masks are mandatory. This may shift the
rioritization towards the metric on turnaround time. 
The limitations of our study include the following: While we try to balance our dataset with the
elp of LEOSS, the ratios of SARS-CoV-2-positive and -negative cases are unequal including cau-
ion in interpreting the accuracy. Nonetheless, we decided to not include simulation techniques to
alance the dataset in advance, because the under-represented class forms a considerable amount
f data, we are already manipulating data for mapping LEOSS range to real-valued data and over-
nd under-sampling techniques are controversial (see, e.g., Visa and Ralescu [ 2005 ]). In addition,
ur LEOSS data mainly contains data of University hospitals and non-University hospitals but
here might also be patients from institutes and medical practices included at a low scale. In the
EOSS dataset, we do not, differentiate between symptomatic and asymptomatic patients, other
han for Augsburg and Göppingen data, because LEOSS contains SARS-CoV-2-positive cases only
nd we focus data at a rather early stage of the pandemic. We have been trying to include negative
orrelates from other German hospitals, too. Although we are provided with an ethical statement
o do so, the significant workload during COVID-19 pandemics in hospitals hinders trials so far.
nother concern might arise from the timeframe defined for including laboratory parameters into
he training and test data. LEOSS refers to the positive test and Augsburg and Alb Fils Kliniken
efer to the first PCR test. Given that we focus on risk-averse proceedings regarding a classification
nd the latter, other than LEOSS, provide SARS-CoV-2-positive and -negative patients justifies our
pproach. The performance metrics for POC antigen tests are based on a study in the University
ospital of Augsburg, but the outcomes do not capture the patients involved in the study at hand.
 similar concern might arise from evaluating the gold-standard PCR analyses by manufacturer’s
nformation while determining POC antigen testing measurements by clinical outcomes. Another
oncern might arise from resistance of clinicians in potentially using COVIDAL. The use of
achine learning models is particularly questioned in the medical context due to concerns
egarding black-box behaviour and understandability of the results. Ethical, legal, and social
ssues also play a role here. On the other hand, the COVID-19 pandemic has impressively shown
hat happens when resources reach their limits. This is where Clinical Decision Support Systems,
.g., the COVIDAL-APP, might help. The results of COVIDAL strongly depend on the input data
nd the pandemic situation in which the data has been collected. Varying lockdown measures
nd prevalence rates, for example, might influence the performance. Therefore, re-running the
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odel-building step and rebuilding the model periodically are important to verify that the model
till provides sufficient accuracy for diagnostic purposes. 

 CONCLUSION 

n this work, we research the application of the COVIDAL classifier for digital COVID-19 diag-
osis in German hospitals. The conclusions are based on extensive sensitivity analyses and an
nnovative scoring model considering performance metrics, turnaround times, and classification
ost. PCR, POC antigen tests, physicians‘ and standard AI applications function as benchmarks for
omparative analyses. Among others, crucial aspects of our research are the unique multicenter
ata with a strong focus on Germany and an actual head-to-head comparison with physicians. 
We find high sensitivities, specificities, and accuracies of COVIDAL of up to 90% for our mul-

icentre data. In many cases, COVIDAL outperforms standard AI or physicians‘ classification.
he findings highlight the applicability of COVIDAL in hospitals. Regarding data preparation,
OVIDAL, other than standard AI techniques, works best with real-valued data and thus minimum
ata processing is necessary, which is a crucial finding having actual applications in hospitals in
ind. The optimization strategy and the test set have a minor influence on our overall outcome
nd indicate a certain robustness of the results. Our scoring model suggests using PCR testing for
 pure focus on performance metrics, e.g., for elective surgery. For a focus on turnaround times,
.g., in hospital visitor admission, POC antigen testing should be used. If there is an interest on
alancing performance metrics, turnaround times and cost as, e.g., in the emergency department,
OVIDAL is superior in most instances and might support physicians in their daily work. 
For future research and an actual application of COVIDAL, an interdisciplinary discussion re-

arding AI- and COVIDAL-based decision support for SARS-CoV-2 diagnosis is to be held. This
ncludes an ethical and legal framework for the practice of digital COVID-19 diagnosis. In addition,
fforts should be made to include data from more hospitals for broad use of the COVIDAL-APP. 
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