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Charging quantum batteries via Otto machines: Influence of monitoring
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The charging of a quantum battery by a four-stroke quantum machine that works either as an engine or a
refrigerator is investigated. The presented analysis provides the energetic behavior of the combined system in
terms of the heat- and workflows of the machine, the average, the variance of the battery’s energy, as well as the
coherent and incoherent parts of its ergotropy. To monitor the battery state, its energy is measured either after the
completion of any cycle or after a prescribed number of cycles is carried out. The resulting battery performances
greatly differ for those two cases. During the first charging epoch with an engine, the regular measurements
speed up the charging, whereas the gain of ergotropy is more pronounced in the absence of measurements. In a
later stage, the engine fails to work as such, while it still continues charging the battery that eventually reaches
the maximally charged state in the absence of intermediate measurements and a suboptimally charged state for
a periodically measured battery. For a refrigerator, the charging of the measured battery also proceeds faster
during the first epoch. Only during the second stage, when the machine fails to extract heat from the cold bath,
the influence of the measurements becomes less pronounced, leading to rather similar asymptotic states for the
two measurement scenarios.
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I. INTRODUCTION

The ongoing miniaturization of conventional devices also
affects the problem of energy storage under the influence of
quantum effects. Analogously to the classical case, a quantum
battery (QB) [1] stores energy retrievable for later use with
the additional aid of quantum mechanical effects such as en-
tanglement or coherence for efficient charging and extraction.

Historically, a QB is an isolated quantum system un-
dergoing unitary charging protocols. When an ensemble of
such batteries is present, collective effects are responsible
for enhancing work extraction [2,3] or boosting the charging
power [4,5] due to entanglement between the QBs. Perfectly
isolating a quantum system is practically impossible, hence
noisy QBs are studied to either test the impact of dissipation
on the battery performance [6,7] or to utilize noise as a valu-
able resource [8–10]. There are also proposals to engineer
decoherence-free subspaces that protect a quantum battery
against dissipation [11–13]. Moreover, interesting nonclas-
sical charging behaviors are observed if the charger is also
explicitly modeled as another quantum system [14–17], allow-
ing for feedback control [18].

In this work, we explore the charging of a QB with M
equidistant energy levels by means of a two-level quantum
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Otto machine [19]. Similar two-level quantum chargers that
are subjected to a drive have been explored before [17,18], but
here the charger itself is considered as a thermal machine. The
quantum machine performs its usual thermodynamic tasks
as an engine, outputting work, or as a refrigerator, cooling
the cold bath, while additionally charging the battery. The
scenario is similar to a fossil-fuel-based car engine that not
only moves the car, but also charges up the battery that powers
the peripheral devices.

A similar setup was studied to analyze the role of the
number of cycles on the Otto engine’s performance [20].
Watanabeet al. envisaged an M-level flywheel as an apparatus
to which the engine performs work. For this device, it was
demonstrated that the average energy stored in the flywheel is
not strictly proportional to the number of engine cycles when
the coherence of the flywheel is retained, rather than being
suppressed by projective energy measurements at the end of
each cycle. The effect of the suppression of coherence by
repeated measurements on the performance of an Otto engine
over large times was investigated in Ref. [21].

Inspired by Refs. [20,21], we study the complete energetics
of a QB charged by a quantum Otto machine [22] over a given
number of cycles, including the ergotropy that quantifies the
amount of work that can be extracted from the QB via uni-
taries [23,24]. We demonstrate that frequent monitoring of the
battery, on the one hand, increases the rate of internal energy
charging of the battery, but, on the other hand, leads to a lower
ergotropy as compared to the QB that is not monitored. Apart
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from the battery’s energy, we analyze the cyclewise evolution
of different work flows of the machine to the external control
field and to the battery, as well as of the total energy. In
particular, we find that after a certain number of cycles, the
machine ceases to work, whether it is supposed to perform
as an engine supplying energy to the external control field or
as a refrigerator cooling the hot bath. Despite the machine’s
breakdown, the QB continues being charged, albeit at a slower
rate. Thus, in addition to the asymptotic behavior of the mod-
els under two different monitoring strategies, the amount of
charging before the machine fails is introduced and examined
as a new figure of merit.

The paper is organized as follows: Sec. II introduces the
basic setup and defines the various engine and QB metrics
studied in this work. Section III focuses on the main results
of this paper, wherein we charge the QB either using an
engine or a refrigerator. Finally, we conclude in Sec. IV.
In Appendix A, the working modes of an Otto machine are
reviewed; in Appendix B, the energetic effect of periodically
turning the battery-machine coupling on and off is estimated;
and in Appendix C, the energetic cost of measuring energies
of isolated systems is investigated.

II. SETTING UP THE STAGE

A. Charging protocol

The working fluid of the Otto machine, which is used to
charge the battery, is taken as a two-level system undergoing
two work and two thermalization strokes within a machine
cycle. During the work strokes, the machine is coupled to an
M-level QB. To avoid any, even indirect, contact of the QB
with the heat baths during the thermalization strokes, the QB
is disconnected from the machine during these strokes. Thus,
unlike standard Otto cycles, the working fluid of the machine,
running in either mode as an engine or a refrigerator, is not
only exchanging work with the external drive, but, as we shall
demonstrate, may also deliver energy to the QB and hence
charge it.

During the work strokes, the combined machine-battery
system is described by the following Hamiltonian:

H (t ) = HM(t ) + HB + HMB(t ), (1)

where the Hamiltonian of the working fluid HM(t ) is given by

HM(t ) = �σx + ξ (t )σz, (2)

with the Pauli matrices σi, i = x, y, z, a constant tunnel pa-
rameter �, and a time-dependent field ξ (t ) that is specified
below. The battery is modeled as an M-level energy reservoir
with an equispaced spectrum accordingly described by the
Hamiltonian

HB = ω

M−1∑
l=0

l �l , (3)

with the level spacing ω > 0 and the projection operators
�l = |l〉〈l|, l = 0 . . . M − 1, projecting onto the lth battery
levels. The interaction of the machine and the QB is governed
by

HMB(t ) = g(t )σx ⊗ q, (4)

where q = ∑M−2
l=0

√
l + 1(|l〉〈l + 1| + H.c.) denotes the po-

sition operator of the QB. The coupling coefficient g(t ) is
specified below. Throughout, we set h̄ = kB = 1. The working
fluid is subjected to four separate strokes per cycle. It first
undergoes a compression of duration T1, in which the control
parameter ξ (t ) = vt (0 � t � T1) is varied linearly such that
the energy gap in the two-level working fluid increases. The
compression stroke is carried out in thermal isolation, with the
QB connected to the machine [g(t ) = g]. Thus, the machine-
battery state evolves with the operator,

U = T exp

[
−i

∫ T1

0
dt H (t )

]
, (5)

where T denotes time ordering. During this stroke, the ma-
chine performs work on the external field in the engine mode
and absorbs energy in the refrigerator mode. At the end of the
compression stroke, the working fluid is connected to a hot
bath and ξ (t ) = vT1 is no longer varied.

As mentioned, during the heat strokes, the machine-battery
coupling is turned off, i.e., g(t ) = 0, to avoid thermalizing the
QB. During the hot heat stroke of the duration T2, we assume
that the working fluid reaches the inverse target temperature
βh. As a result of the hot heat stroke, the joint machine-battery
state is given by the operation �h, acting on the respective
joint density matrix ρ before this stroke started, such that

�h(ρ) = τh ⊗ UBTrM[ρ]U †
B , (6)

τh = exp[−βhHM(T1)]

Tr{exp[−βhHM(T1)]} , (7)

where TrM and Tr = TrMTrB denote the traces over the work-
ing fluid and the combined system, respectively, with the trace
over the battery Hilbert space marked by TrB. Further, τh

indicates the canonical Gibbs state of the hot working fluid;
moreover, UB = e−iHBT2 renders the free time evolution of the
battery during the thermalization of the working fluid. For
the sake of simplicity, we assume that UB = 1. This may be
achieved by an instantaneous thermalization of the working
fluid or by choosing the thermalization time as an integer
number n of the principal period of the battery, T2 = 2πn/ω.
The deteriorating influence of T2 for noninteger multiples
of the principal battery period on the charging of the bat-
tery is briefly discussed below. The effect of switching the
battery-machine interaction periodically on and off on the
battery energy is difficult to specify for the full system. In
Appendix B, for a simplified model, the energetic impact of
the on-off switching on the battery is found to be negligible
for any value of T2.

After the heat stroke, the working fluid is subjected to an
expansion stroke, which follows the time-reversed protocol
of the compression such that ξ (t ) = v(2T1 + T2 − t ) for T1 +
T2 � t � 2T1 + T2. The states are evolved with Ũ = CU †C,
where U is given by Eq. (5) and C is the complex conjuga-
tion operator. This ensures that the energy spectrum of the
working fluid undergoes a cyclic variation. The expansion is
followed by a heat stroke at a cold temperature. As a result,
the density matrix of the combined system is described by
the action of an operation �c applied to the density matrix
at the time 2T1 + T2. The operation �c is given by Eq. (6) with
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the hot inverse temperature βh replaced by the cold inverse
temperature βc and the Hamiltonian HM(T1) being replaced
by HM(0). When the machine operates as an engine, it sup-
plies work to both the battery and the external field, whereas
in the refrigerator mode, it absorbs work from the external
field cooling down the cold bath and supplies work to the
QB. Therefore, the operation describing the map of the joint
density matrix caused by a complete cycle becomes

G(ρ) = �c[Ũ�h(UρU †)Ũ †]. (8)

The above operation is then repeated N times to obtain the
machine-battery density matrix after N cycles.

In order to monitor the charging of the battery, we consider
the same two diagnostic schemes as described in Ref. [20].
According to one scheme, the energy of the battery is pro-
jectively measured after the completion of every cycle. In
this way, any coherence in the energy eigenbasis of the
battery that might have built up during a cycle is erased.
Thus, the machine-battery density matrix ρ̃N+1 for a re-
peatedly measured battery at the end of (N + 1)th cycle
becomes

ρ̃N+1 =
∑

l

�lG(ρ̃N )�l ≡ G̃(ρ̃N ), (9)

with the projection operators �l as defined in Eq. (3). In the
other scheme, only a single projective battery energy measure-
ment is performed after a prescribed number of N f cycles,

ρN+1 = G(ρN ), (10)

for N + 1 < N f . Eventually, after N f cycles, the battery
energy is projectively measured. In either case, such a mea-
surement is performed immediately after each contact with
the cold heat bath when the battery is disconnected from the
machine. This ensures that there is no additional energetic
cost due to measurements, as shown in Appendix C. How-
ever, the extraction of energy from the battery by means of
a unitary process might advantageously be performed before
any energy measurement of the battery to make use of energy
stored in coherence (see Sec. II C). Figure 1 provides a sketch
of the modes of operation of the battery-machine device un-
der the two monitoring regimes. For the sake of simplicity,
in the following the thermalization strokes are assumed to
work instantly, i.e., T2 ≡ T +

1 − T −
1 → 0, if not explicitly

stated otherwise. Throughout this work, all quantities corre-
sponding to a repeatedly measured battery are distinguished
by a tilde.

B. Machine metrics

In order to get a complete energetic picture of the charg-
ing process, projective energy measurements of the thermally
isolated working fluid are performed at the beginning and
the end of each work stroke, as described in more detail in
Refs. [21,25]. Due to the perfect thermalization of the heat
strokes assumed here, these measurements do not influence
the dynamics of the engine [21]. Therefore, the average heats
exchanged with the hot and cold reservoirs during the (N +
1)th cycle are given by the differences of the average working
fluid energies after and before the respective strokes and hence

FIG. 1. An illustration of a quantum Otto machine charging a
QB. The working fluid (illustrated as a gear) being initially prepared
in a thermal equilibrium state at the low inverse temperature βc un-
dergoes a compression (stroke 1) between 0 � t � T −

1 while staying
in contact with the battery but otherwise in isolation, followed by
perfect thermalization by a contact with a hot bath at the inverse tem-
perature βh (stroke 2) between T −

1 < t < T +
1 . During the subsequent

third stroke, the working fluid undergoes, again in contact with the
battery but else in isolation, the time-reversed process (expansion)
of the first stroke between T +

1 � t � 2T −
1 . In the final stroke (4),

the contact with a cold heat bath in the range 2T −
1 < t < 2T +

1 leads
to perfect thermalization at the initial cold inverse temperature βc.
During the two heat strokes, the battery is isolated from the machine.
The heat strokes (stroke 2 and 4) are assumed to be instantaneous.
During the work strokes, the machine does work on the external field
(−Wext , −W ′

ext) and exchanges energy (Wc, W ′
c ) with the QB. The top

row illustrates a diagnostic scheme in which the battery is measured
at the end of each cycle (illustrated by an eye symbol), whereas
the bottom row shows a battery that is measured only at the end of
N cycles.

result as 〈
Qh

N+1

〉 = TrM
[
HM(T1)

(
τh − TrB

[
ρ

T −
1

N

])]
,〈

Qc
N+1

〉 = TrM
[
HM(2T1)

(
τc − TrB

[
ρ

2T −
1

N

])]
. (11)

Above, the machine-battery density matrix after the compres-

sion stroke of the (N + 1)th cycle is given by ρ
T −

1
N = UρNU †

and the one after the expansion stroke becomes ρ
2T −

1
N =

Ũ�h(UρNU †)Ũ †.
Likewise, the total average work done on the machine-

battery system is evaluated as the change of internal energy
of the composite before and after the work strokes, giving

〈WN+1〉 = Tr
[
H (2T1) ρ

2T −
1

N − H (T1) ρ
T +

1
N

]
+ Tr

[
H (T1)ρ

T −
1

N − H (0)ρN
]
, (12)

where ρT
N denotes the density matrix at the time T after the

beginning of the (N + 1)th cycle. Specifically, the time T −
1

refers to the final time at the end of the compression stroke,
T +

1 to the time at the end of the hot heat stroke, 2T −
1 the
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end of the expansion stroke, and 2T +
1 marks the end of the

cold heat stroke. The above expressions for the heats and the
total work are valid for a device whose battery is monitored
only after the completion of a prescribed number of cycles,
N f . For the alternative periodically monitoring scenario, the
respective averages are obtained by replacing the state ρ by
the monitored state ρ̃. Finally, we note that at all the above
measurement times T ±

1 , 2T ±
1 , the coupling between machine

and battery vanishes, g(t ) = 0, such that the energies of the
working fluid and of the battery can be determined simul-
taneously without an extra energetic cost (see Appendix C).

While, due to the perfectly thermalizing heat strokes, the
machine’s reduced state evolves cyclically if it is initiated in
the cold Gibbs state, the machine-battery system undergoes a
transient dynamics during which the battery is charged until it
eventually approaches a periodic state.

C. Battery metrics

The QB is initialized in its ground state at zero energy;
hence, the average internal energy stored in the QB after N
cycles is given by

EN = 〈HB〉 = Tr[HBρN ]. (13)

A related, also vital, performance figure of a QB is the
variance of its energy,

σ 2
E (N ) = 〈

H2
B

〉 − 〈HB〉2 = Tr
[
H2

BρN
] − Tr[HBρN ]2. (14)

The variance quantifies the fluctuations of the battery energy
after N cycles. As a result of the periodicity of the machine
state, the energy of the working fluid does not change after a
cycle. Hence, the average heats and total work per cycle are
related to the energy increase of the battery by the relation〈

Qh
N

〉 + 〈
Qc

N

〉 + 〈WN 〉 = EN − EN−1. (15)

In passing, we note that for an engine, this equation re-
lates the sum of the engine efficiency ηe

N = −〈WN 〉/〈Qh
N 〉

and the the charging efficiency ηc
N = (EN − EN−1)/〈Qh

N 〉 to
the ratio of heats exchanged with the cold and the hot heat
baths, RN = 〈Qc

N 〉/〈Qh
N 〉, according to ηe

N + ηc
N = 1 + RN

with −1 < RN < 0 for an engine.
In general, it is impossible to extract all the stored internal

energy EN of the QB [24,26]. The maximal amount of energy
that can be extracted via unitary processes from a QB after N
charging cycles is quantified by the ergotropy that, according
to Ref. [24], can be expressed as

Werg(N ) = max
U

[Tr[N HB] − Tr[UNU †HB]]

=
∑
i, j

εir j (|〈εi|r j〉|2 − δi j ), (16)

where the eigenvalues r j of the battery density matrix are
labeled such that r j decreases with increasing index j, while
the eigenvalues of the battery Hamiltonian, ε j = ω j, increase.
For a regularly measured battery, the according ergotropy
assumes the same form as in Eq. (16), with N replaced by
̃N = TrM[ρ̃N ] as well as r j replaced by the eigenvalues r̃ j of
̃N . Furthermore, the ergotropy can be divided into coherent
and incoherent contributions [27] that quantify whether the
extractable energy is stored in a superposition of the quantum

states (coherence) or via a population inversion like in a laser.
The incoherent contribution

W (i)
erg () = Werg

(∑
i

�i�i

)
(17)

equals the ergotropy of the decohered state. In other words, if
we measure the battery energy at the end of N cycles, thereby
killing all coherence, W (i)

erg (N ) would be the remaining ex-
tractable energy after the final measurement. The coherent
contribution then naturally emerges as

W (c)
erg () = Werg() − W (i)

erg (). (18)

Finally, we recall that the ergotropy presents an upper
bound on the work. If only a restricted class of unitary op-
erations is available to the experimenter, this bound can be
inaccessible.

III. EFFECTIVE CHARGING OF THE BATTERY

In this section, we design protocols to charge a QB using a
thermal machine. First we note that for an Otto machine with
a two-level working fluid and with perfectly thermalizing heat
strokes, the machine parameters can be chosen such that in
the absence of a battery, it either works as an engine or as a
refrigerator. To work as an engine, as a necessary condition,
βhεh < βcεc must hold. Further, a parameter α characterizing
the rapidity of the work strokes must not exceed a limiting
value depending on the compression factor εh/εc. For a refrig-
erator, βhεh > βcεc must hold and α is bounded by a function
of βhεh and βcεc which is independent of the compression
factor. For more details on the functioning of an isolated Otto
engine with a two-level system as working substance, see
Appendix A.

In the presence of a battery, which is charged by the ma-
chine, an analytic solution is no longer available. We therefore
present results of a numerical study, first of machines that in
isolation would work as engines, and then shortly consider the
case of refrigerators.

A. Initializing the machine as an engine

When the machine starts in the above-specified parameter
regime of a working engine and the machine-battery interac-
tion is not too strong, the machine continues to perform as
an engine for a number of cycles, N∗, after which the aver-
age work changes its sign, as shown in Fig. 2. Nevertheless,
the heat exchanged with the hot bath remains positive until
it turns negative after N# cycles and finally approaches an
asymptotic value. These critical cycle numbers depend on the
strength of the engine-battery coupling g, which for all results
presented below has the same value g = ω. For larger values
of g, the critical cycle numbers rapidly decrease until, at a
characteristic coupling strength, the engine immediately stops
working when coupled to the battery. The values of N∗ and
N# in dependence on the duration T1 of the work stroke are
indicated in Figs. 2–4 as white solid and white dashed lines,
respectively.

For both measurement protocols, the dependence of the
two average heats 〈Qh〉 and 〈Qc〉 on the number of cycles and
on the duration of the work strokes is synchronous with the
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FIG. 2. (a), (b) Average work 〈WN 〉, (c), (d) average heat from the
hot bath 〈Qh

N 〉, and (e), (f) average heat from the cold bath 〈Qc
N 〉 as

functions of the cycle number N and the period of the work stroke T1.
Positive values (on the color scale) indicate the inflow of quantities to
the working fluid, and negative indicate the outflow. The left column
corresponds to the unmeasured battery 〈WN 〉 and 〈Qh(c)

N 〉, whereas the
right column describes the periodically measured battery 〈W̃N 〉 and
〈Q̃h(c)

N 〉. The white solid lines mark the transition from a properly
working engine to a failing engine that absorbs heat from the hot
bath, emits to the cold bath, and absorbs work from the classical
drive. The white dashed lines denote the transition to a situation
in which the working fluid emits heat to both baths while absorb-
ing work. Other parameters are set to εc = � = 30ω, vT1 = 200ω,
g = ω, β−1

h = 200ω, β−1
c = 20ω, and QB levels M = 300.

respective dependence of the total average work in the sense
that along any line of constant average work, the heats also
stay almost constant. For example, in the absence of battery
energy measurements, along the line with 〈WN∗〉 = 0 the two
average heats take the approximate values 〈Qh

N∗〉 
 7ω and
〈Qc

N∗〉 
 −7ω, independent of T1.
In the presence of periodic battery energy measurements,

the average work as well as the average heats behave quite
differently compared to the unmeasured battery scenario (see
Fig. 2). In particular, the engine reaches the number of cycles,
where it starts to fail, earlier than the unmeasured battery, i.e.,
at any given T1 one finds Ñ∗ < N∗. Further, the number of
cycles until the machine fails to work as an engine decreases
with increasing duration of the work strokes. The fact that the
unmeasured battery leads to a later failure of the engine might
have its reason in the persistence of the battery coherence
over several cycles, which is destroyed each time the battery
is measured. Also, the contour line with 〈W̃N∗〉 = 0 differs

FIG. 3. (a), (b) Average internal energy EN , (c), (d) coefficient
of variation of the internal energy CN = σE (N )/EN , and (e), (f)
ergotropy Werg(N ) for a QB charged by an Otto engine. The left
column represents the results for an unmeasured battery, whereas
the right column is for the measured QB. The battery metrics are
from the same parameters used to characterize the engine in Fig. 2.
As there, white solid and dashed lines correspond to the transition
between a working engine to a failing engine emitting heat to the
cold, and to both, the cold and the hot baths, respectively. Note here
that the energy fluctuations of the QB, except for low numbers of
cycles wherein the battery undergoes a rapid charging, are of the
same order of magnitude as that of the internal energy stored in
the QB.

significantly from its unmeasured appearance, yet 〈Q̃h
N∗〉 and

〈Q̃c
N∗〉 are almost constant along this curve at ≈ ±7ω, respec-

tively.
In order to characterize the battery during the charging

process, the average battery energy, its ergotropy, and the
coefficient of energy variation, as defined by Eqs. (13), (14),
and (16), respectively, are displayed in Fig. 3 for the two
considered monitoring scenarios. The average battery energy
after N cycles is the sum of the energies transferred by the
engine to the battery in the previous cycles. At any fixed
work-stroke duration T1, it monotonically increases with the
number of cycles, indicating that the engine moves energy
to the battery not only in the regime of a properly working
engine when N < N∗, but also in the two regimes of no work
output while heat is still absorbed from the hot bath, i.e., for
N∗ < N < N#, and when, finally, heat is also emitted to the
hot bath for N > N#.

The variation of the battery energy, σE (N )/EN , is depicted
in the middle row of Fig. 3; it varies roughly around 1 being
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FIG. 4. (a) Coherent ergotropy W (c)
erg (N ) and (b) incoherent

ergotropy W (i)
erg (N ) for an unmeasured QB. The total ergotropy

Werg(N ) is plotted in Fig. 3(c). The parameters are identical to the
ones used in Figs. 2 and 3. Note that the color scale for (a) is one
order of magnitude smaller than that of (b).

largest at small N with a tendency to decrease with N . Overall,
the periodically measured battery exhibits a lower variability
and hence appears more reliable than an unmeasured one. The
periodically measured battery approaches its asymptotic en-
ergy content much faster than the unmeasured one. Likewise,
the asymptotic value of the ergotropy is approached after a
substantially smaller number of cycles for a periodically mea-
sured battery. Due to the measurement-induced elimination
of coherence, the coherent part of the ergotropy, as defined
in Eq. (18), vanishes. Yet, even for a completely unmeasured
battery, the coherent part turns out to be substantially smaller
than the incoherent one (see Fig. 4) and therefore also the er-
gotropy of an unmeasured battery mainly results from a partly
inverted population of its energy eigenstates rather than from
coherence. Consequently, a final battery energy measurement
of an otherwise unmeasured battery has no tangible effect on
the ergotropy. The development of the population inversion is
illustrated in Fig. 5 in more detail. The upper row displays the
populations of the considered battery with M = 300 energy
states, pl = TrB�l and p̃l = TrB�l ̃, evolving as functions
of the number of cycles for a fixed value of the work-stroke
time, T1 = 40πω−1, for which the charging of the unmeasured
battery is fastest. The two lower rows display the charging
process for the same T1 in terms of the population of the
battery energy states as a function of the number of cycles. In
an unmeasured battery, three subsequently appearing separate
peaks characterize the charging progress of the battery—one
around the ground state originating from the initial state and
becoming insignificant around 500 cycles, the second one
that is formed around 200 cycles and vanishes after 3000
cycles, and the last one emerging at around 500 cycles that
moves towards higher energies with increasing cycle number,
asymptotically leading to a fully charged battery with perfect
population inversion. In contrast, for a periodically measured
battery, the peaks overlap and a multimodal distribution builds
up in the upper half of the energy spectrum, while the popula-
tions of the lower levels keep decreasing. The highest energy
level also gains population, but remains less populated than
the peak region lying around two-thirds of the maximal level.
This feature is qualitatively independent of the choice of T1.

FIG. 5. Populations pl (N ) = Tr�lρN and p̃l (N ) = Tr�l ρ̃(N ) of
the lth battery state as functions of l and N for (a) unmeasured and
(b) measured batteries and for a work-stroke duration T1 = 40πω−1.
All other parameters are chosen as in Fig. 2. The left panels depict the
populations pl as functions of the battery energy label l for a selected
set of cycle numbers and for an unmeasured battery. (d), (f) The
according data for periodically measured batteries. (a), (b) The white
lines indicate the respective critical cycle number N∗ which is 338 for
the unmeasured and 152 for the measured battery. In both scenarios,
a local maximum of the populations builds up after a sufficient
number of cycles of the order of N∗. For the unmeasured battery,
this maximum grows and simultaneously moves with increasing N
to larger l values until it reaches the highest possible energy battery
state. In contrast, for the measured battery, the population grows
within an almost fixed region. While the initial population growth
proceeds faster for the measured battery, more energy is finally stored
in the unmeasured battery.

In spite of the fact that the coherent part of the ergotropy
of the unobserved battery is negligibly small compared to
its incoherent contribution, the mere presence of coherence
and its undisturbed transmission between subsequent cycles
leads to fundamental differences in the temporal behavior of
most engine-battery metrics in comparison to a periodically
measured battery, as is evident from Figs. 2–5. A further
comparison of the influence of the presence or the absence of
battery energy measurements, and, hence, of hindered or free
propagation of coherence, is presented in Fig. 6. In Fig. 6(a),
the average battery energy content is displayed as a function
of the number of cycles, confirming that the machine with a
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FIG. 6. (a), (b) Comparison of the average internal energy and
ergotropy of an unmeasured and of a periodically measured QB.
In (a) and (c), the work-stroke duration is fixed at T1 = 40πω−1,
while the cycle number N varies; the black and blue vertical dot-
ted lines in (a) and (c) mark the critical cycle number N∗ above
which the measured and the unmeasured engines, respectively, fail
to work for the given T1. The corresponding battery energies and
ergotropies are marked by full and open circles, respectively, in blue
for the measured and in black for the unmeasured battery. In (b), the
average energy and the ergotropy are displayed as functions of T1

for the cycle number N = N∗(T1), i.e., along the solid white curve
in Fig. 2. (c) The charging speed, i.e., the change of the average
energy and ergotropy per cycle as a function of the cycle number N
at T1 = 40πω−1. Note that the charging speed is proportional to the
cycle-averaged charging power. The red dotted line indicates zero
speed. At negative speeds, the battery is discharging. All the other
parameters are the same as in Fig. 2.

periodically measured battery is charged faster but also that
it fails earlier to work as an engine than the same machine
with an unmeasured battery. Within the regime of a working
engine, i.e., for cycle numbers N < N∗, the measured battery
is charged faster, reaching a maximal average energy EN∗

comparable to that for the unmeasured battery; see the blue
and black solid circles in Fig. 6. On the other hand, the max-
imal ergotropies Werg(N∗ ) (open circles) at the border of the
working engine regime for an unmeasured battery are about
15 times larger than that of a measured battery. At larger cycle
numbers, the unmeasured battery takes over with respect to
the average energy and the ergotropy.

Figure 6(b) displays the dependence of the average battery
energy and ergotropy along the white solid line of the first
engine failure N∗(T1) as a function of the work-stroke time
T1. There is only a little difference between measured and
unmeasured batteries for the average energy. On the other
hand, the ergotropy of the measured battery soon becomes

FIG. 7. The average energy of the battery as a function of the
thermalization time T2 and the number of cycles for (a) an unmea-
sured battery and (b) a measured battery. At any fixed sufficiently
large number of cycles, the average battery energy reaches the same
maximal value at T2 = 0 and T2 = 2π/ω, presenting the upper and
lower borders of both panels. These maxima are relatively flat such
that close to the upper and lower borders, still a large average energy
of the battery is found even in the absence of perfect matching. This
effect is more pronounced for the measured battery. For other times
T2, the average battery energy may become substantially smaller.
This effect is stronger for the unmeasured battery, but is also present
for the measured case. In the regions of suppressed battery energy,
the engine performs work on the external agent even at cycle num-
bers at which it long has stopped working for thermalization times
T2 = 0 and T2 = 2π/ω. As in the previous figures, the full white line
indicates the location at which the engine ceases to perform work
on the external agent; when crossing the dashed line, the working
fluid delivers heat to both reservoirs. All parameters are the same as
in Fig. 5.

negligibly small, while that of the unmeasured battery ap-
proaches a roughly constant value which is approximately half
of the total stored energy. In Fig. 6(c), the speed of the loading
process is displayed as the difference of the average energy
and of the ergotropy during a cycle, �N E = EN − EN−1 and
�NWerg = Werg(N ) − Werg(N−1). The speed of the average
energy varies for the measured battery in a rather smooth
way, while it strongly fluctuates during the first cycles of an
unmeasured battery. The speed divided by the duration of
the respective cycle gives the charging power averaged over
the cycle. Hence, for a machine running with constant cycle
duration—as we silently assume here—charging power and
speed are proportional to each other.

While the speed of the average energy is always positive,
the speed of the ergotropy may also assume negative values,
in particular for the unmeasured battery at early cycles. The
vanishing of the speeds of the average energies and of the
ergotropy after sufficiently many cycles indicates the reaching
of the asymptotic state. In this final state, the external drive
delivers energy via the machine solely to the cold and the hot
heat baths without altering the battery energetics.

So far, all presented results refer to thermalization times
T2 that are integer multiples of the principal battery period
Tω = 2π/ω. After these times, the battery has exactly returned
to its initial state. For thermalization times which strongly dif-
fer from integer multiples of Tω, we find a drastic reduction of
the average battery energy, as exemplified in Fig. 7. The same
qualitative behavior can be observed for unmeasured and mea-
sured batteries, whereby the effect is more pronounced for an
unmeasured battery. In the regime of strong suppression, the
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engine continues to work properly. Hence, a nontrivial time
evolution of the battery during the thermalization strokes di-
minishes the interaction of the engine and the battery leading
to lower average energy stored in the battery. Yet, there is
a considerable level of tolerance with respect to the precise
choice of the contact time T2, as can be seen from Fig. 6, in
particular for a regularly measured battery.

B. Initializing the machine as a refrigerator

In a wide range of parameters, an Otto machine with a
two-level working fluid may act as a refrigerator [28,29],
which pumps heat from the cold to the hot bath by means
of work performed by the external drive on the machine. To
operate accordingly, βhεh > βcεc is required, meaning that the
population of the excited state immediately after the comple-
tion of the hot heat stroke is smaller than that after the cold
heat stroke. Furthermore, roughly speaking, the work strokes
must not proceed too rapidly or too forcefully. For details, see
Appendix A.

Similarly to the engine case (Sec. III A), the performance
of a refrigerator is degraded by the addition of a load, such
as a QB, during its work strokes with the consequence that
the machine ceases to work as a refrigerator beyond a critical
number of cycles, N = N∗, meaning that 〈Qc

N<N∗〉 > 0 and
〈Qc

N>N∗〉 < 0.
We consider the same metrics for the refrigerator-battery

system as for the engine-battery system in Sec. III A. As for an
engine-charged battery, during a first epoch, the periodically
measured refrigerator-charged battery is charged faster than
an unmeasured battery. Also, after the machine has stopped to
work as a refrigerator, the battery is further charged. The mea-
sured battery reaches an asymptotic population of its energy
states, while the unmeasured battery is still charging until it
also approaches an asymptotic state. Both the average energy
and the ergotropy are comparable to the respective asymptotic
values for a measured battery, as can be seen in Fig. 8(a). In
contrast to the engine-charged battery, the asymptotic energy
populations are quite similar for measured and unmeasured re-
frigerator charged batteries, as illustrated in Fig. 9. Likewise,
the dependence of the average energy on the duration of the
work stroke at the respective critical number N∗ of cycles does
not differ much for a measured and an unmeasured battery.
Only the differences of the ergotropies are more pronounced,
as displayed in Fig. 8(b). The charging speed of the average
energy and the ergotropy for the unmeasured battery fluctuates
strongly during the first cycles and even assumes negative
values, indicating that the battery is discharged temporarily,
as evident from Fig. 8(c). In contrast, the charging speed of
the average energy of a measured battery, and with it the
charging power, vary gradually as functions of the number
of cycles with an overall decreasing tendency. The speed of
the ergotropy is almost vanishing during the first charging
episode, reaches a maximum around N∗, and later decays to
its vanishing asymptotic value.

IV. CONCLUSIONS

In this work, the charging of a quantum battery possess-
ing a finite number of energy states by means of an Otto

FIG. 8. Replica of Fig. 6, with the difference that the machine
is now initiated as a refrigerator. (a) The average internal energy
and ergotropy of the measured and unmeasured QB as functions
of the cycle number; (b) the same quantities as functions of the
work-stroke duration when the refrigerator ceases to extract heat
from the cold reservoir. (c) The charging speed for the energy stored
and ergotropy of the QB. The vertical dotted lines in (a) and (c) in-
dicate the respective critical cycle numbers N∗. The energy gap of
the working fluid is modified to perform cooling as εc = � = 10ω,
vT1 = 300ω, and the rest of the parameters g = ω, β−1

h = 200ω, and
β−1

c = 20ω remain the same as for the engine case, i.e., εh 
 300ω,
α 
 5×10−15, βcεc = 1/2, βhεh 
 3/2.

machine with a two-level working fluid was studied. With-
out the battery, such a machine can function as an engine
or a refrigerator, depending on the proper choice of certain
parameters. The charging of the battery takes place via an
interaction of the machine and the battery during the work
strokes. In order to prevent a leakage of the battery energy to
the baths as well as a possible decoherence of the battery state,
the interaction between the machine and the battery is turned
off during both heat strokes. We found that in this way, an Otto
machine may charge a battery in either mode of operations.

In order to monitor the energetic metabolism of the
machine-battery system, we determined on the side of the
machine those averaged energies that are exchanged as heats
with the cold and hot bath and the total average work that is
performed during the work strokes on the working fluid per
cycle. The monitoring of these contributions can be realized
by means of projective energy measurements of the working
fluid in the beginning and at the end of each work stroke,
while the working fluid is isolated from the heat baths. Under
the assumption of perfectly thermalizing heat strokes, these
measurements do not influence the dynamics of the machine
because they are always only performed at times at which the
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FIG. 9. Replica of Fig. 5 with the machine initialized as a re-
frigerator. Populations pl (N ) = Tr�lρN and p̃l (N ) = Tr�l ρ̃(N ) are
calculated for the machine operating with a work-stroke duration
T1 = 10πω−1. All other parameters are chosen as in Fig. 8. The white
lines indicate the respective critical cycle number N∗, which is 664
for the unmeasured and 265 for the measured battery.

machine states are diagonal with respect to the machine’s en-
ergy basis. The amount of energy stored in the battery, which
initially is prepared in its ground state, is measured either
after the completion of each cycle or only once at the end
after a prescribed number of cycles. Apart from the increase
of the average battery energy, the ergotropy as the maximal
average energy difference that can be achieved by any unitary
transformation of the battery, was determined and separated
into its coherent and incoherent parts.

While the periodic measurements of the battery completely
suppress any coherence at the end of each cycle, in an un-
measured battery a coherence building up during the loading
process can be freely transferred from one cycle to the next
one. Yet, the coherent contribution to the ergotropy remains
negligibly small compared to the incoherent part. Neverthe-
less, the charging process is essentially influenced by the kind
of monitoring. For both modes of machine operations, namely,
as an engine or a refrigerator, the charging is accelerated
by periodic battery energy measurements, hence reaching an
asymptotic battery state after a fewer number of cycles than
without measurements. For a refrigerator, these asymptotic
states are characterized by quite similar populations of the few

highest energy levels for periodically measured as well as for
unmeasured batteries. In contrast, only an unmeasured engine
loaded battery eventually becomes virtually fully charged,
while a measured battery asymptotically may only be partially
charged.

In both modes of operation, as an engine or a refrigerator,
and for both monitoring schemes, the presence of the battery
has qualitatively the same degrading influence on the perfor-
mance of the machine; after a characteristic number of cycles,
the machine even starts failing to work according to its initial
design: an engine no longer performs work and a refrigerator
fails to extract heat from the cold reservoir. However, the
battery continues being charged during the machine-failing
period until, finally, an asymptotic battery state is reached.

In order to achieve an optimal charging of a battery with
equidistant level spacing, it is of utmost importance that the
duration of the thermalization strokes during which the battery
undergoes a unitary, free evolution approximately matches
an integer multiple of the free battery principal period. For
noticeably deviating, noncommensurate thermalization times,
the free battery dynamics effectively diminishes the coupling
to the machine setting in during the subsequent work stroke.
As a consequence, the battery then may not be charged, while
at the same time, the machine continues performing according
to its initial design as an engine or a refrigerator. Whether such
optimal thermalization times can also be achieved for batteries
with other than equidistant level spacing is an interesting
question for future research.

We conclude by emphasizing that the monitoring of the
charging process of a quantum battery may have a strong
influence on this process and the finally achieved battery state.
Of course, there are many other monitoring strategies, be it via
measurements taking place not after each but only after each
N th cycle or not by projective but by generalized measure-
ments. In any case, the adequate monitoring must be allowed
for in the analysis and, vice versa, the kind of monitoring has
to be adapted to the practical requirements of the charging
process, such as speed or maximal capacity.
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APPENDIX A: OTTO CYCLES OPERATING
WITH LINEAR DRIVING WORK-STROKES

In this Appendix, we provide the analytic results for the
average heat and work when the machine operates without
the load of a QB. For the present two-level working fluid
undergoing a variation of the level distance, which is linear
in time, one obtains with the analytic Landau-Zener results of
Refs. [30–32] the following time-evolution operator:

U = √
1 − α(e−iφ |+h〉〈+c| + eiφ |−h〉〈−c|)

−√
α(|+h〉〈−c| − |−h〉〈+c|), (A1)

that governs the machine dynamics during the compression
strokes. An expansion stroke as the time-reversed process
of the compression stroke is then described by the unitary
operator Ũ = CU †C, with the complex conjugation operator
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C. Above, the states |±x〉 (x = c, h) are the eigenstates of the
Hamiltonian at the beginning and end of work strokes, i.e.,

HM(0) = εc(|+c〉〈+c| − |−c〉〈−c|) ≡ HM(2T1),

HM(T1) = εh(|+h〉〈+h| − |−h〉〈−h|), (A2)

with εc =� and εh =
√

�2 + v2T 2
1 using Eq. (2) and ξ (t )=vt .

The parameters α and φ can be expressed as α = exp[−2πδ]
and φ = π/4 − δ(ln δ − 1) − arg�(1 − iδ), with δ = �2/2v

and the Gamma function �(z). The transition probability α ∈
[0, 1] vanishes for the quasistatic process and becomes unity
for a swap.

For the heat strokes, we assume perfect thermalization into
the canonical Gibbs states as defined by Eq. (7). Starting with
the working fluid in the cold state, the density matrices μT at
the times T indicated in Fig. 1 become

μ0 = τ c = eβcεc

Zc
|−c〉〈−c〉 + e−βcεc

Zc
|+c〉〈+c|,

μT −
1 = Uτ cU †,

μT +
1 = τ h = eβhεh

Zh
|−h〉〈−h| + e−βhεh

Zh
|+h〉〈+h|,

μ2T −
1 = Ũτ hŨ †, μ2T +

1 = μ0, (A3)

where Zx = 2 cosh βxεx, x = h, c. As it repeats periodically,
this single cycle describes the complete dynamics of an iso-
lated machine.

The average heat and work per cycle follow from. Equa-
tions (11) and (12) as

〈W 〉 = −[(1 − 2α)εh − εc] tanh (βcεc)

− [(1 − 2α)εc − εh] tanh (βhεh), (A4)

〈Qh〉 = εh[(1 − 2α) tanh (βcεc) − tanh (βhεh)], (A5)

〈Qc〉 = εc[(1 − 2α) tanh (βhεh) − tanh (βcεc)]. (A6)

Note that only the transition probability α, but not the phase φ,
affects the thermodynamic quantities because any coherence
built up in a work stroke is erased after each heat stroke.

For an engine, the average work done on the working
fluid must be negative (〈W 〉 < 0), the heat from the hot bath
positive (〈Qh〉 > 0), and that from the cold bath negative
(〈Qc〉 < 0), implying for the engine parameters the conditions

α >
1

2

(
1 − xη + 1

η + x

)
, (A7)

α <
1

2
(1 − η), (A8)

α >
η − 1

2η
, (A9)

where x = εh/εc > 1 and η = tanh βhεh/ tanh βcεc. The con-
dition α � 0 leads together with (A8) to η < 1, such that the
third inequality (A9) is automatically satisfied. The allowed
parameters for the machine as an engine are still restricted by
the inequality (A9); see, also, Fig. 10.

For the machine to work as a refrigerator, all inequality
signs in (A7)–(A9) must be inverted. The accordingly inverted
condition (A9) then implies with α > 0, η > 1 and α < 1/2.

FIG. 10. Phase portrait of an isolated Otto engine on the α-η
plane for the compression factor x ≡ εh/εc = 2. The machine acts as
an engine in the red shaded region defined by the inequality (A7). For
parameters lying in the blue region representing the inequality (A9),
the machine acts as a refrigerator. The black line represents the
limiting case of Eq. (A8) that separates the two regimes of failing
machines with either 〈Qh〉 > 0 or <0. For an equivalent phase por-
trait with a different parametrization, see, also, Ref. [33].

The other two inequalities are automatically satisfied; see
Fig. 10.

APPENDIX B: WORK DUE TO ON-OFF SWITCHING

In general, it is impossible to disentangle all the heat and
work sources in the machine-battery composite to identify
the contribution resulting from the on-off switching of the
machine-battery interaction. We therefore study a simplified
situation in which the on-off switching of an interaction be-
tween a two-level and an M-level system provides the only
potential source of energy. The Hamiltonian of the two-level
system is of the form of Eq. (2),

H2LS = �σx + εσz, (B1)

however, with a time-independent field ε in z direction. The
Hamiltonian of the M-level system, HB, is given by that of the
battery in Eq. (3) and that of the time-dependent interaction
by Eq. (4) with a coupling function of the form

g(t ) =
{

g 0 � t < τ1

0 τ1 � t < τ2,
(B2)

which repeats periodically.
Because there are neither work strokes nor heat strokes

affecting the dynamics of this simplified system, the switching
of the interaction remains, as a time-dependent contribution,
the sole potential source of an energy variation.

Figure 11 displays the average energies of the battery and
of the two-level system as a function of time over many
periods. For the range of parameter values with ε,�  g, ω,
also always considered for the engine-battery system in the
main part of this work, these average energies stay almost
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FIG. 11. Average energy of the battery 〈HB〉 (black solid line)
and of the two-level system 〈H2LS〉 (red dashed line) as a function of
the number of cycles, N , for the model discussed in Appendix B.
Small fluctuations are observed in the energies because the peri-
odic variation of the interaction between the two-level system and
the battery breaks the energy conservation. However, the energies,
on average, neither increase nor decrease with time t , indicating
that the switching of the interaction has no influence on the charg-
ing of the battery. The parameters are chosen similarly as for the
machine-battery setup of the main text with � = 30ω, ε = 200ω,
g = ω, and M = 30. The switch-on period and switch-off period are
set equal, i.e., τ1 = τ2 = ω−1. The two-level system is initiated in
a state ρ2LS(0) = exp[−β�σx]/Tr[exp(−β�σx )] with β−1 = 20ω,
similarly to the cold-bath temperature of the Otto machine, whereas
the battery is initiated in its ground state ρB(0) = |0〉〈0| with the
battery and two-level system being decoupled initially.

constant with negligible variations. Hence, the on-off inter-
action minimally influences the energies that remain constant
over multiple cycles. If the interaction parameter g becomes
much larger than the battery level spacing ω, the average
energy of the two-level system is greatly affected. Yet it ap-
parently remains a bounded function of time as it is also the
case for the average battery energy which oscillates with an
amplitude scaling exponentially with g for large g. Hence, also
in the strong-coupling case, the battery cannot be charged by

solely switching the interaction. The simple model explored
in this Appendix strongly indicates that it is the action of
the machine that charges the battery, while the switching of
the interaction has only minor consequences. Moreover, the
results shown in Fig. 11 do not depend on the duration of
the switch-on and switch-off periods. This strongly suggests
that the presented results regarding the machine and battery
energies also hold in the presence of finite thermalization time
as long as the system thermalizes in the heat strokes.

APPENDIX C: ENERGETIC COST
OF MEASURING THE BATTERY

According to the von Neumann measurement scheme
[34,35], a pointer with a constant Hamiltonian, say HP = 0, is
brought in contact with the system in terms of the interaction
Hamiltonian HBP = κAP for a time τ , where A is the system
observable to be measured and P is the momentum operator
conjugate to the pointer position. For any observable A that
commutes with the system Hamiltonian HB, the interaction
conserves the energy of the total system plus pointer. Addi-
tionally, since the Hamiltonian of the pointer is a constant,
the energy of the system is thus naturally conserved. The
initial density matrix of the system and the pointer factor-
izes, whereby the latter is a minimum uncertainty state with
vanishing position and momentum mean values and position
variance 〈Q2〉. In the position representation, it hence takes
the form σ (x, y) = exp[−(x2 + y2)/4〈Q2〉]/

√
2π〈Q2〉. Upon

a position measurement of the pointer, once the interaction has
taken place, one obtains a superposition of Gaussians centered
around the eigenvalues of the considered observable A all with
the same variance σ 2

A = 〈Q2〉/κ2τ 2. In the limit of a vanishing
variance, σ 2

A , i.e., for an infinitely precise pointer, the von
Neumann measurement scheme reduces to a projective mea-
surement of the observable A; for details, see [36].

In the setup of the Otto charging machine described in
the main text, measurements of energies of the working fluid
and the battery are performed at instants when the measured
system is isolated from the working fluid and also from the
heat baths. This is because in such cases, with A = HB, the
interaction operator HBP commutes with the full Hamiltonian,
HB + HBP + HP. Switching on and off the contact between
the system to be measured and the pointer does not change
the sum of their energies. Consequently, as the pointer has
a constant energy, the energy of the measured system also
remains unchanged. In other words, there is no energy cost
of a projective energy measurement on an isolated system.
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