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Abstract Let F = GF(g). To any polynomial G € F[z] there is associated a mapping G on the set Ip
of monic irreducible polynomials over F. We present a natural and effective theory of the dynamics of G
for the case in which G is a monic g-linearized polynomial. The main outcome is the following theorem.

Assume that G is not of the form z9 , where [ 2> 0 (in which event the dynamics is trivial). Then, for
every integer n 2 1 and for every integer k 2> 0, there exist infinitely many p € Ip having preperiod k

Previously, Morton, by somewhat different means, had studied the primitive periods of G when
G = z29 — ax, a a non-zero element of F. Our theorem extends and generalizes Mortor1’s result. Moreover,
it establishes a conjecture of Morton for the class of g-linearized polynomials.
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1. Introduction

We start very generally and give the fundamental definitions needed to study the dynam-
ics of mappings. Let v : S — S be a mapping defined on a non-empty set S and let a € S.
Then a is called periodic (with respect to «y) if there exist non-negative integers k£ and {
such that &k <[ and

v*(a) = 7'(a). (1.1)

Here, v* denotes the kth iterate of the mapping v and 4" is defined to be the identity
on S. If every a € S is periodic, then ~y is called periodic (on S). Let @ € S be periodic
with respect to v and k < [ be such that (1.1) holds. Then I — k is called a period of a
(with respect to ). If k is minimal such that (1.1) holds for some I > k. then k is called
the preperiod of a. If both k and { are minimal such that & < [ and (1.1) holds, then
[ — k is called the primitive period of a. Of course, the primitive period of a divides every
period of a. If the preperiod of a is equal to zero, then a is called purely periodic. (In the
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literature, the term ‘periodic’ often refers to what we call ‘purely’ periodic.) Generally,
the set

{y"(a) | n =0} (1.2)

is called the orbit of a. The term dynamics of v (on S) embraces all that pertains to the
nature of the orbits of v on S. Typical questions are ‘what lengths of (primitive) periods
are realized’ and ‘how long can the preperiods be?’

We turn to the particular situation which we are interested in. Let ' = GF(q) be the
Galois field of order ¢ and F be an algebraic closure of F. If G € F|z] is a polynomial
with coefficients in F, then, via evaluation, G can be regarded as a mapping on F that
leaves every intermediate field of £ over F invariant. Let o € F and F(a) be the subfield
of F obtained by adjoining the element a to F. Since F(a) is a finite field (in particular
a finite set), we have that « is periodic with respect to G and, as this holds for all o« € F,
G is periodic on F.

Let I'r denote the set of monic irreducible U] momials over F
-
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Let I denote et of mon  polynomial s over F and again le Flx].
Then G also induces a mapping G on I as follows. Let f € Ir and o € F be a root
of f. Then G(f) is defined to be the minimal polynomial of G(a). Of course this is well
defined. Moreover, since every o € F is periodic with respect to GG, we have that, for
every a € F, yu, is periodic with respect to G, where 1o, denotes the minimal polynomial
of a over F (u, is irreducible). Since every u € I is of the form u, for some a € F, we
obtain that G is periodic on Ig.

a mapping G on ~d AN BT D.
The ouud}’ of the d ay namics of a n lapping G on 11- was initiated uy v ivaidal lJ.dJ, Datra

and Morton [1,2] and Morton [9]. In the latter three papers, the main emphasis is laid
on the case in which G = 29 — ax (a € F). The main result in {9] (Theorem 1) states
that, for every n > 0, there exist infinitely many g € I'r, which are purely periodic and
have primitive period n with respect to G (where G = z7 — az, a # 0).

In the present paper, we shall extend and generalize this result considerably. In order
to accomplish this we present a natural and effective formulation of the dynamics of G

1()1 Lllti case in WIll(JIl U isa q- l-'UL(:'(LT"LZ@a \CL(ICL'LW'U@) pozynomzat \OI WHICH ClaSb (_1 = :L" —ax
presents the simplest example). As a consequence, we obtain the following theorem.

Theorem 1.1. Let G # 0 be a g-linearized polynomial over F. Assume that G is not
of the form :cql, [ > 0. Then, for every integer n > 1 and for every integer k > 0, there
exist infinitely many irreducible monic polynomials over F, which, with respect to G,
have primitive period n and preperiod k.
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g-linearized polynomials. This class comprises polynomials having the shape
Zgiicql € Fla]

In §2, we amplify this definition of a ¢-linearized polynomial and give a formulation of
the main problem in terms of additive orders. These are fundamental when studying F
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we will show that Theorem 1.1 is already true provided that, for every n > 1, there exists
one irreducible polynomial over F' having primitive period n. In 83, we use character
sums in order to prove Theorem 1.1 for primitive periods n which are not divisible by
the characteristic of F. In §4, we deal with periods divisible by the characteristic of F'
and complete the proof of Theorem 1.1.

Some remarks are in order on the relationship of this work to Morton [9] which was our
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starting pUlIlb In his paper, Morton bnuuauv' divides the investigation into three parts,
which correspond loosely to our §§2-4, respectively. He works with the Carlitz module
rather than mere considerations of orders (as in §2): the Carlitz module, however, is
neither necessary nor even convenient for general g¢-linearized polynomials. Instead of
the precise formulation using character sums (§3), he employs less effective ‘Cebotarev’
notions. Finally, his treatment of primitive periods divisible by the characteristic differs
substantially from ours (§4).

2. Linearized polynomials and additive orders

The notion of a g-linearized polynomial goes back to the work of Ore [10] (see also [11,
ch. 3, §4]). It has proved to be very useful when considering the additive structure of a
(finite) extension of F = GF(q). Let ¢ = 3", ¢;z’ € Flz]. Then the polynomial

A (c) = Zcz-:cqi (2.1)

is called the associated q-linearized polynomial of c, or, more simply, the associated
g-polynomial of c. For example, 29 — ax is the associated g-linearized polynomial of
x —a.

Let of be the Frobenius automorphism of F over F. Then, for ¢ € Fir] and o € F,

Ag(c)(a) = c(or)(a). (2.2)

In particular, (2.2) imparts a module structure of F' over the ring F[r] with respect to
or (see, for example, [6,7]). For an integer n > 0 let [¢c|” denote the nth iterate of the
polynomial c, i.e. [c]° := 1, [¢]! := ¢ and, inductively, [¢]" := []*"!(c). Thus, again for
acF,

[Ag(e)]"(a) = ¢"(oF)(@). (2.3)

If F(a) has degree d over F then (z? — 1)(op)(a) = 0. Thus, there exists a monic
polynomial f € F[z] of least degree such that f(or)(«) = 0. This polynomial is uniquely
determined. It is called the F'-order of a and is denoted by Ordg(a). It is the monic
polynomial f of least degree such that « is a root of the associated g-polynomial A,(f)
of f.

If U is a op-invariant F-subspace of F', then U will simply be called a submodule of
F. Let Pr be the set of monic polynomials in F[z] that are not divisible by z. Then the
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momials
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and members of Pr, again see [6,7].

Proposition 2.1. The set P corresponds bijectively to the finite submodules of F.
More precisely, if f € Pp, then the submodule Ur ; belonging to f is exactly the set of
roots of A,(f) (in F), i.e. the kernel of the mapping f(oF).

Moreover, every finite submodule of F is cyclic (i.e. free on one generator). The gen-
erators of U ; are exactly the elements of F whose F-order is equal to f.

Finally, f is the minimal polynomial of the F'-vector space Uy y when considered with
respect to oF.

Next, let g be a monic polynomial in F[z], let z* be the largest power of x dividing
g, and let h be the cofactor of 2* in g. Let G and H, respectively, be the associated
g-polynomials of g and h. Since A  (2F) = 29" induces the identity mapping on Iy, the
dynamlcs of G and H on Iy are the same. We therefore restrict our attention to the case

s Aiviaihlia T = aQQITIMme from o +hha fond ~ 24 1 Ao
in which g is not divisible uy x, i.e. we assume from now on that g < rf, g 7 1. ¥vE

study the dynamics of G on the set Ir, where G := A,(g) is the associated g-linearized
polynomial corresponding to g. We therefore refer to g as the dynamic polynomial.

The following basic result is [6, Lemma 7.4]. It is crucial for studying the preperiods
and the periods of G on Ip.

Lemma 2.2. Let o € F have F-order f. Let g € F|z| be monic. Then g(or)(a) has
F-order f/ged(g, f) (where ged denotes the greatest common divisor).

In particular, g(or)(a) has the same F-order as « if and only if g and Ordg(a) are
relatively prime.

Since the F-order of each o € F is not divisible by x (see Proposition 2.1), we see that
the conjugates of a under o, namely the elements of the set

{a®" | k > 0}

(i.e. the roots of u, ), all have the same F-order. Consequently, ., is purely periodic with
respect to G provided that ¢ and Ordp(a) are relatively prime.

Assume that p, is purely periodic with respect to G. Let n be the primitive period of
fin. By definition, n > 1 is the minimum number such that G™ (s ) = fta. Thus, n > 1 is
the minimum number such that there exists an [ > 0 such that

[G]"(a) = o = ok(a) = [29)'(a). (2.4)
The latter is equivalent to the fact that the F-order of a, say f, is a divisor of
g" — . (2.5)
Moreover, there exists an integer m > 1 such that

[G]™(a) = & = o} (a) = [z](). (2.6)
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g" = 1. (2.7)

Thus, (2.6) implies the following result. which can be interpreted as meaning that g is a
unit modulo f.

Lemma 2.3. Let a € F and pi, € Ir be the minimal polynomial of a. Then p, is
purely periodic with respect to G if and only if g and Ordp(«) are relatively prime.

If m > 1 is the least integer satisfying (2.6), then m is the multiplicative order of
g in the group of units modulo f. This number will be denoted by ords(g). Since, by
the definition of Pr, x and f are relatively prime, z is likewise a unit modulo f. Now,
letting [¢ + (f)] and [z + (f)] be the subgroups of units modulo f that are generated by
gmod f and rmod f, respectively, we have established the following characterization of
the primitive period of p, with respect to G.

Proposition 2.4. Let f be the F-order of a € F. Assume that [ is relatively prime
to g. Then p,, is purely periodic with respect to G and the primitive period of p., with
respect to G is equal to

min{k > 1| ¢* + (f) € [z + ()]}

This number is equal to the index of the group C in [g+ (f)], where C is the intersection
of [z + (f)] with [g + (f)].

Let a € F. Then Lemma 2.3 and Proposition 2.4 show, furthermore, that the funda-
mental parameters of j, with respect to G, i.e. the preperiod and the primitive period,
depend only on the F-order of a. Therefore (essentially by Lemma 2.2), g likewise induces
a mapping g on the set Pr. In fact, as will emerge from the proof of Proposition 2.7 below,
the preperiodic structure of § on Pr is essentially connected to the preperiodic structure
of G on Ir. On the other hand, by Lemmas 2.2 and 2.3, u, is purely periodic with
respect to G if and only if Ordg (@) is purely periodic with respect to g. Moreover, again
by Lemma 2.2 and the remark thereafter, ¢ only admits primitive periods of length 1.

We now introduce some notation as follows. If f € Pp is relatively prime to g, then

o (f) (2.8)

denotes the primitive period of . with respect to G, where o is any element having F-
order f. For convenience, we sometimes also write 7,{ o } for m,(f), noting that, because
f and p, are both members of F[x], some distinction of notation is expedient.

For n > 1 let

pg(n') = {f € Pr | ng(97f) =1, 71'g(f) = n}v (2~9)

and

I,(n) = {ta € Ir | ged(g, Ordp(a)) = 1, mo{pa} = n}. (2.10)

The first part of the following proposition is a reformulation of what has been said above.
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2.5. Let a € F have

(1) po € Iy(n) if and only if f € Py(n):
(2) I,(n) is empty if and only if P,(n) is empty; and
(3) I,(n) is finite if and only if P,(n) is finite.

Proof. It remains to prove parts (2) and (3).

(2) If p € I,(n), then Ordr(a) € Py(n) for every root a of p. If f € Py(n), then, by
Proposition 2.1, a generator a of Uy ; has F-order f. Thus, p, € I,(n).

(3) Clearly, if Py(n) is infinite, then I4(n) is infinite. Assume, therefore, that I,(n) is
infinite. If f € Py(n), then A,(f) has only a finite number of roots. Thus, there exist
only a finite number of elements « € F" such that p, divides 4,(f) and this is equivalent
to the fact that Ordp(a) divides f. Thus, P,(n) has infinite cardinality as well. O

The goal of the remainder of this section is the following reduction of Theorem 1.1.

Theorem 2.6. Let g € Pp, g # 1. Then the following assertions are equivalent.
(i) I4(n) is not empty for alln > 1.
(ii) Py(n) is not empty for all n > 1.
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In order to prove this we first deal with the preperiodic structure of G. Let a € F and
let hy be the F-order of a. For n > 1 let h, be the F-order of [G]"(a) = ¢"(cp)(a).
Using Lemma 2.2 we see that the series (h,) is ultimately constant, say after k steps.
Then k is minimal such that hy and g are relatively prime. Moreover, k is equal to the
preperiod of Ha- Altogether, this already gives a concrete description of the preperiodic
behaviour of . In particular. we can show the following.

Proposition 2.7. Given a polynomial g € Pr, g # 1, let f € Py(n). Then, for every
k > 0, there exists a p € Ir such that the preperiod of u is equal to k and every root of
G¥(11) has F-order f (whence the primitive period mg{p} of p is equal to n).

In particular, the preperiods of the mapping G on Ir can be arbitrarily long.

Proof. Let a be an irreducible divisor of g and o’ be the maximal power of a dividing

g. Tet f be relatively prime to g and consider the nolvnomial A = nkm,(‘ Then ncinge
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Lemma 2.2, the preperiod of G on the minimal polynomial of an element havmg F-order
h has length k. The rest also follows from Lemma 2.2. L

Observe that for different f; and f> in P,(n). the construction in the above proof leads
to different 1, and p,. Therefore, the part of Theorem 1.1 concerning the preperiods
follows from the part concerning the primitive periods.

We next give a fundamental lemma that will also be very useful in §4.
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Lemma 2.8. Assume that f, h € Pr are relatively prime to g. Let oo € F hav

f. Then the following conditions hold.

(
b
{

(1) Ifn > 1 is such that G™(ja) = jia. then m4(f) is a divisor of n.
(2) If n > 1 and [ > 0 are such that f divides g" — a', then m,(f) divides n.

(3) If f divides h, then 7,(f) divides m,(h).

Proof. Observe first that u, is purely periodic by our assumption. (1) follows since
n is a period of u, and thus is divisible by 7,(f).

(2) is a reformulation of (1).

(3) is an application of (2). d

The final ingredient in the proof of Theorem 2.6 is the following result.

Proposition 2.9. Given a polynomial g € Pr, g # 1. Assume that f € Pr is rela-
tively prime to g. Let n = 7 (f) be the period of j,, where o € F has F-order f. Then
P,(n) is infinite.

Proof. There exists [ > 0 such that f divides f, := ¢" — z!. Let ap be an element
having F-order fy. An application of Lemma 2.8 shows that m,(fo) = n = m,(f).

Next, let d be the multiplicative order of x modulo f, i.e. d > 1 is the least integer
such that f divides ¢ — 1 (recall that = does not divide f, whence z is a unit modulo f).
For k > 0 let fi := g™ — x/7*? and let oy, be an element having F-order fi: the existence
of a is guaranteed by Proposition 2.1. Since f divides fy and f divides z¢ — 1, we have
that f divides fi, which is equal to

Thus, again by using Lemma 2.8, we have that 7,(fi) = n for all ¥ > 0. Consequently
P,4(n) has infinite cardinality. O

Proposition 2.9 can be summarized by saying that, for any n > 1, Py(n) is either
empty or infinite. Thus, Theorem 2.6 follows immediately from part (2) of Proposition 2.5,
Proposition 2.9 and Proposition 2.7. The conclusion we can distil from this section is that
the obstacle that remains for the proof of Theorem 1.1 is to establish unconditionally
assertion (ii) of Theorem 2.6. This will require further ideas.

3. Primitive periods coprime to the characteristic

As we have just seen, in order to prove the validity of Theorem 1.1 for a given n and
a given dynamic polynomial g, it suffices to show that P,(n), say. is non-empty. In the
present section, we settle directly the assertion of Theorem 1.1 concerning primitive
periods n that are coprime to the characteristic p of F. Our method mainly involves
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character sums and ideas of Cohen [4] (see also [5]). In fact, these techniques are strong
enough even to prove the following theorem: its focus is on irreducible polynomials in

Py(n).

Theorem 3.1. Let n > 1 be relatively prime to the characteristic p of F. Then
I NP,(n) has infinite cardinality.

We start by giving a brief motivation for assuming at this point that n is not divisible
by p and for studying the set Ip NP, (n).

Let f € Pp be relatively prime to g. Recall that = (f) is the least integer £ > 1 such
that ¢* modulo f is contained in the subgroup generated by r modulo f. Now, assume
additionally that f is irreducible. i.e. f € I, Let § be a root of f. Then

m,(f) = min{k = 1| g(#)" = 6" for some i > 0}. (3.1)

Let n := m,(f). Then. necessarily. n divides ord(g(#)). the multiplicative order of g(#).
which itself is a divisor nfn — 1. where d is the degree of f. Thus. in the above situatior
n is relatively prime to p and F'(#) contains the nth roots of unity. Hence, for a given
n, relatively prime to p. we consider extension fields of F((, ). (,, a primitive nth root of
unity. and try to find irreducible f € Ppr such that n is equal to the right-hand side of

equation (3.1).

=
.

The following conditions (3.2a) and (3.2b) on an integer n and any integer d such
that n divides ¢ — 1, guarantee that n is the minimum given by the right-hand side of
(9. 1) a‘nr‘] therefore. is consistent with its desienation as { 3

A. \—’ A LA UL VIULLL 10U \.L\JULOLLWLLUIL < Ilg\J /

d
-1
ord(f) = L —= (3.2a)
n
q(l -1
gcd(~——.n) =1. g(8)+#0. (3.2b)
ord(g(0))

By way of explanation, note that (3.2a) implies that § € E := GF(¢?). Moreover. (3.2b)
means that g(#) = 3. 3 € E* (the multiplicative group of £), is false for any divisor
r > 1 of n. i.e. g(0) is not any kind of nth power in E (see [5]). Furthermore, (3.2a)
implies that any non-zero nth power in £ is a power of f. Note also that, if # is an element
of F satisfying (3.2), then its minimal polynomial f is an element of Py and has degree
d. For then. ord(g(0)) divides ¢¢ — 1 and, if ord(f) divides ¢? — 1, where dy divides d.
then ord(g(#)) divides g% — 1. Moreover, from (3.2 a), n is a multiple of (¢ —1) /(g% —1)
whereas, from (3.2b6). n and (¢? — 1)/(¢% — 1) are relatively prime. Thus dy = d.

Now the main idea for the proof of Theorem 3.1 is the following. Given n > 1, let
0 := ord,(q). We show that there exists a positive integer ay such that for all a > ay
there exists an element ¢, satisfying (3.2) with d = da. i.e. pg, € Ip NPy(n).

We introduce some further notation. Given g, let N}(d) be the number of f € Pr
having degree d such that (3.1) holds. It follows from the above that

"V: (d) Z (1/d) ' *Nn(d)ﬁ (33)
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where N, (d) is the mlmber of elements # € F = GF(q%) such that (3.2) holds. Given
n. d with n dividing q? — 1, write n = niny, where n; and ny are relatively prime, the
square-free part v(ny) of n; is equal to the square-free part of

-1
gcd(q ,n)
n
lad 1 \

gcd(i I’L;z) =1.

Moreover, let ¢ be the Euler totient function, p denote the Mobius function, w(k) the
number of dlfferent prime divisors of k, and W (k) := 2*) be the number of square-free
divisors of k.

and

Proposition 3.2. Under the above assumptions we have (except in the trivial case

m T‘lfl"l'lﬁ"] Adoa! N\ ad — 92)
Viach Geg g /g 2y
-1
(¢¢ - 1)
where
IR| < ndeg(g)g™/*W (¢* — L)W (ny). (3.5)

Proof. With the exclusion of the case mentioned in the statement. observe first that
(3.5) is weaker than the trivial estimate |R| < ¢% unless

q"? > ndeg(g)W(g? — 1)W(n1) > 2, (3.6)

which we henceforth assume.

The proof is along lines such as those of {4, Theorem 2.4]. We obtain an expression for
N, (d) by employing the appropriate characteristic functions for the subsets of E satisfy-
ing (3.2a) and (3.2b), respectively. To describe such functions in generality, temporarily
replace F by F' = GF(q) and let e be any divisor of ¢ — 1. Then (as used, for example,
n [4]), for 3 € F,

ele) w(r) _{1,
e 2o Y oxB¥) =

PR n PUPED RN,
Coord(x)=r kU, OLIICI WISE,

if 7 # 0 and gcd( ord(3)’ ) 1, (3.7)

where the sum over y is over all p(r) multiplicative characters of I of order r. Further,
as established in [3, Lemma 2|, for 3 € F,

oe) f(s*) S ) {1 if 8# 0 and ord(B) = e, (3.8)

q-—1 ©(s”) 0, otherwise,

slg—1 ord(n)=s
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Returning to the present context, we replace q¢ by q¢ in the previous paragraph and
set e=nin (3.7) and e = (¢% — 1)/n in (3.8) to yield

S*

LU e

(s

Wr

S\

R
~
R—

"
A
~~
—
W
.,
|
[
N’
S~
=
~—

L].Q(’n L - L ——

D D Skm),  (39)

ord{x)=r ord(n)=s

Nn(d) -

S
=
Q
=
[~
[~
*6.1
=
b

where the sums over y and 7 are over all multiplicative characters of indicated order,
where

SGen) =Y x(gla)n(a), (3.10)
ack
and (now) s
5= ged(s,n)’

Since ny and (¢? — 1)/n are relatively prime, it is easy to see that, in (3.9), p(n)p((¢? —

1)/n) can be replaced with ¢(n;)e((¢? — 1)/n;). Furthermore, it is obvious that
S(x0,m0) = q* = mg — 1, (3.11)

where mo < m := deg(g) is the number of zeros of g in E, and xo, 70 denote the trivial
characters. Otherwise, for characters x,n not both trivial, we use the consequence of
Weil’s theorem given in [4, Lemma 2.3}, namely

1S(x,m)| < mg¥/?. (3.12)

(Of course, depending on circumstances, this may be improved.) It follows that N,(d)
has the form (3.4), where

PR ey Y A i, (313)

rin slqgd—1

where A = p?, and m is the degree of g. (In particular, the use of (3.13) to bound |R|
allows for a contribution of mq%? from S(xo,70), which, by (3.6), certainly exceeds the
deficiency mo + 1 in (3.11).) Then, evidently,

Tl = mVV(n)Tg y
where

Ty= Y As")els) (3.14)
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p“' 1e

o
=
3
CD
b

kS
z =
w
2]
[}
joN
9:"“

S YU R S L C R (3.15)

tQ ulgd—1, v{u)jvin)

where the definition of ©* is analogous to that of s* and, since A(u*) = 0 unless u divides

o )
nrvinj,

Al )p(u)
Ts = — 3.16
h= ) ) (3.16)

ulnv(ny)
If v divides nv(n;), then u* divides v(n;). For each divisor v of v(n;) we consider the

contribution to T3 of those divisors u for which u* = v. For this purpose given the divisor

odl 1
v of Zf'('fblj write n = ‘{l iy where ng(“l mz, = 1, v divides lb, and geagv, mU = 1i.

Then the set of distinct divisors u of nv(ny) with u* = v is the set
{vl,r | r divides m, }.

Moreover, if u = vl,r is in this set, then

Hence, from (3.16),

Ti= > LY or)= > lLmy=n- Y 1=nW(n). (3.17)

vlv(ny)  rlmy vlv(ny) vlv(ni)

Since, by definition of Q, W(n)W(Q) = W(g? — 1), the result now follows by combining
(3.13)—(3.17). This completes the proof. O

We now use Proposition 3.2 to show that N, (d) and, therefore, N (d) are generally
positive. For this we need some bound on the function W(N). In fact, from (8, §22.10],
for any £ > 0,

W(N) < NFe)los(2)logllog(N) - N7 5 Ny (), (3.18)

and a form of this bound with an explicit function Ng(e) could be derived, for example,
from [12]. To give an indication of the magnitudes involved we use the following simple
result.

Lemma 3.3. For any positive integer N, we have

W(N) < 5NV4, (3.19)
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Proof. The function V{(N) := W(N)/N"* is multiplicative. If N =17, b > 1, where
I > 16 is a prime, then V(N) = 2/N'/1 < 1, whereas if
N =2b2. 3% . 5bo . 7om 11 3P
with each b; > 0, then, clearly.
VIN)LV(2-3-5-7-11-13) <4.9.
Thus everything is proved. d

We are now able to prove the following theorem, from which the assertion of Theo-
rem 3.1 follows immediately.

Theorem 3.4. Let g € Pr and let n > 1 be an integer relatively prime to the char-
acteristic p of F' = GF(q). Suppose that

4log(25n deg(g))
log(q)

(3.20)

is an integer such that q¢ — 1 is divisible by n. Then N, (d) and N (d) are positive.

Proof. Suppose that N, (d) = 0. Then, from (3.4) and (3.5), using the same notation
as in the proof of Proposition 3.2, we have

qd/2 < mnI/V(qd - 1)W(ny), (3.21)

where m = deg(g). Let n| = v(n;). Then w(n,) = w(n}) and, by the definition of n,
1

(n4)? divides q¢ — 1, so that

d _ 1
Wig—1) = w1,
\ n /
Hence, by Lemma 3.3, using the multiplicativity of W,

g —1
n}

% < mnW’( )Hf(n']) < 25mnq¥/*.

This implies that N, (d) = 0 only if ¢%/* < 25mn, i.e. (3.20) does not hold. This is a
contradiction. Thus, N, (d) > 0, and the result follows with the aid of (3.3). O
We finally remark that, replacing (3.19) with a more general inequality of the form

W(N) <ec(e)N°, >0,

we could replace the factor 4 in (3.20) with 2+¢ (at the cost of increasing other constants

involved).
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4. Primitive periods divisible by the characteristic
Let again g € Pg, g # 1, be the dynamic polynomial. In the present section, we consider
the additive orders of elements of F' whose periods are divisible by the characteristic p of

F. We use the same notation throughout as in § 2. For f € P, let d; be the multiplicative
order of z modulo f.

Lemma 4.1. Assume that f is relatively prime to g and that f is square free. Then
mo(f) is not divisible by p.

Proof. Let n := my(f). From the proof of Proposition 2.9, it is evident that there
exists a unique m < ds such that f divides g" —2™. Assume that n is divisible by p. Let
N be the multiplicative order of ¢ modulo f. By Lemma 2.8 we have that n divides N.
Consequently, N is divisible by p and, therefore,

N - r Nio PN )
gV —1= (" — 1),

Since f is assumed to be square free, we deduce that f divides g"/? — 1, but this con-
tradicts the definition of N. Consequently, n is prime to p, and the result is proved. [

The converse of Lemma 4.1 is not true. Take, for example, ¢ =3 =p, g =x?> + 1 and
f=x—1or f=ux+1 Then g2 — 2?2 = (22 — 1)? is divisible by f?, whence m,(f?)

Throughout, for f € F[z], let v(f) be the square-free part of f.

Proposition 4.2. Let f € Pg be relatively prime to g. Assume that m,(f) is not
divisible by p. Then

my(v(f)) = mg(f)- (4.1)

Proof. Let k := 7m,(v(f)) and n := my(f). Then v(f) divides g — 2™ for a unique
m < d, (). For every I > 0 we have that r/(f)p[ divides

(g5 — 2™ = g"r' — 2P,

whence, by Lemma 2.8, 7, (V(f)Pl) divides kp'. Now, choose I such that f divides u(f)pl.
Then n = m,(f) divides 7, (v( f )pl). We deduce that n divides kp'. Since, by assumption,
p does not divide n, we conclude that n divides k. But, again by Lemma 2.8, k divides
n. Hence k = n and everything is proved. O

The proof of the last result also yields the following.

Lemma 4.3. Let f € Pg be relatively prime to g. Then, for every k > 0, there exists
[ > 0 such that
f)-p.

N

R
me(fP ) =7,
W) g
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Lemma 4.4. Let f € Py be relatively prime to g. Assume that m,(f) = n is divisible
by p. Let m < dy be the unique non-negative integer such that f divides g" —z™. Then

m is divisible by p.

Proof. Assume that m is not divisible by p. Then the derivative of g" —z™ is equal to
ma™ ! and is therefore non-zero. Since, by assumption, g is not divisible by z, we see that
g" — ™ and mx™ ! are relatively prime. Thus, g" — 2™ is square free. Consequently,
f, which is a divisor of g™ — ™ likewise is square free. But, by Lemma 4.1, this is a

contradiction to the assumption that n is divisible by p. The lemma is proved. O

We employ a final lemma whose scope, for convenience, extends to polynomials g € F[z]
outside Ppg.

Lemma 4.5. Let f € Pr and g € F|z] be non-constant monic polynomials. Suppose

that for every positive integer j, there is an integer m; such that g — x™™ is divisible by

S A ST g = T e gorie o S 1
J . 1 1ICir y o 101 DULIIC 1 = 1.

Proof. Let r be the degree of g. For j > 2, we have that
™ o= gl (modf”J 1)
and so, since fP = f(’)’jgz(mp), say, then
m; =m;_1 (modp), j=2.
Let i be such that 0 < 7 < p—1 and m, + ¢ is divisible by p. Then
m; +1=0 (modp), j=>1.

Replacing g by gz* and m; by m; + i, we may assume that, for all j > 1, p divides m;.
Now there exist monic polynomials h; in F[z| such that

g—z™ = hjfpj, ji=1 (4.2)
Differentiate this expression to yield

g =W =T (zP), j=1L (4.3)

Now suppose that p’ > r. Then (4.3) can hoid only if ¢' = A, = 0. Thus A’ = 0 for all
j =2 1. We conclude that g = go(«?), say, and that, for all j > 1, h; = hj(x

that

J
(zP). It follows

90 = 1,7’?1]' (mOdfé)J)9 J 2 17

where m; = mj41/p for j > 1. Moreover, rg := deg(go) = ('r' +1)/p > r implies that
r(p — 1) < ¢, which can only happen if »r = rg = 1 and i = p — 1. Furthermore, if r = 1
and g is the original polynomial (before replacement by acig), then zP~1g = go(zP) only
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if g = x. Hence, if r = 1, the result holds. Otherwise, carry out the above procedure
with repetition, as necessary to obtain a sequence of polynomials g, go, g1,--.,9s = & of
strictly decreasing degree all possessing the same property. Reversing this process, we
obtain

gs =T, Gs-1= -'Ep—is = g"e! (Ts~1 P 13 is = 0)7 DO

until we reach

go = P — x?“o’ g= xPro—t — x"’

whence everything is proved. O

In the corollary to Lemma 4.5 which follows, g resumes its role as the dynamic poly-
nomial (in Pg).

Proposition 4.6. Let f € Pr be relatively prime to g. Assume that m,(f) =: n is
not divisible by p. Then there exists k > 1 such that my( fpk) #n.

Proof. Suppose the contrary. Then, for every j > 1, my( fpj) = n and, accordingly, for
some m; > 0, g" — z™ is divisible by f?’. We conclude from Lemma 4.5 that g = z",
which contradicts the fact that g € Pp. This completes the proof. O

By Proposition 4.6, given f € Pp Wwe may define k(f), the p-index of f, as the least
non-negative integer for which m,(f? ) is divisible by p. Of course, k(f) > 1 whenever p
does not divide m,(f).

Proposition 4.7. Let f € Pr be relatively prime to g. Assume that m,(f) is not
divisible by p. Set k := k(f). Then

mo(fP Y = 7o (f) - p'tY, foralll >0. (4.4)

Proof. Let n := my(f) and assume that Wg(fpj) = np', where [ > 1. Define i by
0! .

Trg(fpJ ) = np*. i !

Consider the unique m < d,; := ord,;(z) such that f? divides g"# — 2™. By
Lemma 4.4, m is divisible by p. Hence,

1 -
g7~ = (g~ g,

Thus, 7'~ divides g"*'"" — 2™/P, whence m,(f7' ) divides np'~! (Lemma 2.8), and,
therefore, ¢ < [ — 1. Conversely, by the definition of 4, f”J_]l divides ¢"?" — ™ for some
unique m’ < d ;pi-1. Therefore fP" divides

i+1 '
gnp —x™mPp,

Again by Lemma 2.8, my( f”j) = np' divides np'*'. Hence, i > [ — 1. Consequently, we
have proved that

) =np' "L (4.5)
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A similar argument shows that

mo(f7 ) =np'T. (4.6)

The statement now follows by induction. O

Evidently, Proposition 4.7 taken, for example, with Theorem 3.1 and Proposition 2.7
yields the truth of Theorem 1.1 in full generality.
We have, throughout, focused our attention on the latter without discussing details

that would surely come within the scope of the theory. These would include an analysis
of the p-index k(f) and of square-free non-irreducible f in Py(n).
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