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Abstract
Purpose Soils are important regulators of Critical Zone processes that influence the development of geochemical signals used for
sediment fingerprinting. In this study, pedological knowledge of tropical soils was incorporated into sediment source stratifica-
tion and tracer selection in a large Brazilian catchment.
Materials and methods In the Ingaí River basin (~ 1200 km2), Brazil, three source end-members were defined according to the
interpretation of soil and geological maps: the upper, mid, and lower catchment. A tributary sampling design was employed, and
sediment geochemistry of three different size fractions was analyzed (2–0.2 mm; 0.2–0.062 mm, and < 0.062 mm). A commonly
used statistical methodology to element selection was compared to a knowledge-based approach. The mass balance un-mixing
models were solved by aMonte Carlo simulation.Modeled source contributions were evaluated against a set of artificial mixtures
with known source proportions.
Results and discussion For the coarse fraction (2–0.2 mm), both approaches to element selection yielded high errors compared to
the artificial mixtures (23.8% and 17.8% for the statistical and the knowledge-based approach, respectively). The knowledge-
based approach provided the lowest errors for the intermediate (0.2–0.062mm) (10.9%) and fine (< 0.062mm) (11.8%) fractions.
Model predictions for catchment outlet target samples were highly uncertain for the coarse and intermediate fractions. This is
likely the result of the spatial scale of the source stratification not being able to represent sediment dynamics for these fractions.
Both approaches to element selection show that most of the fine sediments (median > 90%) reaching the catchment outlet were
derived from Ustorthents in the lower catchment.
Conclusions The different element selection methods and the artificial mixtures provide multiple lines of evidence for evaluating
the fingerprint approaches. Our findings highlight the importance of considering pedogenetic processes in source stratification,
and demonstrate that different sampling strategies might be necessary to model specific sediment fractions.
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Tropical soils

1 Introduction

Soil forming processes and ecosystem services provided by
the pedosphere are central to the Critical Zone (Lin 2010;
Banwart 2011). Soil erosion reduces soil quality by reducing
soil depth, degrading soil structure, and reducing organic car-
bon and nutrient contents. In addition to these on-site effects,
increased sediment delivery due to accelerated soil erosion
can lead to pollution and eutrophication of downstream water
bodies (Zamparas and Zacharias 2014; Yang et al. 2017).
Moreover, high sedimentation rates reduce dam and reservoir
storage capacity, compromising water supply and hydroelec-
tric power generation (Hu et al. 2009; Zhao et al. 2017). These
off-site consequences of soil erosion are often experienced at
significant distances downstream. Knowledge of sediment
transport processes and identifying the origin of sediments in
river catchments is therefore necessary to understand, predict,
and remediate off-site erosion impacts.

Sediment fingerprinting techniques are often used to iden-
tify sediment sources within a catchment. As the properties of
the material being transported through river networks essen-
tially reflect biogeochemical processes occurring in the
Critical Zone (Amundson et al. 2007), the fingerprinting ap-
proach is based on the similarity of physical or biogeochem-
ical properties between target sediment and their potential up-
stream sources (Klages and Hsieh 1975; Yu and Oldfield
1989; Walling and Woodward 1995; Collins et al. 1996).
The relative source contribution is estimated through param-
eter optimization of mass balance un-mixing models, which
are typically either stochastically solved in a Monte Carlo
simulation (Collins et al. 2013; Wilkinson et al. 2015;
Tiecher et al. 2016) or in a Bayesian framework (Cooper
et al. 2014; Cooper and Krueger 2017).

Although many different sediment properties have been
used to identify sources, sediment elemental composition
has been commonly used in fingerprinting studies to distin-
guish source contributions according to land use (Collins et al.
2010; Voli et al. 2013; Cooper et al. 2015; Pulley et al. 2017),
geological units (Olley and Caitcheon 2000; Wilkinson et al.
2013; Laceby and Olley 2015), and, less frequently, soil clas-
ses (Evrard et al. 2013; Lepage et al. 2016; Le Gall et al.
2017). In addition to aiding catchment management, Koiter
et al. (2013b) argue that the information obtained in such
studies can be used to understand the underlying processes
that regulate sediment transport and generate the individual
geochemical signatures within sources.

Large catchments present particular problems for finger-
printing studies. The long distances between potential

upstream sources and the catchment outlet often lead to in-
creased residence times, which may intensify fluvial sorting
processes and particle size selectivity (Koiter et al. 2013a, b).
Moreover, large catchments often have a diversity of land
uses, parent materials, and soil classes. In these settings, a land
use-based source apportionment may be unsuitable for geo-
chemical fingerprinting, due to within land use soil variability
(Pulley et al. 2017). In such cases, lithological and/or
confluence-based source stratifications might be more effec-
tive (Collins et al. 2017). While lithology has been proven to
be a main control of sediment geochemistry in catchments
with contrasting felsic/mafic geological units (Laceby et al.
2015), pedogenetic processes may provide an important in-
sight to source signal development in catchments with less
dissimilar parent materials, as demonstrated by Bajard et al.
(2017). These processes might be particularly relevant in trop-
ical environments, where intense weathering-leaching may
have considerable influence on soil, and ultimately, sediment
properties.

The selection of sediment geochemical properties prior to
modeling has received much attention in fingerprinting stud-
ies, and recent work has brought to question the validity of
widely used statistical approaches (Smith et al. 2018). To ad-
dress this, Koiter et al. (2013a) and Laceby et al. (2015) have
proposed a combination of statistical and process/knowledge-
based methods, which increases interpretation possibilities of
modeling estimates. Ideally, fingerprint properties should be
conceptually relatable to upstream processes regarding sedi-
ment transport and geochemical source signals (Koiter et al.
2013a). Given that the soil is an important regulator of these
processes, pedological knowledge can offer valuable informa-
tion regarding geochemical tracer selection.

Furthermore, understanding the relationship between sedi-
ment particle size and elemental concentration is imperative to
improve the knowledge of sediment tracer predictability
(Laceby et al. 2017). Fluvial processes typically have a sorting
effect on sediment particles, which usually decrease in median
grain size with travelled distance as a result of selective trans-
portation and deposition (Walling et al. 2000). Given that soil
elemental composition is strongly related to particle size,
transport selectivity can affect geochemical fingerprinting
properties (Koiter et al. 2013b). Moreover, different processes
regulate sediment transport in varying size fractions. While
coarser fractions have a greater interaction with channel bed,
finer loads are controlled primarily by catchment sediment
supply and are therefore less influenced by river transport
capacity (Walling and Collins 2016). Hence, sediment source
contributions can display contrasting patterns across different
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size fractions (Haddadchi et al. 2016). Although the influence
of particle size on sediment source signals is widely recog-
nized, relatively few studies have focused on tracing different
particle size fractions (e.g., Motha et al. 2002; Hatfield and
Maher 2009; Haddadchi et al. 2016).

The evaluation of sediment fingerprinting approaches is
crucial to enable informed decision-making based onmodeled
source apportionments. However, gathering independent data
to test the outputs of fingerprinting models is problematic, as
reliable alternative techniques to quantify source contributions
(i.e., suspended sediment yield measurements from multiple
sub-catchments or source unit end-members) can be opera-
tionally complex and expensive (Collins et al. 2017).
Therefore, artificial mixtures with known proportions of sed-
iment source groups have been increasingly used to, at the
very least, test the accuracy of un-mixing model estimates
(Haddadchi et al. 2014; Sherriff et al. 2015; Pulley et al.
2017; Cooper and Krueger 2017). With this approach, the
robustness of the models is assessed by a comparison of cal-
culated source contributions and known mixture proportions
(Haddadchi et al. 2014).

The goal of this research is to develop a tributary tracing
technique that incorporates pedological knowledge of tropical
soil formation/erosion processes into sediment source appor-
tionment and tracer selection across multiple particle size frac-
tions. The study is conducted in the Ingaí River basin (~
1200 km2), Brazil, which has a complex geological and ped-
ological heterogeneity. We compare a knowledge-based ele-
ment tracer selection to a statistical methodology, which are
both evaluated against a set of artificial mixtures. While others
have incorporated knowledge-based criteria to the selection of
fingerprinting properties, our approach is the first to be com-
prehensively grounded on pedological reasoning, highlighting
the role of soils as regulators of the processes leading to source
signal development. Multiple particle size fractions are ana-
lyzed to understand the relationship between particle size and
source signal, as well as their interaction with fluvial transport
processes. The outcomes of this research will help develop
appropriate strategies for sediment fingerprinting andmanage-
ment in tropical environments, while also contributing to our
knowledge of processes affecting sediment geochemistry and
transport across different particle sizes.

2 Materials and methods

2.1 Catchment description

The Ingaí River basin (~ 1200 km2) is located within the upper
Grande River basin, in southeastern Brazil (Fig. 1c). The Ingaí
River is formed by sources in the Mantiqueira mountain range
and flows into the Capivari River, which is dammed near its
confluence with the Grande River, at the Funil hydroelectric

power plant reservoir. Altitude ranges from approximately
1780 m in the headwaters to 900 m at the catchment outlet.
The predominant climate type according to Köppen’s climatic
classification is humid subtropical with dry winters and warm
summers (Cwb) with an average annual precipitation of ~
1500 mm (Hijmans et al. 2005; Alvares et al. 2013).

The Ingaí River basin is set upon old surfaces, mostly made
of metamorphosed Proterozoic and Archean rocks (Fig. 1a).
The upper catchment is dominated by both paragneiss (38%)
and orthogneiss (32%) (CODEMIG-CPRM 2014) (Table 1).
The remaining area contains biotite-schists of the same forma-
tion as the paragneiss, though with a less intense metamorphic
facies. Although the main soil class is Paleudult (48%), there
are also areas of Hapludoxes (20%) and Ustorthents (16%)
(FEAM 2010) (Fig. 1b). Land use consists mainly of exten-
sive, minimally managed, pastures (64%), found on the slight-
ly more fertile blocky structured Paleudults (Fig. 2a). Erosion
is typically only evident where cattle trails create preferential
water pathways that tend to evolve to rills and small gullies.
Also, cropland located on steep slopes in the absence of soil
conservation practices often results in isolated erosion
hotspots.

In the mid catchment, the relief is gentler and the river
valley widens enough to generate some clastic Quaternary
sediment deposits (CODEMIG-CPRM 2014). The surface is
again very old, with a predominance of orthogneiss (65%).
Cropland is more widespread, despite the major occurrence
of Dystrudepts (54%), which are shallow and highly erodible
soils. Gullies are a common feature, often associated with
degraded pastures and unpaved roads, some of which have
been used since colonial times in the early eighteenth century
(Fig. 2b).

In the lower area of the catchment, the Ingaí River crosses a
Proterozoic ridge formation dominated by quartzite, mica-
schist, and phyllite (CODEMIG-CPRM 2014). These same
rocks establish the northern boundary of the watershed. The
steeper slopes contain Ustorthents and rock outcrops (46%)
(FEAM 2010). Soils are very shallow because of naturally
high erosion rates, which remove the surface soil layer before
pedogenetic processes take place at greater depths (Resende
et al. 2014) (Fig. 2c). The environment restricts agriculture to
eucalyptus stands and extensive cattle grazing. In addition,
mine pits for commercial quartzite exploration are found in
the region. In the last decade, some of these mines have been
fined or had their activities suspended due to irregularities
regarding deforestation and waste disposal (Borges 2011; G1
Sul de Minas 2016). The remaining area of the lower catch-
ment is dominated by biotite-schist, metagraywacke, and
orthogneiss (Table 1), upon which Hapludoxes (54%) have
developed, favored by the gentler landscape. These soils have
the most intense agricultural use in the watershed: soybean
followed by maize and wheat or oats are a common no-till
crop rotation scheme.
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Accordingly, three geographical source units were
established: (i) the upper catchment (S1), comprised predom-
inantly of Paleudults derived from gneiss; (ii) the mid catch-
ment (S2), where Dystrudepts are widespread and are also
developed from a gneissic parent material; and (iii) the lower
catchment (S3), comprised of a mixture of Ustorthents, that
occur in association to quartzite/phyllite/mica-schist ridge for-
mations, and Hapludoxes, which are found in more gentle
slopes formed above biotite and schist-metagraywacke bed-
rocks. These three geographical source end-members will be
modeled as the potential contributors of target sediment sam-
pled at the catchment outlet.

2.2 Sampling design and sample collection

A tributary sampling design (Laceby et al. 2015; Le Gall et al.
2016; Vale et al. 2016) was utilized within the catchment

hydrological network to stratify potential sediment sources
based on contributing area soil classes and their underlying
parent material (Fig. 1). In the Ingaí catchment, the heteroge-
neity of lithotypes and soil classes makes it difficult to sample
sources directly. The basic foundation of our approach is that a
set of tributaries can be considered a specific spatial sediment
source. Tributary tracing designs do not rely on hillslope con-
nectivity assumptions, given that source samples are retrieved
from the riverine system. Moreover, potential particle size
selectivity during sediment transport is restricted to in-
stream processes (Laceby et al. 2017).

Sediment sampling was conducted from July 2017 to
February 2018. Composite samples were collected from lag
deposits, which consisted of sediment drapes located on riv-
erbanks or floodplains formed as water level receded after
recent floods (Laceby and Olley 2015; Theuring et al. 2015).
The uppermost sediment layer (1–2 cm) was scraped with a

Fig. 1 Geological (a) and pedological (b) map of the Ingaí River basin, Brazil (c). S1: upper catchment; S2: mid catchment; S3: lower catchment.
Adapted from CODEMIG–CPRM (2014) and FEAM (2010)
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non-metallic trowel. Each sample was composed of approxi-
mately 15 scrapes. In total, 69 source samples (n S1 = 29,
S2 = 21, S3 = 19) and 10 target sediment samples from the
catchment outlet were collected.

2.3 Laboratory analysis

Samples were oven dried at 60 °C before being dry sieved into
three particle size fractions: 2–0.2 mm, 0.2–0.062 mm, and <
0.062 mm. Sediment elemental composition was determined
byX-ray fluorescence (XRF), using a portable XRF spectrom-
eter equipped with a 50 kV/100 μA X-ray tube. XRF technol-
ogy has been increasingly used for quantifying soil geochem-
istry, given that it provides a non-destructive method with
rapid results and no chemical waste generation (Ribeiro
et al. 2017; Silva et al. 2017). The analysis allows for the
quantification of the following 45 elements: Ag, Al2O3, As,
Au, Ba, Bi, CaO, Cd, Ce, Cl, Co, Cr, Cu, Fe, Hf, Hg, K2O, La,
MgO, Mn, Mo, Nb, Ni, P2O5, Pb, Pd, Pt, Rb, Rh, S, Sb, Se,
SiO2, Sn, Sr, Ta, Th, Ti, Tl, U, V, W, Y, Zn, Zr. Each sample
was measured in triplicates, and the average element concen-
tration was used. Elements below detection limits on all trib-
utary source samples were excluded from subsequent analyses
(Electronic Supplementary Material, Table S1). P2O5 was not
considered as a possible tracer due to potential biogeochemi-
cal transformations during transport in aquatic environments
(Koiter et al. 2013b; Cooper et al. 2015; Sherriff et al. 2015).
Unfortunately, the portable XRF spectrometer broke down
near the end of analyses. Accordingly, for the intermediate
particle size fraction, one source sample from the mid catch-
ment and two catchment outlet samples were not analyzed.

2.4 Artificial mixtures

To test the accuracy and precision of the un-mixing models, a
set of 10 artificial mixtures with different known relative
source contributions were produced for each sediment size

Fig. 2 a Characteristic landscape
of the upper catchment. b Gully
erosion formed in the
intermediate region of the Ingaí
basin. c Shallow soils derived
from the quartzitic/mica-schistic
ridges of the lower catchment

Table 1 Percentage area distribution of soil classes, lithological units,
and land use in the Ingaí River basin and source groups

Ingaí River basin S1 S2 S3

Soil classes Area %

Ustorthents and rock outcrops 27 16 18 46

Dystrudepts 24 16 54 –

Paleudults 16 48 3 –

Hapludoxes 33 20 25 54

Lithology Area %

Paragneiss 20 38 – –

Biotite-schist 14 22 20 22

Quartzite, phyllite, mica-schist 15 – 1 44

Schist-metagraywacke 14 8 3 31

Orthogneiss 34 32 65 3

Clastic sediments 3 – 11 –

Land use Area %

Pasture 49 64 53 31

Forest 27 26 28 27

Rupestrian fields* 11 – 1 31

Cropland 9 7 12 7

Eucalypt 4 3 5 3

Other – – – 1

S1: upper catchment; S2: mid catchment; S3: lower catchment.
*Grassland herbaceous/sub-shrubby formation usually associated to
quartzitic ridges
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fraction (Table 2). Sub-samples of equal mass were retrieved
from each of the individual dried/sieved composite samples.
The sub-samples from the same source units were then com-
bined in a source pool, which was later used to create mixtures
with known source mass proportions. Elemental composition
of the artificial mixtures was used to solve the un-mixing
models as if the artificial mixtures comprised the outlet target
sediment. Similar approaches to model testing have been
adopted by Cooper et al. (2014), Haddadchi et al. (2014),
and Pulley et al. (2017).

2.5 Element selection

In this study, widely used statistical procedures to tracer selec-
tion were compared to a process-based methodology, where
prior knowledge of soil geochemistry is used to identify ele-
ments that are expected to provide source discrimination. For
the statistical approach, a commonly used three-step method
to element selection was employed. First, box plots were used
to evaluate if elements on target samples plotted within the
mixing polygon defined by element concentrations on indi-
vidual source types. Elements on target sediments with a range
of variation plotting outside the source ranges were excluded,
as tracer properties outside mixing polygons violate numerical
modeling assumptions and may lead to spurious results
(Collins et al. 2013). Box-plot range of variation is defined
as the 25th and 75th percentiles ± extreme values within 1.5
times the interquartile range (IQR). The use of these ranges
helps to select elements which are well bounded by the distri-
butions of the mixing polygon. If only minimum and maxi-
mum values are taken into account, element distributions from
target sediments may plot outside all but potentially one of the
source samples. This would bias the un-mixing model solu-
tions in the Monte Carlo simulation, which samples parameter

values from data distributions. Elements within the source
range were grouped by source and then tested for normality
with a Shapiro-Wilk test. When the null hypothesis that the
data comes from a normal distribution was rejected (p < 0.05),
the elements were analyzed with a Kruskal-Wallis H test.
Otherwise, elements were analyzed with an ANOVA.
Elements that provided significant discrimination between
sources (p < 0.05) were analyzed with a forward step-wise
linear discriminant analysis (LDA) (niveau = 0.1) in order to
select a minimum set of variables that maximizes source dis-
crimination (Collins et al. 2010). All statistical analyses were
performed with R software (R Development Core Team
2017). Packages MASS (Venables and Ripley 2002) and
klaR (Weihs et al. 2005) were used for the multivariate
analyses.

The knowledge-based approach to element selection es-
sentially relies on the interpretation of the theoretical source
apportionment and sampling design. While the upper and
mid catchment areas have a similar parent material, soil
classes may provide an adequate stratification: Paleudults
from the upper area are more weathered-leached than
Dystrudepts from the mid catchment, which means that the
first soils are deeper, have higher clay content and higher
residual concentration of Al and Fe oxides than the latter
(Kämpf and Curi 2012). The lower catchment provides more
of a challenge, given that the soil map presents an associa-
tion of Ustorthents and Hapludoxes. However, a greater trib-
utary density is associated to shallow headwaters (Fig. 1),
which allows us to assume that sediments from the lower
area will have a greater connection to the least weathered-
leached soils in the catchment. Hence, it is expected that this
sediment source will be characterized by much higher con-
tents of SiO2, due to minimal dessilicification. Mica-
inherited K2O may also be found in greater quantities than
it should be expected in the mid and upper areas. Ti and Zr
are some of the most resistant elements in the soil (Marques
et al. 2004; Koiter et al. 2013a) and would be expected to
occur at reduced concentrations in the lower catchment sed-
iments, reflecting the younger parent material and the under-
developed soils. Accordingly, Al2O3, Fe, K2O, SiO2, Ti, and
Zr were proposed as potential knowledge-based tracers.
Elements from target samples plotting outside the source
range of variation were excluded from modeling, similarly
to the statistical approach, for each sediment particle size
fraction. The selected knowledge-based tracers were also
analyzed with a LDA to compare the reclassification accu-
racy of the element selection methods.

2.6 Modeling

Source contributions were estimated by minimizing the sum
of squared residuals (SSR) of the mass balance un-mixing
model:

Table 2 Artificial mixtures with known source contributions used for
model evaluation

Artificial mixtures Sources

S1 S2 S3
Relative contributions (%)

1 33 33 33

2 50 25 25

3 25 50 25

4 25 25 50

5 75 25 0

6 75 0 25

7 25 75 0

8 0 75 25

9 0 25 75

10 25 0 75
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SSR ¼ ∑
n

i¼1
Ci− ∑

m

s¼1
PsSsi

� �
=Ci

� �2
ð1Þ

where n is the number of elements used for modeling, Ci is the
concentration of element i in the target sediment, m is the
number of sources, Ps is the optimized relative contribution
of source s, and Ssi is the concentration of element i in source
s. Optimization constraints were set to ensure that source con-
tributions Ps were non-negative and that their sum equaled 1.

The un-mixing model was solved by a Monte Carlo simu-
lation with 2500 iterations. In each iteration, target and source
element concentrations were sampled from a multivariate nor-
mal distribution, which preserves correlations between vari-
ables (Cooper et al. 2014). Prior to modeling the multivariate
distributions, element concentrations were log transformed to
ensure a near normal distribution and to avoid possible nega-
tive concentration values. During the Monte Carlo simulation,
element concentrations were back-transformed by an expo-
nential function. R packages foreach (Calway et al. 2017)
and Rsolnp (Ghalanos and Theussl 2015) were used to script
the simulations and the optimization functions, respectively.
Modeling results are presented as the median and the IQR of
possible un-mixing model solutions based on the Monte Carlo
simulations. The IQR is a more adequate measure of variabil-
ity for highly skewed data than the standard deviation, as it is
not influenced by extreme values (Sainani 2012). Local opti-
mization functions typically produce heavily skewed data, as
some model realizations lead to best fit scenarios where one
source provides 100% of the sediments and others 0%
(Cooper et al. 2014). Accordingly, the IQR may provide a
more informative representation of parameter distributions
than broader confidence intervals.

Model accuracy was evaluated against artificial mixtures
according to their Mean Absolute Error (MAE):

MAE ¼ ∑
m

s¼1

jX s−Psj
m

ð2Þ

where m is the number of sources, Xs is the known proportion
of source s on the artificial mixture, and Ps is the median of
modeled relative contribution of source s. Sediment geochem-
ical data and R un-mixing model scripts are included as
Electronic Supplementary Material.

3 Results

3.1 Element selection and source analysis

Of all the 45 analyzed elements, 19 (42%) were below detec-
tion limit on all source samples for the coarse (2–0.2 mm) and
intermediate (0.2–0.062 mm) fractions, whereas 13 (29%) el-
ements were not detected for the fine fraction (< 0.062 mm)

(Electronic Supplementary Material, Table S1). Of the detect-
ed elements, only 13 (52%) plotted within the mixing poly-
gons for the coarse fraction, mainly because of higher element
concentrations in the outlet target sediments (all element
selection results are displayed in Table 3). Concentrations of
major (e.g., K2O and CaO) and trace elements (e.g., Yand Sr)
were enriched in the outlet sediment when compared to source
samples. For the intermediate and fine fractions, 22 (88%) and
30 (97%) elements plotted within the source mixing polygons,
respectively.

Of the elements plotting within the mixing polygon for the
coarse and intermediate fractions, five (38%) and six (27%)
elements, respectively, failed to provide significant discrimi-
nation between sources according to the Kruskal-WallisH test
(or ANOVA for normally distributed elements) (Electronic
Supplementary Material, Tables S2-S4). For the fine fraction,
only four elements (13%) failed to reject the null hypothesis of
the employed statistical tests (Electronic Supplementary
Material, Table S5).

The forward step-wise LDA selected four elements for
modeling the coarse fraction (Fe, Cl, SiO2, and V), which
were able to correctly reclassify only 64% of the samples
according to a cross-validation (Fig. 3). For the intermediate
fraction, nine elements (Al2O3, CaO, Fe, K2O, Mo, Ti, V, Y,
and Zn) selected by the LDA correctly reclassified 84% of the
samples. For the fine fraction, eight selected elements (Al2O3,
Ba, Ce, K2O, Nb, Pb, Y, and Zr) yielded 90% reclassification
accuracy.

For the knowledge-based elements proposed for modeling
(Al2O3, Fe, K2O, SiO2, Ti, and Zr), only Al2O3, Fe, SiO2, Ti,
and Zr plotted within the mixing polygon for the coarse frac-
tion. No elements were outside the source range for the inter-
mediate fraction, and therefore all proposed elements were
used in the un-mixing model. For the fine fraction, a depletion
of Fe contents on target samples led to the exclusion of this
element from analysis.

The LDA reclassification accuracy was on average 9%
lower for the knowledge-based element selection method in
comparison to the statistical approach, which could be expect-
ed. However, a similar trend of increasing accuracy was ob-
served with a decrease of particle size, as the percentage of
correctly reclassified samples ranged from 58% for the coarse
fraction to 78% and 80% on the intermediate and fine frac-
tions, respectively.

Overall, the behavior of the knowledge-based proposed
elements for all size fractions was in accordance with the
anticipated scenario used to stratify sediment sources in the
Ingaí catchment: sediments from catchment headwaters (S1)
are derived from more weathered-leached soils (mainly
Paleudults), with a higher residual concentration of Fe,
Al2O3, Ti, and Zr (Fig. 4). Samples from the lower catchment
(S3) display decreased Fe, Al2O3, Ti, and Zr contents and a
higher concentration of SiO2, which confirms that these
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sediments were generated from younger soils (mainly
Ustorthents). Samples from the mid catchment (S2), where
Dystrudepts are the main soil class, have intermediate concen-
trations of the discussed elements in comparison to S1 and S3.
Also expectedly, K2O contents were higher overall on S3
samples, except for the coarse fraction.

3.2 Artificial mixtures and model evaluation

The comparison between modeled source contribution and
actual mixture proportions demonstrate that modeling the
coarse fraction yielded the poorest results, with a MAE error
of 23.8% on the statistical variable selection model (M1) and
17.8% on the knowledge-based variable selection model (M2)
(Table 4 and Fig. 5). On the intermediate fraction, model error
decreased from 22.6% on M1 to 10.9% on M2. Results from
the fine fraction had the lowest errors and a more similar

model performance between M1 (MAE = 12.9%) and M2
(MAE = 11.8%).

Considering all size fractions, models were more effective
at estimating the source contributions of artificial mixtures 1–
4 (MAE = 9.8%), in which source proportions varied from 25
to 50%. Results from artificial mixtures 5–10, in which source
proportions ranged from 0 to 75%, had increased error
(MAE = 21.2%). Overall, the models had a greater difficulty
distinguishing contributions from S2 (MAE = 18.25%) than
from S1 (MAE = 15.0%) and S3 (MAE = 16.9%). Such be-
havior is particularly evident for the fine fraction, where the
MAE of M2 decreased from 15.5% on S2 to 7.2% on S3.

3.3 Model results for the Ingaí catchment

Source proportions estimated by M1 and M2 for the coarse
fraction are highly uncertain, as demonstrated by the

Fig. 3 LDA bi-plots of source reclassification using the selected elements from the statistical approach. Ellipses represent 90% confidence intervals

Table 3 Selected elements for
modeling after each step of the
statistical procedure for each size
fraction

Size
fraction
(mm)

Selection
step

Selected elements % correctly
classified
samples

2–0.2 1 Al2O3, Bi, Cl, Fe, Mo, Nb, Rh, S, SiO2, Ta, Ti, V, Zr

2 Al2O3, Cl, Fe, Nb, SiO2, Ti, V, Zr

3 Fe, SiO2, Cl, V 64

0.2–0.062 1 Al2O3, Bi, CaO, Cl, Cr, Cu, Fe, K2O, Mn, Mo, Nb, Ni, Pb, Rb, S,
SiO2, Ta, Ti, V, Y, Zn, Zr

2 Al2O3, Bi, Cl, Cu, Fe, K2O, Mo, Nb, Ni, SiO2, Ti, V, Y, Zn, Zr

3 Al2O3, CaO, Fe, K2O, Mo, Ti, V, Y, Zn 84

< 0.062 1 Ag, Al2O3, As, Ba, Bi, CaO, Ce, Cl, Cr, Cu, Hf, K2O, Mn, Mo,
Nb, Ni, Pb, Rb, Rh, S, SiO2, Sr, Ta, Th, Ti, Tl, V, Y, Zn, Zr

2 Ag, Al2O3, As, Ba, Bi, CaO, Ce, Cl, Cu, Hf, K2O, Mo, Nb, Ni,
Pb, Rb, Rh, SiO2, Sr, Ta, Th, Ti, V, Y, Zn, Zr

3 Al2O3, Ba, Ce, K2O, Nb, Pb, Y, Zr 90

Step 1: range of variation; Step 2: Kruskal-Wallis H test or ANOVA; Step 3: step-wise LDA
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prediction intervals on Fig. 6, and no inference can be made
based on the data. Moreover, considering the median source
proportions estimates, the models display contrasting results:
M1 indicates that target sediments are derived mainly from S2
(median = 40%; IQR = 0–87%), whereas M2 signals a higher
contribution from S1 (median = 39%; IQR = 5–76%)
(Electronic Supplementary Material, Table S6).

Results from the Monte Carlo simulations again demon-
strate a high degree of uncertainty for the intermediate fraction
source apportionments, which are contrasting between
models. For the intermediate fraction, M1 estimates that the
contribution to outlet sediments are dominated by S2 (medi-
an = 57%, IQR = 8–100%), whereas M2 estimates reveal a
greater contribution from S3 (median = 60%, IQR = 0–94%)
and S1 (median = 16%, IQR = 0–61%).

For the fine fraction, the simulation results display much
narrower source apportionment estimates. M1 indicates that
contributions from S1 (median = 0%, IQR = 0–3%) and S2
(median = 0%, IQR = 0–18%) are negligible, with target
sediments being almost completely derived from S3 (medi-
an = 93%, IQR = 71–100%). M2 results are nearly identical,
estimating that S3 (median = 96%, IQR = 77–100%) is
again the dominant source, with insignificant contributions
from S1 (median = 0%, IQR = 0–2%) and S2 (median = 0%,
IQR = 0–11%).

4 Discussion

Source signal development in the Ingaí catchment is con-
trolled primarily by pedogenetic processes, which display dif-
ferent degrees of expression across particle sizes. Such behav-
ior was reflected throughout this research, starting with the
elements identified by XRF analysis. Fewer elements were
detected for the coarse and intermediate fractions (Table 3),
which could be expected, since trace elements are retained in
greater quantities in finer particles (Antoniadis et al. 2017).
Moreover, a greater proportion of detected elements for the
coarse and intermediate fractions were outside the source
range. We deliberately avoided using the term conservative
behavior to describe this process, as we do not have evidence
that the elements failing to plot within source range were
depleted or enriched during sediment transport due to biogeo-
chemical mechanisms or to changes in physical properties,
including grain size distributions. Nevertheless, the greater
number of elements plotting outside source mixing polygons,
particularly for coarse sediments, may indicate that there has
been particle size selectivity occurring during mobilization,
transportation, and deposition processes or there could be a
missing/unsampled source of coarse material near the catch-
ment outlet (Smith and Blake 2014; Laceby et al. 2015).

By comparing the composition of target and source sam-
ples, it can be observed that unlike the source sediments, in

which Al2O3 increased with decreasing particle size, the
highest Al2O3 contents on the catchment outlet target sediments
were associated with the intermediate and coarse size fractions
(Fig. 7). Moreover, the coarse fraction had the highest Fe and
the lowest SiO2 concentrations, which is also inconsistent with
the tributary source sample patterns. Within soils derived from
a same parent material, elements found in stable clay minerals
(e.g., Al2O3 and Fe) usually occur in greater residual concen-
trations on finer particles, as demonstrated by Silva et al.
(2018). Contrarily, SiO2 decreases with particle size, due to
dessilicification and of the lower stability of quartz in the clay
fraction (Fontes 2012). The higher concentration of Al2O3 and
Fe for the coarse and intermediate fractions of the target sedi-
ments may therefore suggest that these fractions have received
a greater contribution of sediments derived from a contrasting
parent material compared to the sources influencing the fine
fraction. Such parent material is likely to have been un- or
under-sampled, which may explain the number of elements
plotting outside the source range for the coarser sediments.

Results from the analyses of variance and the LDA also
demonstrate contrasting patterns regarding the geochemical
composition of sediments across particle sizes. Fewer ele-
ments provided statistical discrimination between sources for
the coarse and intermediate sediments compared to the finer
fraction, according to the employed tests (i.e., ANOVA or
Kruskal-Wallis) (Table 3). These results demonstrate that the
source stratification was more effective for the fine fraction,
likely because the geochemical source signal in the Ingaí
catchment is mainly associated to pedogenetic processes
(e.g., dessilicification, residual accumulation of Al and Fe in
pedogenetic oxides). These processes are more clearly
expressed on finer, more weathered-leached particles, and par-
ticularly on clay minerals (Kämpf et al. 2012). Conversely, the
coarser particles may be more representative of the parent
material (Curi and Kämpf 2012), which is less contrasting
among the sources in the catchment. These findings may also
reflect on the poor reclassification accuracy of the LDA for the
coarse fraction (64% and 58% for the statistical and
knowledge-based approach, respectively) when compared to
the intermediate (84% and 78% for the statistical and
knowledge-based approach, respectively) and fine fractions
(90% and 80% for the statistical and knowledge-based ap-
proach, respectively). Interestingly, the forward step-wise
LDA selected elements that were also proposed by the
knowledge-based approach for all size fractions (SiO2 and
Fe for the coarse, Al2O3, Fe, K2O, and Ti for the intermediate,
and Al2O3, K2O, and Zr for the fine). This demonstrates that
these elements provide both statistical and pedological dis-
crimination between sources.

�Fig. 4 Scatter plots of the knowledge-based proposed elements for each
sediment size fraction. S1: upper catchment; S2: mid catchment; S3:
lower catchment
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The model evaluation against artificial mixtures corrobo-
rates the lack of source discrimination for the coarse fraction,
in which the MAE for both statistical (M1) (23.8%) and
knowledge-based (M2) (17.8%) models is higher than what
is usually reported on similar studies (e.g., Haddadchi et al.
2014; Pulley et al. 2017; Cooper and Krueger 2017). For the
intermediate fraction, although M2 yielded the lowest MAE
(10.9%) among the analyzed models and particle sizes, high
errors were again associated to M1 (22.6%). In contrast, M1
(MAE = 12.9%) and M2 (11.8%) displayed a similar perfor-
mance for the fine sediments, and a greater confidence can be
ascribed to model predictions for this fraction.

The modeling results for the catchment outlet target sedi-
ments for the coarse fraction again demonstrate poor source
discrimination, given the uncertainty of the estimates (Fig. 6).
Moreover, the relative contributions from the upper and mid
catchment represented by model predictions seem unlikely
considering the results for the finer fraction, which predict
with little uncertainty that target outlet sediments are derived
almost entirely from the lower catchment. As coarser material
is often transported as bed or saltating bed load, at slower rates
than the finer wash load (Collins andWalling 2016), proximal
sources are usually the major contributors of coarse sediment
particles (Haddadchi et al. 2016). Therefore, estimated source
contributions from the mid and upper catchment for the coarse
fraction are more likely to have been derived from other
downstream sources, probably in close proximity to the outlet
sediment sampling location, with a similar soil parent material
as the mid and upper regions of the watershed.

In a similar way, modeling the intermediate fraction indi-
cated a considerable, although also very uncertain,

contribution from the mid and upper catchment for both
models (Fig. 6). Again, such contributions seem unlikely to
represent sediment dynamics in the catchment, and a missing
or under-sampled source located proximately to catchment
outlet might be biasing model predictions.

A possible provenance of sediments identified as derived
from the upper and mid catchment by the un-mixing models
may be related to a strip of orthogneiss located near the outlet
of the Ingaí River (Fig. 1). This lithotype comprises only 3%
of the lower catchment and a single composite sample was
retrieved from a tributary draining the area. The concentra-
tions of Al2O3 (13.9%), Fe (3.6%), and SiO2 (37.0%) for the
coarse sediments from this particular sample were different to
the average concentrations of these elements in the other lower
catchment samples (Al2O3 = 6.1%, Fe = 2.2%, SiO2 =
51.6%). The sample concentrations are however similar to
the average contents of Al2O3 (13.8%), Fe (4.3%), and SiO2

(34.0%) for the coarse fraction of the target outlet sediments.
Nevertheless, this interpretation of the modeling results re-
mains speculative, and the most important inference from
the data is that the spatial scale of the source stratification
was not appropriate for fingerprinting the coarse and interme-
diate size fractions.

Contrarily to the coarser fractions, the source contributions
estimated for the fine sediments are consistent among the
employed models (Fig. 6). The similarity between model re-
sults increases the confidence in the predictions, which are
also corroborated by the small errors of the estimated source
proportions of the artificial mixtures. Moreover, the results fit
with our understanding of erosion and sediment transport dy-
namics in the catchment.

Table 4 Mean absolute errors
(MAE) of the statistical variable
selection model (M1) and the
knowledge-based variable
selection model (M2) for the three
analyzed sediment size fractions

Artificial mixture MAE (%)

M1 M2

Size fraction (mm)

2–
0.2

0.2–
0.062

< 0.062 2–
0.2

0.2–
0.062

< 0.062

1 29.3 17.0 4.0 9.3 1.7 3.0

2 5.7 24.3 14.3 6.7 5.0 11.7

3 16.3 8.0 10.0 7.7 6.3 1.3

4 6.0 15.7 5.0 11.0 9.0 6.0

5 39.3 20.3 14.7 13.7 19.7 22.3

6 15.7 31.3 20.0 28.7 14.7 22.0

7 32.0 20.0 15.3 23.0 16.0 12.7

8 15.3 22.7 20.3 25.3 9.0 17.0

9 30.7 36.3 8.0 29.7 10.7 7.3

10 47.3 30.3 17.3 22.7 17.3 14.7

Mean 23.8 22.6 12.9 17.8 10.9 11.8
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According to model predictions, the fine sediments collected
at the watershed outlet are almost entirely derived from the lower
catchment. These sediments are primarily associated with the
shallow and underdeveloped Ustorthents from the quartzitic/
mica-schistic ridges within the lower catchment, as demonstrated
by the higher SiO2 and K2O contents and the lower Al2O3, Fe,
Ti, and Zr concentrations. This Entisols region is erosion prone:
the solum is shallow and the underlying C horizon is situated
right below the A horizon, decreasing water infiltration and in-
creasing runoff propensity (Araújo 2006). These soils are also

located on steep slopes and have elevated contents of silt and fine
sand in relation to clay (Curi et al. 1990). Hence, a large sediment
supply from these soils in the lower catchment is plausible.
Furthermore, the lower catchment is much closer to the Ingaí
River outlet than the mid and upper areas. Fine sediments orig-
inated from these upstream sources have a greater probability of
being stored on floodplains and lower-gradient sections.

Results reported by Le Gall et al. (2017) also show that the
contribution of fine sediments from farther upstream sources
on large catchments is minor, at least considering the

Fig. 5 Scatter plots of known and modeled source contributions of the artificial mixtures for each sediment size fraction. S1: upper catchment; S2: mid
catchment; S3: lower catchment; M1: statistical element selection model; M2: knowledge-based element selection model
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sediments that effectively reach the catchment outlet. Such
behavior must be analyzed with caution, as fingerprinting
the origin of outlet sediments does not necessarily represent
overland and fluvial transport processes elsewhere in the
catchment (Koiter et al. 2013a). These considerations might
be particularly important in large watersheds, where sediment
yield components are likely to be subjected to a variety of
travel times and transport energies, which will also vary with
particle size (Parsons 2011), as illustrated by our results.

The Ingaí River drains approximately 60% of the Capivari
River basin, which is estimated to supply over 480,000 t year−1

of sediment to the Funil hydroelectric power plant reservoir
(Batista et al. 2017). Accordingly, fine sediment from the
Ingaí River may contribute significantly to reservoir sedimen-
tation. Soil conservation practices targeting the lower Ingaí
Entisols may therefore help minimize fine sediment delivery

to the Funil reservoir. According to RUSLE-based estimates
(Batista et al. 2017), average erosion rates were the highest in
the mid catchment area. Therefore, future research should mon-
itor erosion dynamics across multiple scales and different par-
ticle size fractions in the Ingaí catchment. Ultimately, it is im-
portant to understand how different Critical Zone processes
regulate sediment connectivity throughout the catchment in or-
der to help target the implementation of best management prac-
tices that limit the deleterious off-site effects of soil erosion.

Overall, our results demonstrate that source stratification and
geochemical element selection for sediment fingerprinting can
be carried out based on the knowledge of pedogenetic processes
that develop source signals in tropical soils. However, such an
approach might be less effective for coarse sediment particles,
particularly if parent material has few geochemical contrasts. In
this sense, a soil-based source stratificationmight be more pow-
erful for fine sediment fingerprinting than a geological ap-
proach, given that pedogenetic processes and soil forming fac-
tors other than parent material are also able to generate contrast-
ing source signals, particularly in tropical soils. Nevertheless,

Fig. 6 Box plots of estimated source contributions based on the
2500 iterations of the Monte Carlo simulations. (a) Coarse
fraction (2–0.2 mm). (b) Intermediate fraction (0.2–0.062 mm).
(c) Fine fraction (< 0.062 mm). S1: upper catchment; S2: mid
catchment; S3: lower catchment; M1: statistical element selection
model; M2: knowledge-based element selection model

Fig. 7 Al2O3, Fe, and SiO2 contents on source (S1: upper catchment; S2:
mid catchment; S3: lower catchment) and target (T) sediments
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for modeling coarse sediment provenance, a geological source
stratification may be more appropriate, as pronounced litholog-
ical dissimilarity might dominate the source signal generation
for coarse material.

The comparison between the element selection methods
demonstrated that the commonly used three-step statistical ap-
proach does not necessarily yield more accurate model predic-
tions, which is corroborated by the results of Smith et al. (2018).
However, a valuable outcome of using both methods is that
different model predictions can be compared. If similar results
are achieved with a different set of tracers, a greater confidence
can be ascribed to model estimates (Laceby et al. 2015).

A significant advantage of a knowledge-based element selec-
tion is that subsequent modeling results are more easily relatable
to known source characteristics. In the knowledge-based ap-
proach, processes occurring in the Critical Zone that drive source
signal development, erosion, and sediment transport can be con-
jointly analyzed. This contributes to a more comprehensive un-
derstanding of these processes, and generates multiples lines of
evidence to corroborate or falsify model assumptions and predic-
tions. The use of the knowledge-based approach encourages re-
searchers to understand the fundamental Critical Zone processes
driving erosion and sediment geochemistry across multiple
scales. This increased understanding of fundamental processes
is instrumental to improve catchment sediment management
strategies, particularly in erosion-prone tropical environments.

5 Conclusions

In this research, the pedological knowledge of tropical soils
was incorporated into source stratification and geochemical
element selection in a fingerprinting study across three particle
size fractions. Our approach provided source discrimination
for the fine and intermediate size fractions, as demonstrated by
the comparison of the un-mixing model estimates and artifi-
cial mixture proportions. However, the source stratification
was unable to provide sufficient geochemical discrimination
for the coarse sediments. This probably stems from the fact
that pedogenetic processes are the main drivers of geochemi-
cal contrast and source discrimination between fine sediment
sources, whereas geological background may be more likely
to drive these contrasts for the coarser material. Model evalu-
ation against the artificial mixtures also indicated that the com-
monly used three-step statistical approach to variable selection
may not always provide the most accurate estimates.

The spatial scale of the source stratification was however
unable to represent the coarse and intermediate size sediment
dynamics in the catchment, which seems to be controlled by
very proximal sources—at least in the temporal scale of the
analysis. Hence, different field sampling approaches might be
necessary to model specific size fractions in the Ingaí catch-
ment, and potentially in other catchments.

For the fine sediments, both knowledge-based and the sta-
tistical methods to geochemical element selection yielded very
similar results: Ustorthents from the lower catchment ridges
are by far the main sediment source reaching the Ingaí River
outlet. The consistent model results increase confidence in the
predictions. Moreover, the knowledge-based method facili-
tates the interpretation of the results, as the selected finger-
printing properties can be explicitly related to upstream pro-
cesses regarding source signals and behavioral characteristics
of the soils comprising each end-member source. This en-
hanced interpretation of fingerprint models provides a frame-
work for an integrated assessment of Critical Zone dynamics,
linking soil and parent material geochemistry to soil erosion
and sediment transport processes in river catchments.

The source stratification procedure and the knowledge-
based element selection for sediment fingerprinting described
in this study have potential to improve sediment management
strategies across Brazil and around the world. This approach
would be particularly useful in large catchments where soil
parent materials have similar geochemistry, and source signal
development of fine sediments is controlled by pedogenetic
processes. Ultimately, understanding the fundamental pedoge-
netic processes driving the formation of source signatures will
likely aid in the management of the dominant Critical Zone
processes driving erosion in Brazil and in other tropical re-
gions where intense weathering-leaching leads to unique ex-
pressions of soil forming processes.
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