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Highlights:
A magnetic tracing analysis to link upstream areas to reservoir sedimentation is used in a subtropical environment.
Tropical weathering conditions promote magnetic variability between soils.
Magnetic parameters can identify possible sediment sources in a tropical environment in order to reduce water erosion 
impacts.

Abstract

Determining the origin of eroded soil is essential to design effective soil erosion control strategies which 
preserve the soil resource, enhance agricultural productivity, and reduce the negative impacts of soil 
erosion, in-field and off-field. Magnetic properties have been widely used in temperate environments 
to identify sediment sources, pathways and links, but there have been very few applications in tropical 
and subtropical environments. Therefore, in this paper we investigated reservoir sediment sources in the 
Upper Grande River Basin, Southeastern Brazil, using sediment tracing techniques based on magnetic 
parameters (low and high frequency magnetic susceptibility, frequency dependent susceptibility). The 
different parent materials and subtropical weathering conditions resulted in soils having different Fe 
oxide minerals and Fe oxide contents, promoting magnetic variability that allowed comparison and 
identification of possible sources of reservoir sediments in order to reduce water erosion impacts. The 
results indicate the suitability of magnetic properties as a tracer for soil erosion studies in tropical 
environments.
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Resumo

Determinar a origem de solos erodidos é essencial para projetar estratégias efetivas de controle da 
erosão do solo que preservem os recursos do solo, aumentem a produtividade agrícola e reduzam os 
impactos negativos da erosão do solo, em campo e fora dele. As propriedades magnéticas têm sido 
amplamente utilizadas em ambientes temperados para identificar fontes, vias e elos de sedimentos, mas 
existem pouquíssimas aplicações em ambientes tropicais. Portanto, neste trabalho investigamos fontes 
de sedimentos de reservatórios na Bacia do Alto Rio Grande, Sudeste do Brasil, utilizando técnicas 
de rastreamento de sedimentos baseadas em parâmetros magnéticos (suscetibilidade magnética de 
baixa e alta freqüência, susceptibilidade dependente da freqüência). Os diferentes materiais de origem 
e condições de intemperismo tropical resultaram em solos com diferentes minerais de óxido de Fe e 
teores de óxidos de Fe, promovendo variabilidade magnética que permitiu a comparação e identificação 
de possíveis fontes de sedimentos de reservatórios para reduzir os impactos da erosão hídrica. Os 
resultados indicam a adequação das propriedades magnéticas como um traçador para estudos de erosão 
do solo em ambientes tropicais.
Palavras-chave: Ambiente tropical. Erosão do solo. Fontes de sedimentos. Recursos naturais.

Introduction

Soil erosion by water is a major consequence 
of land degradation and results in a consequent 
reduction in agricultural productivity worldwide 
(Pimentel et al., 1995). Negative effects of water-
driven soil erosion include off-field impacts 
such as changes in water quality, disruption to 
biological processes, and siltation of streams and 
reservoirs (Jain & Singh, 2003; Batista et al., 2017; 
Bostanmaneshrad et al., 2018). 

In Brazil, water erosion has increased 
exponentially due to agricultural expansion 
(Oliveira, Nearing, & Wendland, 2015; Anache, 
Wendland, Oliveira, Flanagan, & Nearing, 2017). 
Hence, consequent sedimentation due to accelerated 
erosion of fine-grained sediment leads to a reduction 
in water availability and a deterioration in water 
quality (Araujo, Güntner, & Bronstert, 2006; Batista 
et al., 2017). Furthermore, finding the origin of the 
eroded soil and sediments can contribute to the 
preservation of natural resources and mitigate the 
off-field impacts by enabling targeted soil erosion 
and sediment control strategies (Collins, Walling, 
Sichingabula, & Leeks, 2001).

Research into soil and sediment losses by erosion 
have traditionally used standard erosion plots for 

monitoring water-driven erosion (Wischmeier 
& Smith, 1978; Anache et al., 2017). Certainly, 
erosion rate quantification using these methods is 
an essential part of monitoring agricultural practices 
in order to determine how soil management systems 
affect water and sediment runoff (Zhang, Nearing, 
Garbrecht, & Steiner, 2004; Bispo et al., 2017; 
Le Gall et al., 2017; Saran, Meneghine, Célico, 
Pinheiro, & Alves, 2017). However, although 
capable of providing useful information, such plots 
have limitations in terms of data representativeness, 
spatial and temporal resolution, and cost 
(Armstrong, Quinton, & Maher, 2012; Guzmán, 
Quinton, Nearing, Mabit, & Gómez, 2013; Deasy, 
Titman, & Quinton, 2014; Batista, Davies, Silva & 
Quinton, 2019).

Alternatively, soil tracers can be used to identify 
eroding areas (Guzmán et al., 2013; Collins et al., 
2017). Tracer methodologies are used to determine 
soil loss ratio or sediment production and to track 
soil redistribution through the landscape (Guzmán 
et al., 2013). One of the main groups of tracing 
studies is based on the principle that suspended 
sediments retain some of the properties acquired at 
their origin, such that a sediment sample transported 
through the landscape can be compared to potential 
sources within the watershed. This technique is 
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called “fingerprinting” (Collins & Walling, 2002; 
Armstrong et al., 2012; Walling, 2013; Collins et 
al., 2017).

Various sediment properties have been used 
in sediment tracing and finger-printing studies, 
including chemical (organic C, inorganic C, 
total C, C/N, pH, extractable Ca, extractable Mg, 
extractable K, extractable Na, δ13C, δ15N, total Si, 
Al, Ag, Bi, Cd, Cr, Hg, Fe, Ca, Mg, Mn, Na, K, Ti, 
P, Zn, Sr, Pb, Ni, Cu, As, Mo, Sn, U, Pb, Sb, Sn, 
inorganic P, organic P, total P, 204Pb, 206Pb, 207Pb, 
208Pb), physical (sand, clay and silt fraction, water 
dispersible clay, aggregation index, 137Cs, 40K, 226Ra, 
unsupported 210Pb), biological (sterol rations, E. 
coli, Enterococci bacterial signatures) and magnetic 
properties (Guzmán et al., 2013). 

As a low cost alternative, magnetic properties 
are widely used in temperate environments to 
identify sediment sources, pathways and links. In 
fact, different natural materials display different 
magnetic properties, often enabling magnetic 
mineral identification, helping soil classification and 
identification of soil-forming processes, as well as 
attribution of the eroded sediment source (Walden, 
Oldfield, & Smith, 1999). Several factors can 
directly influence the magnetic variables that can 
be used for tracing sediments: soil parent material 
influences the primary, detrital mineralogy type and 
content of iron oxides: relief, landscape position, 
vegetation, weathering conditions and climate can 
all subsequently influence the pedogenic magnetic 
characteristics of the soil (Maher, 1998; Blundell, 
Dearing, Boyle, & Hannam, 2009). Consequently, 
soils, sediments and rocks from different locations 
in a catchment are characterized by different 
magnetic properties that can be relatively easily 
quantified (Maher, Watkins, Brunskill, Alexander, 
& Fielding, 2009).

Soil magnetic properties as sediment fingerprints 
have been widely applied in temperate zones 
(Royall, 2003; Hatfield & Maher, 2009; Armstrong 
et al., 2012). However, there have been very few 

applications of magnetic sediment tracing in the 
tropics. In Brazil, magnetic sediment fingerprinting 
has been successfully applied to investigate 
environmental processes, indicating the potential 
for the technique to improve soil and sediment 
erosion control. In addition, magnetic mineralogy 
fingerprinting was applied in Southern Brazil 
and detected a shift in sediment delivery at the 
estuary of the Paraná River from distinct sources of 
sediments, from fine-grained magnetite to coarse-
grained hematite derived from basalt (Mathias, 
Nagai, Trindade, & Mahiques, 2014). Moreover, 
magnetic susceptibility was also successfully used 
as a predictor of erodibility factors in the modeling 
process for large tropical areas (Barbosa et al., 
2019).

Therefore, this research aims to add to our 
knowledge of how magnetic sediment tracing 
performs in subtropical environments. In this work, 
we have, for the first time in Brazil, used magnetic 
properties as a tracer to characterize soil and to 
link upstream areas to reservoir sedimentation. 
Specifically, the objectives were to identify the 
origin of sediments at the Upper Grande River Basin, 
a tributary of the Paraná River, Southeastern Brazil, 
by sampling sediments from the bottom of small 
reservoirs and comparing magnetic characteristics 
to those of highly eroded potential soils in upstream 
areas.

Materials and Methods

The study area is in the Upper Grande River 
Basin, one of the main tributaries of the Paraná 
River, at Lavras, Minas Gerais State, Brazil (21.13° 
S, 44.58° E) (Figure 1A). The area’s climate is 
classified as Cwb, a subtropical highland climate 
or monsoon-influenced temperate oceanic climate 
with a dry winter and a rainy summer, according 
to the Kӧppen classification system (Alvares et al., 
2013). The average annual rainfall is 1,530 mm 
and the mean annual temperature 19.4 ºC (Dantas, 
Carvalho, & Ferreira, 2007).
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The drainage area for the two reservoirs (reservoirs 
RA and RB) was determined by processing a 30 m 
resolution Digital Elevation Model (DEM) obtained 
from shuffle radar topographic mission (SRTM) 
imagery. Flow direction and flow accumulation 
were calculated using the hydrology toolset for 
ArcGIS 10.1 (Environmental Systems Research 

Institute [ESRI], 2010). Four points were assigned 
to the cell with the highest flow accumulation within 
the reservoirs and the watershed function from the 
hydrology toolset delimited the respective drainage 
areas (Figure 1B and 1C). The catchment areas for 
reservoirs A and B were 80,000 m2 and 175,000 m2, 
respectively.

Figure 1. A) Drainage area location in the Brazilian territory, B) Soil sampling in the catenas, drainage area for the two 
reservoirs (RA and RB), and C) Digital Elevation Model (DEM) of the study area in Southeastern Brazil.

The two dominant soils in the catchment are 
Typic Hapludox and Anionic Acrudox (E. Silva, 
2018). Both highly eroded potential (A. M. Silva 
et al., 2005; Lima et al., 2018) soils were sampled 
through representative catenas under different land 
uses: native forest, crop, eucalyptus and native 
pasture (Table 1). Due to issues with permissions, 
the soils from catena B were located just outside 
the watershed boundary. The soils were classified 

according to the US Soil Taxonomy (Soil Survey 
Staff, 2014). At each soil sampling site, undisturbed 
triplicate samples up to 1 m depth, using a 50 mm 
diameter PVC (Polyvinyl chloride) core, were 
collected. Soil profile cores were sliced into 100 
mm layers to enable measurement of the magnetic 
properties in each layer.

Sediment cores were extracted from near the 
embankment of both reservoirs using up to 50 cm 
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deep, 50 mm diameter PVC cores. The sediment 
cores from each reservoir were then sliced into 
20 mm layers to enable the measurement of the 
magnetic properties in each layer, resulting in 15 
samples for reservoir A and 18 for reservoir B. 

Standardized soil color notation, using Munsell soil-
color charts (Munsell Color Company, 1946), were 
used in order to determine colors of the sediments 
from reservoirs in order to ensure a non-iron oxides 
reducing environment.

Table 1
Catenas characterization

Catena Parent material Land Use Elevation (m) Soil2

A Gneiss1

Native Forest 940 A1
Eucalyptus 933 A2

Crop 922 A3
Crop 912 A4

Native Pasture 906 A5

B Gabbro

Native Forest 909 B1
Native Forest 919 B2

Crop 909 B3
Crop 903 B4
Crop 893 B5

1. At the highest altitude, there is some contribution of gabbro.
2. A1: Rhodic Kandiudult; A2, A3, A4 and A5: Typic Hapludox; B1, B2, B3, B4 and B5: Anionic Acrudox.

As magnetic properties are strongly particle-size 
dependent (Maher, Thompson, & Hounslow, 1999; 
Fontes, Oliveira, Costa, & Campos, 2000; Hatfield 
& Maher, 2008; Armstrong et al., 2012; Laceby et 
al., 2017), all of the samples (both soil and sediment) 
were separated into three particle size fractions (sand, 
silt and clay) prior to analysis. Samples were then 
treated with 1 mol L-1 NaOH solution (10 g of oven-
dried soil and 10 mL of sodium hydroxide (NaOH) 
1N) and then moved to an ultrasonic bath in order 
to enhance soil particle dispersion (Claessen, 1997). 
The samples were wet sieved to obtain the sand size 
fraction (2-0.05mm). The remaining material was 
settled in Atterberg columns and separated into silt 
(0.05–0.002mm) and clay (<0.002mm) fractions. 
The separated fractions were dried at 40°C. For 
mineral identification of the clay, silt and sand 
fractions of soils, 0.3 g of each sample was analyzed 
by X-ray Diffraction (XRD) using the powder 

method over the range of 5-50o2θ on a Bruker D2 
Phaser diffractometer with Cu-Kα radiation, an 
Ni filter, a voltage of 30 kV and a current of 20 
mA. For the magnetic analysis, 3g of each sample 
was packed into 10 cc plastic sample pots prior to 
magnetic analyses. It was not possible to measure 
the magnetic properties of the silt particle size in 
both soil and sediment due to the small amount of 
material. The magnetic parameters measured were 
low frequency magnetic susceptibility (χLF) and high 
frequency magnetic susceptibility (χHF). Magnetic 
susceptibility was measured at 0.47 kHz (low 
frequency) and at 4.7 kHz (high frequency) on a 
Bartington MS2B Susceptibility Sensor. From these 
measurements, frequency dependent susceptibility 
(χFD%) was calculated (Dearing, Bird, Dann, & 
Benjamin, 1997). Measurements are expressed on a 
mass-normalized basis.
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Results and Discussion

Magnetic minerals can be very stable, which 
allows soil tracing. However, environmental 
conditions can modify the stability of these magnetic 
minerals (Snowball & Thompson, 1988; Walden et 
al., 1999). To rule this out, standardized soil colour 
notation, using Munsell soil-colour charts (Munsell 
Color Company, 1946), were compared to the 
sediment color. Sediment hues were similar to the 

original soil profiles: 10YR (red-yellow) in soils 
and sediments of RA, and 2.5YR (red) in soils and 
sediments of RB. These trends are consistent with 
oxidative (well-aerated) environments (Resende, 
Curi, & Rezende, 2017) attributable to a constant 
water flow through the reservoir (Figure 2). 
Consequently, changes to the magnetic properties 
of the sediment due to oxide reduction is unlikely.

Figure 2. Sediment profile cores from reservoirs A (RA) and B (RB).

attributable to a constant water flow through the reservoir (Figure 2). Consequently, changes to the magnetic 

properties of the sediment due to oxide reduction is unlikely. 

 

RA RB 
 

 

 

 
 
Figure 2. Sediment profile cores from reservoirs A (RA) and B (RB). 

 

The particle size distribution for each sample site is illustrated in figures 3 and 4. The Catena A 

soils present less clay content (50%) than Catena B soils (up to 80% of clay). This is explained by the much 

smaller amount or absence of quartz (a very resistant primary mineral) content in gabbro compared to gneiss 

(Ker, 1997; Curi & Kämpf, 2012; Kämpf, Marques, & Curi, 2012), and supported by the soils’ x-ray 

diffraction analysis (Figures 5, 6 and 7). 

 

 
Figure 3. Particle size distribution of Catena A soils, to 1 meter depth, divided in 10 cm layers, at each site, 
and of reservoir RA, to 0.3 meter depth, divided in 2 cm layers. Soils A1, A2, A3, A4 and A5 
characterizations are presented at Table 1. 
 

A1 A3

A4

A2

A5 Sediments RA

The particle size distribution for each sample site 
is illustrated in figures 3 and 4. The Catena A soils 
present less clay content (50%) than Catena B soils 
(up to 80% of clay). This is explained by the much 
smaller amount or absence of quartz (a very resistant 

primary mineral) content in gabbro compared to 
gneiss (Ker, 1997; Curi & Kämpf, 2012; Kämpf, 
Marques, & Curi, 2012), and supported by the soils’ 
x-ray diffraction analysis (Figures 5, 6 and 7).
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Figure 3. Particle size distribution of Catena A soils, to 1 meter depth, divided in 10 cm layers, at each site, and of 
reservoir RA, to 0.3 meter depth, divided in 2 cm layers. Soils A1, A2, A3, A4 and A5 characterizations are presented 
at Table 1.
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In addition to differences in particle size 
distributions, there were also significant differences 
in the magnetic constituents of the different catenas 
and size fractions. Much higher ferrimagnetic 
maghemite content was detected in the clay fraction 
of the Catena B soils than the Catena A soils, 

reflecting the gabbro influence in soil B and its lack 
of influence in soil A (Figure 5). Such different 
mineral content in the soils sampled resulted in 
differences in magnetic measurements (Figures 7, 
9, 10, 11 and 12).
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Figure 5. X-ray diffraction of powder samples of the Fe-
concentrated clay fraction of soils. 10% of halite was added as 
an internal standard. Kt: kaolinite; Gt: goethite; Hm: hematite; 
An: anatase; Hl: halite; Mh: maghemite; Qz: quartz. Soils A1, 
A4, B1 and B4 characterizations are presented at Table 1.
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Figure 6. X-ray diffraction of powder samples of the silt 
fraction of soils. Kt: kaolinite; Gb: gibbsite; Gt: goethite; Qz: 
quartz; Hm = hematite; Mh: maghemite. Soils A1, A4, B1 
and B4 characterizations are presented at Table 1.

Maghemite was identified in the silt fraction of 
Catena B soils (Figure 6) and magnetite was found 
in the sand fraction (Figure 7). Consequently, values 
of low frequency magnetic susceptibility ranging 
from 58.99 to 601 x 10-7 m3 kg-1 were measured in 
the Catena B soil samples (Figures 8 and 9); soils 
developed from mafic rocks are often characterized 
by higher χLF values (Costa, Bigham, Rhoton, & 
Traina, 1999; Dearing, 1999; Lu, Xue, Zhu, & 
Yu, 2008; A. R. D. Silva, Souza, & Costa, 2010). 

Apart from the small content of maghemite in the 
clay fraction of soil A1, no other magnetic minerals 
were identified in the Catena A soils, which is 
due to the gneiss parent material. Consequently, 
the Catena A soils, which formed over gneiss, are 
largely dominated by diamagnetic minerals (quartz, 
feldspars and muscovite) which are characterized 
as having no or very low magnetic susceptibility 
(Walden et al., 1999); χLF values ranged from 2.43 
to 31.91 x 10-7 m3 kg-1 (Figures 8 and 9).

Figure 7. X-ray diffraction of powder samples of the sand 
fraction of soils. Mt: magnetite; Qz: quartz. Soils A1, A4, B1 
and B4 characterizations are presented at Table 1.
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Maghemite was identified in the silt fraction of Catena B soils (Figure 6) and magnetite was found 

in the sand fraction (Figure 7). Consequently, values of low frequency magnetic susceptibility ranging from 

58.99 to 601 x 10-7 m3 kg-1 were measured in the Catena B soil samples (Figures 8 and 9); soils developed 

from mafic rocks are often characterized by higher χLF values (Costa, Bigham, Rhoton, & Traina, 1999; 

Dearing, 1999; Lu, Xue, Zhu, & Yu, 2008; A. R. D. Silva, Souza, & Costa, 2010). Apart from the small 

content of maghemite in the clay fraction of soil A1, no other magnetic minerals were identified in the 

Catena A soils, which is due to the gneiss parent material. Consequently, the Catena A soils, which formed 

over gneiss, are largely dominated by diamagnetic minerals (quartz, feldspars and muscovite) which are 

characterized as having no or very low magnetic susceptibility (Walden et al., 1999); χLF values ranged from 

2.43 to 31.91 x 10-7 m3 kg-1 (Figures 8 and 9). 

 

 
 
Figure 6. X-ray diffraction of powder samples of the silt fraction of soils. Kt: kaolinite; Gb: gibbsite; Gt: 
goethite; Qz: quartz; Hm = hematite; Mh: maghemite. Soils A1, A4, B1 and B4 characterizations are 
presented at Table 1. 

 

 
 
Figure 7. X-ray diffraction of powder samples of the sand fraction of soils. Mt: magnetite; Qz: quartz. Soils 
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Figure 8. Low frequency magnetic susceptibility (10-7 
m3 kg-1) of clay fraction of soil profiles, with different 
land uses (Table 1).

Figure 9. Low frequency magnetic susceptibility (10-7 
m3 kg-1) of sand fraction of soil profiles, with different 
land uses (Table 1).

and content within a soil: magnetite (Fe3O4) χLF values can be found in literature ranging from 4,000 to 

10,000 10-7 m3 kg-1, while maghemite (ɤFe2O3) varies from 2,500 to 4,500 10-7 m3 kg-1 and goethite 

(αFeOOH) varies from 3 to 13 10-7 m3 kg-1 (Walden et al., 1999). The magnetic susceptibility results 

obtained here are comparable to those reported by S. Silva et al. (2016) when evaluating the efficiency of a 

magnetometer as a tool for mapping soil classes and properties in tropical conditions, with χLF values for 

Hapludox up to 260 x 10-7 m3 kg-1. The χLF values measured in the Catena A soil samples are lower than 

those observed by Poggere et al. (2018), ranging from 73 to 307 10-7 m3 kg-1 due to lower Fe oxides content 

in the present research (Figures 5, 6 and 7). 

Figures 8 and 9 summarize some of the observed magnetic contrasts, making sediment source 

identification possible by comparing both soils’ sediment signatures with those of the reservoirs’ sediments. 

Systematic variation in the horizons down the profile were observed, with reservoir B presenting values that 

indicate influence from sediments of both catenas due to the mixture of different components (Figures 5, 6 

and 7).  
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superparamagnetic and stable single domain grains are likely. Such magnetic behaviors are evidenced by the 

in situ formation of maghemite, most likely by oxidation of lithogenic magnetite during soil formation (Curi, 

and content within a soil: magnetite (Fe3O4) χLF values can be found in literature ranging from 4,000 to 

10,000 10-7 m3 kg-1, while maghemite (ɤFe2O3) varies from 2,500 to 4,500 10-7 m3 kg-1 and goethite 

(αFeOOH) varies from 3 to 13 10-7 m3 kg-1 (Walden et al., 1999). The magnetic susceptibility results 

obtained here are comparable to those reported by S. Silva et al. (2016) when evaluating the efficiency of a 

magnetometer as a tool for mapping soil classes and properties in tropical conditions, with χLF values for 

Hapludox up to 260 x 10-7 m3 kg-1. The χLF values measured in the Catena A soil samples are lower than 

those observed by Poggere et al. (2018), ranging from 73 to 307 10-7 m3 kg-1 due to lower Fe oxides content 

in the present research (Figures 5, 6 and 7). 

Figures 8 and 9 summarize some of the observed magnetic contrasts, making sediment source 

identification possible by comparing both soils’ sediment signatures with those of the reservoirs’ sediments. 

Systematic variation in the horizons down the profile were observed, with reservoir B presenting values that 

indicate influence from sediments of both catenas due to the mixture of different components (Figures 5, 6 

and 7).  

 
 
Figure 8. Low frequency magnetic susceptibility (10-7 m3 kg-1) of clay fraction of soil profiles, with different 
land uses (Table 1). 

 

 
 
Figure 9. Low frequency magnetic susceptibility (10-7 m3 kg-1) of sand fraction of soil profiles, with 
different land uses (Table 1). 
 

Figures 10 and 11 illustrate the strong particle size dependence of magnetic behavior of the 

soils/sediments. As Catena B soils present a high χFD% (10-14%) in the clay and silt fractions, 
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The difference in low frequency magnetic 
susceptibility between Catena B samples and 
Catena A samples, due to the greater content of 
magnetic minerals in Catena B samples, makes 
low frequency magnetic susceptibility an effective 
basis for source differentiation, as found in other 
studies (Pulley & Rowntree, 2016). Low frequency 
magnetic susceptibility is mainly associated with 
the Fe oxides assemblage and content within a 
soil: magnetite (Fe3O4) χLF values can be found in 
literature ranging from 4,000 to 10,000 10-7 m3 kg-

1, while maghemite (ɤFe2O3) varies from 2,500 to 
4,500 10-7 m3 kg-1 and goethite (αFeOOH) varies 
from 3 to 13 10-7 m3 kg-1 (Walden et al., 1999). The 
magnetic susceptibility results obtained here are 
comparable to those reported by S. Silva et al. (2016) 
when evaluating the efficiency of a magnetometer 

as a tool for mapping soil classes and properties in 
tropical conditions, with χLF values for Hapludox up 
to 260 x 10-7 m3 kg-1. The χLF values measured in the 
Catena A soil samples are lower than those observed 
by Poggere et al. (2018), ranging from 73 to 307 
10-7 m3 kg-1 due to lower Fe oxides content in the 
present research (Figures 5, 6 and 7).

Figures 8 and 9 summarize some of the observed 
magnetic contrasts, making sediment source 
identification possible by comparing both soils’ 
sediment signatures with those of the reservoirs’ 
sediments. Systematic variation in the horizons 
down the profile were observed, with reservoir 
B presenting values that indicate influence from 
sediments of both catenas due to the mixture of 
different components (Figures 5, 6 and 7). 
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Figure 10. Frequency dependent susceptibility (%) of the different particle sizes of Catena A soil profiles, with 
different land uses, and in sediments of reservoir A.

Figures 10 and 11 illustrate the strong particle 
size dependence of magnetic behavior of the 
soils/sediments. As Catena B soils present a 
high χFD% (10-14%) in the clay and silt fractions, 
superparamagnetic and stable single domain grains 
are likely. Such magnetic behaviors are evidenced 
by the in situ formation of maghemite, most likely 
by oxidation of lithogenic magnetite during soil 
formation (Curi, 1983; Costa et al., 1999; Dearing, 

1999; Walden et al., 1999; Hatfield & Maher, 2009; 
Pulley & Rowntree, 2016). In the sand fraction of 
Catena B soils, magnetite presence justifies their 
higher χFD% in comparison with Catena A soils, which 
present a virtual absence of superparamagnetic 
grains (Dearing, 1999; Kämpf & Curi, 2000). The 
data variation emphasizes the need for magnetic 
characterization of sediments and possible sources 
on a particle size basis (Hatfield & Maher, 2008).

1983; Costa et al., 1999; Dearing, 1999; Walden et al., 1999; Hatfield & Maher, 2009; Pulley & Rowntree, 

2016). In the sand fraction of Catena B soils, magnetite presence justifies their higher χFD% in comparison 

with Catena A soils, which present a virtual absence of superparamagnetic grains (Dearing, 1999; Kämpf & 

Curi, 2000). The data variation emphasizes the need for magnetic characterization of sediments and possible 

sources on a particle size basis (Hatfield & Maher, 2008). 
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The elevation (in meters) of the soils sampled 
under different land uses, as well as χLF (10-7 m3 kg-

1) of different particle sizes at 1 meter down soil 
profiles, are presented in figures 12 and 13. The 
magnetic measurements appear to differentiate the 
two major potential suspended sediment inputs 
(Catena A and B) to both reservoirs (RA and RB): 
figure 12 indicates a dominant Catena A sediment 
source at reservoir A, corroborating with the relief 

Figure 11. Frequency dependent susceptibility (%) of three different particle sizes of Catena B soil profiles, with 
different land uses, and in sediments of reservoir B.
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measurements appear to differentiate the two major potential suspended sediment inputs (Catena A and B) to 

both reservoirs (RA and RB): figure 12 indicates a dominant Catena A sediment source at reservoir A, 

corroborating with the relief and consequent flow direction of the drainage area indicated in figure 1; on the 

other hand, Catena B soil samples look like the main source of sediment contribution at reservoir B. Soils 

with higher clay content, as Catena B soils, tend to produce higher sediment yield given the preferential 

transport of finer (smaller diameter) and lighter (lower density) sediment by the water erosion process 

(Morgan, 2009; Vahabi & Nikkami, 2008).  
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and consequent flow direction of the drainage area 
indicated in figure 1; on the other hand, Catena B 
soil samples look like the main source of sediment 
contribution at reservoir B. Soils with higher clay 
content, as Catena B soils, tend to produce higher 
sediment yield given the preferential transport of 
finer (smaller diameter) and lighter (lower density) 
sediment by the water erosion process (Morgan, 
2009; Vahabi & Nikkami, 2008). 
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Figure 12. Elevation (m) of sampling sites and low frequency magnetic susceptibility (10-7 m3 kg-1) (note differing 
scales) of different particle sizes of Catena A soil profiles, with different land uses, and in sediments of reservoir A.
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The similarity of Catena A soil clay magnetic susceptibility values to those of the reservoir 

sediments (Figures 12 and 13) can be indicative of a higher erosion rate in Catena A than Catena B soils, as 

stated by Lima et al. (2018) and A. M. Silva et al. (2005), respectively. This finding is explained by the 

higher water infiltration in Catena B soils, a consequence of the granular structure compared with the blocky 

structure of Catena A soils, which promotes lower water infiltration and consequently higher runoff 

(Ferreira, Fernandes, & Curi, 1999). Also, the Catena A slope was steeper and crusting was observed during 

soil sample collection, both of which increase the potential for erosion. Further, within Catena A soils, higher 

erosion rates of clay were indicated for A1 soils (Figure 12), an Ultisol, whose A horizon presents weaker 

structure development and lesser clay content than B horizon. Within Catena B soils, higher erosion rates 

were associated with B1 and B2 soils (Figure 13), which occur on steeper slopes than other soils of this 

catena. As soils, sediments and rocks from different locations in a catchment are characterized by different 

magnetic properties (Cervi, Maher, Poliseli, Souza, & Costa, 2019), and so such a technique can be used on 

different soil classes.  
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The similarity of Catena A soil clay magnetic 
susceptibility values to those of the reservoir 
sediments (Figures 12 and 13) can be indicative of a 
higher erosion rate in Catena A than Catena B soils, 
as stated by Lima et al. (2018) and A. M. Silva et 
al. (2005), respectively. This finding is explained 
by the higher water infiltration in Catena B soils, 
a consequence of the granular structure compared 
with the blocky structure of Catena A soils, which 
promotes lower water infiltration and consequently 
higher runoff (Ferreira, Fernandes, & Curi, 1999). 
Also, the Catena A slope was steeper and crusting 
was observed during soil sample collection, 

both of which increase the potential for erosion. 
Further, within Catena A soils, higher erosion 
rates of clay were indicated for A1 soils (Figure 
12), an Ultisol, whose A horizon presents weaker 
structure development and lesser clay content than 
B horizon. Within Catena B soils, higher erosion 
rates were associated with B1 and B2 soils (Figure 
13), which occur on steeper slopes than other soils 
of this catena. As soils, sediments and rocks from 
different locations in a catchment are characterized 
by different magnetic properties (Cervi, Maher, 
Poliseli, Souza, & Costa, 2019), and so such a 
technique can be used on different soil classes. 
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Figure 13. Elevation (m) of sampling sites and low frequency magnetic susceptibility (10-7 m3 kg-1) (note different 
scales) of different particle sizes of Catena B soil profiles, with different land uses, and in sediments of reservoir B.
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The analysis of different soil properties (standardized soil color notation, particle size distribution, 

x-ray diffraction analysis, low frequency magnetic susceptibility and frequency dependent susceptibility) 

enhance magnetic contrasts that make sediment source identification possible. Soil properties combination 

analysis has been widely used as a fingerprint method to assess sediment sources (Pulley, Van der Waal, 

Rowntree, & Collins, 2018; Tian et al., 2019). The qualitative assessment allows sediment source 

identification and enables a future sustainable soil and water conservation management. 

 

Conclusions 

This research provides evidence that sediment tracing using magnetic parameters to identify 

possible sediment sources in a subtropical environment, specifically in Brazil, is a useful technique to 

delineate soil erosion and sediment transfer. 

The strong difference in magnetic signatures is a primary result of different parent materials, since 

the climate and major pedogenic process are quite similar (desilication and residual concentration of oxides). 

The different parent materials lead to soils with different contents and types of Fe oxide minerals, inducing 
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The analysis of different soil properties 
(standardized soil color notation, particle size 
distribution, x-ray diffraction analysis, low 
frequency magnetic susceptibility and frequency 
dependent susceptibility) enhance magnetic 
contrasts that make sediment source identification 
possible. Soil properties combination analysis has 
been widely used as a fingerprint method to assess 
sediment sources (Pulley, Van der Waal, Rowntree, 
& Collins, 2018; Tian et al., 2019). The qualitative 
assessment allows sediment source identification 
and enables a future sustainable soil and water 
conservation management.

Conclusions

This research provides evidence that sediment 
tracing using magnetic parameters to identify 
possible sediment sources in a subtropical 
environment, specifically in Brazil, is a useful 
technique to delineate soil erosion and sediment 
transfer.

The strong difference in magnetic signatures is 
a primary result of different parent materials, since 
the climate and major pedogenic process are quite 
similar (desilication and residual concentration 
of oxides). The different parent materials lead to 
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soils with different contents and types of Fe oxide 
minerals, inducing differential magnetic variability, 
which allows the identification of sources of 
deposited sediments. Different behavior of soil 
types could be clearly distinguished by magnetic 
property evaluation and the origin of sediments of 
downstream reservoirs allocated to their source. 
Given the low cost of magnetic measurements, and 
distinct properties among soil classes, magnetic 
tracing offers significant potential in soil erosion 
and sediment tracing studies in the tropics. This 
increased understanding could be used to develop 
appropriate soil erosion mitigation methods, 
maintaining soil quantity and quality and avoiding 
detrimental impacts in the downstream aquatic 
systems.
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