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A B S T R A C T  

The source dynamics of total and dissolved material in riverine systems are being affected by anthropogenic 
activities resulting in the degradation of waterways worldwide. Identifying the main sources of total and dis-
solved material is thus central to the management of increasingly scarce water resources. Here, we utilize data 
generated from water quality monitoring programs to investigate the sources of total and dissolved material in a 
large, semi-arid basin in western Canada. Our research focuses on the confluence of two major tributaries in the 
South Saskatchewan River Basin (SSRB) in the Province of Alberta: the Bow River (25,611 km2) and the Oldman 
River (28,270 km2). A tributary tracing technique coupled with a Deconvolutional-MixSIAR (D-MIXSIAR) 
modelling approach is used to estimate the potential source contributions of total and dissolved material from 
major tributary sites to target node sites on the main stem of the Bow River and Oldman River in addition to 
target nodes downstream of their confluence. In total, 812 samples were taken from 29 sites across the SSRB. A 
novel approach to selecting fingerprints for modelling is presented based on the analyses of additional quality 
control samples (146 duplicate and 172 blank samples). Overall, the Rocky Mountain headwater catchments 
were found to dominate the supply of material modelled using total recoverable (68%) and dissolved (76%) 
metals. There were seasonal fluctuations in source dynamics evident where the Bow River dominated the supply 
of total (69%) and dissolved (57%) material during the ice-covered season (November-March), and the Oldman 
River dominated the supply of total (73%) and dissolved (59%) material during the open water season (April- 
October). On the one hand, these seasonal dynamics are potentially the result of the extensive regulation of flow, 
particularly along the Bow River. On the other hand, the intensification of agriculture in the prairie/plain 
catchments may also facilitate the excess supply of total relative to dissolved material. For example, the Little 
Bow River, with ~70% agricultural land cover, contributed ~14 times more total material than anticipated 
based on discharge and 1.6 times more than anticipated based on unit area during the open water season. 
Overall, this research has improved our understanding of the source dynamics of total and dissolved material in 
the SSRB, providing the foundation for focussed studies targeting the main sources of total and dissolved material 
in this large, semi-arid basin in western Canada. In addition, our research highlights the potential of using 
existent data generated from water quality monitoring programs along with quality control best practices to help 
improve our understanding of the source dynamics of total and dissolved material in waterways around the 
world. 

1. Introduction 

Anthropogenic activities (e.g. grazing, clearing, agriculture, and 

logging) have affected more than half of the Earth’s terrestrial surface 
(Hooke et al., 2012; Richter and Mobley, 2009) impacting fundamental 
critical zone processes and resulting in major changes in the cycling of 
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particulate and solute material in riverine systems (Meybeck, 2003). 
Elevated total and dissolved material may be indicative of the down-
stream transfer of contaminants transported either in the dissolved 
phase or bound to particulate matter (Bainbridge et al., 2012; Elbaz- 
Poulichet et al., 2006; Gateuille et al., 2014). Accordingly, it is impor-
tant to identify and understand the source dynamics of both total and 
dissolved material in riverine systems in order to develop and imple-
ment best management practices that mitigate the degradation of 
freshwater systems (Collins et al., 2011; Gellis and Walling, 2011; 
Grasby et al., 1997). 

Sediment source fingerprinting is a field-based technique that esti-
mates the main sources of sediment in riverine, lacustrine and coastal 
systems (Douglas et al., 2003; Hatfield and Maher, 2008; Jalowska et al., 
2017). This technique capitalizes on differences in physical and 
biogeochemical parameters between potential sources to trace sediment 
provenance (Klages and Hsieh, 1975; Lewin and Wolfenden, 1978; 
Oldfield et al., 1979). A wide variety of fingerprinting parameters have 
been used to investigate sediment sources (e.g. fallout radionuclides, 

mineral magnetic properties, major and trace element geochemistry) 
through being incorporated into end-member mixing models that are 
solved stochastically in frequentist (Collins et al., 2012; Tiecher et al., 
2019; Walling et al., 1993) or Bayesian frameworks (Cooper and 
Krueger, 2017; Davies et al., 2018; Small et al., 2002) to apportion 
source contributions to target material. 

Developed for stable isotope research in ecology, Bayesian mixing 
models such as Stable Isotope Analyses in R (SIAR) (Parnell et al., 2008) 
and MixSIAR (Semmens et al., 2013) are increasingly being used to 
model sediment sources (Boudreault et al., 2019; Garzon-Garcia et al., 
2017; Koiter et al., 2013). One advantage of using these stable isotope 
mixing models is that they are inherently designed to include the con-
centration dependency of isotope ratios during end-member modelling 
(Mabit et al., 2018; Reiffarth et al., 2019; Upadhayay et al., 2018a). A 
second advantage is the relative straightforwardness of running complex 
Bayesian end-member mixing models in a R coding environment or with 
the provided graphical user interface (Stock and Semmens, 2016). 

Accordingly, there has been a significant uptake of stable isotope 

Fig. 1. Location of the SSRB in Canada (inset A), the confluence of the Bow River (BR) and the Oldman Rivers (OMR) (inset B), along with the tributary and node 
sites/watersheds overlain on land use/land cover for the study region (C). 
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mixing models in sediment fingerprinting research (e.g. Astorga et al., 
2018; Bahadori et al., 2019; Barthod et al., 2015; Brandt et al., 2016; 
Bravo-Linares et al., 2018; Dutton et al., 2013; Glendell et al., 2018; 
Jantzi et al., 2019; Liu et al., 2017; McCarney-Castle et al., 2017). One 
key innovation has been the development of functions in the R pro-
gramming language that allow for the ‘de-convoluted un-mixing’ of 
sediment sources (Blake et al., 2018). Notably, the Deconvolutional- 
MixSIAR (D-MIXSIAR) model facilitates the downstream propagation 
of source contributions to sediment for multiple target sampling loca-
tions (Blake et al., 2018), which holds significant potential to generate 
comprehensive information on sediment source dynamics. As the 
development of D-MIXSIAR in the literature has predominantly focussed 
on small catchments (Blake et al., 2018; Upadhayay et al., 2018b), there 
remains a gap in our knowledge regarding the utility of D-MIXSIAR in 
larger catchments. 

Here, we apply the D-MIXSIAR model in a large watershed in 
Alberta, western Canada. In particular, our research focuses on the 
confluence of two major tributaries in the South Saskatchewan River 
Basin (SSRB), the Bow River (25,611 km2) and the Oldman River 
(28,270 km2) (Fig. 1). Snowmelt and precipitation runoff in the Rocky 
Mountain headwaters are hypothesized to drive the downstream trans-
fer of total and dissolved material in this region. To test this hypothesis, 
a D-MIXSIAR modelling approach, using dissolved and total recoverable 
metals analyzed on surface water grab samples (n = 812) taken monthly 
for approximately three years (2016–2018), was run for target sampling 
sites on the main stem (i.e. nodes) upstream and downstream of the 
confluence of the Bow and Oldman Rivers. A tributary tracing technique 
is employed where surface water grab samples from 22 different tribu-
taries are used as source samples that are de-convoluted with the D- 
MIXSIAR model through seven main stem node sites (i.e. target samples) 
to provide a comprehensive understanding of the source dynamics of 
total and dissolved material in the SSRB. 

Our research design includes the sampling and analyses of 318 
quality control samples. In particular, field blank samples (n = 172) 
estimate the potential bias (i.e. contamination) in the dataset whereas 
duplicate samples (n = 146) assess the variability (i.e. precision) of the 
potential fingerprinting parameters. Results from a comprehensive sta-
tistical analysis of the duplicate and field blank samples, based on best 
practices developed by the United States Geological Survey (i.e. Bender 
et al., 2011; Mueller et al., 2015) are used to develop a novel approach to 
select fingerprinting parameters to be included in end-member mixing 
models based on quality control samples. 

The overall objective of this research is to investigate the source 
dynamics of total and dissolved material from tributaries in the SSRB in 
order to help understand and manage these waterways in the context of 
land use intensification and a changing climate. In particular, the 
modelling results may highlight tributaries that disproportionately 
contribute total and dissolved material, which require targeted man-
agement. Our research also highlights a particularly powerful approach 
to utilize data generated from water quality monitoring programs, 
coupled with an appropriate quality control framework, to investigate 
total and dissolved material dynamics worldwide. To the best of our 
knowledge, this is one of the first attempts to use regional water quality 
monitoring data, including quality control best practices, to simulta-
neously trace both the total and dissolved fractions with the sediment 
source fingerprinting technique. 

2. Material and methods 

2.1. Study site 

In south eastern Alberta, Canada, the Bow (25,611 km2) and Oldman 
Rivers (28,270 km2) merge to form the South Saskatchewan River, 
which flows eastward towards Lake Winnipeg and discharges eventually 
into Hudson’s Bay as part of the Nelson River basin (Fig. 1). The head-
waters of the Bow and Oldman Rivers are situated on the eastern side of 

the Continental Divide in the Rocky Mountains. These watersheds 
transition from alpine and foothill landscapes in their montane head-
waters (maximum elevation: ~3500 m) to prairie and grassland plains 
as they cross the province of Alberta (minimum elevation: ~600 m). The 
geology of the Bow and Oldman watersheds, in their montane head-
waters, is mainly calcareous limestone, dolomite and shale predomi-
nantly of Paleozoic age. The geology transitions downstream to 
calcareous feldspathic sandstone, siltstone, mudstone and coal beds 
predominantly of Cretaceous and Tertiary age in the foothills and prairie 
landscapes (Hamilton et al., 1999). During the last glaciation, between 
~18,000 to 13,000 years before present, the Laurentide Ice Sheet retreat 
left behind varying thicknesses of glacio-fluvial, glacio-lacustrine, 
Aeolian and till deposits across the Albertan prairies (Dyke and Prest, 
1987). These deposits continue to exert a strong control on the source 
dynamics of total and dissolved material throughout Alberta. 

Land use and land cover in the study watershed, as delineated from 
the outlet sampling site (SSR2 - Fig. 1), are dominated by agriculture (ca. 
40% of the total area) followed by 21% grassland, 16% forest, 5% 
exposed rock, 5% water, reservoirs and wetlands, 4% shrub, 3% linear 
transport, 3% disturbed (including urban land covers), 1% forestry and 
1% mining including oil and gas operations. Overall, land use and land 
cover are highly variable in the tributary source watersheds, progressing 
from catchments dominated by relatively natural land cover in the 
Rocky Mountain headwaters to agriculturally dominated watersheds in 
the lower reaches of the study basin. The main agricultural crops or 
activities in the outlet sampling site (SSR2) watershed, according to the 
Agriculture and Agri-food Canada, Annual Crop Inventory (AAFC, 2018) 
were spring wheat (36%), canola/rapeseed (22%), barley (16%), peas 
(8%) and pasture/forage (6%). 

The SSRB has a predominantly semi-arid climate with a mean annual 
precipitation of 435 mm (Kerr, 2017) and a precipitation gradient across 
the catchment from the Rocky Mountains headwaters (~600 mm 
annually) to the drier downstream prairie region (~300 mm annually) 
(Halliday, 2009). In most of the non-montane headwater regions, 
evapotranspiration exceeds precipitation (Schindler and Donahue, 
2006). Although there is sufficient rainfall in the region to sustain crop 
production with irrigation, little to no runoff is generated from the 
grassland and prairie landscapes that include dead drainage areas 
(Godwin and Martin, 1975; Halliday, 2009). In fact, 71% of Canada’s 
irrigated land is found in the Province of Alberta (Statistics Canada, 
2017), the majority of which is in the SSRB. As such, there is an 
extensive regulation of rivers in this region, including 13 dams, four 
weirs and eight reservoirs in the Bow River watershed (AMEC, 2009) 
along with thee major reservoirs and more than a dozen other water 
control structures in the Oldman River watershed (Koning et al., 2006). 

The SSRB basin is characterized by short summers and cold winters 
with a mean annual temperature of ~3 ◦C (Downing and Pettapiece, 
2006). This seasonal pattern results in the rivers being predominantly 
covered with ice during winter (November-March) followed by periods 
of snow-melt runoff, first from the prairies and then from the mountain 
snowpack (Pomeroy et al., 2005). Snowmelt and rainfall during snow-
melt generates most of the annual runoff and flow (Halliday, 2009). 
Accordingly, the region’s dominant hydrological event is the annual 
melting of the Rocky Mountain snowpack starting in early May and 
lasting for approximately 40 days (Grasby and Hutcheon, 2000). 
Discharge is greatest in June when the peak in montane runoff coincides 
with the month with the most rainfall. Although there can be significant 
rainfall events in May and June, the mountain snowmelt runoff gener-
ally dominates the hydrograph. For example, snowmelt from the Rocky 
Mountains may produce between 70% and 90% of the annual discharge 
in the Oldman River, depending on annual variation in snowpack (Byrne 
et al., 2006). 

2.2. Sample design 

Water quality data was obtained from two Alberta Environmental 
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and Parks (AEP) monitoring programs: the long-term river monitoring 
network (LTRN) and the tributary monitoring network (TMN). The 
LTRN program generally has monitored sites on the main stems of 
Alberta’s major rivers for the last ~30 years. In 2016, AEP initiated the 
TMN program to investigate water quality dynamics in smaller tribu-
taries across the province. Here, we capitalize on data generated by 
these programs, to illustrate how water quality data from monitoring 
programs are often naturally suited to be used in tributary tracing 
research designs (i.e. where samples from potential tributaries are 
incorporated into end-member mixing models as potential sources) and 
incorporated into sediment fingerprinting research. Water quality 
monitoring data has the potential to be particularly powerful when 
coupled with the D-MIXSIAR model that allows for the propagation of 
downstream tributary site source contributions to total and dissolved 
material through multiple main stem target sites, or nodes, in large river 
basins. 

Dissolved and total recoverable metals were analyzed for one-litre 
grab samples of surface water taken monthly in pre-cleaned, high-den-
sity polyethylene bottles at surface water quality monitoring sites as part 
of the TMN and LTRN programs between April 2016 and December 2018 
(Table 1). An illustration of the timing of the sampling regime on the 
main stem sites plotted with discharge can be found in Fig. S1. In total, 
812 samples were obtained, 224 during the winter ice-covered season 
(November – March) and 588 during the open water season (April – 
October). For some tributary sites (n = 9), it was not possible to sample 
during the winter. For the majority of the target site nodes, there were 
21 samples obtained during the open water season and 12 during the ice- 
covered season (Table 1). In the Bow River catchment, samples were 
obtained at 15 sites, including three target site nodes (Fig. 1). In the 
Oldman River catchment, samples were taken at 10 sites, including two 
target nodes. Finally, there were four sampling sites, including two 
nodes, in the South Saskatchewan River sub-basin downstream of the 
confluence of the Bow and Oldman Rivers. In total, 29 sites were 
sampled, of which 22 were potential sources, along with seven target 

site nodes. For the final D-MIXSIAR model, the source contributions 
from the 22 potential source sites are estimated for the outlet site of this 
study basin on the South Saskatchewan River downstream of Medicine 
Hat (SSR2 – Fig. 1). 

No particle size fractionation was undertaken owing to the fact that 
we are comparing tributary site water quality grab samples to water 
quality grab samples from main stem node sites with the major particle 
size sorting effects generally occurring during sediment generation, 
mobilization and initial transport phases which have been assumed to 
have already materialized (Laceby et al., 2017; Laceby et al., 2015a). 
Additionally, to address the potential solubility of various metals (e.g. 
Ca, K, Mg, Sr) (Kraushaar et al., 2015), which may be transported pri-
marily in the dissolved phase (Meybeck and Helmer, 1989), D-MIXSIAR 
models were run on both the dissolved and total recoverable metal 
datasets to compare differences in their modelled contributions to dis-
solved and total material across the SSRB. 

Twenty-nine metals were analyzed by Innotech Alberta’s Environ-
mental Analytical Laboratory in Vegreville, Alberta (Table 2) for both 
the total recoverable fraction (i.e. the total water sample) and the dis-
solved fraction which was filtered with 0.45 µm cellulose acetate filter 
paper. Total water samples and the dissolved filtrate were preserved in 
Vegreville by staff at Innotech with 1% concentrated SeaStar high purity 
nitric acid for at least 16 h, thereafter ~50 ml of the preserved sample 
was digested for 20 m at 180 ◦C and 200 PSI. A portion of the digested 
solution was then introduced directly to an inductively coupled argon 
plasma-mass spectrometer with internal standards added online. 
Although Se and Cl are not metals, they will be referred to in the results 
and discussions as metals as they are included in the metal analysis re-
sults provided by Innotech. We use the term total material, rather than 
total suspended solids, as total material includes both suspended and 
dissolved material, which is representative of how the total recoverable 
metals were analyzed in our water samples. Additionally, we use the 
term dissolved material rather than total dissolved solids to emphasise 
the fact that the dissolved metals are likely representative of only a 

Table 1 
Summary of sampling information for each site including site name, site identification (ID), basin, latitude, longitude, node information and the number of samples 
taken at each site including the ice-covered (November – March) and open-water (April – October) seasons. 

Site Name Basin ID Area (km2) Latitude Longitude Mix Node n samples 

Total Ice Open 

Bow River @ Cochrane BR BR1 7543 51.1831 114.4871  1 33 12 21 
Bow River D/S Carseland Dam BR BR2 15,585 50.8306 113.4167 1 1 33 12 21 
Elbow River BR ER 1240 51.0448 114.0419  1 33 12 21 
Fish Creek BR FC 443 50.9052 114.0110  1 26 6 20 
Highwood River BR HR 3948 50.7823 113.8259  1 32 12 20 
Nose Creek BR NC 948 51.0464 114.0189  1 31 11 20 
Pine Creek BR PC 210 50.8450 113.9619  1 27 7 20 
Bow River @ Cluny BR BR3 17,826 50.7731 112.8455 2 2 33 12 21 
East Arrowwood Creek BR EAC 165 50.7647 113.1239  2 21 1 20 
West Arrowwood Creek BR WAC 813 50.7792 113.2036  2 15 1 14 
Bow River @ Ronalane Bridge BR BR4 24,766 50.0478 111.4248 3 3 33 12 21 
Coal Creek BR CC 76 50.4306 112.2278  3 21 1 20 
Crowfoot Creek BR CFC 1068 50.8333 112.7611  3 21 1 20 
New West Coulee BR NWC 352 50.2167 112.0208  3 21 1 20 
Twelve Mile Creek BR TMC 2958 50.1500 111.6667  3 20 1 19 
Beaver Creek OMR BRC 256 49.6393 113.7952  4 23 2 21 
Belly River OMR BYR 3614 49.7275 113.1781  4 32 11 21 
Oldman River @ Brocket OMR OMR1 4369 49.5586 113.8222  4 33 12 21 
Oldman River U/S Lethbridge OMR OMR2 16,800 49.7067 112.8629 4 4 32 11 21 
Pincher Creek OMR PRC 425 49.5463 113.7945  4 28 8 20 
St. Mary River OMR SMR 3440 49.5889 112.8806  4 31 10 21 
Willow Creek OMR WK 2506 49.7572 113.4069  4 23 2 21 
Little Bow River OMR LBR4 5890 49.9017 112.5067  5 32 11 21 
Oldman River @ Taber OMR OMR3 24,691 49.9611 112.0847 5 5 32 11 21 
Expanse Coulee OMR EC 1859 49.9717 112.0833  6 23 2 21 
Ross Creek SSR RK 1452 50.0311 110.6431  6 30 10 20 
Seven Persons Creek SSR SPC 3473 50.0311 110.6439  7 30 10 20 
SSR U/S Medicine Hat SSR SSR1 55,345 50.0433 110.7222 6 7 33 12 21 
SSR D/S Medicine Hat SSR SSR2 60,330 50.1048 110.6911 7 7 30 10 20 
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fraction of total dissolved solids (e.g. inorganic salts, nutrients, etc.). Our 
objective of using the term material is to indicate that modelling results 
are illustrative of the main sources of the bulk of the material being 
sampled and analyzed rather than identifying sources of individual 
constituents of the dissolved or total material. 

2.3. Quality control samples 

2.3.1. Blank samples 
Blank samples quantify the potential positive or negative bias in 

environmental data resulting from contamination (Mueller et al., 1997; 
Riskin et al., 2018). In general, positive bias is introduced from 
contamination in sampling and analyses which may result in environ-
mental data being reported at a higher level than actual levels present in 
the environment (Mueller et al., 2015). Here, field blank samples are 
used to assess the positive bias (i.e. contamination) that may result from 
the entire process of sample collection through sample storage and 

laboratory analyses. Blank water, obtained from Innotech, was used to 
rinse the sample containers three times prior to being used to fill these 
containers with a field blank water sample for analyses. In total, 172 
field blank samples were collected by staff at the Calgary field office 
during the sampling period. 

The frequency and magnitude of potential contamination in the field 
blank samples is directly related to 2,015 similar one-litre grab samples 
of surface water collected by AEP’s Calgary field office from January 
2016 to December 2018. After Mueller et al. (2015), the 90 percent 
upper confidence limit (UCL) for the 95th percentile concentration of 
the field blank dataset, is representative of the maximum contamination 
anticipated, with a 90% confidence, in 95% of the sample population. 
Accordingly, this provides 90% confidence that this contamination level 
would not be exceeded in more than 5% of the sample population, 
including both the environmental and field blank datasets. Following 
Mueller et al. (2015), a binomial function calculates a distribution-free 
UCL for the field blank percentiles, ranks the data in ascending order, 
and then uses a binominal probability function (B) to calculate the UCL 
with equation (1): 

B(p, n,U − 1) ≥ 1− α (1) 

where p is the percentile/100, n is the number of samples, U is the rank, 
and α is the significance level of the confidence interval. The 100(1- 
α)-percent UCL for the (100)pth percentile of potential extraneous 
contamination in the population is estimated by the analytical value of a 
given parameter at rank U in a set of n field blanks. As an example, for 
100 field blank samples, the UCL (90%) at the 95th percentile, hereafter 
referred to as the B95-90 value, is: 

B(0.95, 100,U − 1) ≥ 0.90 (2) 

Solving for U yields U = 99; therefore, the B95-90 value is the analytical 
result for the 99th ranked blank sample. 

An example of this statistical procedure is outlined in more detail in 
Mueller et al. (2015) and a comprehensive report on field blank analyses 
for samples taken across the province of Alberta is presented in Laceby 
et al. (in press). The difference between the environmental data and the 
B95-90 value is used to calculate the potential for environmental 
contamination based on relating the percent of field blanks above the 
detection limit and the amount of environmental data within one order 
of magnitude of the B95-90 value with this procedure again outlined 
comprehensively in both Mueller et al. (2015) and Laceby et al. (in 
press). 

2.3.2. Duplicate samples 
Duplicate samples are used to estimate random error in environ-

mental data potentially generated during sample collection, storage and 
laboratory analyses (Mueller et al., 2015; Riskin et al., 2018). In 
particular, duplicate samples assess the overall variability (i.e. preci-
sion) of environmental monitoring programs, whereas field blank sam-
ples investigate the potential bias (i.e. accuracy). During our study 
period, 146 duplicate samples were collected by the Calgary field office. 
The majority of duplicate samples were collected concurrently (i.e. 
simultaneously within 1 m distance), with some duplicates obtained 
sequentially (i.e. within 2 min and 1 m distance) in limited instances 
owing to logistical constraints. Prior to sampling, duplicate bottles were 
rinsed three times with river water. 

The variability in analyte detection and the variability relative to 
environmental data were both determined from the duplicate sample 
analyses. Variability in analyte detection is calculated by first deter-
mining the percent of duplicate sets with inconsistent detections (i.e. 
duplicate sets that contain both a non-detect and a detected value) 
(Mueller et al., 2015). Second, the number of duplicate sets with 
inconsistent detections is divided by the total amount of duplicate sets 
minus the number of pairs with consistent non-detects (i.e. two MDLs). 
Following Mueller et al. (2015), a one-sided UCL is calculated for the 

Table 2 
Results from the analysis of blank and duplicate samples for total recoverable 
metals in the SSRB including the field blank detection (detect) frequency, the 
potential environmental contamination, the 90-percent UCL for the percentage 
of inconsistent detects, and the mean confidence interval (M-CI) for the dupli-
cate samples. Any variable with greater than 20% for the potential environ-
mental contamination, the UCL of inconsistent detections or the M-CI was not 
selected for modelling which is denoted by the asterisks (*) beside the 
percentages. 

Metal Detection 
Frequency 
(%) 

Pot. 
Env. 
Cont. 
(%) 

90-percent UCL 
for % 
Inconsistent 
Detects 

M- 
CI 
(%) 

Modelled 

Aluminum 
(Al) 

88 9 2 21* 

Antimony 
(Sb) 

20 1 2 6 Yes 

Arsenic (As) 20 0 2 10 Yes 
Barium (Ba) 40 0 2 3 Yes 
Beryllium 

(Be) 
2 4 20* 32* 

Bismuth (Bi) 7 12 28* 59* 
Boron (B) 40 0 2 4 Yes 
Cadmium 

(Cd) 
4 8 17 54* 

Calcium (Ca) 38 0 2 3 Yes 
Chlorine (Cl) 57 21* 2 7 
Chromium 

(Cr) 
21 2 19 40* 

Cobalt (Co) 20 4 2 21* 
Copper (Cu) 52 31* 2 18 
Iron (Fe) 52 4 2 15 Yes 
Lead (Pb) 51 20* 2 23* 
Lithium (Li) 18 0 2 4 Yes 
Manganese 

(Mn) 
41 0 2 11 Yes 

Molybdenum 
(Mo) 

54 0 2 5 Yes 

Nickel (Ni) 42 5 3 28* 
Selenium (Se) 5 2 3 23* 
Silver (Ag) 10 4 17 81* 
Strontium 

(Sr) 
37 0 2 3 Yes 

Thallium (Tl) 11 8 3 45* 
Thorium (Th) 19 7 4 41* 
Tin (Sn) 36 2 12 52* 
Titanium (Ti) 46 14 2 21* 
Uranium (U) 9 0 2 3 Yes 
Vanadium 

(V) 
28 6 2 15 Yes 

Zinc (Zn) 63 37* 2 33* 

* Indicates percentage greater than 20 resulting in these metals not being 
modelled 
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percentage of inconsistent duplicate sets with equation (3): 

PU = 100
{

1 +
n − x

(x + 1)F1−α,df 1 ,df2

}−1

(3) 

where PU is the UCL (%), n is the total number of duplicate pairs, x is the 
number of duplicate pairs having inconsistent detects, and F is a per-
centage point derived from the F distribution for a 100(1-α) percent 
confidence with the degrees of freedom being: df1 = 2x + 2 and df2 = 2n 
– 2x (Mueller et al., 2015). 

To relate duplicate variability to the environmental data, the vari-
ability in analyte concentrations is evaluated. Here, we use a bias- 
corrected log-log regression model, which is based on the approximate 
linear relationship in the logarithms of the duplicate mean and standard 
deviation concentrations, to evaluate duplicate variability across their 
concentration range (Mueller et al., 2015). For a comprehensive dis-
cussion on the suitability of this approach to analyze duplicate samples 
and detailed examples, see Mueller et al. (2015). The regression model is 
based on equation (4): 

log(SD) = B0 +B1log(C) (4) 

where log(SD) is the logarithm of the standard deviation (SD) of the 
paired duplicate sample concentrations, B0 is the y-axis intercept of the 
regression line, which is estimated by the least squares method, B1 is the 
regression line slope, and log(C) is the logarithm of the mean of the 
paired duplicate concentrations. 

The residuals from this regression equation are then back- 
transformed to their original scaling. The mean of these residuals is 
included in equation (5) as a bias correction factor (BCF) to compensate 
for transformation bias when the SD is calculated in original units (e.g. 
mg/L): 

SD = BCF
{

10[B0+B1 log(C) ]
}

(5) 

Equation (5) is then used to determine duplicate variability as the mean 
bias-corrected SD for any given parameter concentration, C (Mueller 
et al., 2015). 

To relate the variability in the duplicate samples to the environ-
mental data, we estimate the uncertainty of analyte values measured in 
environmental samples through constructing confidence intervals for 
environmental sample concentrations with equation (6) (Mueller et al., 
2015): 

[CL,CU ] = C ± Z(1−α/2)σ (6) 

where C is the measured environmental analyte value, CL and CU are the 
lower and upper confidence limits (CL) of the analyte value for the 100 
(1-α/2) confidence interval percent, Z is the percentage point of a 
normal standard curve containing an area of 100(1-α/2) percent, α 
represents the probability of the confidence interval not including the 
true analyte value (i.e. α is 0.9 for the 90% CL), and σ is the SD of the 
analyte value calculated with equation (5). To contextualize this 
duplicate analysis, we calculate the mean confidence interval (M-CI), 
which is the average CL and CU when applying equation (6) to each 
percentile of the environmental data (n = 2,015). Of note, both the 
duplicate and blank analyses include all LTRN and TMN samples taken 
by the Calgary field office, including several sites not included as nodes 
or tributary source sites in this fingerprinting research in order to 
comprehensively quantify the overall potential bias and contamination 
of samples obtained during the study period as a larger sample size 
should theoretically result in improved estimates of potential bias and 
variability. 

2.4. Source fingerprinting 

The results from the quality control analyses were used to remove 
metals that have a high potential for bias (i.e. contamination) or 

variability. First, metals were removed if they had a potential for 
contamination greater than 20% based on the field blank analyses. 
Second, metals were removed that had an upper confidence limit for 
inconsistent detection greater than 20% and/or a duplicate variability (i. 
e. M-CI) across the concentration range greater than 20%. The 20% 
upper limit of bias and variability was selected because it is the 
maximum acceptable relative percent difference between laboratory 
duplicates and the maximum allowable bias on laboratory spike sam-
ples, which if exceeded, the batch of samples requires reanalysis. After 
removing metals based on the quality control analyses, a mean and 
standard deviation (SD) conservative bracket/range test (e.g. the mean 
of the target material falls within one SD of the source tributary mate-
rial) was used to select metals for modelling. A separate bracket/range 
test was conducted for each individual MixSIAR model. Owing to Mix-
SIAR’s capacity to handle correlated data, no further tracer selection 
steps were included following the work of Smith et al. (2018). 

The D-MIXSIAR model was run in the R-programming Language 
using MixSIAR as the model engine based on code published as sup-
plementary information in Blake et al. (2018) with MixSIAR’s mathe-
matical formulation outlined in Stock et al. (2018). All models were run 
first with normal distributions as Smith et al. (2018) illustrated that the 
removal of tracers with non-normal distributions may reduce the overall 
accuracy of MixSIAR results. Additionally, we applied log-normal, 
square root and cube root transformations to our source data in very- 
short and very long MixSIAR model runs to investigate the sensitivity 
of MixSIAR to assumptions around the normality of source data, which 
was assessed after the transformations, or the lack there of for normal 
distributions, with Shaprio-Wilks tests. 

The NADA package in R implemented regression on order statistics 
(ROS) to estimate the mean and standard deviation of the source metal 
concentrations with censored data (e.g. below minimum detection 
limits) to generate the normal distributions that were modelled with 
MixSIAR. In total, there were seven data points in the dissolved 
modelled data that were below detection limits whereas there was no 
censored data in the total recoverable modelled data. 

MixSIAR was run with the residual error model structure, an unin-
formative prior, all Dirichlet hyperparameters set to one, and the Mar-
kov Chain Monte Carlo (MCMC) set to a very long chain length 
of 1,000,000, with a burn in of 700,000, and a thinning of 300 for three 
chains (following Blake et al., 2018). Additionally, a very short chain 
length of 10,000 with a burn in of 5,000 and a thinning of 5 for three 
chains was used to investigate the impact of the source distributions. The 
Gelman-Rubin diagnostic was used to assess model convergence and 
none of the variables modelled had a Gelman-Rubin diagnostic >1.01 
with the very long run times. 

Owing to the strong seasonal influence on hydrological dynamics in 
the region, we ran three model scenarios. First, all annual data was 
modelled. Second, we ran models for the open water season (April to 
October). Third, we ran models for the ice-covered season (November to 
March). In summary, the D-MIXSIAR framework de-convolutes the 
posterior proportion contributions sequentially for each node pro-
gressing downstream while propagating the uncertainty through esti-
mating full posterior distributions for the model results for each 
potential source (Blake et al., 2018). All analyses, modelling and plot-
ting of results for this manuscript were conducted in the R programming 
language (R Development Core Team, 2011) with multiple packages (i. 
e. devtools, ggplot2, R2jags, RGtk2, ggord, data.table, tidyverse, Hmisc, 
matrixStats, MASS, klaR, reshape2, psych, foreach, Rsolnp, MixSIAR, 
rjags, NADA, tidyhydat, cowplot, plyr, stringr, tibble, scales, gridExtra, 
egg, forcats, tidyhydat and dplyr). 

3. Results 

3.1. Fingerprint selection for modelling 

For the 29 total recoverable metals analyzed, including Cl and Se, 
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only 12 passed the quality control screening. From the field blank 
analysis, there were four metals with a potential for environmental 
contamination greater than 20% (Cl, Cu, Pb, and Zn - Table 2). 
Regarding the duplicate analyses, only Bi had a greater than 20% UCL in 
inconsistent detections. In addition, 14 metals had an M-CI greater than 
±20% (Ag, Al, Be, Bi, Cd, Co, Cr, Ni, Pb, Th, Tl, Se, Sn and Zn) including 
four metals with an M-CI greater than ±50% (Ag, Bi, Cd, and Sn). 
Overall, the quality control screening removed 59% of the metals ana-
lysed with 12 (41%) moving on to the bracket/range test (As, B, Ba, Ca, 
Fe, Li, Mn, Mo, Sb, Sr, U and V). Between five and 12 total recoverable 
metals were selected for modelling the three scenarios (i.e. ice, open & 
all samples) for each target node based on the conservative bracket/ 
range test requiring the mean node concentrations to plot within one 
standard deviation of source concentrations (Table 3). Box plots of all 
total recoverable metals modelled are provided in the supplementary 
information (Figs. S2 to S13). 

For the 29 dissolved metals analyzed, including Cl and Se, only 11 
passed the quality control screening. Regarding the field blank analysis, 
there were three metals with a potential for environmental contamina-
tion greater than 20% (Al, Cu, and Ti - Table 4). Regarding the duplicate 
analyses, five metals had a greater than 20% UCL in inconsistent de-
tections (Ag, Be, Bi, Cr and Pb). In addition, 15 metals had an M-CI 
greater than ±20% (Ag, Al, Bi, Cd, Co, Cr, Fe, Ni, Mn, Pb, Th, Tl, Se, Sn 
and Zn) including four metals with an M-CI greater than ±50% (Ag, Pb, 
Th and Sn) and one that was greater than 100% (Cr). Overall, the quality 
control screening removed 62% of the dissolved metals analysed with 11 
(38%) moving on to the bracket/range test (As, B, Ba, Ca, Cl, Li, Mo, Sb, 
Sr, U and V). Between four and 11 dissolved metals were selected for 
modelling the three scenarios (i.e. ice, open & all annual samples) with 
the conservative bracket/range (Table 3). Box plots of all dissolved 
metals modelled are provided in the supplementary information 
(Figs. S14 to S24). 

3.2. Total verses dissolved metals 

On average, 64% (SD 30%) of the total recoverable metals were 
dissolved material. For the total recoverable metals selected for 
modelling, this increased to 76% (SD 33%). There were only three 
modelled metals with a dissolved to total recoverable ratio below 50% 
(Fe: 8%, Mn: 16% and V: 49%), whereas the other total recoverable 
metals modelled were predominantly compromised of dissolved mate-
rial (i.e. >80%) (Table 5). The dominance of dissolved material in the 
modelled dataset was evident for the majority of TSS concentrations 
(TSS < 50 mg: Mean (M) 78%, SD 33%, TSS between 50 and 100 mg: M 
70%, SD 37%, and TSS between 100 and 1000 mg/L: M 59%, SD 37%). 
The dissolved fraction constituted the minority of material for TSS 
concentrations >1000 mg/L, where it only comprised a mean of 38% 
(SD 36%) of the metal concentrations modelled, although there were 
only 4 samples with TSS concentrations >1000 mg/L. The metal con-
centrations in the one litre water grab samples are thus predominantly 
comprised of dissolved material. 

Accordingly, the modelled source contributions with total recover-
able and dissolved metals should theoretically be similar as the majority 
of the material is dissolved. Any deviations between the modelled source 
contributions with the total recoverable and dissolved metals should 
highlight differences between the source dynamics of total and dissolved 
material across the SSRB. For example, in situations where sites have 
relatively similar modelled source contributions with both total recov-
erable and dissolved metals, it can be assumed that model results from 
both of these metals datasets are representative of the dissolved fraction. 
In contrast, for situations where model results from the total recoverable 
metals data are greater than those estimated with dissolved metals, the 
source contributions modelled using the total recoverable metals are 
likely to be representative of suspended material (e.g. particulate mat-
ter, sediment, etc.). Ta
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3.3. MixSIAR sensitivity to source data transformations 

Overall, 834 and 821 respective total recoverable and dissolved 
metal source distributions were incorporated into MixSIAR when 
modelling the ice-covered (n 265, 300), open water (n 277, 259), and all 
annual samples (n 279, 275). A log-10 transformation achieved the 
greatest degree of normality in the source dataset with a mean (M) of 
61% (SD 3%) for dissolved metals (DM) and 56% (SD 0.2%) for total 
recoverable metals (TRM) when including the ice-covered, open water 
and all annual source distributions, followed by the cube root (DM: 55% 
SD 2.1%; TRM: 47% SD 0.8%) and square root transformations (DM: 
54%, SD 0.9%; TRM: 43%, SD 0.8%). In the absence of any trans-
formation, the source distributions of 48% (SD 0.3%) of the dissolved 
metals and 37% (SD 0.2%) of the total recoverable metals were 
distributed normally. Transformations to the source data prior to 
modelling with D-MIXSIAR had little to no impact on source appor-
tionment results with a very long run time. The average standard de-
viation for all source contributions for all models (i.e. ice, open and all 
annual samples) with normal, log-normal and square root and cube root 
transformations was only 0.1% when modelling with a very long run 

time. In fact, the maximum standard deviation for modelled source 
contributions to target material was only 0.8%, indicating that the na-
ture of the source data had limited impact on the model outputs with the 
very long run times. In contrast, the transformations resulted in a 
significantly higher standard deviation in results for models with very 
short run times (paired t-test results: t = -6.041, df = 131, p-value =
<0.001), which had an average standard deviation of 0.7% and a 
maximum standard deviation of 7.8%. Accordingly, the results pre-
sented below are from models with very-long run times and the con-
ventional normal distributions, although any of the four approaches to 
the source data would provide nearly identical results using dissolved 
and total recoverable metals data modelled with very long run times. 

3.4. D-MIXSIAR model results 

For the D-MIXSIAR model run using the dissolved metals dataset, the 
Bow River headwaters were estimated to contribute the most material 
(M 31%, SD 6%) for all annual samples followed by Belly River (M 15%, 
SD 5%) and the Oldman River headwaters (M 14%, SD 4–5%) (Table 6). 
Although the Belly River’s modelled contributions using the dissolved 
metals data were relatively stable over the ice-covered and open water 
seasons (M ~ 15%), the Bow River headwaters modelled contribution 
decreased from 29% (SD 7%) in the ice-covered season to 22% (SD 8%) 
in the open water season. In contrast, the Oldman River headwaters 
contribution, modelled using the dissolved metals, increased from 10% 
(SD 5%) during the ice-covered season to 21% (SD 7%) during the open- 
water season. The Little Bow River (M 7%, SD 3% for annual samples), 
the only other catchment with a noteworthy source contribution >5%, 
modelled using the dissolved metals, fluctuated from a 2% (SD 2%) 
contribution during the ice-covered season to 9% (SD 4%) during the 
open water season. As anticipated, seasonal fluctuations in the mean 
contribution ratios (MCRs) reflected these source contributions 
modelled using dissolved metals with the Belly River contributing 
approximately twice (MCRs between 1.94 and 2.04) as much material as 
anticipated based on unit area across all seasons. The Oldman River 
headwaters also contributed twice as much material as anticipated 
during the open water season (MCR 2.04) relative to essentially an ex-
pected contribution based on watershed area during the ice-covered 
season (MCR 1.02). The Bow River headwaters were modelled to 
contribute 1.78 times more material using dissolved metals than antic-
ipated based on unit area during the ice-covered season compared to 
1.38 times more during the open water season. The Little Bow River 
fluctuated from contributing almost 85% less than anticipated based on 
unit area in the ice-covered season (MCR 0.16) to only ~30% less during 
the open water season (MCR 0.68). Overall, the montane headwater 
catchments in the Bow and Oldman Rivers were modelled to contribute 
77% using the dissolved metals dataset in the open water season, 
compared to 70% during the ice-covered season, and 76% when 
modelling all annual samples. This results in the montane headwaters 
being modelled using dissolved metals to contribute ~30% more ma-
terial than anticipated in the open water season (MCR 1.30) and for all 
annual samples (MCR 1.29) versus ~20% more material than antici-
pated during the ice-covered season (MCR 1.19) based on their water-
shed area. 

The modelling results using the total recoverable metals also had 
pronounced seasonal variations. When modelling all annual samples 
using the total recoverable metals, the Bow River headwaters were 
estimated to provide the most material to the SSR2 outlet node, 
contributing 27% (SD 8%), followed by the Oldman River headwaters 
(M 12%, SD 5%), the Belly River (M 9%, SD 5%), the Little Bow River (M 
9%, SD 4%), the Saint Mary River (M 8%, SD 4%) and New West Coulee 
(M 7%, SD 4%) (Table 6). During the ice-covered season, the Bow River 
headwaters were deconvoluted using the total recoverable metals to 
contribute the most material (M 31% SD 8%), followed by the Belly 
River (M 9%, SD 6%), New West Coulee (M 7%, SD 6%) and the High-
wood River (M 7%, SD 5%). During the open water season, the Little 

Table 4 
Results from the analysis for blank and duplicate samples for dissolved metals 
the SSRB including the field blank detection (detect) frequency, the potential 
environmental contamination, the 90-percent UCL for the percentage of incon-
sistent detects, and the mean confidence interval (M-CI) for the duplicate sam-
ples. Any variable with greater than 20% for the potential environmental 
contamination, the UCL of inconsistent detections or the M-CI was not selected 
for modelling which is denoted by the asterisks (*) beside the percentages. 

Metal Detection 
Frequency 
(%) 

Pot. 
Env. 
Cont. 
(%) 

90-percent 
UCL for % 
Inconsistent 
Detects 

M-CI 
(%) 

Modelled 

Aluminum 
(Al) 

58 28* 5 38* 

Antimony 
(Sb) 

0 0 3 8 Yes 

Arsenic (As) 17 0 2 10 Yes 
Barium (Ba) 2 0 2 2 Yes 
Beryllium 

(Be) 
2 3 94* 9 

Bismuth (Bi) 0 0 92* 38* 
Boron (B) 35 0 2 4 Yes 
Cadmium 

(Cd) 
2 3 11 47* 

Calcium (Ca) 0 0 2 4 Yes 
Chlorine (Cl) 30 14 3 9 Yes 
Chromium 

(Cr) 
0 0 55* 111* 

Cobalt (Co) 6 0 4 32* 
Copper (Cu) 24 20* 2 14 
Iron (Fe) 26 0 9 42* 
Lead (Pb) 13 2 20* 58* 
Lithium (Li) 17 0 2 4 Yes 
Manganese 

(Mn) 
41 2 2 35* 

Molybdenum 
(Mo) 

27 0 2 4 Yes 

Nickel (Ni) 32 2 3 30* 
Selenium (Se) 3 0 5 24* 
Silver (Ag) 7 0 40* 91* 
Strontium 

(Sr) 
3 0 2 3 Yes 

Thallium (Tl) 16 0 12 45* 
Thorium (Th) 19 6 19 56* 
Tin (Sn) 27 0 18 51* 
Titanium (Ti) 38 21* 3 18* 
Uranium (U) 7 0 2 3 Yes 
Vanadium (V) 4 1 2 18 Yes 
Zinc (Zn) 41 9 9 42* 

* Indicates percentage greater than 20 resulting in these metals not being 
modelled 
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Bow River was modelled using the total recoverable metals to contribute 
the most material (M 20%, SD 7%), followed by the Oldman River 
headwaters (M 18%, SD 6%), the Saint Mary River (M 14%, SD 6%), the 
Belly River (M12%, SD 5%) and the Bow River headwaters (M 11%, SD 
7%). This seasonal variation in modelled source contributions is again 
clearly evident in the MCRs. The Bow River headwaters shift from an 

MCR of 0.69 in the open water season to 1.94 in the ice-covered season. 
In contrast, several catchments in the OMR have major increases in their 
MCRs in the open water season with the Little Bow River shifting from 
0.09 in the ice-covered season compared to 1.61 in the open water 
season. The Oldman headwaters (OMR1) shifts from an MCR of 0.48 in 
the ice to 1.97 in the open season, the Saint Mary River from 0.3 in the 

Table 5 
The dissolved to total recoverable ratio (DTR) for all analyzed metals across a range of total suspended solids concentrations (Low TSS: <50 mg/L, Medium TSS: 
50–100 mg/L, High TSS (100–1000 mg/L) and very high TSS (greater than1000 mg/L). For example, Ag for all samples has a DTR of 51% indicating that half of the 
material in the total recoverable ratio is in dissolved form. 

Metal n All DTR 
(%) 

n Low 
TSS 

Low TSS DTR 
(%) 

n Medium 
TSS 

Medium TSS DTR 
(%) 

n High 
TSS 

High TSS DTR 
(%) 

n Very High 
TSS 

Very High TSS DTR 
(%) 

Ag 229 51 188 59 16 19 23 11 2 3 
Al 816 6 725 7 42 1 45 0 4 0 
As* 848 80 756 84 43 64 45 38 4 12 
B* 848 95 756 96 43 96 45 90 4 70 
Ba* 848 89 756 92 43 74 45 57 4 11 
Be 49 54 39 64 4 18 5 16 1 1 
Bi 100 81 88 86 7 45 4 52 1 3 
Ca* 848 98 756 99 43 97 45 85 4 33 
Cd 604 50 515 55 42 21 43 12 4 2 
Cl 844 97 754 97 43 98 43 97 4 97 
Co 780 48 689 53 42 18 45 8 4 1 
Cr 232 61 206 67 14 17 11 12 1 1 
Cu 847 72 755 77 43 40 45 27 4 6 
Fe* 725 8 639 9 40 2 42 1 4 0 
Li* 848 94 756 96 43 90 45 70 4 32 
Mn* 844 16 752 18 43 6 45 2 4 0 
Mo* 848 98 756 98 43 98 45 100 4 99 
Ni 813 67 723 71 42 51 44 30 4 7 
Pb 501 20 437 22 29 4 31 2 4 0 
Sb* 720 96 636 97 41 97 39 87 4 93 
Se 835 90 747 91 43 85 41 81 4 45 
Sn 321 81 283 83 17 69 20 64 1 100 
Sr* 848 96 756 97 43 96 45 89 4 57 
Th 641 39 559 44 37 14 41 5 4 1 
Ti 821 25 731 27 41 9 45 5 4 5 
Tl 779 64 694 70 37 24 44 18 4 6 
U* 848 95 756 97 43 93 45 79 4 50 
V* 847 49 755 53 43 23 45 10 4 3 
Zn 794 48 710 52 40 13 40 9 4 1 

* indicates metals may have been selected in the modelling of total recoverable metals 

Table 6 
D-MIXSIAR model results including the mean (M) and standard deviation (SD) of the 22 tributary site contributions to total and dissolved material sampled at outlet 
node sample SSR2 including the mean contribution ratio (MCR). 

Site Total - All samples Dissolved - All samples Total – Ice-covered Dissolved – Ice-covered Total - Open Water Dissolved - Open Water 

M SD MCR M SD MCR M SD MCR M SD MCR M SD MCR M SD MCR 

BR1 27% 8% 1.68 31% 6% 1.92 31% 8% 1.94 29% 7% 1.78 11% 7% 0.69 22% 8% 1.38 
ER 1% 1% 0.38 1% 1% 0.53 4% 4% 1.52 4% 4% 1.48 0% 1% 0.15 1% 1% 0.46 
FC 1% 1% 0.64 1% 1% 0.64 1% 1% 1.49 1% 1% 1.28 0% 0% 0.32 1% 1% 0.53 
HR 6% 3% 0.72 5% 3% 0.62 7% 5% 0.86 6% 5% 0.73 2% 2% 0.19 3% 2% 0.33 
NC 2% 1% 0.99 1% 1% 0.65 3% 2% 1.34 2% 1% 0.84 1% 1% 0.40 1% 1% 0.40 
PC 1% 1% 1.12 1% 1% 2.46 2% 2% 4.93 2% 2% 4.26 0% 0% 0.67 1% 1% 1.57 
EAC 0% 0% 0.86 0% 0% 0.86 1% 1% 3.42 1% 1% 3.14 0% 0% 1.14 1% 1% 2.00 
WAC 0% 0% 0.17 0% 0% 0.12 1% 1% 0.75 1% 1% 0.46 0% 0% 0.12 0% 0% 0.23 
CC 2% 1% 9.85 2% 2% 12.3 4% 3% 24.0 3% 3% 17.9 1% 1% 6.16 2% 2% 10.5 
CFC 3% 2% 1.50 2% 1% 0.75 2% 2% 1.01 2% 2% 0.84 2% 2% 1.01 1% 1% 0.62 
NWC 7% 4% 9.22 5% 3% 6.41 7% 6% 9.75 5% 4% 6.14 3% 3% 3.74 3% 2% 3.61 
TMC 4% 3% 0.62 3% 2% 0.51 4% 4% 0.70 3% 2% 0.45 3% 3% 0.41 3% 2% 0.43 
BRC 1% 1% 0.92 1% 1% 1.10 0% 1% 0.74 0% 0% 0.74 1% 1% 2.02 1% 1% 1.84 
BYR1 9% 5% 1.22 15% 5% 1.94 9% 6% 1.18 16% 7% 2.02 12% 5% 1.50 16% 8% 2.04 
OMR1 12% 5% 1.28 14% 5% 1.55 5% 4% 0.48 10% 5% 1.02 18% 6% 1.97 21% 7% 2.22 
PC1 2% 2% 2.65 3% 2% 2.88 2% 2% 1.66 2% 2% 2.54 4% 3% 3.98 2% 2% 2.32 
SMR 8% 4% 1.11 5% 4% 0.70 2% 2% 0.30 2% 2% 0.31 14% 6% 1.85 9% 6% 1.27 
WK 1% 1% 0.23 1% 1% 0.13 1% 1% 0.11 1% 1% 0.11 2% 2% 0.41 1% 1% 0.23 
LBR 9% 4% 0.71 7% 3% 0.53 1% 1% 0.09 2% 2% 0.16 20% 7% 1.61 9% 4% 0.68 
EC 2% 1% 0.51 1% 1% 0.15 3% 2% 0.73 1% 1% 0.30 3% 2% 0.73 1% 1% 0.23 
RK 1% 1% 0.29 1% 1% 0.26 4% 3% 1.26 4% 3% 1.26 1% 1% 0.42 1% 1% 0.45 
SPC 1% 1% 0.18 1% 1% 0.12 5% 4% 0.61 5% 4% 0.65 2% 2% 0.26 2% 1% 0.20 
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ice to 1.85 in the open season and the Belly River shifting from 1.18 in 
the ice to 1.5 in the open season. Overall, montane headwater catch-
ments in the Bow and Oldman Rivers were modelled using the total 
recoverable metals to contribute 68% of the material for all annual 
samples compared to 64% in the open water season and 62% during the 
ice-covered season. Accordingly, the montane headwaters were 
modelled to contribute between 5% and 15% more material than 
anticipated based on watershed area with an MCR of 1.05 for the ice- 
covered season, 1.08 in the open-water season and 1.15 for all annual 
samples. 

Clearly, there was a major shift in the estimate of tributary contri-
butions between the two main seasons. When summing all tributary D- 
MIXSIAR model contributions, the Bow River was estimated to 
contribute 57% and 69% using the dissolved and total recoverable 
models respectively in the ice-covered season compared to 38% and 
24% during the open water season. In contrast, the Oldman River’s 
summed modelled contributions increased from 34% and 22% using the 
dissolved and total recoverable metals respectively in the ice-covered 
season to 59% and 73% during the open water season. This seasonal 
variation in material modelled using total recoverable metals is pre-
dominantly driven by a 20% decrease in contributions from the Bow 
River headwaters site in the open water season relative to the ice- 
covered season, with multiple tributaries in the Oldman River all 
contributing more material in the open water season relative to the ice- 
covered season (i.e. increases of 19% in the Little Bow River, 14% in the 
Oldman River headwaters, and 11% in the Saint Mary River). The sea-
sonal variation in source contributions modelled using dissolved metals 
was more muted with only a 6% decrease in contributions from the Bow 
River headwaters site in the open water season relative to the ice- 
covered season with multiple tributaries in the Oldman River basin 
modelled to contribute more dissolved material in the open water season 
relative to the ice-covered season (i.e. increase of 11% in the Oldman 
River headwaters, 7% in the Little Bow River and 7% in the Saint Mary 
River). 

4. Discussion 

4.1. Quality control analyses 

As MixSIAR is not limited by a three-step selection process (e.g. 
bracket/range test, Kruskal-Wallis h-test, and discriminant function 
analyses) (Smith et al., 2018), it facilitates the development of alterna-
tive approaches to identify appropriate fingerprints to include in end- 
member mixing models. Accordingly, we presented a novel approach 

using quality control samples to guide fingerprint selection for model-
ling. Overall, we found that the majority of the metals (total recoverable 
59%, dissolved 62%) analyzed in one-litre grab samples of surface water 
had a bias (i.e. blank sample contamination) and/or a variability (i.e. 
duplicate replicability) greater than 20%. In particular, our results 
highlight the fact that routinely measured metals data may not have 
equivalent uncertainty. As sediment mixing models advance (e.g. 
Cooper and Krueger, 2017; Lizaga Villuendas et al., 2018; Pulley and 
Collins, 2018; Sanisaca et al., 2017), ideally the quality of data (i.e. bias 
and variability) could be incorporated directly into mixing models in 
addition to the reporting of results. 

Importantly, the potential for bias and variability evident in our 
metals data is likely present in other research programs analyzing par-
ticulate material collected with discrete, low volume grab samples of 
water, or potentially even automated stage samplers. Of note, the M-CI 
value used to select metals represents the mean confidence interval (e.g. 
±20%) across all percentiles of environmental data. This mean value is 
masking elevated variability at lower concentrations. For example, the 
average M-CI for the 50th percentile of dissolved and total recoverable 
metals that were not modelled was ±40% and ±35% respectively, 
whereas it was ±55% and ±53% for the 10th percentile (Fig. 2). In 
contrast, the average M-CI for dissolved and total recoverable metals 
that were modelled was ±6% and ±7% respectively for the 50th 
percentile versus ±9% and ±8% for the 10th percentile. Clearly the 
quality of the data generated for individual metals varies greatly (i.e. 
Fig. 2) and the bias and variability of environmental data ideally should 
be accounted for more regularly in sediment fingerprinting research. 

Whether similar levels of bias and variability are evident in soil and 
sediment samples (e.g. lag deposits, time integrated samplers) requires 
further research and analyses. The challenge with soils and sediments 
will likely revolve around metals with low abundances (e.g. rare earth 
elements/lanthanides) where the potential for bias and variability may 
arise in the field (e.g. sampling design and device contamination), lab-
oratory (e.g. sieving, grinding and drying samples), and/or during 
analytical analyses (e.g. digestion procedures). As such, it would be 
beneficial for researchers to analyze replicate soil and sediment samples, 
along with some variant of consistent blank reference soils (e.g. Fer-
nandez et al., 2014; Guzmán et al., 2010), to improve our understanding 
of the potential for variability and bias in these media. Although there 
will be obvious trade-offs with respect to increased analytical costs, we 
feel it is important for sediment fingerprinting researchers to start to 
entertain the notion of incorporating quality control best practices into 
their research design, end-member mixing models and reporting of 
results. 

Fig. 2. The confidence interval (CI) (i.e. ±150%) for total recoverable metals (left) and dissolved metals (right) that were modelled (black) or were not modelled 
(red) based on the analyses of the duplicate quality control samples for all percentiles of environmental data sampled by the Calgary field office. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.2. Total and dissolved source dynamics 

Watersheds originating in the Rocky Mountains or foothills region, 
with >25% of their landscapes having a slope >10%, were modelled to 
supply 76% of the material using dissolved metals and 68% using total 
recoverable metals to the outlet node (Site SSR2). The Bow River 
watershed was modelled to contribute more dissolved (53%) and total 
material (53%) than the Oldman River watershed (DS 46% and TS 44%) 
for all annual samples. For dissolved and total material, there was a clear 
shift in source contributions from these two major river systems during 
the ice-covered and open water seasons. During the ice season, the Bow 
River supplied the majority of total (69%) and dissolved material (57%) 
modelled for the outlet node, whereas the Oldman River supplied the 
majority of total (73%) and dissolved material (59%) during the open 
season. Seasonal fluctuations for total material contributions from the 
Bow and Oldman Rivers were more pronounced (i.e. 12–14% greater) 
than for dissolved material. This seasonal fluctuation is highlighted by a 
decrease in total material contributions from all but one of the Bow 
River sites during the open season and an increase from all but two 
Oldman River sites during the open water season. In particular, the Bow 
River headwater site (BR1) contributions to total material declined 
~20% and three Oldman River tributaries had major increases in source 
contributions including the Little Bow River (19%), the Oldman River 
headwaters (14%), and the Saint Mary River (11%). Of these latter 
tributaries, the 19% increase in the Little Bow River source contributions 
stands out as this tributary has a relatively gentle topography (i.e. only 
5% of the watershed has a slope >10%) compared to the other three sites 
with montane headwaters. 

To facilitate the interpretation of these results, we compiled the 
mean monthly discharge for 20 of the sites from 1988 to 2018, for which 
there was a nearby gauging station where the watershed area for the 
gauging station did not differ from our sites area by more than 11% 
(Area Ratio (AR) in Table 5). As many of the smaller waterways in this 
region are essentially frozen to the bed or inaccessible during the winter, 
discharge data was only available for eight of the sites during the ice- 
covered season. Accordingly, we calculated the annual, ice-covered 
and open water season mean monthly discharge to contextualize the 
modelling results where data was available. During our study period, the 
Bow River supplied 52% of the annual discharge to the South Sas-
katchewan River relative to the Oldman River’s 46%, which is 
remarkably similar to the contributions modelled with D-MIXSIAR for 
both total recoverable metals (TRM) and dissolved metals (DM) for the 
Bow (TRM: 53%, DM 53%) and Oldman Rivers (TRM: 44%, DM: 46%). 
Additionally, during the ice season, the Bow River supplied 67% of the 
discharge compared to 69% of the modelled supply of total material and 
57% of the supply of dissolved material, whereas in the open season, the 
Bow River supplied 52% of the discharge compared to only 24% of the 
modelled total material and 38% of the dissolved material. 

Discharge along with the D-MIXSIAR source contributions modelled 
using total recoverable and dissolved metals for the Bow and Oldman 
Rivers were relatively similar when examining all annual samples and 
the ice-covered samples, whereas they clearly deviated during the open 
water season. In particular, the Oldman River contributed more total 
material than anticipated based on both watershed area (MCR: 1.58) and 
more than 1.53 times more than expected based on discharge during the 
open water season. Much of this increase in total material supply ap-
pears to be originating from the Little Bow River which had a 20% in-
crease in its supply of total material during the open season, delivering 
1.6 times more total material than its catchment area and ~14 times 
more than anticipated based on its discharge (Table 7). 

One hypothesized driver of the source dynamics of total and dis-
solved material is the extent of river regulation and irrigation infra-
structure in this region. The Bow River watershed is the most regulated 
catchment in Alberta with 13 dams, four weirs and eight reservoirs 
(AMEC, 2009). Of note, there are three major impoundments on the 
main stem of the Bow River between nodes BR1 and BR4. The last major 

impoundment on the Bow River, Bassano dam, is upstream of node BR4 
(the most downstream Bow River sampling node), whereas for the 
Oldman River, the last main stem impoundment is upstream of the 
Oldman River headwaters site. There are also several irrigation canals 
diverting flow along the Bow River from sites BR1 through to BR4 
(Fig. 1), which are evident as the overall discharge actually decreases in 
the open water season between site BR2 (357 million m3 per month) and 
site BR4 (297 million m3 per month). 

The decrease in flow and disconnectivity introduced by multiple 
impoundments on the Bow River logically facilitates the directly related 
and relative increase in total material supplied to the outlet SSR2 site by 
the Oldman River. This elevated contribution is likely enhanced by 
agriculture activities supported by water diversions and irrigation in the 
Little Bow River watershed and other similar catchments. In particular, 
there were eight tributary sites with watersheds that had agricultural 
land uses greater than 50% (Table 8). From these sites, the Little Bow 
River was found to be a significant contributor of total material in the 
study area, contributing 20% in the open water season to the 

Table 7 
Mean monthly discharge for the open water and ice-covered seasons from the 
closest available gauging station operated by the Water Survey of Canada with 
an area ratio (AR) maximum between the gauging station and the sampling site 
of 11%. 

Site Name ID Gauge Stations n samples 
(1998–2018) 

Discharge 
(in million 
m3 per 
month) 

ID AR 
(%) 

Open Ice Open Ice 

Bow River @ 
Cochrane 

BR1 05BH005 2 374 71 312 – 

Bow River D/S 
Carseland Dam 

BR2 05BM002 0 611 6 357 – 

Elbow River ER 05BJ001 0 581 575 30 7 
Fish Creek FC – – – – – – 
Highwood River HR 05BL024 0 581 575 86 11 
Nose Creek NC – – – – – – 
Pine Creek PC – – – – – – 
Bow River @ 

Cluny 
BR3 – – – – – – 

East Arrowwood 
Creek 

EAC – – – – – – 

West Arrowwood 
Creek 

WAC 05BM014 4 581 229 1 – 

Bow River @ 
Ronalane 
Bridge 

BR4 05BN012 2 642 635 298 164 

Coal Creek CC – – – – – – 
Crowfoot Creek CFC 05BM008 3 642 133 5 – 
New West Coulee NWC 05BN006 10 642 5 3 – 
Twelve Mile 

Creek 
TMC 05BN002 6 556 2 5 – 

Beaver Creek BRC 05AB013 0 611 126 1 – 
Belly River BYR 05AD934 1 316 56 77 – 
Oldman River @ 

Brocket 
OMR1 05AA024 1 581 575 147 32 

Oldman River U/ 
S Lethbridge 

OMR2 05AD007 1 642 635 249 72 

Pincher Creek PCR – – – – – – 
St. Mary River SMR 05AE006 2 581 575 47 15 
Willow Creek WK 05AB046 0 590 124 18 – 
Little Bow River LBR4 05AC023 0 555 1 8 – 
Oldman River @ 

Taber 
OMR3 05AG006 11 642 635 265 78 

Expanse Coulee EC 05AG003 1 555 1 2 – 
Ross Creek RK – – – – – – 
Seven Persons 

Creek 
SPC 05AH005 8 642 252 3 – 

SSR U/S 
Medicine Hat 

SSR1 – – – – – – 

SSR D/S 
Medicine Hat 

SSR2 05AJ001 7 642 635 570 244 
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Table 8 
Land use and topography of the sampling sites in the SSRB basin including the percent slope greater and less than 10%, land use (i.e. human footprint) and land cover for areas without a human footprint, with short forms 
in the table including agriculture (Ag.), oil and gas (O&G), and linear transportation (L. Trans). 

Site Name ID Slope (%) Land Use (%) Natural Land Cover (%) 

<10 >10 Ag. Forestry Mining O&G L.Trans. Urban Wetland Water Ice Rock Exposed Shurb Grass Forest 

Bow River @ Cochrane BR1 26 74 4 2 0 0 1 1 0 3 1 27 0.1 7 8 45 
Bow River D/S Carseland Dam BR2 43 57 16 2 0 0 3 5 1 2 1 16 0.1 7 10 37 
Elbow River ER 41 59 12 3 0 0 4 6 0 2 0 19 0.1 5 8 42 
Fish Creek FC 66 34 24 3 0 0 6 8 0 1 0 0 0.0 4 8 44 
Highwood River HR 42 58 21 2 0 0 2 3 1 1 0 6 0.1 10 13 41 
Nose Creek NC 94 6 48 0 1 0 10 19 2 1 0 0 0.0 0 17 1 
Pine Creek PC 75 25 46 0 0 0 8 14 3 1 0 0 0.1 2 12 12 
Bow River @ Cluny BR3 50 50 22 2 0 0 3 5 1 2 1 14 0.1 6 11 32 
East Arrowwood Creek EAC 97 3 79 0 0 1 3 1 3 0 0 0 0.0 3 10 0 
West Arrowwood Creek WAC 99 1 82 0 0 1 3 1 2 0 0 0 0.0 1 9 0 
Bow River @ Ronalane Bridge BR4 63 37 28 1 0 1 3 4 2 3 0 10 0.1 4 19 23 
Coal Creek CC 100 0 55 0 0 3 2 1 3 0 0 0 0.0 0 35 0 
Crowfoot Creek CFC 97 3 78 0 0 2 3 1 2 1 0 0 0.2 1 10 1 
New West Coulee NWC 100 0 71 0 0 1 3 1 7 1 0 0 0.0 0 15 1 
Twelve Mile Creek TMC 99 1 26 0 0 7 3 1 7 5 0 0 0.1 0 50 0 
Beaver Creek BRC 34 66 17 5 0 0 1 0 2 0 0 0 0.1 9 42 22 
Belly River BYR 67 33 36 0 0 0 2 1 3 4 0 7 1.1 6 21 20 
Oldman River @ Brocket OMR1 25 75 9 9 0 0 1 1 1 1 0 5 0.2 13 16 43 
Oldman River U/S Lethbridge OMR2 56 44 30 3 0 0 2 1 2 3 0 4 0.6 8 23 23 
Pincher Creek PRC 72 28 45 1 0 0 3 3 3 1 0 2 0.1 5 19 18 
St. Mary River SMR 65 35 35 1 0 0 2 1 2 4 0 4 1.3 7 26 17 
Willow Creek WK 51 49 26 1 0 0 2 1 2 1 0 0 0.1 11 35 20 
Little Bow River LBR 95 5 72 0 0 1 3 1 4 2 0 0 0.2 1 15 0 
Oldman River @ Taber OMR3 68 32 44 2 0 0 2 2 2 3 0 3 0.5 6 20 16 
Expanse Coulee EC 100 0 68 0 0 2 3 1 4 3 0 0 0.0 0 19 0 
Ross Creek RK 86 14 37 0 0 1 2 2 2 4 0 0 0.1 3 43 5 
Seven Persons Creek SPC 94 6 59 0 0 1 2 2 3 2 0 0 0.2 0 31 0 
SSR U/S Medicine Hat SSR1 69 31 39 1 0 1 3 3 2 3 0 6 0.3 5 20 17 
SSR D/S Medicine Hat SSR2 71 29 40 1 0 1 3 2 2 3 0 5 0.3 4 21 16 
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downstream outlet site (SSR2) compared to only 1% in the ice-covered 
season. This high open season contribution from the Little Bow River, 
which is ~14 times more than expected based on its discharge, is further 
supported by high total suspended solids (TSS) measurements at this 
site. During the open season, the Little Bow River had the highest me-
dian TSS concentration of all monitored tributary sources (57 mg/L), 
which is more than double the site with the second highest median open 
season TSS concentrations (Twelve Mile Coulee − 25 mg/L) (Fig. 3). 
Although the Little Bow River catchment is the largest of the prairie/ 
plain source tributaries, the contribution of total material from the Little 
Bow River during the open water season is particularly noteworthy 
when taking into consideration that there is a major reservoir (Travers 
Reservoir – surface area 22.5 km2) located ~50 km upstream of the 
sampling site that is potentially trapping material from ~70% of the 
Little Bow River watershed. It is likely that enhanced hydrological 
connectivity derived from agricultural development is facilitating the 

downstream transport of sediment in the Little Bow River and other 
similar catchments. 

Although the dissolved material source dynamics still varied among 
the ice-covered and open water seasons, variations were less pro-
nounced. This pattern suggests that the changes in flow conditions and 
the extensive river regulation throughout the SSRB may have less of an 
impact on the dissolved material compared to total material. The 
approach taken to fingerprint sources with dissolved metal concentra-
tions likely only incorporates a fraction of the overall solute load. Ions, 
nutrients and other dissolved solids likely constitute the majority of 
material in the dissolved material that was sampled. Although there are 
likely significant challenges to directly tracing dissolved material with 
only dissolved metals, this approach has several analogies with tracing 
the suspended sediments with sediment source fingerprinting tech-
niques. For example, multiple processes occurring in-stream (e.g. sorp-
tion, desorption, settling, scouring, etc.) occur within a ‘biogeochemical 

Fig. 3. Total suspended sediment (TSS) concentrations for the Bow (BR), Oldman (OMR) and South Saskatchewan River (SSR) systems for the ice-covered (blue – 
November to March) and open water (red – April to October) seasons. Of note it is often not possible to sample all sites in the winter. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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black box’ that could affect both the total recoverable and dissolved 
metal concentrations potentially adding uncertainty to model results. 
Nonetheless, the fact that both models behave relatively similarly pro-
vides increased confidence in the results, particularly with regards to the 
potential effect of the major reservoirs trapping potential suspended 
material relative to the more straightforward downstream migration of 
the dissolved fraction. 

4.3. Perspectives and limitations 

This research illustrates a powerful approach to use data generated 
from water quality monitoring programs to investigate sources of dis-
solved and total material across large spatial areas (>60,000 km2). In 
particular, the D-MIXSIAR model of Blake et al. (2018) is naturally 
suited to be used with data generated by water quality monitoring 
programs. Here, the D-MIXSIAR model effectively demonstrated that the 
majority of the dissolved (76%) and total material (68%) sampled at the 
outlet of this large catchment is generated in the montane headwater 
catchments. In addition, it highlighted an interesting seasonal dynamic, 
where some of the prairie/plains catchments dominated by agriculture, 
such as the Little Bow River, were modelled to generate a dispropor-
tionate amount of total material during the open water season. The re-
sults from this research may be used to help optimize Alberta’s water 
quality sampling networks to be more representative of the watersheds 
that may potentially contribute the majority of total material in this 
region, and develop targeted focus studies in watersheds that dispro-
portionately contribute material transiting these river systems. 

As suspended and dissolved material often act as a proxy for hydro- 
geomorphological processes operating over multiple scales, this 
research provides insight into how hydro-geomorphic processes in the 
Rocky Mountain headwaters drive the flux of dissolved and total ma-
terial downstream coupled with the disconnectivity introduced by water 
supply and management infrastructure and the agriculture activities 
supported by this infrastructure. With multiple dams and reservoirs 
creating disconnectivity in the downstream transfer of particulate ma-
terial, future research should analyze metals and fallout radionuclides (i. 
e. 137Cs, 210Pbxs, and 7Be) on sediment cores collected in these lentic 
systems to quantify depositional dynamics and understand how source 
dynamics have changed over time (e.g. Foucher et al., 2015; Le Gall 
et al., 2017; Le Gall et al., 2016). The use of next generation tracers such 
as compound specific stable isotopes (Blake et al., 2012; Mabit et al., 
2018; Reiffarth et al., 2019), or even environmental DNA (Evrard et al., 
2019; Foucher et al., 2020), may provide more insight into the dominant 
processes supplying total material in this region. 

The interdependencies between dissolved and total metal concen-
trations, along with potential relationships with TSS, may influence 
model results. There could be situations where variations in TSS may 
affect estimated source contributions when modelling dissolved and 
total metal concentrations. These affects will likely be most pronounced 
for models that unmix individual target samples or those populated with 
a limited number of source samples. The approach taken in the current 
research was to capitalize on three years of existent monitoring data to 
comprehensively model dissolved and total metal distributions for both 
tributary sources and target material, directly incorporating the varia-
tion of TSS throughout the study period. Additionally, we use a distri-
bution approach to address potential non-conservative behaviour in 
modeled parameters requiring the mean node metal concentrations to 
plot within one standard deviation of source metal concentrations 
(Wilkinson et al., 2013). Nonetheless, there are likely situations where 
non-conservative tracers are still modelled. To help address these non- 
conservative tracers, our approach was to maximize the number of 
tracers included in the models (Smith et al., 2018; Wynants et al., 2020), 
which has been demonstrated to be effective in limiting the affect of 
non-conservative tracers with Bayesian un-mixing models (Sherriff 
et al., 2015). 

Unfortunately, gauging stations were not located near each site and 

therefore we cannot calculate sediment budgets, sediment loads nor a 
comprehensive water balance. In the future, water isotopes (δ16O and 
δ2H) could be utilized to help understand if the water that is driving the 
generation and transportation of dissolved and total material, is derived 
from surface runoff due to snowmelt or rainfall, or importantly 
groundwater sources (Gibson et al., 2005; Stadnyk et al., 2005). The 
development of multi-tracer approaches that capitalize on a variety of 
different isotopic fingerprints could provide significant additional in-
formation on potential anthropogenic drivers of dissolved and total 
material source dynamics across the SSRB (Kruk et al., 2020; Laceby 
et al., 2015b; Tanna et al., 2020). 

One important caveat when using water quality monitoring data in 
source fingerprinting research is that quality control data are necessary 
when analyzing total recoverable and dissolved metals for one-litre grab 
samples of surface water or potentially even automated stage samples. In 
particular, not all metals used in mixing models will have equivalent 
bias or variability. It would be beneficial if future research investigated 
the potential for bias and variability in sediment and soil samples for a 
variety of parameters used in sediment source fingerprinting analyses. 

A second important caveat when utilizing data from water quality 
monitoring programs in a fingerprinting framework is that the moni-
toring design will inherently bias model results. For example, in the 
SSRB, the ice-covered season constitutes five months resulting in 
essentially ~40% of the annual samples being taken in near base flow 
conditions. Additionally, ambient water quality monitoring programs 
are typically not designed to sample different stages of the hydrograph. 
On the one hand, field staff likely schedule their monthly grab sample 
campaigns on factors unrelated to streamflow. On the other hand, for 
basins as large as the SSRB, field staff may at times sample different 
stages of the hydrograph for different sites in any given month. As such, 
the base-flow dominance of the ice-covered and the non-hydrograph 
specific sampling may result in a relatively insignificant portion of the 
dissolved and total material being modelled to generate the source 
apportionment results (Horowitz et al., 2008). Although, the model re-
sults presented above are likely biased towards the dissolved fraction, 
differences between the total recoverable and dissolved fraction model 
results highlight areas that are potentially important sources of partic-
ulate matter such as the Little Bow River. Installing multiparameter 
probes (Clifford et al., 1995; Orwin and Smart, 2005) and time- 
integrated samplers (Phillips et al., 2000) would be required to thor-
oughly characterize particulate matter (e.g. sediment) source dynamics 
across the SSRB. Nonetheless, existent data generated by water quality 
monitoring programs can be effectively modelled with sediment source 
fingerprinting approaches to generate a broad-scale understanding the 
source dynamics of dissolved and total material providing a concrete 
foundation to develop focus studies addressing issues of concern across a 
large region such as the SSRB. 

Future research should investigate the accuracy of the D-MIXSIAR 
model and the potential conservative behaviour of suspended and dis-
solved tracing parameters. The generation of synthetic or hypothetical 
mixtures could help illustrate whether the D-MIXSIAR approach is 
mathematically robust. In particular, it is important to know how un-
certainty in the source contribution in one node may impact other 
modelled source contributions as they are de-convoluted. Additionally, 
it would be valuable to understand how the impact of tracer selection 
affects source contributions modeled by D-MIXSIAR. As the de- 
convolution of source contributions with D-MIXSIAR is a relatively 
novel approach in the sediment source fingerprinting literature, we 
focussed our attention on a new application of the D-MIXSIAR model 
using data generated by water monitoring programs. Nonetheless, it 
would be valuable for future research to assess the strengths and limi-
tations of D-MIXSIAR with a robust sensitivity analysis. 

More research is warranted into the interactions between dissolved 
and total metals as a multitude of processes occur within the in-stream 
‘biogeochemical black box’ (i.e. exchange processes, sorption, desorp-
tion, etc.), which all may affect metal concentrations. In particular, there 
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may be in-stream processes, undocumented sources, and/or other fac-
tors driving the non-conservative behaviour of the modelled dissolved 
and total metals. When modelling source contributions with the sedi-
ment fingerprinting technique, there remains significant uncertainty 
regarding what actually drives the potential conservative behaviour of 
parameters populating mixing models (e.g. Motha et al., 2002). Uncer-
tainty in model results driven by the non-conservative behaviour of 
selected parameters is arguably an under researched theme in the 
sediment fingerprinting literature. In fact, it is debatable as to whether 
we should be more or less concerned regarding non-conservative 
behaviour in the dissolved and total fractions modelled in this current 
research relative to the potential for the non-conservative behaviour in 
suspend sediments, sediment cores, lag deposits and rising stage sam-
ples. Hopefully, our modelling of the dissolved and total metal param-
eters in a sediment fingerprinting framework will help instigate more 
research regarding the potential drivers of non-conservative behaviour 
in all these various media and present unique opportunities to develop 
interdisciplinary research collaborations and approaches engaging with 
surface water and/or groundwater researchers. 

5. Conclusion 

A significant contribution from this research was the novel use of a 
water quality monitoring data to investigate the source dynamics of both 
dissolved and total material in a large-mixed use basin. In particular, a 
comprehensive quality control program facilitated the inclusion of 
water quality monitoring data directly into a sediment source finger-
printing framework. As long as researchers have a strong understanding 
of the quality of their data, particularly for discrete, low volume grab 
samples of surface water and automated stage samplers, there is sig-
nificant potential to use water quality data generated from monitoring 
programs to investigate the source dynamics of dissolved and total 
material. Additionally, sediment source fingerprinting research could 
benefit from incorporating quality control best practices from water 
quality monitoring research and elsewhere to propagate information 
regarding the uncertainty the data generated (i.e. bias and variability) 
through mixing models and into the reporting of results. Overall, we 
believe it is time for researchers fingerprinting sediment sources and 
those tracing the more soluble fraction to exchange best practices and 
embark on collaborative research projects investigating source dy-
namics of the particulate and dissolved loads simultaneously. These 
collaborations could help further our understanding of how anthropo-
genic activities may be affecting fundamental critical zone processes and 
resulting in major changes in the cycling of particulate and dissolved 
material in riverine systems worldwide. 
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