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Preface

Ehrenfeucht and Rozenberg defined regions more than 30 years ago as sets
of nodes of a finite transition system. Every region relates to potential condi-
tions that enable or disable transition occurrences in an associated elementary
net system. Later, similar concepts were used to define regions for Petri nets
from languages as well. Both state-based and language-based approaches aim to
constrain a Petri net by adding places deduced from the set of regions. By now,
many variations have been proposed, e.g., approaches dealing with multiple to-
kens in a place, region definitions for Petri nets with inhibitor arcs, extensions
to partial languages, regions for infinite languages, etc.

Initially, region theory focused on synthesis. We require the input and the
behavior of the resulting Petri net to be equivalent. Recently, region-based re-
search started to focus on process mining as well where the goal is not to create
an equivalent model but to infer new knowledge from the input. Process min-
ing examines observed behavior rather than assuming a complete description
in terms of a transition system or prefix-closed language. For this reason, one
needs to deal with new problems such as noise and incompleteness. Equivalence
notions are replaced by trade-offs between fitness, simplicity, precision, and gen-
eralization. A model with good fitness allows for most of the behavior seen in
the event log. A model that does not generalize is “overfitting”. Overfitting is the
problem that a very specific model is generated whereas it is obvious that the log
only holds example behavior. A model that allows for “too much behavior” lacks
precision. Simplicity is related to Occam’s Razor which states that “one should
not increase, beyond what is necessary, the number of entities required to explain
anything”. Following this principle, we look for the simplest process model that
can explain what was observed in the event log. Process discovery from event
logs is very challenging because of these and many other trade-offs. Clearly, there
are many theoretical process-mining challenges with a high practical relevance
that need to be addressed urgently.

All these challenges and opportunities are the motivation for organizing the
Algorithms & Theories for the Analysis of Event Data (ATAED) workshop. The
workshop first took place in Brussels in 2015 as a succession of the Applications
of Region Theory (ART) workshop series. From there on, the workshop moved to
Toruń (2016), Zaragoza (2017), Bratislava (2018), Aachen (2019), and virtually
in 2020 (due to the COVID-19 pandemic). After the success of these workshops,
it is only natural to bring together researchers working on region-based synthesis
and process mining again.

The ATAED’2022 workshop took place as a physical workshop on June 21st,
2022 and was a satellite event of the 43rd International Conference on Appli-
cation and Theory of Petri Nets and Concurrency (Petri Nets 2022), held in
Bergen, Norway.

Papers related to process mining, region theory and other synthesis tech-
niques were presented at the ATAED’2022, divided over three content-oriented
sessions, i.e., “Stochastics & Statistics”, “Region Theory” and “Strategies for Be-
havioral Analysis”. All the techniques presented have in common that “lower-



level” behavioral descriptions (event logs, partial languages, transition systems,
etc.) are used to create “higher level” process models (e.g., various classes of
Petri nets, BPMN, or UML activity diagrams). In fact, all techniques that aim
at learning or checking concurrent behavior from transition systems, runs, or
event logs were welcomed. The workshop was supported by the IEEE Task Force
on Process Mining (www.tf-pm.org/).

After a careful reviewing process, six papers (out of a total of ten submis-
sions) were accepted for the workshop. We thank the reviewers for providing the
authors with valuable and constructive feedback. We thank the authors and the
presenters for their wonderful contributions.

Enjoy reading the proceedings!

Robert Lorenz, Jan Martijn van der Werf, and Sebastiaan J. van Zelst
June 2022
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Leveraging frequencies in event data
a pledge for stochastic process mining

Sander J.J. Leemans1

1RWTH, Aachen, Germany

Abstract
Process mining aims to obtain insights from event logs. In this extended abstract, we will show
that it is useful to take the frequency perspective (that is, stochastic behaviour) into account,
and will discuss several stochastic process mining techniques.

Keywords
process mining, stochastic process mining, stochastic process discovery, stochastic conformance
checking

1. Process mining
Organisations run on processes: processing an order, onboarding a new hire, getting
travel approval; many work performed in organisations can be considered as processes.
Process mining aims to optimise these processes through event logs: records of executions
of processes, typically obtained from information systems that support the processes.

Figure 1 shows an overview the context and common tasks of process mining. A process
is running in an organisation, and through information systems an event log is recorded.
Using a process discovery technique, a process model can be discovered. Process discovery
techniques need to trade-off several potentially competing model quality aspects, such
as readability and filtering noise. Ideally, a process model would be compared to the
actual process, however as that is assumed to be unknown, this relation can only be
theoretically proven under certain assumptions, or estimated. Rather, in practice a model
should be compared to (a separate test) event log, for instance on the quality dimensions
of simplicity, fitness – the fraction of behaviour in the event log that is in the process
model, and precision – the fraction of behaviour of the model that was observed in the
event log.

A process model expresses a set of potential traces that the model supports, and it may
be difficult to fully interpret insights gained from such a model by itself. Therefore, in
process mining projects, the model is typically enhanced with frequency or performance
information, after which the project may continue with repeated drill-down filters,
hypotheses and verification [1]. In more advanced settings, process models can be
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Figure 1: An overview of common tasks of process mining.

simulated. This provides a baseline for, after applying certain changes, comparing
process redesigns in a what-if analysis. Finally, if process mining is integrated into daily
operations, process models can be used to recommend interventions for traces that are
still in the process [2].

2. Frequencies in process mining: the stochastic perspective
Let us consider two event logs:

L1 = [⟨register, check, accept⟩10000, L2 = [⟨register, check, accept⟩9500,
⟨register, check, reject⟩10000, ⟨register, check, reject⟩9500

⟨register, accept⟩1] ⟨register, accept⟩1001]

These logs have an equivalent control flow: the set of traces in both logs is the same. How-
ever, it is obvious that these logs are not from the same process: in L1, ⟨register, accept⟩
occurs once, while in L2 it occurs more than a thousand times. Any process mining
techniques ignoring the stochastic perspective will consider these logs as to come from
the Thus, these logs are different mostly because of their frequencies; in process models,
we refer to this as the stochastic perspective.

The stochastic perspective is obviously present in a process: behaviour has a certain
likelihood of appearing. Consequently, an event log derived from a process also has a
stochastic perspective: behaviour has a certain likelihood of being recorded in the event
log. Thus, the stochastic perspective is there.

On th right side of Figure 1, we need an idea of how often behaviour occurs in order to
perform analysis: it matters whether behaviour is exceptional or common, and average
performance measures are weighted by definition on the multiplicity of behaviour. For
simulation, simulation software needs to know how likely each path or decision in the



process is. Similarly, recommendation needs to be aware of how likely behaviour is in
order to steer towards more likely favourable outcomes [3]. Thus, the most useful parts
of process mining need the stochastic perspective. This leaves an obvious gap between
the stochastic-having event logs and the stochastic-needing analysis, simulation and
recommendation: process models with a stochastic perspective: stochastic process models.
A stochastic process model not only expresses what behaviour can happen, but also how
likely each trace is.

2.1. Analysis, simulation & recommendation
Without existing stochastic process models, existing analysis, simulation and recom-
mendation techniques, which inherently use the stochastic perspective, must obtain this
stochastic information in an ad-hoc fashion from the event log [3, 4]. Consequently, such
techniques have no idea of the quality of the stochastic perspective they operate on and
risk testing on their training logs, which is not good practice. Without explicit stochastic
information, one cannot write it down, cannot reason about it, and adjust it in process
redesign efforts.

2.2. Precision
Another area where considering stochastic process information is beneficial is in the
evaluation of process models: we already discussed fitness, and most fitness measures
take the stochastic information into account implicitly: the more likely behaviour in
the log, the higher its influence on the fitness measure. Precision measures express the
fraction of behaviour of the model that was seen in the event log:

precision =
|model ∩ log|

|model|

An inherent problem with this intuitive informal definition is that one needs a count of
behaviour in the model. One cannot simply count traces, as models may express infinitely
much behaviour through loops.

We illustrate this for one non-stochastic precision technique [5]. This approach considers
the outgoing edges of the state space of a model: they divide the number of edges taken
by the total number of edges to arrive at a number. However, these techniques do
not consider at all what lies beyond edges that were seen in the model. Thus, unseen
behaviour is only counted proportionally to the number of edges that go into that area,
irrespective of the “size” of the unseen part [5].

For a stochastic process model, this is not a problem as we have a notion of size: in
the state space, it is known exactly how likely each edge is, and that is exactly equal to
the size – the probability mass – of the model that lies behind it. Thus, for stochastic
process models more intuitive precision measures can be defined.



2.3. Reliability of conclusions
If we consider Figure 1 again, inaccuracies or imprecisions can be introduced at many
steps of these common process mining tasks:

• When recording the event log from a process, the quality of the recording may vary,
or extraction may be biased;

• When discovering a process model, a process discovery technique may need to make
well-known trade-offs between potentially competing quality criteria;

• When estimating the quality of a process model with respect to the process,
assumptions and bias may be tested based on a process model [6];

• When comparing a process model with an event log using a conformance checking
technique, such a technique will try to squeeze a trace from the log onto the best-
fitting path through the model [7]; There might be multiple such best-fitting paths,
and there is no guarantee that a best-fitting path is the most likely explanation,
yielding ambiguities and potentially inaccuracies;

• When enhancing a process model for analysis, simulation or recommendation,
behaviour where log and model do not agree on (non-conforming parts) needs to
be handled [4].

All of these steps may be sources of inaccuracies and imprecisions, which may propagate
and aggregate over a process mining project. We conjecture that the use of stochastic
process models makes it easier to quantify and study these inaccuracies and imprecisions,
such that the reliability of conclusions can be quantified [8], and improved.

3. Existing stochastic process mining techniques
Next, we discuss some stochastic process mining techniques that mimic standard non-
stochastic techniques: stochastic process discovery and stochastic conformance checking.
Furthermore, we discuss completely new types of techniques that require considering
stochastic process behaviour.

3.1. Stochastic process discovery
In stochastic process discovery, the aim is to automatically discover a stochastic process
model – such as a stochastic labelled Petri net [14] – from an event log. Most stochastic
process mining techniques take an existing non-stochastic process model and construct
a stochastic process perspective on top if it. For instance, [9] constructs a stochastic
perspective through time: it estimates the delay distribution of process steps, which in
turn determines their likelihood. Another approach constructs a stochastic perspective for
a process model using several estimators, ranging from simple counting to alignments [10].

A technique that does not start from an existing is [11], which starts from the behaviour
in the event log and using reduction rules compacts, summarises and abstracts the
stochastic behaviour until a suitable model remains.



A completely different approach is taken by [12], which constructs declarative con-
straints on the log, such that these constraints hold with a certain likelihood. As such,
these models describe multiple options for stochastic behaviour, rather than a single
stochastic language.

3.2. Stochastic conformance checking
A stochastic conformance checking technique compares with one another an event log
and a stochastic process model, or two stochastic process models, or two event logs.
Stochastic entropy [13] consists of two measures: recall is the entropy of the common
behaviour of log and model – minimal number of bits required to describe the behaviour –
divided by the entropy of the log. Precision is then the entropy of the common behaviour
of the log and model divided by the entropy of the model.

Another stochastic conformance checking technique is the Earth Movers’ Distance [14],
which considers both log and model (or any other combination; loops need to be unfolded)
as distributions over traces, and then applies the Wasserstein distance principle, which
finds the least-cost way to transform one dstribution into the other. That is, both
distributions are piles of earth, and the distance says how much earth – trace probability
mass – need to be transported over what distance – trace difference – in order to transform
one pile into the other. Besides a single conformance number, this measure can also
provide detailed insights when projected on a model.

3.3. Goodies
Next to stochastic extensions of techniques, the concept of stochastic process behaviour
has enabled some new types of analyses and techniques.

Some event logs have hundreds of activities, which make them challenging to analyse.
A way to simplify models is to apply a trace-based filter, thereby focusing the analysis on,
for instance, platinum customers, or orders with a value over a certain amount. Cohort
analysis recommends filters based on the difference between traces that pass the filter and
all the other traces: the filter that is associated with the largest difference in stochastic
behaviour would simplify the model the most [15].

Most process mining insights are associational. However, as in associational insights
there is no difference between cause and effect, for redesign or what-if analyses it is
beneficial to perform causal reasoning. Recent studies have introduced causal reasoning:
to discover causal rules from event logs [16], to discover causal relations between decisions
in a process model [17], and to perform root-cause analysis [18]. All of these techniques
are inherently enabled by the concept of stochastic process behaviour.

Further techniques targeting stochastic behaviour are the detection of differences in
a stochastic process over time (concept drift) [19]; to discover anomalies in event logs
without the use of process models [20]; and the combination of data-aware and stochastic
process models [21].



4. Conclusion
Process mining is an exciting field of research. In this pledge for consideration of
the stochastic perspective of process behaviour, we have shown several challenges of
process mining concepts and techniques that may benefit from having a stochastic
perspective. Several recent stochastic process mining techniques were discussed, both drop-
in replacements for well-known process discovery and conformance checking techniques,
as well as new techniques that leverage the stochastic perspective of behaviour of event
logs to enable new types of analysis.
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Abstract
Reliable remaining time prediction of ongoing business processes is a highly relevant topic. One example
is order delivery, a key competitive factor in e.g. retailing as it is a main driver of customer satisfaction.
For realising timely delivery, an accurate prediction of the remaining time of the delivery process is
crucial. Within the field of process mining, a wide variety of remaining time prediction techniques have
already been proposed. In this work, we extend remaining time prediction based on stochastic Petri nets
with generally distributed transitions with k-nearest neighbors. The k-nearest neighbors algorithm is
performed on simple vectors storing the time passed to complete previous activities. By only taking a
subset of instances, a more representative and stable stochastic Petri Net is obtained, leading to more
accurate time predictions. We discuss the technique and its basic implementation in Python and use
different real world data sets to evaluate the predictive power of our extension. These experiments show
clear advantages in combining both techniques with regard to predictive power.

Keywords
business processes, stochastic Petri nets, process mining, predictive process monitoring

1. Introduction

The application of Process-Aware Information Systems (PAIS)s, such as ERP, BPMS and CRM
systems to support business processes is increasing [1]. These systems record information of
the process execution and possibly the individual events of that process. Drawing insights
and conclusions from these data is already possible using various process mining techniques
categorized into process discovery, conformance checking, and extension [2]. Within the field of
process mining, predictive process monitoring concerns itself with predictive techniques applied
to process data. Predominantly, three types of predictions are considered as useful: next activity,
outcome, and remaining time [3]. In this work we present a novel technique that combines a
data-driven selection of candidate traces with building and simulating stochastic Petri nets, to
predict the remaining time of running process instances. It builds upon the technique described
by Rogge-Solti and Weske in [4, 5]. This technique, referred to as generally distributed transition
stochastic Petri net (GDT_SPN), tailors stochastic Petri nets to incorporate the time passed since
the previous completed event. We show that by combining the flexibility of GDT_SPNs with a
simple, yet effective, candidate selection approach, we can improve upon the accuracy of the
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predictions, as demonstrated experimentally on four real-life datasets. Our approach can be
summarized as follows:

• Use the K-nearest-neighbor algorithm to identify the 𝑘 instances most similar to the
current prefix of this instance. The algorithm uses vectors based on the timestamps of
previous events, while also taking into account the activity types.

• We use these 𝑘 traces to discover a (new) Petri net using the Inductive Miner [6] and by
performing a simulation a stochastic map is obtained which complements the Petri net,
to eventually obtain a GDT_SPN.

• A simulation of this GDT_SPN is further used to estimate the remaining time. This is
done 𝑛 times and the actual prediction is taken to be the average of the 𝑛 simulations.

The remainder of this paper is organised as follows. In Section 2, the most relevant related
work is discussed. Section 3 defines some preliminaries, before Section 4 presents the core of
our technique, i.e., how we predict the end time, and the basic implementation of it in Python.
Section 5 evaluates our technique by comparing the results of different experiments with a
number of benchmarks. We end this paper with Section 6, which summarises the paper, touches
upon the limitations of our technique and mentions possible further enhancements.

2. Related Work

There already exist multiple techniques for predicting the remaining time of an ongoing process
instance. For a comprehensive overview of the most relevant methods, interested readers are
referred to Verenich et al. [7]. For the sake of conciseness this section is limited to an overview
of those techniques that are either relevant for the vast majority of the methods discussed
in [7], or those that are highly related to the framework discussed in this paper. Earlier work
concerning remaining time prediction was proposed by van der Aalst et al. [8]. By applying
finite state machine techniques on event logs, they learn an annotated transition system. Such
a system extends a traditional transition system with predictive information by annotating
measurements of time instances at each state. Two follow-up techniques are presented in [9, 10].
They enhance the technique of [8] by clustering the traces of the log in advance and creating
an annotated transition system for each of these clusters afterwards. At runtime, a new trace
will be assigned to a cluster and the annotated transition system for that cluster will then be
used to predict the remaining time of that trace. A similar multi-stage approach is presented
in this paper. The application of clustering to predictive business process monitoring has also
been studied in other papers, e.g., [11].
Polato et al. [12, 1] present three approaches, all of them using Support Vector Regressors

(SVR), to predict the remaining time starting from a certain state. The first two are based
on regression techniques with or without control-flow information, where the event log that
serves as input is initially transformed in order to be suitable for the 𝜀-SVR algorithm. The
last approach is again mainly based on the idea of annotated transition systems as mentioned
above [8]. It enriches each state with a Naive Bayes classifier and each transition with a Support
Vector Regressor, yielding a Data-Aware Transition System (DATS).

The above mentioned techniques are often based on support vector machines and/or regres-
sion. These are, however, not the only machine learning techniques used to create predictive



models. For instance, regression trees [13], XGBoost [14], or random forests [15] have already
been applied for remaining time prediction. The increasing interest and latest achievements in
deep learning techniques have led to a rise in predictive models using recurrent neural networks,
convolutional neural networks, generative adversarial nets and, more recently, transformer nets,
together with multistage approaches [16, 17, 18, 19, 20, 21, 22, 23, 24]. While these works show
promising results, the presented models are so-called black box, i.e. their results are hard or
even impossible to interpret. This limits their use in applications where the explainable aspect
is key, e.g. root-cause analysis.
We particularly highlight the work of Rogge-Solti and Weske [4, 5], as their approach has

been the main inspiration for the technique presented in this paper. Their GDT_SPN-formalism
based technique differs from other approaches as it takes into account the time passed since
the last observed event, while the other approaches only update predictions upon arrival of
finished events. To achieve this, stochastic Petri nets are equipped with generally distributed
transitions, in which distributions reflect the duration of the corresponding activities in the real
world and can be different from the exponential distribution, i.e., the Markovian property is not
enforced. The latter distributions may then be updated, based on the time passed since the last
observed event, to achieve more accurate predictions. These models are not black box, and can
thus be used to explain multiple aspects influencing the execution time of a certain instance.

3. Preliminaries

In this chapter, we describe the preliminary concepts on which our novel prediction technique
is based. As mentioned above, the goal of this technique is to predict the remaining time of
ongoing cases. This entails that the predictive model can only use information of the current
case up until this point in time, supplemented with information from past cases. The assumption
is made that traces contain timestamps for each occurring event. Those timestamps indicate at
least the end, and in some cases the start, of the activities represented in the trace. Each event
in the event log should contain a trace ID, indicating to which process execution it belongs,
together with an activity type. Our technique is an extension of the work of Rogge-Solti and
Weske, who introduce the use of stochastic Petri nets with generally distributed transitions,
so-called GDT_SPN models, to make predictions [4, 5]. In this technique, a Petri net is enriched
with statistical timing data for each event, which allows end-users to make time predictions.
The definition of both a Petri net and a GDT_SPN as presented by Rogge-Solti and Weske is
given below [5]:

Definition 1 (Petri Net) A Petri net is a tuple PN = (P, Tr, F, M0) where:

• P is the set of places.
• Tr is the set of transitions.
• F ⊆ (P ×Tr ) ∪ (Tr ×P) is the flow relation.
• M0 ∈ 𝑃 → ℕ0 is the initial marking.

The Petri net models used by [5], and hence as well in our technique, are restricted to sound
workflow nets.



Definition 2 (Generally Distributed Transition Stochastic Petri Net) A GDT_SPN is a
seven-tuple: GDT_SPN = (P, Tr, 𝒫 ,𝒲, F, M0, 𝒟), where (P, Tr, F, M0) is the basic underlying
Petri net as specified above. Additionally:

• The set of transitions Tr is split into immediate transitions Tr𝑖 and timed transitions Tr𝑡.
• 𝒫 : Tr → ℕ0 is the assignment of priorities to the different transitions, where ∀𝜏 ∈ Tr𝑖:
𝒫 (𝜏) ≥ 1 and ∀𝜏 ∈ Tr𝑡: 𝒫 (𝜏) = 0.

• 𝒲 : Tr𝑖 → ℝ+ assigns probabilistic weights to the immediate transitions Tr𝑖.
• 𝒟 : Tr𝑡 → D is the assignment of probability distribution functions D to timed transitions
Tr𝑡, reflecting the durations of the corresponding activities.

These probability distribution functions D do not need to be exponentially distributed, but
can also be normal distributions, uniform distributions, etc. and hence do not necessarily have
the Markovian property, i.e., memorylessness. This is an important factor as the absence of
this property is used to update the distribution functions based on the passed time. This is the
key difference with the more known generalised stochastic Petri nets (GSPN), as presented by
Marsan et al. [16]

Rogge-Solti andWeske [4, 5] exploit the idea of memorylessness to update the density function
of the original distribution towards a new density function of a truncated distribution. The
intuition behind this is that when some time has passed, the probability increases that the
activity will be completed in the nearer future as some work might already have been done.
This is in contrast with the above mentioned Markovian property. This is done by using the
elapsed time since the last event. Let F𝛿(𝑡) be the duration distribution function of that activity.
By differentiating F𝛿(𝑡) you can obtain a density function f𝛿(𝑡). We then use 𝑡0, the current time
since enabling the transition, to truncate the distribution as follows [5]:

𝑓𝛿(𝑡 |𝑡 ≥ 𝑡0) =
⎧

⎨
⎩

0 𝑡 < 𝑡0, 𝐹𝛿(𝑡0) < 1
𝑓𝛿(𝑡)

1−𝐹𝛿(𝑡0)
𝑡 ≥ 𝑡0, 𝐹𝛿(𝑡0) < 1

𝑓𝛿𝐷𝑖𝑟𝑎𝑐(𝑡 − 𝑡0) 𝐹𝛿(𝑡0) = 1

The part of the density function above (or in this case more correctly after ) 𝑡0 is rescaled in
such a way that it integrates to 1. For the case where F𝛿(𝑡0) = 1, i.e. when the current time has
progressed further than the density functions supports, we use the Dirac delta function 𝑓𝛿𝐷𝑖𝑟𝑎𝑐 (a
function whose value is 0 everywhere except at one peak, and whose full integral is equal to 1),
with a peak at 𝑡0. This happens when the current event is taking longer to complete than the
events in the training log corresponding to the same activity type. The basic idea is that the
predictions are only based on those cases for whom the corresponding activity would not have
been already completed at the current time 𝑡0. For a more extensive explanation, together with
the effects of this truncation of different types of distributions, interested readers are referred
to [5]. In addition, n is the number of simulations performed by the GDT_SPN, for a given
sample case. The eventual prediction is equal to the mean duration. As will be explained in
Section 4, our proposed prediction technique combines the algorithm as described by [4, 5]
with the basic idea of the kNN algorithm. We have adopted the notion of finding the k most
representative training instances for the to-be-predicted instance. These k representative cases
found during kNN are used to build a predictive GDT_SPN model that can then be used to make
a prediction.



4. Remaining Time Prediction using GDT_SPN_kNN

In this Section, we introduce generally distributed transition stochastic Petri net with kNN-based
candidate selection, referred to as GDT_SPN_kNN. The algorithm depends on the number of
neighbors taken into account, hyperparameter k. In order to make predictions, the algorithm
further requires a log file containing complete traces of the business process (the training
log), the time passed since the start of the case t0, and a partial trace T, containing events with
timestamps until t0. The key extension of GDT_SPN_kNNwith respect to the original GDT_SPN
algorithm, resides in the fact that we avoid using the whole training log as an input to construct
the GDT_SPN model. In contrast, in GDT_SPN_kNN, only the k complete traces that are most
similar to the to-be-predicted partial trace T are taken into account. The main motivation for
selecting this subset is that, under the condition that the right features are selected, only looking
at the k most similar traces will yield a predictive model that embodies less variation in the
generalised density functions, likely leading to a final prediction closer to the real value. If
tuned well, selecting only the k nearest instances thus omits irrelevant cases and outliers and
yields a more representative and stable GDT_SPN model for the given partial trace.

The choice of the hyperparameter k to decide the number of nearest neighbors is not obvious.
When k is taken too small, the event distributions built by the k neighbors may be inaccurate
or have a high variance, which leads to volatile and most of the time worse results. When
k is taken too large, the effect of looking at only the most similar traces may be minimal or
even non-existent, given that the larger k, the more the outcomes will look like those of the
original technique. By taking k too large, the variance may increase as well, as multiple trace
variants are taken into account for building the model, which leads to a more complex Petri
net. These different trace variants may also have a different underlying distribution to estimate
the duration of the activities. Another drawback of setting k too large is that the computation
time increases, as more traces need to be replayed to construct the Petri net and distributions.
Nonetheless, despite the fact that hyperparameter k is key, it is computationally demanding to
tune it. Based on initial explorations, we found that a value of 100 provided to be a good trade-off
value. While in a practical application, it would be certainly beneficial to tune k carefully, in this
paper, mainly due to a lack of time, we work with this fixed value of 100. In further research,
we would like to investigate dedicated strategies to tune k, beyond an exhaustive search.

For applying k nearest neighbors, a proper featurization should be applied. While a conven-
tional feature engineering would typically consider trace and event attributes, we propose a
method that only relies on time information. More specifically, on a per event basis, we take into
account the total time from the start of each trace t0 until the occurrence of that individual event.
This total duration between the start of the trace and the occurrence of that event will be referred
to as the time-to-occurrence of an event in the remainder of this paper. In case of the presence
of loops, the time-to-occurrence is determined based on the last repeated activity observed in a
trace. The rationale behind using time-to-occurrence is that there is a likely correlation between
traces that have a similar time-to-occurrence for events corresponding to the same activity
type and hence, it might thus be valuable to sample them in order to make better remaining
time predictions. This feature engineering is also more generalisable compared to matching
neighbors based on attributes, as not all log files contain event and/or trace attributes. However,
for certain processes, it might well be that taking into account other trace or event features is



beneficial. Our algorithm easily allows to incorporate this, when e.g. expert knowledge suggests
correlations between these features and the remaining time. When we eventually build the
GDT_SPN using the kNN, we still do n different simulations for which we take the average
values as our eventual prediction. In this work, the value of 𝑛 = 500 is chosen, adopted from [5],
as taking this high enough will make the predictions more robust and less volatile.

Algorithm 1: Feature Construction of the times_to_occurrence vector for a trace
Result: Times_to_occurrence vector 𝜓 ∗ for a trace 𝜓
𝜓 = Trace ;
Voc = [all activity types in training data];
Function Trace_times_to_occurrence(𝜓, Voc)

𝜓𝑠𝑡𝑎𝑟 𝑡 = start_time(𝜓);
𝜓 ∗ = [𝜓 ∗

1 , 𝜓 ∗
2 , … , 𝜓 ∗

𝐷] with 𝐷 = |Voc| ;
for 𝑖 ∈ {1, … , 𝐷} do

if Voc𝑖 ∈ activities(𝜓 ) then
event = event corresponding to the last occurring event of activity type Voc𝑖;
endtime = timestamp(event);
𝜓 ∗
𝑖 = endtime - 𝜓𝑠𝑡𝑎𝑟 𝑡;

else
𝜓 ∗
𝑖 = −1;

end
end
return 𝜓 ∗

end
Function activities(𝜓)

Intitialize: 𝛼 = [𝛼1, 𝛼2, … , 𝛼𝐿] with 𝐿 = |𝜓 | ;
for 𝑖 ∈ {1, … , |𝜓 |} do

𝛼𝑖 = Activity type of event 𝜓𝑖
end
return 𝛼

end

The feature construction needed to predict the remaining time of a (partial) test trace T can be
seen in Algorithm 1. We define an activity vocabulary Voc containing all possible activity types
present in the process. Each trace 𝜓 of the training log is formatted as follows. For each activity
present in the activity vocabulary of the event log, the algorithm checks whether an event
occurs in 𝜓 corresponding to that activity type. If it does, then the difference between the time
of this event in 𝜓 and the beginning of this trace is calculated and stored in a formatted vector
𝜓 ∗ corresponding to this trace 𝜓. If it does not, a negative value is assigned. We call this value
the time-to-occurrence of that activity type (𝜓 ∗𝑖 in the algorithm above). For the to-be-predicted
trace T a similar formatted vector is constructed. If a certain activity type is present in the
trace multiple times, as is the case for e.g. loops, we only consider the last occurring event. We
choose to take the last occurrence, because if a certain activity has to be performed multiple
times (in one execution), we assume most often the final completion time of that activity (i.e.
the timestamp of the last occurrence) provides the most useful information. However, this
choice can be easily altered if needed.
The result of this procedure is that for each trace, we obtain a formatted counterpart in the

form of a vector with a fixed length. The length corresponds to the number of activities in the



business process, i.e., all distinct activities observed in the training data. Each entry in this
vector corresponds to a fixed activity. The entry is positive if an event corresponding with the
completion of the activity appears in the trace, and is negative otherwise. For the remainder
of this explanation, we call the formatted version of the to-be-predicted trace 𝑇 ∗. Only the
distance between relevant events is measured. These are the events that appear in the partial
test trace T and consequently have a positive value in 𝑇 ∗. We want traces from the training
log that follow the same path, i.e. having the same executed activities, as the partial trace to
have a higher impact, since these traces are more likely to be similar to the partial trace in
question. Accordingly, a penalty, in the form of a maximal distance vector, is induced on those
that do not follow the same route up to the point of prediction as the partial test trace. This
means that the assigned formatted vector for such a trace will contain a large constant for
each event, i.e., the maximum time-to-occurrence seen in the training set, making this trace
very far off when selecting the nearest neighbors. A min-max normalisation is applied on the
formatted versions of the training traces and on 𝑇 ∗, which gives all events equal influence in
calculating the distance. This makes them suitable for the kNN algorithm. If k is higher than the
number of traces present in the training set that follow the same route, the algorithm randomly
selects the other traces up to k. In a future extension, this might be replaced by taking prefixes
closest to the control-flow of prefix 𝑇, by some metric. We use the Euclidean distance between
the formatted vectors as a distance function in the kNN algorithm. In summary the executed
procedure has the following characteristics:

• Only the distance between relevant events is measured. These are the events that appear
in the partial test trace T and consequently have a positive value in 𝑇 ∗. The formatted
versions of the training traces can have positive values for other events as well, but these
are not taken into consideration when selecting the nearest neighbors, as only the events
present in T are used to calculate the distances.

• We want traces from the training log that share all relevant events with the partial trace
to have a higher impact, since these traces are more likely to be similar to the partial
trace in question. That is why a penalty is induced on those that do not follow the same
route up to the point of prediction as the partial test trace. It should be noted that the rare
situation may occur where the number of kNN is higher than the number of traces present
in the training set that follow the same route. If this situation happens, the algorithm will
randomly pick the other traces up to k. This is another motivation for proper parameter
tuning and to keep the parameter k small enough.

• Because of the normalisation of the vectors, one should remark that all completed events
have an equal influence while calculating the distance. In the case an outlier is present,
the distance between normal traces will be rather small.

• An important consequence of taking the nearest neighbors to build our model is that we
allow the process to be dynamic. The occurrence of a new trace variant in the business
process will be fully taken into account in the model as soon as k training examples of
this trace variant are recorded.

When the nearest neighbors are found, the full training traces corresponding to these neigh-
bors are used to create a Petri net using Inductive Miner [6], which guarantees to produce sound



and fitting models and hence alleviating some of the shortcomings of the 𝛼-miner [25]. As men-
tioned in Section 3, this soundness is a necessity for the Rogge-Solti and Weske algorithm [4, 5].
Additionally, fitting models make it possible to replay the partial trace T, which is necessary for
the algorithm to make a prediction [26]. Given this Petri net and k training traces, simulation
can be performed to obtain a stochastic map to complement the Petri net. A stochastic map
projects every activity on a probability distribution function. In this way, we obtain a GDT_SPN
that can be used for prediction using the original simulation of Rogge-Solti and Weske. Here we
have to set another hyperparameter 𝑛, which is equal to th number of simulations we perform
for the partial trace. The actual prediction is then taken as the average of all these simulations.
For the rest of this work we use 𝑛 equal to 500, which should be high enough to average out
outliers in the simulation.

We have translated the implementation of Rogge-Solti and Weske [4, 5], that was available in
the open-source program ProM, to a standalone implementation in Python compatible with
the pm4py framework [27]. It does not yet fully cover all features that are available in ProM,
but it covers the core algorithm and achieves similar results. Our standalone implementation,
including the addition of the kNN algorithm, can be found on Github1. For the kNN algorithm
we use the implementation in Scikit-Learn [28].

Our approach is agnostic to the specific candidate selection-technique, given that kNN could
be replaced by another technique. For instance, this might be an eager clustering technique
where for each cluster a GDT_SPN model can be constructed during the training phase. Similar
approaches have been explored in [9, 10, 11]. One advantage of taking such an approach is that,
as opposed to the lazy learner kNN, this would yield a better performance in the deployment
phase. However, there are also reasons why using kNN could result in more accurate predictions.
Eager clustering techniques often yield large sized clusters in addition to some smaller clusters,
which takes away the power of combining smart candidate selection with the approach of [4, 5].
Additionally, using kNN allows the process to be dynamic, as changes can be picked up quickly
in the resulting GDT_SPN model, leading to more accurate predictions. Depending on the
importance of stressing either performance or accuracy and flexibility, one can choose an
appropriate kind of learner when adapting our approach.

5. Experimental Evaluation

5.1. Experimental setup

In this section, we will discuss the results of our approach on four real-life datasets. A schematic
overview of the setup is given in Figure 1.
Each real-life dataset is split into a training and a test log. In order to compromise between

a large enough test set and reasonable computing time, all experiments use a test log with
approximately 500 traces, independent of the amount of traces in the training log. The size of
the training log is always significantly larger than the size of the test log, ranging from 2500 to
8000 traces, depending on the size of the original dataset from which we took a subset. The train
and test log split was done out-of-time, in order to avoid possible data leakage. The training

1https://github.com/JarneVDB/BP-Time-Prediction-using-KNN



Figure 1: Evaluation setup

log used to obtain the k neighbors only contains finished traces upon to that point in time. All
following steps are repeated x times, with x corresponding to the number of traces in the test
log. For each trace in the test log, at most 2𝑁 periodic prediction iterations will be performed,
where 𝑁 is a hyperparameter that influences the number of prediction evaluation iterations.
Corresponding to the methodology of [5], the Nth prediction will be performed meanDur after
the start of the case, where meanDur corresponds to the average case duration of the training
log. For all experiments, we set N equal to 20, leading to 40 prediction iterations. Each iteration
thus refers to a point in time after the start of the trace, where we predict the remaining item of
this execution. 2N can thus be regarded as the number of different points in time where we
decide to predict the remaining lead time. Each time we do perform a prediction we provide
the algorithm with the current traces up to 𝑡0 (corresponding to this point in time). We call the
specific point in time we are calculating the remaining times of all (still) ongoing cases, the
prediction iteration. Hence, at most 40 moments of prediction are simulated for each trace, each
corresponding to different stages in the execution of the process instance. When the execution
has finished, at some iteration, no more predictions are done for this particular trace, thus most
of the cases in the test log will only influence part of the prediction iterations (as they will
be finished at some point). It should be noted that when the process has a low variance, the
effective number of prediction iterations for each test trace will be close to 𝑁. When increasing
the iteration, less and less traces are used to evaluate the time prediction, making the the results
more volatile and statistically less significant.

For both the partial test trace T and the entire training log, feature construction is executed
as described in Section 4, yielding the corresponding vector representations with the times-
to-occurrence of all known activity types. In the transformed version of the training log, the
100 nearest neighbors of the formatted test trace 𝑇 ∗ are found. The full traces corresponding
to these neighbors are used to discover a Petri net, which is enriched to a GDT_SPN model



by means of stochastic information resulting from a simulation. Although the algorithm is
flexible in the choice of distribution types, we decided to force a normal distribution for all
non-immediate events. The choice of the most proper distribution is most liekly event log
(process) dependent, but the normal distribution was chosen for every process in this paper due
to time constraints. A further investigation on this topic, might clarify certain (possible) issues.
The results of the predictions are better when forcing normal distributions, given that the

effect of the model vanishes when using memoryless exponential distributions and alternative
distributions such as the uniform distribution are sensitive to outliers. Moreover, we assume
that the normal distribution is the distribution type that is often a good estimation for the
real underlying distribution function. This GDT_SPN model, together with the events of the
running instance T and time t0, serve as input for the prediction algorithm as described in [4, 5].
The number of different simulations performed by each GDT_SPN n, of which the purpose is
explained above, is set to 500 for each experiment as this averages out most of the influence of
outliers. The reported evaluation metrics will be the average error and the root mean square
error (RMSE). These two metrics will allow us to respectively measure the bias and accuracy of
our prediction method. Four different event logs are used in the experimentation. The first one,
as a simple proof-of-concept, uses the BPI Challenge 2019 Event Log. However, instead of using
the full event log, one single control-flow-variant is selected, which can be seen in Figure 2. The
experiments on the other selected event logs, do use multiple different control-flow variants.
These event logs are the Hospital log, depicting the billing process in a hospital, and the BPI
Challenge 2020 event logs, depicting the travel expense declaration process of a university for
domestic (BPI2020d) and international travel (BPI2020i). An overview of summary statistics
regarding the different data sets can be found in Table 1.

Datasets Cases Events Event
classes

Max
case
length

Avg.
case
length

Max
case
time

Avg.
case
time

BPI20192

(1 variant) 7,460 44,760 6 6 6 356.21 94.54
Hospital3 7,847 33,450 7 6 4.26 867.54 156.95
BPI2020d4 7,820 40,281 7 6 5.15 290.89 10.52
BPI2020i 5 2,361 23,726 14 12 10.05 463.04 80.17

Table 1
Descriptive statistics of event logs used for the training of the model. Time-related characteristics are
reported in days.

2https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
3https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
4https://doi.org/10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5
5https://doi.org/10.4121/uuid:2bbf8f6a-fc50-48eb-aa9e-c4ea5ef7e8c5

https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5
https://doi.org/10.4121/uuid:2bbf8f6a-fc50-48eb-aa9e-c4ea5ef7e8c5


Figure 2: Petri net of the selected control-flow variant in the BPI Challenge 2019 dataset, illustrating a
purchase order business process.

5.2. Experiment Results

GDT_SPN_kNN is tested against four benchmarks: the average duration of the full training
set (Average), the average duration of the ten nearest neighbors of the candidate trace’s prefix
(Average 10 kNN), the average duration of the hundred nearest neighbors (Average 100 kNN),
and the algorithm as proposed by Rogge-Solti and Weske (GDT_SPN) [4, 5]. One should note
that for later iterations, only few to-be-predicted traces remain in the test set and that the
results can thus be volatile and less informative towards the very end. The outcome of these
experiments is visualised in Figure 3 and Figure 4, where the former reports the mean errors
and the latter reports the root mean square errors. Note that in these figures our prediction
algorithm is referred to as GDT_SPN_kNN. The x-axis represents the number of prediction
iterations (as explained above), while the y-axis expresses the value of the corresponding metric
in seconds.
In Figure 3 and Figure 4 no systematic under- or overestimation is observed. The bias

compared to the benchmarks becomes smaller as more information about activities is known,
i.e., as the prediction iteration goes up. In the vast majority of the prediction iterations, we
achieve a higher accuracy than all benchmarks. The better predictions can be explained by
two main factors. First, when there exists correlation between the times-to-occurrence of the
different events, the algorithm can exploit this as soon as the first time-to-occurrence becomes
available.

A second factor is that the Petri net for each cluster is more simple since it uses fewer trace
variants, whereas the original GDT_SPN constructs a Petri net out of all training traces. This
has a consequence in the further simulation of the Petri net as it is more likely that the ending is
fixed, while in the more complex Petri net of [4, 5], multiple paths can be followed towards the
final marking that actually belong to other trace variants. These trace variants might contain
events portraying activity types not present in the test trace and might therefore yield worse
predictions. Whenever the different trace variants have some matching activities, this factor
becomes particularly important as the further simulation of the complete Petri net as in [4, 5]
would be too volatile. It should be noted that although the results on the above data sets, on
average, are showing significant improvements with regard to the stated benchmarks, there
are some cases in which our approach does not yield better results. The predictions taken
earlier on, at a lower iteration, show less difference between the tested methods as well. The
benchmarks using simple averaging score not far off from the more elaborate GDT_SPN based
methods. Later in the traces (for a higher iteration), the advantage of incorporating the time
already passed on an activity, and possibly other information concerning the activities yet to
come, result in more accurate predictions.
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Figure 3: Mean errors of real-life experiments.

6. Conclusion and future work

In this paper, we constructed an approach for predicting the remaining time of a business
process based on a combination of nearest neighbor selection and the GDT_SPN model as
presented in [4, 5]. According to the four datasets we used to validate our model, we significantly
outperform our four benchmarks, including the original method [4, 5]. The higher the correlation
between the different times-to-occurrence and the more path variants with similar activities,
the better our algorithm performs compared to the benchmarks. The GDT_SPN model itself is
white box, and can therefore be used for explainability purposes. And while the kNN selection
adds some complexity to the methodology, this does not obstruct explainability, and might even
improve it when the discovered Petri nets are more simple.

Multiple assumptions were made in the experiments presented in this paper, such as putting
the number of neighbors 𝑘 = 100. The impact of these choices could be investigated further.
Next to this, there are still multiple ways to build further on the prediction method presented in
this paper, as both the choice of distance metric, clustering method and even the choice of using
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Figure 4: Root mean square errors of real-life experiments.

a GDT_SPN instead of something something else, is flexible and can easily be interchanged.
One could develop a way to adjust the weighting of the activities by putting more weight on
more relevant activities. This could potentially lead to better neighbor selection and hence
better prediction. One could take into account trace and event variables while selecting nearest
neighbors. A possible way of doing this is by a nested clustering approach, were one first
clusters on either attributes or times-to-occurrence and afterwards reduces the number of
neighbors by clustering on the other one. Furthermore, these extra attributes could be used to
select the most relevant prefixes, when less than 𝑘 prefixes can be found whose control-flow
correspond to that of the case in question. In order to improve scalability, one could create
fixed clusters and assign each test trace to the cluster it is most similar to. With such an eager
clustering approach instead of the kNN algorithm, each cluster would have its own GDT_SPN
model. These models can be built upfront and can directly be used to make a prediction from
the moment the test trace is assigned to the corresponding cluster. While this may increase
performance, the accuracy may drop, especially when the process is dynamic. Moreover more



experimentation into the impact and sensitivity of the results with different parameter values
when setting up the inductive miner and different ways of matching neighbors, could provide
some interesting insights. Moreover, investigating the true duration distributions might be
interesting, as in this work we assumed Normal distributions. If the true distribution is not
normal, learning different kinds of parametric (or even non-parametric) models might increase
the prediction accuracy.
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Taking on Infrequent Behavior in Event Logs using
Hypothesis Tests
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Abstract
When an event log is generated based on the real-life data of an existing process, there is a high proba-
bility that apart from events that happen frequently and therefore should be represented in the process
model, infrequent behavior is featured in the event log that would make a model generated from this log
hardly readable. There are many process discovery algorithms that work with such outliers by filtering
infrequent behavior just before or during the creation of an appropriate process model. Less common
methods make use of statistical tests to detect infrequent behavior in a preprocessing step. This paper
aims to simplify the use of hypothesis tests introduced by Petrak et al. and proposes an approach to
delete infrequent behavior without generating unwanted side effects for the process model. Further-
more, we solve a problem regarding the use of hypothesis tests for a process that contains loops and
compare the results of hypothesis tests to well-known discovery techniques.

Keywords
Process Mining, Process Discovery, Filtering Outliers, Detection of Infrequent Behavior, Hypothesis
Test, Directly Follows Graph, Loop Shortening

1. Introduction

Finding mathematical models for real-life processes is a highly relevant task, since such models
can easily be analyzed in a way that shows exactly where the process has its weaknesses and
where it can be optimized. However, constructing such a process model by hand leads to results
that describe what the process should look like instead of how it actually looks. Therefore, it is
highly desired to create such models automatically and analyze them afterwards, so there is no
bias present in the model. To automatically construct such a model, a record of the behavior of
the process, e.g. in the form of an event log, is needed. However, there are several challenges
that make it hard to construct a model from an event log, especially if such a model has to meet
some criteria like being readable.

One example of such a challenge is the existence of outliers in the event log – data that is
present in the log but is so infrequent that it does not belong to the important parts of a process.
Related to the existence of outliers is the existence of noise – data in the event log that cannot
occur in the process. There are several causes for noise, such as human error ("I meant to log
a different task than I actually did") or technical failure ("A part of the system shut down and
didn’t log a status during a period of time"). While noise is erroneous behavior and should not
be featured in the event log, outliers can very well be part of the actual behavior of the process.
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However, removing edge cases of the event log promises to make the remaining behavior and
therefore a suitable process model more clear and readable. Finding such a reasonable model
despite the existence of outliers in the event log is the task of process discovery. Most such
techniques handle noise by using heuristics or by setting thresholds for the maximum amount of
behavior that may be deleted [1, 2, 3, 4, 5, 6]. Fewer discovery techniques make use of statistical
theory to detect infrequent behavior in event logs [7].

As mentioned before, a discovered model needs to meet some quality measures. For example,
we want a process model that is able to replay most of the behavior present in the event log
(but not everything, since infrequent behavior should be excluded) – this trait is measured by
the fitness of a process model. However, fitness alone is not enough for a good process model,
since we can accomplish perfect fitness by simply allowing every behavior, even behavior
that has nothing to do with the process. Therefore, another quality measure is the precision,
which ensures that the process model cannot replay way more than is present in the event
log. The notion of generalization describes how open the model is for reasonable extensions,
i.e. behavior that was not recorded in the log but can happen in the process. Finally, a process
model should be simple and easy to read, so that a human can understand and analyze it –
this trait is measured by the simplicity of the discovered process model. More information on
quality measures for process models can be found in [8].

In this paper, we continue research on the question of how to discover a "good" process
model for the main behavior of an event log by filtering out infrequent behavior. The idea to
use hypothesis tests to find such outliers in an event log was presented in [7], where one-sided
hypothesis tests are used to decide whether the direct neighborhood of two events should
be classified as main or infrequent behavior. However, the approach of said paper creates
unwanted side effects by deleting single events out of a trace and therefore creating new direct
neighborhood relations that might be simply wrong. We present a new approach without this
problem that is graphical, therefore easy to follow, and gives the user more power over the
result he wishes to get. We first lay the foundation for our approach by defining needed notions
in Section 2 and revisit the general idea to use hypothesis tests to find infrequent behavior
in Section 3 by simplifying the used techniques described in [7] and investigating a running
example that is small and easy to follow. In Section 4 we propose to use a Directly Follows Graph
to represent the directly follows relations between events after we detected infrequent direct
neighbors using hypothesis tests and show how we can delete infrequent behavior without
risking side effects. We address a problem concerning loops that feature many iterations in the
event log in Section 5 and propose a simple solution that is based on the well-studied Chinese
Postman Problem [9]. Section 6 evaluates the results by comparing the accomplished fitness,
precision, generalization and simplicity with those of well-known discovery techniques, namely
the Inductive Miner infrequent [6] and the Directly-Follows Miner [5], with which our approach
shares similar ideas. Section 7 concludes the paper.



2. Basic Definitions

We denote the set of natural numbers {1, 2, 3, . . . } by N and define N0 := N ∪ {0}. For an
arbitrary set 𝑇 we call 𝑚 : 𝑇 → N0 a multiset over 𝑇 . For any 𝑎 ∈ 𝑇 , 𝑚(𝑎) is the number
of occurences of the element 𝑎 in the multiset 𝑚. We write 𝑎 ∈ 𝑚 if this number is greater
than zero, i.e. 𝑎 ∈ 𝑚 :⇔ 𝑚(𝑎) > 0. We also write a finite multiset 𝑚 over 𝑇 with elements
𝑎1, . . . , 𝑎𝑛 in the form [𝑎

𝑚(𝑎1)
1 , . . . , 𝑎

𝑚(𝑎𝑛)
𝑛 ].

Definition 1 (Event, Trace, Event log [10]). Let 𝑇 be a set of activity names. A sequence of
activities 𝜎 = ⟨𝑡1, . . . , 𝑡𝑛⟩ ∈ 𝑇 * is called a trace. An activity 𝑎 ∈ 𝑇 is contained in 𝜎 if it occurs
in 𝜎 at any time, i.e. 𝑎 ∈ 𝜎 :⇔ 𝜎 = ⟨𝑡1, . . . , 𝑡𝑛⟩ ∧ ∃𝑖 ∈ {1, . . . , 𝑛} : 𝑡𝑖 = 𝑎. For an arbitrary
trace 𝜎 = ⟨𝑡1, . . . , 𝑡𝑛⟩ ∈ 𝑇 * with 𝑛 ≥ 1 we define 𝑓𝑖𝑟𝑠𝑡(𝜎) := 𝑡1 and 𝑙𝑎𝑠𝑡(𝜎) := 𝑡𝑛.
An event log 𝐿 : 𝑇 * → N0 over 𝑇 is a multiset of traces. The occurrence of an activitiy 𝑎 ∈ 𝑇 in
𝐿 is called an event.

Regarding a real-life process, we give every event that takes place a name, which can be an
artificial one (like 𝑎, 𝑏, 𝑐, . . . ) or a descriptive one (like 𝑡𝑎𝑘𝑒_𝑜𝑟𝑑𝑒𝑟). A trace then describes a
sequence of events that happened for a special case, e.g. for a customer or a general object.

Definition 2 (Ordering relations [10]). Let 𝐿 be an event log over a set of activities 𝑇 . For
any 𝑎, 𝑏 ∈ 𝑇 we introduce the following binary causal relations on 𝑇 :

• 𝑎 >𝐿 𝑏 if and only if 𝑎 is directly followed by 𝑏 somewhere in a trace 𝜎 in 𝐿, i.e. if a trace
𝜎 = ⟨𝑡1, . . . , 𝑡𝑛⟩ ∈ 𝐿 and a number 𝑖 ∈ {1, . . . , 𝑛− 1} exist, with 𝑡𝑖 = 𝑎 and 𝑡𝑖+1 = 𝑏

• 𝑎→𝐿 𝑏 if and only if 𝑎 >𝐿 𝑏 and 𝑏 ≯𝐿 𝑎

• 𝑎←𝐿 𝑏 if and only if 𝑎 ≯𝐿 𝑏 and 𝑏 >𝐿 𝑎

• 𝑎 #𝐿 𝑏 if and only if 𝑎 ≯𝐿 𝑏 and 𝑏 ≯𝐿 𝑎

• 𝑎 ‖𝐿 𝑏 if and only if 𝑎 >𝐿 𝑏 and 𝑏 >𝐿 𝑎.

From these ordering relations >𝐿 will be of great interest for us, since we want to investigate
the neighborhood of two events and decide whether two events directly following each other
happen often (i.e. main behavior) or rarely (i.e. infrequent behavior). To do so, we need to know
how often two events follow each other, which we can store in the Correlation Matrix:

Definition 3 (Correlation matrix). Let 𝐿 be an event log over 𝑇 with 𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑 ̸∈ 𝑇 . Fur-
ther, take 𝑇𝑆 := 𝑇 ∪ {𝑆𝑡𝑎𝑟𝑡}, 𝑇𝐸 := 𝑇 ∪ {𝐸𝑛𝑑} and 𝜆 := ⟨⟩, the empty trace. We denote the
number of times 𝑎 ∈ 𝑇𝑆 is directly followed by 𝑏 ∈ 𝑇𝐸 in all traces contained in 𝐿 by |(𝑎, 𝑏)|>𝐿 .
The correlation matrix for an event log 𝐿 is defined as the square matrix 𝐶𝐿 : 𝑇𝑆 × 𝑇𝐸 → N0

with

𝐶𝐿
𝑎,𝑏 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|(𝑎, 𝑏)|>𝐿 if 𝑎, 𝑏 ∈ 𝑇∑︀

𝜎∈𝐿∖{𝜆},𝑓𝑖𝑟𝑠𝑡(𝜎)=𝑏 𝐿(𝜎) if 𝑎 = Start, 𝑏 ∈ 𝑇∑︀
𝜎∈𝐿∖{𝜆},𝑙𝑎𝑠𝑡(𝜎)=𝑎 𝐿(𝜎) if 𝑎 ∈ 𝑇 , 𝑏 = End

𝐿(𝜆) if 𝑎 = Start, 𝑏 = End.

Recall that 𝐿 is a multiset and hence, for any 𝜎 ∈ 𝐿, 𝐿(𝜎) denotes the number of times the trace
𝜎 is contained in 𝐿.



Apart from the Correlation Matrix, we can store the information related to which events
are directly followed by one another in the Directly Follows Graph, which is a simple directed
graph containing all events as vertices. Two vertices 𝑢 and 𝑣 are connected by an edge (𝑢, 𝑣) if
somewhere in the event log 𝑢 is directly followed by 𝑣. The weight on the edge shows how
often this happens in the event log.

Definition 4 (Directly Follows Graph). Let 𝐿 be an event log over a set of activities 𝑇 . The
Directly Follows Graph (DFG) for 𝐿 is a weighted directed graph 𝐺 = (𝑉,𝐸,𝑤) with

• 𝑉 := 𝑇 ∪ {𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑},
• 𝐸 := >𝐿 ∪ {(𝑆𝑡𝑎𝑟𝑡, 𝑡) | ∃𝜎 ∈ 𝐿 : 𝑡 = 𝑓𝑖𝑟𝑠𝑡(𝜎)}

∪ {(𝑡, 𝐸𝑛𝑑) | ∃𝜎 ∈ 𝐿 : 𝑡 = 𝑙𝑎𝑠𝑡(𝜎)} and
• 𝑤 : 𝐸 → N0, 𝑤((𝑎, 𝑏)) := 𝐶𝐿

𝑎,𝑏.

An example for a Directly Follows Graph will be given in Figure 1 in Section 4, where
we first need the DFG. A useful property of the DFG is that it can easily be translated to a
language-equivalent Petri-net. Leemans et al. [5] showed that if the DFG is sound, the respective
language-equivalent Petri-net is also sound.

Definition 5 (Soundness of the Directly Follows Graph [5]). Let 𝐺 = (𝑉,𝐸,𝑤) be a DFG
for an event log 𝐿. 𝐺 is sound if every node 𝑣 ∈ 𝑉 is on a path from 𝑆𝑡𝑎𝑟𝑡 to 𝐸𝑛𝑑, i.e.
∀𝑣 ∈ 𝑉 : ∃𝑢1, . . . , 𝑢𝑛 : 𝑢1 = 𝑆𝑡𝑎𝑟𝑡 ∧

𝑢𝑛 = 𝐸𝑛𝑑 ∧
∃𝑗 ∈ {1, . . . 𝑛} : 𝑢𝑗 = 𝑣 ∧
∀𝑖 ∈ {1, . . . , 𝑛− 1} : (𝑢𝑖, 𝑢𝑖+1) ∈ 𝐸

As a running example for this paper we take a set of activities 𝑇 = {𝑎, 𝑏, 𝑐, 𝑑} and an artificial
event log 𝐿 which is defined as

𝐿 = [⟨𝑎, 𝑏, 𝑐, 𝑏⟩100, ⟨𝑎, 𝑐, 𝑏⟩50, ⟨𝑑, 𝑏, 𝑑⟩100, ⟨𝑏, 𝑒⟩1000, ⟨𝑑, 𝑒⟩1000, ⟨𝑓, 𝑔, 𝑓, 𝑔, 𝑓, 𝑔⟩100].

To construct the Correlation Matrix, we simply count how often an event 𝑒1 ∈ 𝑇 is followed
by an event 𝑒2 in the event log and add this quantity to the Correlation Matrix in row 𝑒1 and
column 𝑒2.

𝐸𝑛𝑑 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔
𝑆𝑡𝑎𝑟𝑡 0 150 1000 0 1100 0 100 0
𝑎 0 0 100 50 0 0 0 0
𝑏 150 0 0 100 100 1000 0 0
𝑐 0 0 150 0 0 0 0 0
𝑑 100 0 100 0 0 1000 0 0
𝑒 2000 0 0 0 0 0 0 0
𝑓 0 0 0 0 0 0 0 300
𝑔 100 0 0 0 0 0 200 0

The artificial event 𝑆𝑡𝑎𝑟𝑡 (𝐸𝑛𝑑) is used to record how often an event 𝑒 ∈ 𝑇 is the first (last)
event in a trace of 𝐿. The Correlation Matrix is very handy to calculate values needed for the
execution of hypothesis tests, which are described in the next section.



3. Hypothesis Tests

Rather recently, Petrak et al. [7] showed in their article that hypothesis tests can be used
to determine whether the direct neighborhood of two events that was observed in the event
log should be classified as infrequent behavior, i.e. noise, or not. We shortly revisit this idea,
simplify it slightly, and give some simple examples that show how this method differs from
simply considering the direct neighborhood that is the least frequent in the event log as noise.

Generally speaking, hypothesis tests can be used to check whether a certain hypothesis is
valid with a "sufficiently high" probability. Such a hypothesis makes a statement about a certain
property of the objects in a population. As a simple example, take the set of all researchers in
the field of process mining as the population and the statement "At least 80% of researchers in the
field of process mining like process discovery". Since this is a statement that can’t be proved or
falsified without asking every single researcher in the population (which would be a rather costly
operation) one could easily doubt the correctness of this statement. So next to the already stated
Null-Hypothesis 𝐻0, we formulate an Alternative Hypothesis 𝐻1 stating the contrary: "Less than
80% of researchers in the field of process mining like process discovery". To check which of the two
hypotheses is correct, we take a small sample of the population and check how many researchers
of this population like process discovery. We then perform a left-sided hypothesis test to check
whether this sample implies that the Null-Hypothesis 𝐻0 or the Alternative Hypothesis 𝐻1 is
true.

In general, let 𝑝 ∈ [0, 1] be an unknown probability (in our example the actual percentile of
researchers who love process discovery) and 𝑝0 ∈ [0, 1] a parameter given by the user (in our
example 𝑝0 = 0.8). Using data from a sample of the population, a left-sided hypothesis test
can be used to decide whether 𝑝 ∈ [0, 𝑝0[ or 𝑝 ∈ [𝑝0, 1] is true, i.e. whether the Null Hypothesis
𝐻0: 𝑝 ≥ 𝑝0 or the Alternative Hypothesis 𝐻1: 𝑝 < 𝑝0 is true. Since a hypothesis test comes to
this decision based on a sample of the full data, there is a certain probability that the wrong
decision will be made. The probability that this happens can be estimated, making it possible to
formulate rather reliable statements about which of the two hypotheses holds.

The probability that we chose 𝐻1 when in reality 𝐻0 is true is called the 𝛼-error; the
probability that we chose 𝐻0 when in reality 𝐻1 is true, is called 𝛽-error. In the context of this
paper, we are especially interested in the 𝛼-error, which can be bounded by a given 𝛼 when using
hypothesis tests. We then want to find a value 𝑘 such that for a random variable 𝑋 (which can
be understood as the number of elements in a random sample that fulfill the property defined in
𝐻0) 𝑃 (𝑋 ≤ 𝑘 | 𝐻0 is true) ≤ 𝛼 is true. The values of 𝑘 for which this inequality holds can be
determined by using the density-function of the given probability distribution. However, since
this computation is quite time-consuming, we use an approximation for 𝑘 if said probability
distribution is a binomial distribution and the standard-deviation 𝜎𝑛 :=

√︀
𝑛 · 𝑝0 · (1− 𝑝0)

satisfies 𝜎𝑛 > 3. In this case, we approximate 𝑘 by

𝑘 = ⌈𝑛𝑝0 − 𝜎𝑛 · 𝑢1−𝛼⌉, (1)

where 𝑢1−𝛼 is the (1− 𝛼)-quantile of the standard normal distribution. A more formal descrip-
tion of hypothesis tests can be found in [11].



To detect noise in an event log, Petrak et al. [7] understand the neighborhood relation
between two events as a binomial distribution and use hypothesis tests to check whether the
sighting of two events 𝑒1, 𝑒2 ∈ 𝑇 directly following each other is main behavior (𝐻0 is true)
or infrequent behavior (𝐻1 is true). To achieve this, they define the population as the pairs
(𝑒, 𝑒′) ∈ 𝑇 that can follow each other in the process and where 𝑒 = 𝑒1 or 𝑒′ = 𝑒2 and view the
event log as a sample where some of these direct neighborhoods were randomly drawn. Hence,
the population is defined as:

𝑃(𝑒1,𝑒2) := {(𝑥, 𝑦) ∈ 𝑇𝑆 × 𝑇𝐸 | (𝑥 = 𝑒1 ∨ 𝑦 = 𝑒2) ∧ |(𝑥, 𝑦)|>𝐿 > 0},

which defines the sample size 𝑛 as the number of events that can follow 𝑒1 or can be followed
by 𝑒2 in the process:

𝑛 := |𝑃(𝑒1,𝑒2)| =
∑︁
𝑒∈𝑇𝐸

|(𝑒1, 𝑒)|>𝐿 +
∑︁
𝑒∈𝑇𝑆

|(𝑒, 𝑒2)|>𝐿 − |(𝑒1, 𝑒2)|>𝐿 .

With the user-given constants 1 − 𝑝0 and 𝛼 they then execute a right-sided hypothesis test,
which means, for a pair of events (𝑒1, 𝑒2), they estimate 𝑘 by ⌈𝑛𝑝0 − 𝜎𝑛 · 𝑢1−𝛼⌉ and decide
for 𝐻0 when 𝑛 − |(𝑒1, 𝑒2)|>𝐿 < 𝑘. Since this is equivalent to estimate 𝑘 by the formula in
Equation 1 and deciding for 𝐻0 when |(𝑒1, 𝑒2)|>𝐿 > 𝑘, we can instead perform a left-sided
hypothesis test with the probability 𝑝0 as described at the start of this section.

With this idea we can calculate the critical value 𝑘 for which 𝑃 (𝑋 ≤ 𝑘 | 𝐻0 is true) ≤ 𝛼
holds and check afterwards whether |(𝑒1, 𝑒2)|>𝐿 > 𝑘. If this is true, we accept the Null Hypoth-
esis 𝐻0 and consider 𝑒2 directly following 𝑒1 as main behavior. Otherwise, we reject the Null
Hypothesis, which means we accept the Alternative Hypothesis 𝐻1 and consider 𝑒2 directly
following 𝑒1 as infrequent behavior. However, if 𝜎𝑛 ≤ 3, we need to calculate the critical value
by evaluating the binomial distribution and finding a 𝑘 for which the integral of the density
function from 0 to 𝑘 is less than 1− 𝛼. For a more detailed description of this idea, see [7] and
[11]. Using these ideas leads to the procedure shown in algorithm 1.

For our running example, we set 𝑝0 = 0.05 (so we consider a pair of direct neighbors as
infrequent if this behavior affects less than 5% of the population) and 𝛼 = 0.05 (so we accept
that the probability for classifying main behavior as infrequent is at most 5%). We show the
decision for whether a pair of direct neighbors is main or infrequent behavior on the following
two examples:
Check (𝑎, 𝑐) ∈>𝐿:

𝐸𝑛𝑑 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑆𝑡𝑎𝑟𝑡 0 150 1000 0 1100 0 100 0
𝑎 0 0 100 50 0 0 0 0
𝑏 150 0 0 100 100 1000 0 0
𝑐 0 0 150 0 0 0 0 0
𝑑 100 0 100 0 0 1000 0 0
𝑒 2000 0 0 0 0 0 0 0
𝑓 0 0 0 0 0 0 0 300
𝑔 100 0 0 0 0 0 200 0

𝑛 = 250
𝜎𝑛 ≈ 3.4 > 3
⇒ 𝑘 = 7
|(𝑎, 𝑐)|>𝐿 = 50 > 7 = 𝑘

⇒ (𝑎, 𝑐) ∈>𝐿 is main
behavior.



Algorithm 1 Detecting main and infrequent neighbors
Input: 𝑝0 ∈ [0, 1], 𝛼 ∈ [0, 1], 𝐿 : 𝑇 * → N0

Output: 𝑚𝑎𝑖𝑛, 𝑖𝑛𝑓𝑟𝑒𝑞 ⊆ (𝑇 ∪ {𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑})2

𝑚𝑎𝑖𝑛← ∅
𝑖𝑛𝑓𝑟𝑒𝑞 ← ∅
for (𝑒1, 𝑒2) ∈ 𝑇 ∪ {𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑} do

𝑛←
∑︀

𝑒∈𝑇𝐸
|(𝑒1, 𝑒)|>𝐿 +

∑︀
𝑒∈𝑇𝑆

|(𝑒, 𝑒2)|>𝐿 − |(𝑒1, 𝑒2)|>𝐿

𝜎𝑛 ←
√︀

𝑛 · 𝑝0 · (1− 𝑝0)
if 𝜎𝑛 > 3 then

𝑘 ← ⌈𝑛𝑝0 − 𝜎𝑛 · 𝑢1−𝛼⌉
else

𝑠𝑢𝑚 = 0
while 𝑠𝑢𝑚 < 1− 𝛼 do

𝑠𝑢𝑚← 𝑠𝑢𝑚+
(︀
𝑛
𝑘

)︀
· 𝑝𝑘0 · (1− 𝑝0)

𝑛−𝑘

𝑘 ← 𝑘 + 1
end while

end if
if |(𝑒1, 𝑒2)|>𝐿 > 𝑘 then ◁ 𝑘 > 0, so |(𝑒1, 𝑒2)|>𝐿 > 0.

𝑚𝑎𝑖𝑛← 𝑚𝑎𝑖𝑛 ∪ {(𝑒1, 𝑒2)}
else

𝑖𝑛𝑓𝑟𝑒𝑞 ← 𝑖𝑛𝑓𝑟𝑒𝑞 ∪ {(𝑒1, 𝑒2)}
end if

end for
return 𝑚𝑎𝑖𝑛, 𝑖𝑛𝑓𝑟𝑒𝑞

It is notable that in this example the direct neighborhood of the events 𝑎 and 𝑐 has the lowest
frequency, but the result of the hypothesis test implies that 𝑎 being directly followed by 𝑐 is
main behavior. This is due to the fact that 𝑎 is only followed by 𝑏 or 𝑐 and 𝑐 is only preceded by
𝑎 or 𝑏. The number of sightings where 𝑏 precedes 𝑐 or 𝑏 follows after 𝑎 is rather small, so that
the neighborhood between 𝑎 and 𝑐 can be considered as main behavior.

Check (𝑏, 𝑑) ∈>𝐿:
𝐸𝑛𝑑 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑆𝑡𝑎𝑟𝑡 0 150 1000 0 1100 0 100 0
𝑎 0 0 100 50 0 0 0 0
𝑏 150 0 0 100 100 1000 0 0
𝑐 0 0 150 0 0 0 0 0
𝑑 100 0 100 0 0 1000 0 0
𝑒 2000 0 0 0 0 0 0 0
𝑓 0 0 0 0 0 0 0 300
𝑔 100 0 0 0 0 0 200 0

𝑛 = 2450
𝜎𝑛 ≈ 10.7 > 3
⇒ 𝑘 = 105
|(𝑏, 𝑑)|>𝐿 = 100 ≤ 105 = 𝑘

⇒ (𝑏, 𝑑) ∈>𝐿 is infrequent
behavior.



Executing the hypothesis test for every pair of events leads to the result that the pairs
(𝑏, 𝑑), (𝑏, 𝐸𝑛𝑑), (𝑑, 𝑏), (𝑑,𝐸𝑛𝑑) and (𝑆𝑡𝑎𝑟𝑡, 𝑓), of direct neighbors are infrequent. Petrak et al.
propose to simply delete these direct neighborhood relations from the footprint and use the
footprint that was constructed in this way to mine a process model.

4. Using the results to construct a DFG

We use the approach presented by Petrak et al., but construct a Directly Follows Graph (see
Definition 4) instead of a footprint. Gaining a Petri-net from a DFG is rather simple, and we can
easily check the soundness of a DFG by performing two Depth First Searches, which gives us
the possibility to easily construct a DFG that is sound.

By applying the hypothesis tests to the event log with Algorithm 1 we immediately get a
set 𝑀 ⊆ (𝑇 ∪ {𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑})2 of direct neighbors that are part of the main behavior of the
event log and a set 𝐼 ⊆ (𝑇 ∪ {𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑})2 of direct neighbors that are infrequent behavior.
Obviously, no direct neighborhood can be both main and infrequent behavior, so 𝑀 ∩ 𝐼 = ∅.
Let 𝐺 = (𝑉,𝐸) be the DFG for our event log. Since we only add behavior to 𝑀 or 𝐼 if we have
seen the direct neighborhood at least once in the event log, 𝑀 ⊆ 𝐸 and 𝐼 ⊆ 𝐸 hold. On the
other hand, due to the definition of 𝐸, there is no pair of events in 𝑀 ∪ 𝐼 that is not present in
𝐸, since 𝐸 contains every pair of direct neighbors that was observed in the event log. Therefore,
we can conclude that 𝑀 ∪ 𝐼 = 𝐸. The DFG for our running example is shown in Figure 1, the
black edges are those of the set 𝑀 and the highlighted edges are those of the set 𝐼 .
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Figure 1: The DFG for the event log of our running example𝐿. Blue edges were classified as infrequent
behavior, black edges were classified as main behavior by the hypothesis tests.

When deleting edges from the DFG, we need to be careful, since the deletion of the whole set
𝐼 may lead to a result that is not sound according to Definition 5. This is also the case for the
DFG in Figure 1, since without all the highlighted edges, the events 𝑓 and 𝑔 do not lie on a path



from 𝑆𝑡𝑎𝑟𝑡 to 𝐸𝑛𝑑. A process model constructed directly from such a DFG is not sound, so the
goal is to delete as many infrequent edges as possible without sacrificing the soundness of the
DFG. Deleting every highlighted edge except the edges (𝑆𝑡𝑎𝑟𝑡, 𝑓) and (𝑔,𝐸𝑛𝑑) leads to the
result shown in Figure 2.
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Figure 2: The modified DFG for our running example log 𝐿, where infrequent edges that were not
necessary for the soundness were deleted.

In general, it is not always clear which set 𝐽 ⊆ 𝐼 should be deleted from the DFG, since the
deletion of an edge 𝑒 could lead to a situation where other edges are needed for soundness,
whereas said edges would not be needed if 𝑒 wasn’t deleted. Finding the "best" subset of 𝐼 to
delete from the DFG is a difficult problem, since it is not clear when one subset is better than
another. If we define a function 𝑓 : 𝒫(𝐼)→ N0 which maps every subset of 𝐼 to a numerical
value, where a high value indicates that the subset is a better candidate for deletion than another
candidate with a lower value, we have an optimization problem at hand: Maximize 𝑓(𝐽) where
𝐺′ = (𝑉,𝐸 ∖ 𝐽) is a sound DFG and 𝐽 ⊆ 𝐼 . As a default for 𝑓 we propose 𝑓(𝐽) := |𝐽 |, so that
edge sets that contain more infrequent edges are preferred for deletion. A naive implementation
that solves this problem can be found in Algorithm 2.

Algorithm 2 Deleting infrequent edges from the DFG
Input: 𝐺 = (𝑉,𝐸), 𝑀, 𝐼 ⊆ 𝐸 with 𝑀 ∪ 𝐼 = 𝐸 and 𝑀 ∩ 𝐼 = ∅, 𝑓 : 𝒫(𝐼)→ N0

Output: 𝐺′ = (𝑉,𝐸′)

𝐽𝑜𝑝𝑡 ← ∅
for each 𝐽 ⊆ 𝐼 do

𝐺′′ ← (𝑉,𝐸 ∖ 𝐽)
if 𝑓(𝐽) > 𝑓(𝐽𝑜𝑝𝑡) and 𝐺′′ is sound then

𝐽𝑜𝑝𝑡 ← 𝐽
end if

end for
return (𝑉,𝐸 ∖ 𝐽𝑜𝑝𝑡)

This algorithm needs 𝑂(2|𝐼| · (|𝑉 |+ |𝐸|)) time and is therefore exponential in time, but since



the number of infrequent edges, and therefore the cardinality |𝐼| of 𝐼 , is rather small in the
most cases, we accept this naive implementation, since it allows for an easy exchange of the
user-given function 𝑓 that should be optimized, and is easy to read. In our running example,
this algorithm leads to the sound DFG shown in Figure 2.

5. Handling of Loops

As can be seen in the example of Figure 1, loops in the DFG can have a high impact on the
population for our hypothesis tests. In this example, executing the loop between 𝑓 and 𝑔 some
times artificially increases the number of times when 𝑓 was preceded by another event than
𝑆𝑡𝑎𝑟𝑡 and the number of times when after 𝑔 followed another event than 𝐸𝑛𝑑. Even though the
edges (𝑆𝑡𝑎𝑟𝑡, 𝑓) and (𝑔,𝐸𝑛𝑑) are only encountered in the same trace as the edges (𝑓, 𝑔) and
(𝑔, 𝑓), the repetition of this loop leads to the effect that (𝑆𝑡𝑎𝑟𝑡, 𝑓) and (𝑔,𝐸𝑛𝑑) are classified as
infrequent behavior. In the example of Figure 1 this is not a problem, since these two infrequent
edges are not deleted for the sake of soundness. However, the following simple event log shows
that we are not always in such a lucky situation:

𝐿⟳ = [⟨𝑎, 𝑏, . . . , 𝑏⏟  ⏞  
51 times

, 𝑑⟩10, ⟨𝑎, 𝑏, 𝑐, 𝑑⟩40, ⟨𝑎, 𝑐, 𝑑⟩100]

Executing hypothesis tests on this log leads to the classification of the direct neighborhood
between 𝑏 and 𝑑 as infrequent.

Check (𝑏, 𝑑) ∈>𝐿⟳ :

𝐸𝑛𝑑 𝑎 𝑏 𝑐 𝑑

𝑆𝑡𝑎𝑟𝑡 0 150 0 0 0
𝑎 0 0 50 100 0
𝑏 0 0 500 40 10
𝑐 0 0 0 0 140
𝑑 150 0 0 0 0

𝑛 = 690
𝜎𝑛 ≈ 5.7 > 3
⇒ 𝑘 = 26
|(𝑏, 𝑑)|>𝐿 = 10 ≤ 26 = 𝑘

⇒ (𝑏, 𝑑) ∈>𝐿⟳ is infrequent behavior.

Every other direct neighborhood is classified as main behavior by the hypothesis tests, so we
get the DFG for ℒ that is shown in Figure 3.

𝑠𝑡𝑎𝑟𝑡 𝑎

𝑏

𝑑

𝑐

𝑒𝑛𝑑
150

50 10
150

40
100 150

500

Figure 3: The DFG for the event log 𝐿⟳ with the only infrequent edge highlighted in blue.

Deletion of the highlighted edge would not violate the soundness of the DFG, but doing so
would remove the entire behavior of 𝑎 being followed by one or more 𝑏s, which is followed by a



single 𝑑. This is a problem, since the neighborhood (𝑏, 𝑑) would not be classified as infrequent
behavior if the event log would feature fewer iterations of the 𝑏-loop:

Check (𝑏, 𝑑) ∈>𝐿⟳ :

𝐸𝑛𝑑 𝑎 𝑏 𝑐 𝑑

𝑆𝑡𝑎𝑟𝑡 0 150 0 0 0
𝑎 0 0 50 100 0
𝑏 0 0 10 40 10
𝑐 0 0 0 0 140
𝑑 150 0 0 0 0

𝑛 = 200
𝜎𝑛 ≈ 3.08 > 3
⇒ 𝑘 = 5
|(𝑏, 𝑑)|>𝐿 = 10 > 5 = 𝑘

⇒ (𝑏, 𝑑) ∈>𝐿⟳ is main behavior.

To eliminate this problem, we propose a preprocessing step for the hypothesis tests to reduce
the number of loop iterations if there is a loop present in the process. To do so, we alter the
traces of our event log that contain such a loop for the hypothesis tests. The idea is to construct
a DFG for this single trace and find a path from 𝑆𝑡𝑎𝑟𝑡 to 𝐸𝑛𝑑 that cycles less frequently through
the loop in the trace, if this is possible. To do so, we firstly introduce the notion of a Trace DFG:

Definition 6 (Trace DFG). Let 𝜎 = ⟨𝑡1, . . . , 𝑡𝑛⟩ be a trace. The Trace DFG for 𝜎 is a directed
multigraph 𝐺 = (𝑉,𝐸) with

• 𝑉 := {𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑} ∪ {𝑡1, . . . , 𝑡𝑛} and
• 𝐸 : (𝑇 ∪ {𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑})2 → N0,

𝐸((𝑡1, 𝑡2)) =

{︃
1 if 𝑡1 = 𝑆𝑡𝑎𝑟𝑡 or 𝑡2 = 𝐸𝑛𝑑

|{𝑖 | 𝑡𝑖 = 𝑡1 ∧ 𝑡𝑖+1 = 𝑡2}| otherwise

For a trace 𝜎, the Trace DFG is therefore the DFG of the log [𝜎], where the edge weights of
said DFG are interpreted as multiple edges. The Trace DFG for the trace ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ for example
is a simple path, the Trace DFG for the trace ⟨𝑎, 𝑏, . . . , 𝑏⏟  ⏞  
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, 𝑑⟩ is shown in Figure 4.

𝑠𝑡𝑎𝑟𝑡 𝑎 𝑏 𝑑 𝑒𝑛𝑑
1 1 1 1

50

Figure 4: The Trace DFG for ⟨𝑎, 𝑏, . . . , 𝑏, 𝑑⟩ ∈ ℒ. Edge weights denote the multiplicity of edges, the
artificial dashed edge (which is not part of the Trace DFG) makes the DFG eulerian.

To reduce the number of loop iterations in the Trace DFG we first introduce a new, artificial
edge from 𝐸𝑛𝑑 to 𝑆𝑡𝑎𝑟𝑡, as shown by the dashed dart in Figure 4. The resulting multigraph 𝐺
is eulerian, which means there is a eulerian cycle in 𝐺.



Theorem 1. Let 𝜎 ∈ 𝑇 * be a trace and 𝐺 = (𝑉,𝐸) the Trace DFG of 𝜎. Then, the graph
𝐺′ = (𝑉,𝐸 ∪ {(𝐸𝑛𝑑, 𝑆𝑡𝑎𝑟𝑡)} is eulerian, i.e. contains a eulerian cycle.

Proof. By construction of the Trace DFG, 𝜎 is a path from 𝑆𝑡𝑎𝑟𝑡 to 𝐸𝑛𝑑 that uses every edge
in 𝐺 exactly once. With the artificial edge (𝐸𝑛𝑑, 𝑆𝑡𝑎𝑟𝑡) in 𝐺′ this path becomes a cycle that
uses every edge in 𝐺′ exactly once, i.e. a eulerian cycle.

Since this extended Trace DFG 𝐺′ is eulerian, we can find the shortest cycle through 𝐺′ that
uses every type of edge in 𝐺′ at least once, but no more than the multiplicity of the edges allow.
The problem of finding this shortest cycle is known as the Chinese Postman Problem, which
was introduced by Edmonds et al. [9] and can be solved in 𝑂(|𝑉 |3) time. In the example for 𝐿⟳,
the shortest cycle is (𝑠𝑡𝑎𝑟𝑡, 𝑎, 𝑏, 𝑏, 𝑑, 𝑒𝑛𝑑, 𝑠𝑡𝑎𝑟𝑡), which cycles only once through the loop at
the vertex 𝑏. From this cycle we can easily construct the shortened trace ⟨𝑎, 𝑏, 𝑏, 𝑑⟩ that features
less loop iterations than the original trace and hence does not disrupt the hypothesis tests. We
therefore use this trace instead of the original trace to execute the hypothesis tests and find
that the neighborhood (𝑏, 𝑑) is main behavior. However, when constructing the DFG for 𝐿⟳,
we calculate the multiplicities based on the original (i.e. not shortened) traces.

6. Evaluation

We implemented the algorithm described in this paper in python, version 3.8, using the process
mining library pm4py [12]. The latter provides functions to calculate the fitness, precision,
generalization and simplicity for a given Petri net. To calculate these quality-measures, we used
the following techniques provided by pm4py:

• Fitness: The alignment-based fitness is computed and the percentage of completely fit
traces is returned, as well as the average fitness value of the single traces,

• Precision: The Align-ETConformance is computed and returned, see [13],
• Generalization: Computed as described in [14],
• Simplicity: Computed as described in [15].

To check the Petri net for soundness, the external tool WOFLAN [16] is used. Aside from
pm4py there are other tools, like Entropia [17], that are also interesting for efficient and robust
conformance checking. We plan to investigate these tools in the future and use them to further
evaluate our results.

We chose some real-life event logs that are often used to evaluate new process discovery
techniques, to test and compare our implementation to other mining-techniques. We used

• BPI_Challenge_2012.xes (BPI12), which can be found at [18],
• DomesticDeclarations.xes (DD),
• InternationalDeclarations.xes (ID),
• PermitLog.xes (PL),
• PrepaidTravelCost.xes (PTC),
• RequestForPayment.xes (RFP), all of which can be found at [19].



Table 1
Characteristics of the event logs that were chosen for the evaluation.

BPI12 DD ID PL PTC RFP
Number of unique traces 4 366 99 753 1 478 202 89
Total number of traces 13 087 10 500 6 449 7 065 2 099 6 886

Number of cycles 43 566 121 585 3 842 113 80
Longest Trace Length 175 24 27 90 21 20
Shortest Trace Length 3 1 3 3 1 1
Average Trace Length 20.04 5.37 11.19 12.25 8.69 5.34

Table 1 gives an overview over some important characteristics of these event logs.
First, we compared our approach with the fixed parameters 𝑝0 = 0.05 and 𝛼 = 0.05 with

the following well-known mining approaches that consider outliers in the event log:

• The Inductive Miner infrequent (IMi) [6] creates a process tree out of the DFG for an event
log and creates a Petri net from that process tree. In a preprocessing step, all edges that
are "too infrequent" are removed, by going through all events 𝑒 and deleting all outgoing
edges of 𝑒 with a frequency less than 𝑘 times the frequency of the strongest outgoing
edge of 𝑒, where 𝑘 is a user-chosen parameter between 0 and 1. We chose 0.2 as the
parameter for IMi.

• The Directly Follows Miner (DFM) [5] creates a DFG and scans it for infrequent behavior
by determining the edges with the least frequency. Then all traces that feature the direct
neighborhood modeled with an infrequent edge are removed from a copy of the event
log. This step is repeated until at most a fraction of 𝑡 traces were removed, where 𝑡 is a
user-chosen threshold between 0 and 1. Then, the DFG for the new event log is computed
(or the old DFG is adjusted accordingly) and a Petri net is constructed from the DFG. We
chose 0.1 as the parameter for DFM.

We also compared our approach to the technique presented in [7], where hypothesis tests
are executed, and all infrequent edges are deleted from the DFG without the goal to maintain
soundness. For this approach, we chose 𝑝0 = 0.95 and 𝛼 = 0.05, so the hypothesis tests are
performed exactly like with the new technique.

Since the DFM and our approach result in a DFG instead of a Petri net, we also need to
convert the DFG into a Petri net to compute the quality measures as implemented in pm4py. To
do so we constructed a labeled Petri net 𝑁 = (𝑃, 𝑇, 𝐹, 𝑙) from a DFG 𝐺 = (𝑉,𝐸,𝑤) as follows:

• For each node 𝑣 ∈ 𝑉 a place 𝑣 ∈ 𝑃 is added.
• For each edge (𝑢, 𝑣) ∈ 𝑉 × (𝑉 ∖ {𝐸𝑛𝑑}), a transition 𝑡𝑢,𝑣 ∈ 𝑇 with 𝑙(𝑡𝑢,𝑣) = 𝑣 is added.
• For each edge (𝑢,𝐸𝑛𝑑) ∈ 𝑉 × {𝐸𝑛𝑑}, we also add an edge 𝑡𝑢,𝐸𝑛𝑑 ∈ 𝑇 . However, this is

a silent transition, i.e. 𝑙(𝑡𝑢,𝐸𝑛𝑑) = 𝜏 .
• Finally, for each transition 𝑡𝑢,𝑣 ∈ 𝑇 two arcs are added: (𝑢, 𝑡𝑢,𝑣) ∈ 𝐹 and (𝑡𝑢,𝑣, 𝑣) ∈ 𝐹 .

The results of executing the algorithms and the conformance checking methods on the
resulting Petri nets can be found in Figure 5. For all evaluated methods and logs, Fitness and
Generalization were similarly good. Simplicity also showed consistently good values, except for



a few very good results from the DFM. The percentage of fitting traces was consistently very
good for DFM, while the other techniques achieved variously good values for different logs. The
largest differences between the methods were observed for the Precision and the F-Score. Here,
the results for different logs vary greatly for the DFM, while IMi achieves rather low results.
Both of our new approaches achieve very good values most of the time in these two categories.

It is notable that the approach of [7] (which we call HT) always leads to a better precision
than our new approach, which is not surprising considering that we leave some infrequent
edges in the graph to maintain soundness. For example, if there is a single trace featuring much
infrequent behavior, from which almost everything is deleted from the DFG except for an edge
𝑒, it is possible to use this edge 𝑒 in the resulting Petri Net, even though it does not fit to any
behavior seen in the event log. Due to the higher precision, the F-Score is also better than in
our approach. Further, the simplicity of the net mined by HT is often much higher than in the
new approach, simply because more edges are deleted. However, contrary to our new approach,
HT never led to a sound net for any of the tested event logs.

IMi scores similary to our approach, except for precision and therefore F-Score. This is due to
the fact that IMi classifies edges as infrequent with a rather local argument – the frequency of an
edge is compared to the frequencies of all other outgoing edges, but not to the frequencies in the
full graph. Hence, IMi may often delete single edges from many traces. For example, for the very
simple event log [⟨𝑎, 𝑏, 𝑐⟩𝑙], it can easily be forced to delete the edge (𝑏, 𝑐) by introducing a trace
⟨𝑥, 𝑏, 𝑦⟩

𝑙
𝑘
+1 to the event log. Then, the edge (𝑏, 𝑐) in the DFG becomes infrequent compared

to the other outgoing edge (𝑏, 𝑦) and is therefore deleted. Then, the trace ⟨𝑎, 𝑏, 𝑐⟩ can not be
replayed, which leads to a worse fitness, but the trace ⟨𝑎, 𝑏, 𝑦⟩ can be replayed, even though it
is not present in the event log.

With the user-chosen threshold that affects the behavior of the DFM, we have direct control
over the fitness of the mined model, so this metric features always very good values. However,
since DFM deletes only traces and not single edges, it seems odd that the precision of DFM is
as low as it is for some event logs. This may be associated with the fact that in the DFG there
is exactly one vertex for every event present in the event log, and therefore some traces that
share an event name but have nothing else in common lead to a Petri net where traces can be
replayed that are not part of the event log. However, our approach shares the same problem
concerning the DFG, which makes it unclear why the precision of our approaches have a much
higher precision most of the time. To investigate this behavior further could be an interesting
task for future work.

When comparing the simpler version of our method to the one with loop reduction, it can be
seen that both versions achieve similar results, which can be explained by the structure of the
chosen event logs. It may be interesting to investigate further how the two variants differ on
event logs with many loops.

During the execution of the different algorithms, the times required to construct a model
in each case were measured. These do not include the calculation of the metrics that were
afterwards calculated on it. In Table 2, all execution times are given in seconds. Hence, for all
event logs and algorithms evaluated, a result could be calculated within a few seconds.



Table 2
The execution times in seconds for each investigated approach and each chosen event log.

BPI12 DD ID PL PTC RFP
HTs 00.87397 s 00.09229 s 00.20281 s 02.73899 s 00.07453 s 00.06550 s
HTl 02.69569 s 00.10818 s 00.36392 s 01.00158 s 00.10343 s 00.07757 s
HT 05.493242 s 00.09222 s 00.18860 s 00.34547 s 00.05466 s 00.06677 s
IMi 12.15239 s 01.67628 s 03.43188 s 07.16169 s 01.54955 s 01.86956 s
DFM 01.99909 s 00.14701 s 00.31106 s 00.68258 s 00.05291 s 00.09879 s

7. Conclusion

In this paper, we revisited the use of hypothesis tests of Petrak et al. [7] to detect infrequent
neighborhood relations in a given event log. We proposed a simpler variant for these tests in
the form of a left-sided hypothesis test and changed the output to a Directly Follows Graph
instead of a footprint, in order to be able to selectively remove infrequent behavior without
destroying the soundness of the resulting DFG. Furthermore, we showed theoretically that
high loop iterations in an event log can lead to undesired results of the hypothesis tests and
solved this problem by implementing a preprocessing step that reduces the number of loop
iterations to an amount small enough that the sample size used for the hypothesis tests is not
bloated by the loop. The proposed techniques are very easy to understand and implement. We
compared both the hypothesis tests without loop-shortening and the hypothesis tests with
loop-shortening with the results of the old technique using hypothesis tests [7], the Inductive
Miner infrequent [6] and the Directly Follows Miner [5] and found that our results for fitness,
precision, generalization, simplicity and F-score are rather consistent and high – also compared
to these techniques.

Further research should include the evaluation of logs with high loop iterations to verify that
the shortening of loops is not only reasonable in theory, but also in practice. It is interesting how
often the loop-shortening is relevant in real-life logs and under what circumstances (concerning
the underlying process) the necessity of loop-shortening is probable. Also, there are some
more techniques that outliers before mining a process model [20, 21, 22], some of which also
use statistical ideas. It would be very interesting to see how our approach competes to these
techniques. Since the DFG loses information on concurrency, a preprocessing step to detect
concurrency may be a topic of further research – as well as the investigation on the existence
of event logs that lead to bad results with our approach due to concurrency.
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Figure 5: Comparison of the resulting quality-metrics for the approach described in this paper, using
hypothesis tests and maintaining soundness (HTs), the same approach using loop-reduction (HTl) the
old technique using hypothesis tests (HT), the InductiveMiner infrequent (IMi) and theDirectly Follows
Miner (DFM).



Minimising the Synthesised ENL-systems
Aishah Ahmed1, Marta Pietkiewicz-Koutny1,*

1

School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, United Kingdom

Abstract
Elementary Net Systems with Localities (enl-systems) is a class of Petri nets introduced to model
gals (globally asynchronous locally synchronous) systems, where some of the components might be
considered as logically or physically close and acting synchronously, while others might be considered
as loosely connected or residing at distant locations and communicating with the rest of the system
in an asynchronous way. The specification of the behaviour of a gals system comes very often in the
form of a transition system. The automated synthesis, based on regions, is an approach that allows
to construct Petri net models from their transition system specifications. In our previous papers we
developed algorithms and tool support for the synthesis of enl-systems from step transition systems,
where arcs are labelled by steps (sets) of executed actions. In this paper we focus on the minimisation of
the synthesised nets. In particular, we discuss the properties of minimal, companion, and complementary
regions, and their role in the process of minimisation of enl-systems. Furthermore, we propose a strategy
to eliminate redundant regions. Our theoretical results are backed by experiments (the algorithms for
the minimisation are implemented within the workcraft framework).

Keywords
theory of concurrency, Petri nets, localities, analysis and synthesis, step sequence semantics, theory of
regions, transition systems, WORKCRAFT framework

1. Introduction

A number of computational systems exhibit behaviour that follows the ‘globally asynchronous
locally (maximally) synchronous’ paradigm. Examples can be found in hardware design, where
a vlsi chip may contain multiple clocks responsible for synchronising different subsets of
gates [1], and in biologically inspired membrane systems representing cells within which
biochemical reactions happen in synchronised pulses [2]. To formalise such systems, [3]
introduced Place/Transition-nets with localities (ptl-nets), where each locality defines a distinct
set of events which must be executed synchronously, i.e., in a maximally concurrent manner
(often called local maximal concurrency).

An attractive way of constructing complex computing systems is their automated synthesis
from behavioural specifications given in terms of suitable transition systems. In such a case, the
synthesis procedure is often based on the regions of a transition system, a notion introduced
in [4], and later used to solve the synthesis problem for different classes of Petri nets [5, 6, 7, 8,
9, 10]. A comprehensive survey of the synthesis problem and region theory is presented in [11].
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The vast majority of results in the area of synthesis of Petri nets use the standard transition
systems, where the arcs are labelled with single events/actions, as initial specifications of systems’
behaviour. In this paper, however, we follow the approach, used in [12, 13, 14, 15, 10], employing
step transition systems instead, where arcs are labelled with sets of executed events/actions.

The nets with localities, as already mentioned, were first introduced in [3] using as a base a
class of Place/Transition nets. The idea of actions’ localities was later adapted to Elementary Net
Systems (en-systems) in [12], where a solution to the synthesis problem for enl-systems was
presented. Further advances in the area of synthesising nets with localities from step transition
systems are the subjects of [13, 14, 15]. The last of them, [15], concentrated on finding the rules
for reducing the number of regions that are essential to synthesise enl-systems.

In our previous papers, [16, 17], we developed algorithms and tool support for the synthesis
of enl-systems from step transition systems. In this paper we continue the work started in [15]
and focus on the minimisation of enl-systems. The nets obtained from the synthesis procedure,
called saturated nets, contain many conditions that are redundant from their behaviour point of
view. Removing such conditions is important to get more manageable and readable solutions to
the synthesis problem. The approaches to remove redundant conditions from nets were investi-
gated in the literature and implemented in several tools [18, 19]. Many synthesis procedures
concentrate on returning smaller solutions based on so-called minimal regions [20, 21, 22, 23, 24].
In our approach, minimal regions, as defined for our class of step transition systems, are also
important for building smaller solutions to the synthesis problem. Furthermore, in this pa-
per, following [6], we are interested in the role of minimal regions in defining state-machine
components of the synthesised and minimised enl-systems. Our theoretical results are backed
by experiments (the algorithms for the minimisation are implemented within the workcraft
framework [25, 26]).

To explain the basic idea behind enl-systems, let us consider the net in Figure 1 modelling
two co-located consumers and one producer residing in a remote location. In the initial state,
the net can execute the singleton step {c4}. Another enabled step is {p2} which removes
the token from b1 and puts two tokens, into b0 and b2 . In this new state, there are three
enabled steps, viz. {p1}, {c1 , c4} and {p1 , c1 , c4}. The last one, {p1 , c1 , c4}, corresponds to
what is usually called maximal concurrency as no more activities can be added to it without
violating the constrains imposed by the available resources (represented by tokens). However,
the previously enabled step {c4} which is still resource (or token) enabled is disallowed by the
control mechanism of enl-systems. It rejects a resource enabled step like {c4} since we can
add to it c1 co-located with c4 obtaining a step which is resource enabled. In other words, the
control mechanism employed by enl-systems (and ptl-nets) is that of local maximal concurrency

as indeed postulated by the gals systems execution rule.
The paper is organised as follows. The next section recalls some basic notions concerning

step transition systems as well as enl-systems and their synthesis. Section 3 recalls, from [15],
three reduction rules that can be used to safely eliminate redundant regions/conditions from
the synthesised nets. Section 4 defines minimal regions for the class of enlst-systems and
Section 5 discusses the properties of different kinds of regions and their roles in the process
of minimisation of enl-systems. Section 6 presents a strategy to eliminate redundant regions
from the synthesised nets. The paper ends with a conclusion that includes some directions for
future work. Proofs are omitted due to the page limit.
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Figure 1: An enl-system modelling a system comprising one producer and two co-located consumers

(the shading of boxes indicates the co-location of events they represent).

2. Preliminaries

In this section, we recall suitably adapted notions and results from [12, 14, 15].
Throughout the paper, 𝐸 is a fixed finite nonempty set of events. A step is a nonempty set of

events, and a co-location relation ≏ is any equivalence relation over 𝐸. For every event 𝑒 ∈ 𝐸,
[𝑒]≏ is the equivalence class of ≏ to which 𝑒 belongs (i.e., the locality of 𝑒). For an event 𝑒 and a
step 𝑈 , we denote 𝑒 ≏ 𝑈 whenever there is at least one event 𝑓 ∈ 𝑈 satisfying 𝑒 ≏ 𝑓 .

Definition 1. A step transition system (or st-system) is a triple ts = (𝑄,𝐴, 𝑞0), where 𝑄 is a

nonempty finite set of states, 𝐴 ⊆ 𝑄 × (P(𝐸) ∖ {∅}) × 𝑄 is a set of transitions (arcs), and

𝑞0 ∈ 𝑄 is the initial state. ♢

In diagrams, st-systems are represented as labelled directed graphs, and singleton steps
annotating transitions are denoted without brackets.

To ease the presentation, we assume that each event of 𝐸 occurs in at least one of the steps
labelling the transitions of ts.

The set of all steps labelling transitions outgoing from 𝑞 will be denoted by allSteps𝑞 . For a
transition t = (𝑞, 𝑈, 𝑞′) ∈ 𝐴, we have therefore 𝑈 ∈ allSteps𝑞 , and respectively call 𝑞 and 𝑞′

the source and target of t. Furthermore, t is thick if |𝑈 | ≥ 2.
ts is called thin if, for every event 𝑒 ∈ 𝐸, there is (𝑞, {𝑒}, 𝑞′) ∈ 𝐴.
A sequence of transitions (𝑞1, 𝑈1, 𝑞2)(𝑞2, 𝑈2, 𝑞3) . . . (𝑞𝑘, 𝑈𝑘, 𝑞𝑘+1) is a path from 𝑞1 to 𝑞𝑘+1.

A state 𝑞 is reachable if there is a path from 𝑞0 to 𝑞.
Two st-systems, ts = (𝑄,𝐴, 𝑞0) and ts′ = (𝑄′, 𝐴′, 𝑞′0), are isomorphic if there is a bijection

𝑓 : 𝑄→ 𝑄′ such that 𝑓(𝑞0) = 𝑞′0 and 𝐴′ = {(𝑓(𝑞), 𝑈, 𝑓(𝑞′)) | (𝑞, 𝑈, 𝑞′) ∈ 𝐴}. We denote this
by ts ∼= ts′.

Definition 2. An elementary net system with localities w.r.t. a co-location relation ≏ (or enl≏-

system) is a tuple enl = (𝐵,𝐸, 𝐹,≏, 𝑐0), where𝐵 is a finite set of conditions such that𝐵∩𝐸 = ∅,

𝐹 ⊆ (𝐵 × 𝐸) ∪ (𝐸 × 𝐵) is the flow relation, and 𝑐0 ⊆ 𝐵 is the initial case (in general, any

𝑐 ⊆ 𝐵 is a case).

We will also say that enl is an elementary net system with localities (or enl-system) if mentioning

≏ is not important. ♢

In diagrams, conditions (local states) are represented by circles, events (actions) by boxes, the
flow relation by directed arcs, and each case (global state) by tokens (small black dots) placed



inside those conditions which belong to this case. Moreover, boxes representing co-located
events are shaded in the same way (see Figure 1).

For every event 𝑒, its pre-conditions and post-conditions are given respectively by ∙𝑒 = {𝑏 |
(𝑏, 𝑒) ∈ 𝐹} and 𝑒∙ = {𝑏 | (𝑒, 𝑏) ∈ 𝐹}, and both sets are assumed to be nonempty and disjoint.
The dot-notation extends to sets of events in the usual way, e.g., ∙𝑈 =

⋃︀
{∙𝑒 | 𝑒 ∈ 𝑈}. Two

distinct events, 𝑒 and 𝑓 , are in conflict (or conflicting) if they share a pre-condition, or share a
post-condition. Furthermore, we assume that there are no isolated conditions in enl.

The semantics of enl is based on steps of simultaneously executed events, and can be under-
stood as local maximal concurrency. We first define potential steps of enl as all nonempty sets of
mutually non-conflicting events. A potential step 𝑈 is then resource enabled at a case 𝑐 if ∙𝑈 ⊆ 𝑐
and 𝑈∙∩ 𝑐 = ∅, and control enabled if, in addition, there is no event 𝑒 /∈ 𝑈 such that 𝑒 ≏ 𝑈 and
the step 𝑈 ∪ {𝑒} is resource enabled at 𝑐. We denote these respectively by 𝑈 ∈ resenabled(𝑐)
and 𝑈 ∈ enabled(𝑐). A control enabled step 𝑈 ∈ enabled(𝑐) can be executed leading from 𝑐 to
the case 𝑐′ = (𝑐 ∖ ∙𝑈) ∪ 𝑈∙. We denote this by 𝑐[𝑈⟩𝑐′.

The set of reachable cases of enl, denoted reachenl, is the least set of cases containing 𝑐0 such
that if 𝑐 ∈ reachenl and 𝑐[𝑈⟩𝑐′, then 𝑐′ ∈ reachenl.

The st-system generated by enl is tsenl = (reachenl, 𝐴, 𝑐0), where 𝐴 = {(𝑐, 𝑈, 𝑐′) | 𝑐 ∈
reachenl ∧ 𝑐[𝑈⟩𝑐′}.
enl is a net realisation of an st-system ts if tsenl ∼= ts.
To ease the presentation, we assume that enl does not have dead events, i.e., for each event 𝑒,

there are 𝑐 ∈ reachenl and 𝑈 ∈ enabled(𝑐) such that 𝑒 ∈ 𝑈 .

Definition 3. Let enl = (𝐵,𝐸, 𝐹,≏, 𝑐0) be an enl≏-system. We say that enl is a state machine
enl≏-system iff:

1. ∀𝑒 ∈ 𝐸 : |∙𝑒| = 1 = |𝑒∙|;

2. |𝑐0| = 1. ♢

Definition 4. Let enl = (𝐵,𝐸, 𝐹,≏, 𝑐0) be an enl≏-system. A subsystem of enl is an enl≏-

system enl′ = (𝐵′, 𝐸′, 𝐹 ′,≏′, 𝑐′0) such that the following conditions hold:

1. 𝐵′ ⊆ 𝐵 and 𝐸′ ⊆ 𝐸;

2. ∀𝑏 ∈ 𝐵′ ∀𝑒 ∈ 𝐸 : ((𝑏, 𝑒) ∈ 𝐹 ∨ (𝑒, 𝑏) ∈ 𝐹 ) =⇒ 𝑒 ∈ 𝐸′
;

3. 𝐹 ′ = 𝐹 ∩ ((𝐵′ × 𝐸′) ∪ (𝐸′ ×𝐵′)); ≏′ = ≏ ∩ 𝐸′ × 𝐸′
and 𝑐′0 = 𝑐0 ∩𝐵′

.

A subsystem enl′ is connected if the graph (𝐵′ ∪ 𝐸′, 𝐹 ′) is connected. Also, point 2 above says

that the subsystem enl′ is generated by the subset of conditions 𝐵′
of the enl≏-system enl. ♢

Definition 5. Let enl = (𝐵,𝐸, 𝐹,≏, 𝑐0) be an enl≏-system. We say that enl is a state ma-
chine decomposable enl≏-system iff there exists a set of connected subsystems of enl, enl𝑖 =
(𝐵𝑖, 𝐸𝑖, 𝐹𝑖,≏𝑖, 𝑐

𝑖
0) (𝑖 = 1, . . . ,𝑚), satisfying the following:

1. ∀𝑖 ∈ {1, . . . ,𝑚} : enl𝑖 is a state machine enl≏𝑖-system;



2. 𝐵 =
⋃︀

𝑖𝐵𝑖, 𝐸 =
⋃︀

𝑖𝐸𝑖 and 𝐹 =
⋃︀

𝑖 𝐹𝑖.

The enl𝑖 are called state machine (or sequential) components of enl. ♢

The general synthesis problem we consider can be formulated thus:

Problem 1. Given an st-system ts and a co-location relation ≏, find an effective way of checking

whether there is an enl≏-system which is a net realisation of ts. If the answer is positive construct

such an enl≏-system. ♢

The above problem can be approached by considering a link between the nodes (global states)
of an st-system with the conditions (local states) of a hypothetical enl-system realising it,
captured by the notion of regions with explicit input and output events.

Definition 6. A region (with explicit input and output events) of an st-system ts = (𝑄,𝐴, 𝑞0)
is a triple r = (in, 𝑟, out) ∈ P(𝐸) × P(𝑄) × P(𝐸), such that in = 𝑜𝑢𝑡 = ∅ implies 𝑟 = 𝑄 or

𝑟 = ∅ and, for every transition (𝑞, 𝑈, 𝑞′) of ts, the following hold:

r1 If 𝑞 ∈ 𝑟 and 𝑞′ /∈ 𝑟 then |𝑈 ∩ out| = 1.

r2 If 𝑞 /∈ 𝑟 and 𝑞′ ∈ 𝑟 then |𝑈 ∩ in| = 1.

r3 If 𝑈 ∩ out ̸= ∅ then 𝑞 ∈ 𝑟 and 𝑞′ /∈ 𝑟.

r4 If 𝑈 ∩ in ̸= ∅ then 𝑞 /∈ 𝑟 and 𝑞′ ∈ 𝑟. ♢

In a region r = (in, 𝑟, out), the set in comprises events responsible for entering the set of
states 𝑟, and out comprises events responsible for leaving 𝑟. Note that r̄ = (𝑜𝑢𝑡,𝑄 ∖ 𝑟, 𝑖𝑛) is
also a region (the complement of region r).

In general, a region r cannot be identified only by its set of states 𝑟. However, if ts is thin,
then its different regions are based on different sets of states.

There are exactly two trivial regions satisfying 𝑟 = ∅ or 𝑟 = 𝑄, viz. (∅,∅,∅) and (∅, 𝑄,∅).
The set of all non-trivial regions of ts will be denoted by Rts and, for every state 𝑞, R𝑞 =

{r ∈ Rts | 𝑞 ∈ 𝑟} is the set of all non-trivial regions (in, 𝑟, out) containing 𝑞.
The sets of pre-regions and post-regions of an event 𝑒, ∘𝑒 and 𝑒∘, comprise all the non-trivial

regions (in, 𝑟, out) respectively satisfying 𝑒 ∈ out and 𝑒 ∈ in, viz. ∘𝑒 = {r ∈ Rts | 𝑒 ∈ out}
and 𝑒∘ = {r ∈ Rts | 𝑒 ∈ in}. This extends in the usual way to sets of events, for example,
∘𝑈 =

⋃︀
{ ∘𝑒 | 𝑒 ∈ 𝑈}. Also, we will write 𝑒 ∈ r∘ ⇐⇒ r ∈ ∘𝑒 and 𝑒 ∈ ∘r ⇐⇒ r ∈ 𝑒∘.

The set of potential steps of ts comprises all nonempty sets 𝑈 of events such that ∘𝑒 ∩ ∘𝑓 =
𝑒∘ ∩ 𝑓∘ = ∅, for each pair of distinct events 𝑒, 𝑓 ∈ 𝑈 . A potential step 𝑈 is then region enabled

at 𝑞 ∈ 𝑄 if ∘𝑈 ⊆ R𝑞 and 𝑈∘ ∩R𝑞 = ∅. We denote this by 𝑈 ∈ regenabled(𝑞).

Definition 7. An st-system ts is an enl step transition system w.r.t. a co-location relation ≏ (or

enlst≏-system) if the following hold:

a1 Each state is reachable.



a2 For every event 𝑒, both
∘𝑒 and 𝑒∘ are nonempty.

a3 For all distinct states 𝑞 and 𝑞′, R𝑞 ̸= R𝑞′ .

a4 For every state 𝑞 and step 𝑈 , 𝑈 ∈ allSteps𝑞 iff 𝑈 ∈ regenabled(𝑞) and there is no event

𝑒 ̸∈ 𝑈 such that 𝑒 ≏ 𝑈 and 𝑈 ∪ {𝑒} ∈ regenabled(𝑞).

We also say that ts is an enlst-system (if mentioning ≏ is not important). ♢

One can show that the st-system generated by an enl≏-system is an enlst≏-system. The
converse is also true, and a suitable translation is based on the regions of st-systems.

Definition 8. Let ts be an enlst≏-system. The tuple associated with ts is defined by enl≏ts =
(Rts, 𝐸, 𝐹ts,≏,R𝑞0), where 𝑞0 is the initial state of ts and

𝐹ts = {(r, 𝑒) ∈ Rts × 𝐸 | r ∈ ∘𝑒} ∪ {(𝑒, r) ∈ 𝐸 ×Rts | r ∈ 𝑒∘}.

♢

The above construction always produces an enl≏-system which generates an st-system
isomorphic to ts (see [12]).

Theorem 1. Let ts be an enlst≏-system. Then enl≏ts is an enl≏-system such that ts ∼= tsenl≏ts
.

Moreover, the unique isomorphism 𝜓 between ts and tsenl≏ts
is given by 𝜓(𝑞) = R𝑞 , for every state

𝑞 of ts.

3. Optimising solutions to the synthesis problem

In this section we recall some notions and results from [15].
The enl-system enl≏ts obtained from the synthesis of the enlst-system ts may contain many

conditions which are redundant from the point of view of its behaviour, 𝑖.𝑒., deletion of such
conditions (and their adjacent arcs) would lead to a net that generates the st-system, which is
still isomorphic to ts.

Suppose that we have reduced enl≏ts in this way obtaining a sub-enl-system enl. We would
like to reduce enl further by deleting a condition/region r (and its adjacent arcs) without, as
before, violating the property of it being an enl-system 1 and making sure that the resultant
net still generates the st-system isomorphic to ts. We denote the enl-system after such one
step reduction: enlr.

In [15], it was proved that complement regions are very often redundant:

Reduction Rule 1. If r = (𝑖𝑛, 𝑟, 𝑜𝑢𝑡) and r̄ = (𝑜𝑢𝑡,𝑄 ∖ 𝑟, 𝑖𝑛) are two conditions in enl and

deleting r̄ leads to an enl-system, then the st-systems generated by enl and enlr̄ are isomorphic

and r̄ is redundant. ♢

1Every enl-system enl = (𝐵,𝐸, 𝐹,≏, 𝑐0) should satisfy: ∀𝑒 ∈ 𝐸 (∙𝑒 ̸= ∅ ∧ 𝑒∙ ̸= ∅ ∧ ∙𝑒 ∩ 𝑒∙ = ∅).



Another source of redundancy among conditions/regions in the synthesised net are “big" re-
gions that are compositions of smaller regions. To define a composition operator, [15] introduces
the concept of compatible regions.

Definition 9. A region (𝑖𝑛, 𝑟, 𝑜𝑢𝑡) is compatible with another region (𝑖𝑛′, 𝑟′, 𝑜𝑢𝑡′) iff the follow-

ing three conditions hold:

1. 𝑟 ∩ 𝑟′ = ∅.

2. For every 𝑒 ∈ 𝑜𝑢𝑡 exactly one of the following holds:

• For all the transitions (𝑞, 𝑈, 𝑞′) such that 𝑒 ∈ 𝑈 we have 𝑞′ ∈ 𝑟′.

• For all the transitions (𝑞, 𝑈, 𝑞′) such that 𝑒 ∈ 𝑈 we have 𝑞′ /∈ 𝑟′.

3. For every 𝑒 ∈ 𝑖𝑛 exactly one of the following holds:

• For all the transitions (𝑞, 𝑈, 𝑞′) such that 𝑒 ∈ 𝑈 we have 𝑞 ∈ 𝑟′.

• For all the transitions (𝑞, 𝑈, 𝑞′) such that 𝑒 ∈ 𝑈 we have 𝑞 /∈ 𝑟′.

If region r is compatible with region r′ and region r′ is compatible with r we say that the two

regions are compatible. ♢

In [15], it was proved that the composition of two compatible regions (defined below) is also a
region. If r = (𝑖𝑛, 𝑟, 𝑜𝑢𝑡) and r′ = (𝑖𝑛′, 𝑟′, 𝑜𝑢𝑡′) are two non-trivial compatible regions of an
enlst-system ts, then the following is a (possibly trivial) region of ts:

r⊕ r′
df
= (𝑖𝑛 ∪ 𝑖𝑛′ ∖𝐻, 𝑟 ∪ 𝑟′, 𝑜𝑢𝑡 ∪ 𝑜𝑢𝑡′ ∖𝐻),

where 𝐻 is a set of events that belong only to steps labelling transitions hidden/buried in 𝑟 ∪ 𝑟′
(with its source in 𝑟 and its target in 𝑟′ or the other way round). The region r⊕ r′ is called the
composition of r and r′. In [15], the following reduction rule was proved:

Reduction Rule 2. If r = (𝑖𝑛, 𝑟, 𝑜𝑢𝑡), r′ = (𝑖𝑛′, 𝑟′, 𝑜𝑢𝑡′) and r⊕ r′ are three conditions/regions

in enl, then the st-systems generated by enl and enlr⊕r′ are isomorphic and r⊕ r′ is redundant. ♢

The third reduction rule considers regions of ts = (𝑄,𝐴, 𝑞0) based on the same set of states.
We will call such regions companion regions. For a given set of states 𝑟, they will belong to the
set denoted by R𝑟

ts.
In [15], it was proved that if the events contained in the set 𝑖𝑛 (𝑜𝑢𝑡) of a region r = (𝑖𝑛, 𝑟, 𝑜𝑢𝑡)

can be found in the 𝑖𝑛 (𝑜𝑢𝑡) sets of other companion regions then r is redundant and can be
deleted. Formally:

Reduction Rule 3. Let r = (𝑖𝑛, 𝑟, 𝑜𝑢𝑡) be a condition/region of enl such that:

𝑖𝑛 ⊆
⋃︁

{𝑖𝑛′ | (𝑖𝑛′, 𝑟, 𝑜𝑢𝑡′) is condition in enl different from r} (1)

𝑜𝑢𝑡 ⊆
⋃︁

{𝑜𝑢𝑡′ | (𝑖𝑛′, 𝑟, 𝑜𝑢𝑡′) is condition in enl different from r} (2)

Then the st-systems generated by enl and enlr are isomorphic and r is redundant. ♢
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Figure 2: An enlst-system with three co-located events 𝑒, 𝑒1 and 𝑒2 (a); the enl-system resulting from

its synthesis (b); and the reduced enl-system solution for (a) that uses only minimal regions (c).

4. Minimal regions

For many classes of Petri nets, for which the synthesis problem was investigated, a region was
defined as a subset of states of a transition system. For such classes of nets and their transition
systems a minimal region was defined 𝑤.𝑟.𝑡. the set inclusion ⊂ [6, 7, 23, 27]. Also, composition
of regions (as sets) was defined by using the set union operator (∪), which is both commutative
and associative.

The regions of enlst-systems are triples of the form: r = (𝑖𝑛, 𝑟, 𝑜𝑢𝑡). The minimal regions
in this class of (step) transition systems are defined 𝑤.𝑟.𝑡. the strict pre-order ≺ on the set of
regions, that utilises the idea of regions’ composition by means of ⊕:

r ≺ r′ iff there is a non-trivial region r′′ such that r⊕ r′′ = r′ [15].

Formally, we have the following definition of a minimal region:

Definition 10. A region r ∈ Rts is minimal iff ∀ ̂︀r ∈ Rts : ̂︀r ̸≺ r. ♢

The set of minimal regions of ts w.r.t. ≺ will be denoted by R𝑚𝑖𝑛
ts .

We observe that if a non-trivial region is non-minimal then it can be represented as a
composition of two other non-trivial regions. This follows from the definition of the relation ≺
and the fact that the composition operator⊕ is commutative, which, in turn, follows immediately
from the definition of ⊕.

As an example, consider the enlst-system in Figure 2(a). Its non-trivial regions are:

r1 = (∅, {𝑞0}, {𝑒}) r3 = r̄1 = ({𝑒}, {𝑞1, 𝑞2},∅)
r2 = (∅, {𝑞0}, {𝑒1, 𝑒2}) r4 = r̄2 = ({𝑒1, 𝑒2}, {𝑞1, 𝑞2},∅)
r5 = ({𝑒1}, {𝑞1},∅) r7 = r̄5 = (∅, {𝑞0, 𝑞2}, {𝑒1})
r6 = ({𝑒2}, {𝑞2},∅) r8 = r̄6 = (∅, {𝑞0, 𝑞1}, {𝑒2})

The minimal regions of the enlst-system in Figure 2(a) are: r1, r2, r3, r5 and r6. The remaining
regions are non-minimal (their set is denoted by R⊕

ts): r4 = r5 ⊕ r6 (𝐻 = ∅); r7 = r2 ⊕ r6
(𝐻 = {𝑒2}); r8 = r2 ⊕ r5 (𝐻 = {𝑒1}).

The reduced enl-system solution for the enlst-system in Figure 2(a) that uses only regions
minimal 𝑤.𝑟.𝑡. ≺ is shown in Figure 2(c).



Note that the operator ⊕ is not associative as can be shown by using, again, the example of
the enlst-system in Figure 2(a). We can observe that: (r5 ⊕ r6)⊕ r1 ̸= r5 ⊕ (r6 ⊕ r1). While r5
and r6 are compatible and their composition produces r4 (r4 = r5 ⊕ r6), regions r6 and r1 are
not compatible, because r1 is not compatible with r6, and they cannot be composed.

Also notice that there might be two companion regions (regions based on the same set of
states) such that one of them is a minimal region and the second one is a non-minimal region.
See, for example, regions r3 = ({𝑒}, {𝑞1, 𝑞2},∅) and r4 = ({𝑒1, 𝑒2}, {𝑞1, 𝑞2},∅) of the enlst-
system in Figure 2(a), where r3 is minimal and r4 is non-minimal. So, the minimality of a region
cannot be decided by looking at its set of states only.

The following result, about the representation of non-trivial regions, is similar to the results
proved for other classes of nets (and their transition systems) that can be found in the literature:
Elementary Net Systems [6], pure and bounded Place/Transition Nets [7], Safe Nets [23] or
Elementary Net Systems with Inhibitor Arcs (ENI-systems) [27].

Theorem 2. Every r = (𝑖𝑛, 𝑟, 𝑜𝑢𝑡) ∈ Rts can be represented as a composition of minimal

regions, where for each pair of different minimal regions in this representation, ̂︀r = ( ̂︀𝑖𝑛, ̂︀𝑟, ̂︁𝑜𝑢𝑡)
and ̃︀r = ( ̃︀𝑖𝑛, ̃︀𝑟, ̃︁𝑜𝑢𝑡), ̂︀𝑟 ∩ ̃︀𝑟 = ∅.

Theorem 2 and Reduction Rule 2 imply that one can construct a solution to the synthesis
problem based on minimal regions 𝑤.𝑟.𝑡. the strict pre-order ≺. The consequence of the fact
that the operator ⊕ is not associative, is that we cannot drop the brackets, when we represent a
non-trivial region of an enlst-system as a composition of its minimal regions (for example,
r = r1 ⊕ (r2 ⊕ . . . (r𝑛−2 ⊕ (r𝑛−1 ⊕ r𝑛)) . . .), where r𝑖 (𝑖 = 1, . . . , 𝑛) are minimal regions in
this representation of r).

5. Properties of regions

In this section we gather facts regarding relationships of complementary, compatible, companion
and minimal regions of an enlst-system ts = (𝑄,𝐴, 𝑞0).

Fact 1. Any pair of complementary regions of ts, r and r̄, form a pair of compatible regions and

r⊕ r̄ = (∅, 𝑄,∅). ♢

From Fact 1 it follows that if ts has only minimal regions among non-trivial regions, then only
the pairs of complementary regions can be composed resulting in a trivial region.

Fact 2. Let r1 = (𝑖𝑛1, 𝑟1, 𝑜𝑢𝑡1) and r2 = (𝑖𝑛2, 𝑟2, 𝑜𝑢𝑡2) be two non-trivial compatible regions

of an enlst-system ts. Then 𝑖𝑛1 ∩ 𝑖𝑛2 = ∅ and 𝑜𝑢𝑡1 ∩ 𝑜𝑢𝑡2 = ∅.

Now, we introduce a notion of strong compatibility of regions.

Definition 11. A region (𝑖𝑛, 𝑟, 𝑜𝑢𝑡) is strongly compatible with another region (𝑖𝑛′, 𝑟′, 𝑜𝑢𝑡′) iff

the following three conditions hold:

1. 𝑟 ∩ 𝑟′ = ∅.



2. For every 𝑒 ∈ 𝑜𝑢𝑡 exactly one of the following holds:

• 𝑒 ∈ in
′
.

• For all the transitions (𝑞, 𝑈, 𝑞′) such that 𝑒 ∈ 𝑈 we have 𝑞′ /∈ 𝑟′.

3. For every 𝑒 ∈ 𝑖𝑛 exactly one of the following holds:

• 𝑒 ∈ out
′
.

• For all the transitions (𝑞, 𝑈, 𝑞′) such that 𝑒 ∈ 𝑈 we have 𝑞 /∈ 𝑟′.

If region r is strongly compatible with region r′ and region r′ is strongly compatible with r we

say that the two regions are strongly compatible. ♢

Fact 3. Two regions, which are strongly compatible are compatible.

The composition operator defined for the strongly compatible regions (rather than compatible
regions) will be denoted by ⊕𝑠. The strict pre-order relation for the set of regions that utilises
operator ⊕𝑠 instead of ⊕ will be denoted by ≺𝑠. The set of minimal regions of ts w.r.t. ≺𝑠 will
be denoted by R𝑚𝑖𝑛,𝑠

ts .
The implication of Fact 3 is that Reduction Rule 2 works with strongly compatible regions

(we can replace operator ⊕ by ⊕𝑠 in that rule). Also, we can strengthen Fact 1 to:

Fact 4. Any pair of complementary regions of ts, r and r̄, form a pair of strongly compatible

regions and r⊕𝑠 r̄ = (∅, 𝑄,∅). ♢

We will give examples of compatible and strongly compatible pairs of regions using the
enlst-system in Figure 2(a). The pairs of regions {r1, r4} and {r2, r3} are compatible, but not
strongly compatible. However, the pairs {r1, r3}, {r2, r4}, {r2, r5}, {r2, r6}, {r5, r6}, {r5, r7}
and {r6, r8} are strongly compatible pairs of regions. Observe also that the pairs {r1, r5} and
{r1, r6} are not compatible, because r1 is not compatible with neither r5 nor r6.

The next proposition shows that unlike ⊕ operator, ⊕𝑠 is associative.

Proposition 1. The operator ⊕𝑠 is associative.

Proposition 2. Let r1 = (𝑖𝑛1, 𝑟1, 𝑜𝑢𝑡1) and r2 = (𝑖𝑛2, 𝑟2, 𝑜𝑢𝑡2) be compatible regions of an

st-system ts = (𝑄,𝐴, 𝑞0), which do not satisfy the conditions to be strongly compatible regions of

ts. Then there exists a companion region of r1, r′1 ∈ R𝑟1
ts , and a companion region of r2, r′2 ∈ R𝑟2

ts ,

such that r1 and r′2 are strongly compatible and r′1 and r2 are strongly compatible. Furthermore,

r1 ⊕𝑠 r
′
2 = r′1 ⊕𝑠 r2 = r1 ⊕ r2.

To illustrate the result of Proposition 2, we can use again the enlst-system in Figure 2(a).
A pair of its regions, r4 and r1, are compatible, but not strongly compatible regions. However,
there are regions r3 ∈ R𝑟4

ts and r2 ∈ R𝑟1
ts , such that r4 and r2 are strongly compatible and r3

and r1 are strongly compatible. Also, we have r4 ⊕𝑠 r2 = r3 ⊕𝑠 r1 = r4 ⊕ r1 = (∅, 𝑄,∅).

Corollary 1. Let ts = (𝑄,𝐴, 𝑞0) be an enlst-system. Then

1. R𝑚𝑖𝑛
ts = R𝑚𝑖𝑛,𝑠

ts .



2. Every r ∈ Rts can be represented as a composition of minimal regions, where each pair of

different minimal regions in this representation, r = (𝑖𝑛, 𝑟, 𝑜𝑢𝑡) and r′ = (𝑖𝑛′, 𝑟′, 𝑜𝑢𝑡′), is

a pair of strongly compatible regions.

The next result, about special families of non-trivial regions of ts, is inspired by a result
proved for the class of Elementary Net Systems in [6]. We have adapted this result here to the
context of enl-systems by changing one of the original conditions that a family of regions
should satisfy, but the implied result is the same: a family of regions that satisfy the conditions
of Theorem 3, treated as a set of conditions of the synthesised net, would generate a state
machine component of this net. Points 2 and 3 of the consequent of Theorem 3 guarantee the
satisfaction of Definition 3(1) and the point 1 of the consequent of Theorem 3 guarantees the
satisfaction of Definition 3(2).

Theorem 3. Let R = {r1, r2, . . . , r𝑛} be a family of non-trivial regions of ts = (𝑄,𝐴, 𝑞0),
where r𝑖 = (𝑖𝑛𝑖, 𝑟𝑖, 𝑜𝑢𝑡𝑖), 𝑖 ∈ {1, . . . , 𝑛}, satisfy the following:

1. Every two different regions r𝑖, r𝑗 ∈ R are strongly compatible regions.

2. ∀ ̂︀r = ( ̂︀𝑖𝑛, ̂︀𝑟, ̂︁𝑜𝑢𝑡) ∈ Rts : ̂︀r ̸∈ R =⇒ (∃r𝑖 ∈ R : ̂︀𝑟 ∩ 𝑟𝑖 ̸= ∅).

Then:

1.

⋃︀
𝑟𝑖 = 𝑄;

2. ∀𝑒 ∈ 𝐸 : | ∘𝑒 ∩R| ≤ 1 and |𝑒∘ ∩R| ≤ 1;

3. ∀𝑒 ∈ 𝐸 : 𝑒 ∈ ∘r𝑖 ⇐⇒ ∃𝑗 : 𝑒 ∈ r𝑗
∘
.

The saturated enl-system that is a solution to Problem 1 for a given enlst-system ts, enl =
enl≏ts, and is based on all non-trivial regions, is state machine decomposable (see Definition 5),
as due to Fact 4 every pair of complementary regions satisfies the conditions of Theorem 3
and would form a state machine component of enl. Furthermore, from Corollary 1 it follows
that, similarly as for the class of Elementary Net Systems (see [6]), the enl-system obtained
from enl by deleting all non-minimal regions following Reduction Rule 2 is also state machine
decomposable as every region can be represented as a composition of minimal regions (w.r.t.
≺𝑠) and selected subsets of R𝑚𝑖𝑛

ts = R𝑚𝑖𝑛,𝑠
ts would satisfy the conditions of Theorem 3.

As an example we can take the saturated enl-system synthesised from the enlst-system
in Figure 2(a), shown in Figure 2(b), and its minimised version shown in Figure 2(c). The
state machine components of the former enl-system are generated by the following subsets of
conditions/regions:

r1 ⊕𝑠 r3 = r2 ⊕𝑠 r5 ⊕𝑠 r6 = r2 ⊕𝑠 r4 = r7 ⊕𝑠 r5 = r8 ⊕𝑠 r6 = (∅, 𝑄,∅).

The minimised enl-system in Figure 2(c) has the first two state machine components from the
components listed above.



6. A strategy to eliminate redundant regions

The three reduction rules give conditions for deleting one of the redundant regions at a time.
Therefore, we need a strategy to delete as many redundant regions as possible to obtain a net,
where all (or almost all) remaining regions are needed (essential). The regions are redundant
or essential only in the context of other regions. Different strategies lead to different sets of
essential (or nearly essential) regions. Such sets of regions were called in [28] admissible.

As an example we can take again the enlst-system in Figure 2(a). We observe that region
r4 = r̄2 can be deleted according to Reduction Rule 1 (as the complement of region r2) or
according to Reduction Rule 2 (as a non-minimal region: r4 = r5 ⊕ r6).

When looking for a strategy for deleting redundant regions, we will take into consideration
the following criteria:

• Limiting as much as possible the non-determinism in the process of computing admissible
regions.

• Effectiveness of the strategy gauged in terms of the number of the removed regions.
• Efficiency of the strategy gauged in terms of time needed to compute a set of admissible

regions.

Our first attempt at formulating a strategy will be based on the first criterion listed above.
Reduction Rule 2 showed that all non-minimal regions are redundant 2, so we can eliminate
first the non-minimal regions. After this step, for a given enlst-system ts, we obtain from
the unique set of regions, Rts, the unique set of minimal regions: R𝑚𝑖𝑛

ts . The application of
Reduction Rule 1 and Reduction Rule 3 might not lead to a unique resultant set of regions. We
might decide to keep certain companion regions and delete other companion regions in case of
Reduction Rule 3. Similarly, we can keep both or one (random one) out of two complementary
regions. As, in general, the Reduction Rule 3, leads to fewer possible choices of regions to
delete, and might be even irrelevant in the case of thin step transition systems, where there are
no companion regions, we might decide that this rule should be applied before the Reduction
Rule 1, which can lead to many possible combinations of regions to keep/delete. This strategy,
called Strategy (2,3,1), can be defined as follows:

1. Use Reduction Rule 2 to delete all non-minimal regions.

2. Use Reduction Rule 3 to delete any redundant companion regions that might be present
among the minimal regions.

3. Use Reduction Rule 1 to delete any redundant complementary regions that might be
present after the first two steps of the strategy.

To check how good this strategy is from the second criterion point of view we consider a set
of enlst-systems generated by nets composed of several sequential subsystems, where all the
events are co-located. Such systems have a lot of companion regions. We will call them ts𝑐𝑜−𝑙𝑜𝑐

𝑖,𝑗 ,
where the index 𝑖 denotes the number of sequential subsystems, and the index 𝑗 denotes the
2Reduction Rule 2 uses operator ⊕ and it was proved in [15] for this operator, but from Corollary 1(1) we have
R𝑚𝑖𝑛

ts = R𝑚𝑖𝑛,𝑠
ts , so it does not matter whether we use ≺ and ⊕, or ≺𝑠 and ⊕𝑠, to define the set of minimal regions.
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Figure 3: An enlst-system ts𝑐𝑜−𝑙𝑜𝑐
2,2 with co-located events 𝑒, 𝑓 , 𝑔 and ℎ (a), and one of the possible

enl-systems generating it (b).

Table 1
Comparison between the effectiveness of Strategy (3,2,1) and Strategy (2,3,1), where x - y - z in the last

two columns reports the number of remaining regions after the first (x), the second (y) and the third (z)

stage of the strategies.

ts |Q| |E| |Rts| Strategy (3,2,1) Strategy (2,3,1)

ts𝑐𝑜−𝑙𝑜𝑐
2,2 3 4 16 12 - 6 - 6 8 - 6 - 6

ts𝑐𝑜−𝑙𝑜𝑐
2,3 4 6 52 28 - 10 - 10 12 - 8 - 8

ts𝑐𝑜−𝑙𝑜𝑐
2,4 5 8 160 60 - 12 - 12 16 - 10 - 10

ts𝑐𝑜−𝑙𝑜𝑐
2,5 6 10 484 124 - 26 - 26 20 - 12 - 12

ts𝑐𝑜−𝑙𝑜𝑐
3,2 3 6 30 22 - 11 - 11 15 - 11 - 11

ts𝑐𝑜−𝑙𝑜𝑐
3,3 4 9 126 66 - 20 - 20 24 - 16 - 16

ts𝑐𝑜−𝑙𝑜𝑐
3,4 5 12 510 190 - 52 - 51 33 - 21 - 21

ts𝑐𝑜−𝑙𝑜𝑐
3,5 6 15 2046 546 - 147 - 143 42 - 26 - 26

ts𝑐𝑜−𝑙𝑜𝑐
4,2 3 8 48 36 - 18 - 18 24 - 18 - 18

ts𝑐𝑜−𝑙𝑜𝑐
4,3 4 12 248 140 - 48 - 47 40 - 28 - 28

ts𝑐𝑜−𝑙𝑜𝑐
4,4 5 16 1248 540 - 165 - 159 56 - 38 - 38

ts𝑐𝑜−𝑙𝑜𝑐
4,5 6 20 6248 2108 - 532 - 508 72 - 48 - 48

number of events in each of the line-like sequential subsystem. As an example of such a step
transition system we can see an enlst-system ts𝑐𝑜−𝑙𝑜𝑐

2,2 in Figure 3(a).
Using the set of step transition systems ts𝑐𝑜−𝑙𝑜𝑐

𝑖,𝑗 (𝑖 = 2, . . . , 4; 𝑗 = 2, . . . , 5), we compare
the effectiveness of region removal of Strategy (2,3,1) and Strategy (3,2,1) (Strategy (2,3,1) with
the first two steps reversed). The result of this comparison is presented in Table 1.

The results in Table 1 are not so surprising. The removal of non-minimal regions makes only
sense in the context of all non-trivial regions (as the first step of the strategy). When removing
companion regions, the algorithm processes groups of companion regions (each based on a
shared set of states) separately from each other. From each group some subset of regions may
be removed, at random, according to Reduction Rule 3. Once some of the minimal companion



regions are removed (if we remove companion regions first), some of the regions that were
previously non-minimal would become minimal as it won’t be possible to represent them as
compositions of minimal regions using the remaining minimal regions. Therefore, they won’t
be deleted by the Reduction Rule 2, if it is applied after Reduction Rule 3. The results in Table 1
show how great would be the loss of effectiveness if we used Strategy (3,2,1) for enlst-systems
with a big number of companion regions.

While the Reduction Rule 2, applied first in our strategy, can be considered as a method for
eliminating non-minimal regions, non-minimal from the ‘state information’ point of view, the
Reduction Rule 3 can be understood as a method for eliminating regions that are redundant
from the ‘event information’ point of view. However, some subsets of companion regions will
remain after the application of Reduction Rule 3, because they are essential as shown below:

Fact 5. Let r = (𝑖𝑛, 𝑟, 𝑜𝑢𝑡) be a non-trivial region of ts = (𝑄,𝐴, 𝑞0) and let R𝑟 ⊆ R𝑟
ts be a set

of its companion regions (including r) that were left after the application of the Reduction Rule 3

and let |R𝑟| ≥ 2. Then all the regions of R𝑟
do not satisfy the same conditions of the Reduction

Rule 3 (all do not satisfy condition (1) or all do not satisfy condition (2) or all do not satisfy both

conditions: (1) and (2)).

Corollary 2. Let R𝑟 = {r1, r2, . . . , r𝑛} ⊆ R𝑟
ts be a set of companion regions based on 𝑟 that

were left after the application of the Reduction Rule 3. Then, for every region r𝑖 = (𝑖𝑛𝑖, 𝑟, 𝑜𝑢𝑡𝑖) of

R𝑟
that does not satisfy condition (1) (respectively (2)) of Reduction Rule 3 there exists a unique

𝐸𝑖 ⊆ 𝑖𝑛𝑖 (respectively 𝐸′
𝑖 ⊆ 𝑜𝑢𝑡𝑖) with events that are not present in the 𝑖𝑛 (respectively 𝑜𝑢𝑡)

sets of other regions from R𝑟
. So, companion regions of R𝑟

are ‘indexed’ by the unique subsets of

events of their 𝑖𝑛 (respectively 𝑜𝑢𝑡) sets. We will call these subsets of events in-indices (respectively

out-indices) of 𝑟 for the regions of R𝑟
. ♢

Notice that sets R𝑟 in Corollary 2 (and in Fact 5) might be equal to R𝑟
ts. For example, for ts in

Figure 2(a), we have R{𝑞0} = R
{𝑞0}
ts = {r1, r2}. Also, the indexing sets of events do not need to

be singleton sets (as, for example, set {𝑒1, 𝑒2} for {𝑞0} of r2 of ts in Figure 2(a)).
We will further illustrate the above results using the enlst-system in Figure 3(a). Its non-

trivial regions are listed below:

r1 = (∅, {𝑞0}, {𝑒}) r̄1 = ({𝑒}, {𝑞1, 𝑞2},∅)
r2 = ({𝑒}, {𝑞1}, {𝑔}) r̄2 = ({𝑔}, {𝑞0, 𝑞2}, {𝑒})
r3 = ({𝑔}, {𝑞2},∅) r̄3 = (∅, {𝑞0, 𝑞1}, {𝑔})
r4 = ({𝑒}, {𝑞1}, {ℎ}) r̄4 = ({ℎ}, {𝑞0, 𝑞2}, {𝑒})
r5 = ({ℎ}, {𝑞2},∅) r̄5 = (∅, {𝑞0, 𝑞1}, {ℎ})
r6 = (∅, {𝑞0}, {𝑓}) r̄6 = ({𝑓}, {𝑞1, 𝑞2},∅)
r7 = ({𝑓}, {𝑞1}, {𝑔}) r̄7 = ({𝑔}, {𝑞0, 𝑞2}, {𝑓})
r8 = ({𝑓}, {𝑞1}, {ℎ}) r̄8 = ({ℎ}, {𝑞0, 𝑞2}, {𝑓})

The implemented tool, after applying Reduction Rule 2, will delete 8 out of 16 regions, leaving
the minimal regions (r1 - r8). The set of minimal regions will be the same whether they are
defined w.r.t. ≺ or ≺𝑠 strict pre-order (see Corollary 1(1)) as every non-minimal region that can
be expressed as a composition of compatible regions can be also expressed as a composition of



strongly compatible regions (see Proposition 2). For example, r̄3 = r1⊕𝑠 r2 = r1⊕ r7, where the
first two regions are strongly compatible, but the second two regions are only compatible, but
not strongly compatible. The algorithm that implements Reduction Rule 3, when applied to this
example, would delete two out of four regions based on the set of states {𝑞1} leaving either r2
and r8 or r4 and r7. The remaining pairs of companion regions, based on sets of states {𝑞0},{𝑞1}
and {𝑞2}, will remain as they are essential (having different in-indices or/and out-indices for
the shared sets of states; see Corollary 2). The Reduction Rule 1, the last to be used in Strategy
(2,3,1), is not applicable to this example as all the complementary regions of r1 - r8 were already
deleted as non-minimal regions (see the results for ts𝑐𝑜−𝑙𝑜𝑐

2,2 in Table 1).

7. Conclusions

In this paper we discussed the minimisation of the synthesised enl-systems and the strategy
to eliminate redundant regions that involves three reduction rules. Also, we investigated the
properties of minimal regions that play a crucial role in the minimisation process. We showed
that synthesised and minimised nets that are based on all minimal regions (after the application
of the Reduction Rule 2) do not lose the property of the saturated enl-systems of being state
machine decomposable. We believe 3 that after the application of the Reduction Rule 3 this
property still holds for the resultant net. However, after applying Reduction Rule 1, some
synthesised enl-systems are no longer decomposable. As an example, we can take the enlst-
system generated by the enl-system in Figure 1. The synthesis procedure for this example will
produce a saturated net that has only minimal regions (12 regions). Some of them are redundant
and can be deleted according to Reduction Rule 1. Figure 1 shows one of the possible minimised
versions of this net that is not state machine decomposable.

In the future work, we plan to investigate the relationship between the split of enl-systems
into state machine components (based on conditions) and the split into localities (based on
events). Also, we want to develop an improved algorithm implementing Reduction Rule 1, which
would allow to target certain regions for deletion from the pairs of complementary regions.
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Abstract  
Synthesis is automatically producing a process model from specified behavior. If the desired 
process model is a Petri net, synthesis is tackled by so-called region theory. Region-based 
synthesis has been extensively explored for cases where the specification language is a 
transition system, a language or even a partially ordered language. Although the ideas of 
region-based synthesis are the same for every kind of specification, every type of specification 
has its own region definition and uses different representations of the set of all regions to 
synthesize a finite result. Up to this point, state-based and language-based regions are just two 
different concepts.  
 
In this paper, we introduce a new region definition we call Petri net regions and reason that 
every state-based and every language-based region is a Petri net region as well. Thus, there is 
no need to distinguish language-based and state-based regions anymore. With the help of Petri 
net regions every concept from one of the older region definitions can be directly applied to 
the other. Using Petri net regions, we introduce an implementation of a synthesis algorithm 
that handles state-based as well as language-based input. Furthermore, this algorithm can 
synthesize a Petri net from a set of labeled Petri nets. 
 
Keywords  1 
Petri Nets, Synthesis, Region Theory, State-Based Regions, Language-Based Regions 
  

1. Introduction 

Complex systems are often modeled by Petri nets [1, 2, 3, 4]. Petri nets have formal semantics, an 
intuitive graphical representation, and can express concurrency among the occurrences of actions of a 
system. However, constructing a Petri net model for a real-world process is a costly and error-prone 
task [3, 5]. Fortunately, whenever we model a system, there are often some associated descriptions or 
even specifications of the desired process behavior. There may be log-files of recorded behavior, 
example runs, and product specifications describing use cases. We can model these specifications by a 
language, a transition system, or a partial language. If a specification reflects the desired behavior 
faithfully, we can automatically synthesize the best fitting process model. The synthesis problem is to 
compute a process model so that: (A) the specification is behavior of the generated model and (B) the 
generated model has minimal additional behavior. 

 
Looking at the literature, the theory behind Petri net synthesis is called region theory [6, 7]. Region 

theory has been extensively explored for transition systems, languages, and even partial languages. 
There are many non-trivial theoretical results, notions, case studies, as well as tool support by tools like 
for example ProM [8], Genet [9], APT [10], and Viptool [11]. 
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Today, region theory has two main branches. If the input is state-based, a transition system for 
example, we apply the theory of state-based regions [6, 7,12]. Here, a region is a multi-set of states, and 
we construct a set of minimal regions to generate a finite set of valid places for the resulting Petri net. 
If the input is language-based, an event log, a language, or a partial language for example, we apply the 
theory of language-based regions [13, 14]. Here, a region is a multi-set of tokens produced by prefixes 
of the language and we calculate valid places by solving a related integer linear programming problem 
(ILP). To generate a finite result, we calculate a basis of the ILP or we use the concept of wrong 
continuations [15]. Both branches of region theory follow the same ideas, but in detail use different 
techniques, definitions, and algorithms. To just give one very illustrative example, we can compare the 
two prominent process discovery algorithms based on region theory. The ILP-miner [16] is language-
based, the region-miner [17] uses state-based techniques. 

 
This workshop paper presents a glimpse at a new and very intuitive definition we call Petri net 

regions. This definition can handle state-based and language-based input at once. We define Petri net 
regions for transition systems, languages, partial languages, branching processes, and labeled Petri nets. 
We get our new definition simply by lifting the notion of compact tokenflow regions [14] from partial 
languages to labeled Petri nets. We lift the notion of state-based regions [6, 7,12] from transition 
systems to labeled Petri nets as well. We show that if we lift both notions, they will match perfectly. 
Furthermore, we will argue that Petri net regions can handle any given labeled Petri net as an input, 
even if this net is neither a transition system nor a (partial) language.  

2. Preliminaries 

In the following preliminaries, we present compact token flow regions, state-based regions, and Petri 
nets by instructive examples and refer the reader to the literature for formal definitions. We assume the 
reader is familiar with the basic concepts of region theory.  

 

 
 
Figure 1: A partial language. 
 

Figure 1 depicts a set of three labeled Hasse diagrams, i.e., a partial language. Every diagram models 
a run of the intended system’s behavior. In every run, every node is called an event and models the 
occurrence of a transition of the Petri net to be synthesized. The set of arcs defines a later-than relation 
on the set of events. Thus, a partial language can directly express concurrency.  

 

 
 
Figure 2: Three compact tokenflow regions. 
 

 

 

 

  

 

 

 

  

 

 

 

 

    

 

 

 

  

 

 

 

  

 

 

 

 

    

 

 

 

  

 

 

 

  

 

 

 

 

    

 

 

 

  

 

 

 

  

 

 

 

 

    



To synthesize a Petri net model from a partial language we use the concept of compact tokenflow 
regions. Every compact tokenflow region is a distribution of tokens on the arcs of the specification and 
defines a valid place for the synthesis result. That means, every region describes the production, passing, 
and consumption of tokens between events in the related valid place and thus, adding this place to the 
synthesis result will generate a net which is still able to execute the specified behavior. Figure 2 depicts 
three copies of the specification of Figure 1 and three different compact tokenflow regions. The first 
region defines the valid place p2 of Figure 3. The second region defines the valid place p3. The third 
region defines the valid place p5.  

 
A compact tokenflow based synthesis algorithm defines an ILP, so that every solution of the ILP is 

a compact tokenflow region. The solution-space of this ILP is not finite, but the set of all places related 
to the finite set of integer basis solutions will solve the synthesis problem. A second approach to receive 
a finite result from the ILP, is to use the concept of wrong continuations. Roughly speaking, the set of 
wrong continuations is the border between the specified and all other behavior. The set of wrong 
continuations is finite if the specification is finite as well. Figure 3 depicts the Petri net synthesized 
from the specification depicted in Figure 1 using compact tokenflow regions, an ILP synthesis 
algorithm, the concept of wrong continuations and deleting some implicit places as a last step. 

 

 
 
Figure 3: A Petri net. 
 

Figure 4 depicts a transition system. A transition system is a set of states connected by a set of 
labeled arcs. Every arc models an event changing the state of the desired Petri net model. Partial 
languages can model concurrency, but they need to add extra runs whenever there is conflict. Transition 
systems can model conflict but are not able to model concurrency. Thus, depending on the specific 
application using one specific specification language can be more adequate than using the other. 
 

 
 
Figure 4: A transition system. 

 
To synthesize a Petri net model from a transition system we use the concept of state-based regions. 

Such region is a multi-set of states so that every pair of equally labeled events has the same gradient. 
That means, every label is entering, not-crossing, or exiting the region with the same weight. Thus, 
every event has a constant effect on the marking of the synthesized result. We add the related places to 
construct a Petri net so that its reachability graph will be isomorphic to the input if such a net exists. 
 

Figure 5 depicts three copies of the specification of Figure 4 and three different state-based regions. 
The first region is the set of grey states and defines the valid place p2 of Figure 3. The second region is 
twice the set of black states plus the grey states and defines the valid place p3. The third region is the 

 
  

 

  

  

   

 

 

 

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



set of grey states and defines the valid place p5 without the short-loop to X. State-based regions usually 
do not generate short-loops because transition systems can not specify concurrency.  

 

 
 

Figure 5: Three state-based regions. 
 

Most state-based region synthesis algorithms construct a set of so-called minimal regions. They start 
by a set of minimal candidate regions and repair these regions by adding states until labels have a 
constant gradient to get a finite Petri net result. 

3. Petri Net Regions 

This section introduces Petri net regions. A Petri net region is a marking of a set of labeled Petri nets 
so that: (I) For every pair of equally labeled transitions, the difference between the sum of tokens in the 
post-set and the sum of tokens in the pre-set is the same. (II) For every pair of labeled Petri nets, the 
sum of tokens of all places with an empty preset is the same. We highlight the idea of this definition, 
by translating the specification of Figure 1 into three labeled Petri nets. Every event becomes a labeled 
transition, and we add a place to every relation. Figure 6 depicts three copies of the translated result, 
and we add markings related to the three different compact tokenflow regions of Figure 2.  
 

 
 

Figure 6: Three Petri net regions, equivalent to Figure 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

    

 

 

 

  

 

 

 

  

 

 

 

 

    

 

 

 

  

 

 

 

  

 

 

 

 

    



It is easy to see that there is a one-to-one correspondence between a compact tokenflow region on 
the set of Hasse diagrams and a Petri net region on the labeled Petri nets. Thus, we propose that the 
following conjecture holds. 
 
Conjecture 1. Let S be a set of labeled Petri nets and S be equivalent to a partial language L. There is 
a compact tokenflow region for L defining the valid place p iff there is a Petri net region for S defining 
the valid place p. We can solve the synthesis problem for partial languages using Petri net regions. 

 
We translate the specification of Figure 4 into a labeled Petri net. Every state becomes a place, and 

every event becomes a labeled transition. Figure 7 depicts three copies of the translated result, and we 
add markings related to the three different state-based regions of Figure 5.  

 

 
 

Figure 7: Three Petri net regions, equivalent to Figure 5. 
 

Again, it is easy to see that there is a one-to-one correspondence between a state-based region on a 
transition system and a Petri net region on the labeled Petri net. Thus, we propose that the following 
conjecture holds as well. 

 
Conjecture 2. Let S be a labeled Petri net and S be equivalent to a transition system L. There is a state-
based region for L defining the valid place p iff there is a Petri net region for S defining the valid place 
p. We can solve the synthesis problem for transition systems using Petri net regions. 
 

Conditions (I) and (II) are very intuitive and easy to check/implement. To get a running synthesis 
algorithm we can construct Petri net regions by repairing minimal candidate regions or by solving a 
related ILP. To get a finite result we can use the set of minimal regions, a basis of the ILP, or use the 
concept of wrong continuations. Petri net regions can handle state-based and language-based input. 
There is no need to distinguish the two concepts anymore. 

 

    

   

      

   

  

    

   

      

   

  

    

   

      

   

  



Petri net regions are not only unifying previous region definitions but have very interesting 
application if the input is neither a transition system nor a partial language. Remark, Petri net regions 
can handle general labeled Petri nets as an input. Note that, we have to be careful with condition (A) of 
the synthesis problem in this part of the paper because of a missing semantic defining when a net is in 
the language of another. But we will get the idea ;) 

 

 
 

 
Figure 8: Six minimal Petri net regions. 

 
Figure 8 depicts six copies of a labeled Petri net, and we use this Petri net as the specification. This 

Petri net is neither a transition system nor a partial language. Every depicted marking is a minimal Petri 
net region. The related synthesis result is depicted in Figure 9. Specifying a shared place after no and 
one iteration of the loop started by X, leads to a result where counting the number of loops is not 
possible. Thus, Figure 9 is the intended result. 

 

 
 

Figure 9: Synthesis result using minimal Petri net regions. 
 
The left part of Figure 10 depicts another labeled Petri net where the state after the occurrence of the 

loop is not shared. The depicted marking is a minimal Petri net region. Taking the left-hand side as an 
input, the right-hand side of Figure 10 depicts the synthesis result. This time, the occurrence of X and 
the occurrence of B is restricted by the additional place.  

 

 
 
Figure 10: Petri net region for a branching process. 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  



4. Synthesis Algorithm 

In this section, we use the new concept of Petri net regions to implement a synthesis algorithm. 
Using regions, the region definition ensures that the output of every synthesis can execute the input. 
But if we implement a full-on synthesis algorithm, we must choose (a) the net class of the output, (b) 
the kind of regions we calculate, and (c) how regions are calculated. For the net class we can calculate 
nets with or without arc-weights or short-loops. We can calculate regions that are one-bounded and 
have at most one token in every place. To get a finite result, we can calculate a basis, a set of regions 
related to wrong continuations, or a set of minimal regions. Furthermore, we can construct regions by 
simulation, construction, or by implementing an ILP. 

 
In this paper, to highlight the power of Petri net regions, we implement a synthesis algorithm using 

the new concept. The input to this algorithm is a set of labeled Petri nets. The algorithm uses an ILP to 
enforce conditions (I) and (II) of the Petri net region definition. Calculating the set of minimal Petri net 
regions, the algorithm will synthesize a Petri net without short-loops. We can toggle if regions will be 
one-bound or not. The synthesis algorithm is available at the I ❤ Petri Nets web toolkit 
(https://www.fernuni-hagen.de/ilovepetrinets/). 

 

 
 

Figure 11: Synthesis using Petri net regions in the I ❤ Petri Nets web toolkit. 
 
Figure 11 depicts a screenshot of the synthesis algorithm. Input to the algorithm is a set of text-files 

describing labeled Petri nets. We can use any text-file editor to specify the input, use an editor from the 
I ❤ Petri Nets web toolkit, or simply download example nets from the synthesis web page. Synthesis 
starts as we drag-and-drop files to the big ❤ button. As soon as the synthesis algorithm is done, we can 
download the synthesized result via the         button. We can read the files using a text-file editor or use 
the “show a labeled Petri net” tool from the toolkit. 

 

https://www.fernuni-hagen.de/ilovepetrinets/


 
 

Figure 12: Displaying a labeled Petri net in the I ❤ Petri Nets web toolkit. 
 
Figure 12 depicts the synthesis result using the example net of Figure 10 as an input for the synthesis 

algorithm calculating one-safe regions displayed by the show a labeled Petri net editor of the web 
toolkit. 

 

5. Conclusion 

Petri net regions unify state-based and language-based region theory. They can handle transition 
systems, languages, partial languages, branching processes (see Figure 10), and general labeled Petri 
nets (see Figure 9). We present a synthesis algorithm using Petri net regions in the I ❤ Petri Nets web 
toolkit. Here, we use an ILP to generate a set of minimal Petri net regions and calculate results without 
short-loops. Obviously, this workshop paper only presents a first glance at Petri net regions, the formal 
definitions and proofs must be submitted in future work.  
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Abstract
We consider a two-player game on Petri nets, in which each player controls a subset of transitions. The
players are called ‘user’ and ‘environment’; we assume that the environment must guarantee progress
on its transitions. A play of this game is a run in the unfolding of the net, satisfying the progress
assumption. In general, we define a strategy for the user as a map from the set of ‘observations’ to subsets
of transitions owned by the user. Different restrictions on strategies can be used to encode observability
assumptions. We say that a given strategy is implementable if the net can be endowed with new places
so that the runs of the new net coincide with the plays of the original net, complying with the strategy.
We propose an algorithm based on the search of regions to decide whether a strategy is implementable.

1. The game

We recall the definition of a two-player, asynchronous game on 1-safe Petri nets (see [1]), define
a notion of implementable strategy for one of the players, and give a simple algorithm to decide
whether a given, general, strategy is implementable.

Let us introduce the main notions related to the game through an example. Consider the
net in Fig. 1. Two players interact on it, the user, by controlling the light grey transitions, and
the environment, by controlling the white ones. The game is asynchronous: the players can
concurrently fire their transitions. The game is asymmetric: the user has the right to keep his
transitions blocked when they are enabled, whereas the environment must guarantee progress
of its transitions. In this example, we suppose that the user has full knowledge of the current
marking, and that he has the goal of marking place 𝑞 infinitely often. In order to win, the
user must wait for the environment to choose between firing 𝑡1 or 𝑡2. He can do it, since the
environment cannot delay this choice forever. In the former case, the user chooses 𝑢1, otherwise
𝑢2. The environment is then forced to fire either 𝑣1 or 𝑣2, with the effect of marking 𝑞, and then
to fire 𝑧, reproducing the initial marking.

Formally, a Petri net is a tuple Σ = (𝑃, 𝑇, 𝐹,𝑚0), where 𝑃 is the set of places, 𝑇 the set
of transitions, 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) the flow relation, 𝑚0 : 𝑃 → N the initial marking.
A marking is a map 𝑚 : 𝑃 → N. We suppose the reader knows the definition of the firing
rule, denoted 𝑚[𝑡⟩𝑚′, and how to compute the set of reachable markings. Let 𝑀 be the set of
reachable markings in Σ; then Σ is 1-safe iff ∀𝑚 ∈ 𝑀 , ∀𝑝 ∈ 𝑃 , 𝑚(𝑝) ≤ 1. We assume that
the game is played on a 1-safe Petri net. In a 1-safe Petri net a marking can be interpreted as
the characteristic function of a subset of places. Hence, in the rest of the paper we will denote
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Figure 1: A game net

Figure 2: A full play (left) and a partial play (right)

markings as sets of places. We denote with MG(Σ) = (𝑀,𝑇,𝐴,𝑚0) the sequential marking
graph of Σ, where 𝐴 = {(𝑚, 𝑡,𝑚′) : 𝑚,𝑚′ ∈ 𝑀, 𝑡 ∈ 𝑇𝑎𝑛𝑑 𝑚[𝑡⟩𝑚′} is the set of labelled arcs.
We denote with 𝑇𝑢 the set of transitions controlled by the user, and with 𝑇𝑒 the set of transitions
uncontrollable for him. We assume that 𝑇𝑒 ∪ 𝑇𝑢 = 𝑇 , 𝑇𝑒 ∩ 𝑇𝑢 = ∅.

We will also refer to the unfolding of the net (see [2] for the formal definitions). The unfolding
is an acyclic, possibly infinite, net representing all the possible histories of the executions of a
net system. In the unfolding of a net system, only forward conflicts are allowed: two events
can share a precondition, but no postcondition. Since the unfolding is acyclic, the reflexive
and transitive closure of the flow relation is a partial order. If two events 𝑒1 and 𝑒2 are in
conflict, then we say that every descendant of 𝑒1 is in conflict with every descendant of 𝑒2. Two
elements are concurrent if they are neither ordered nor in conflict. The events of the unfolding
are partitioned into controllable and uncontrollable events depending on their correspondence
to occurrences of controllable or uncontrollable transitions, respectively.

A run is a subnet of the unfolding representing an execution, i.e. it is a net without conflicts
and close with respect to the past of its elements. A run is maximal if no event can be added
without creating a conflict.

A play in the game is formally defined as a run in the unfolding of the net, maximal with
respect to uncontrollable transitions. The winning condition for the user is a set of plays. The
user wins a play if the play belongs to the winning condition. In the example discussed above,
the winning condition is formed by all the maximal runs with an infinite number of occurrences
of the place 𝑞. Figure 2 shows, on the left, a play ending in a deadlock (the environment wins)
and, on the right, the initial segment of an infinite play (the user wins).



2. Strategies

In order to reach his goal, the user can apply a strategy. We assume that the user has no memory
and only a partial knowledge of the current state of the net. This is formalized by assuming an
equivalence relation, denoted by ≡, on the set of reachable markings. The equivalence classes
of this relation will be called observations, and a strategy is defined as a map from observations
to sets of controllable transitions. For example, if we assume the user may observe only some
places, two markings are considered equivalent if they share the same observable places. An
example of equivalence relation between partially observable markings has been considered in
the game presented in [3].

Let Obs be the set of observations. Then a strategy is a map 𝛼 : Obs → 2𝑇𝑢 . The notion of
observation can be extended to unfoldings: a maximal set of pairwise concurrent places in the
unfolding is called a B-cut. Every B-cut corresponds to a reachable marking. We say that two
B-cuts are equivalent if their corresponding markings are equivalent.

Two B-cuts of a run 𝜋, 𝛾 and 𝛾′, are ordered, denoted 𝛾 < 𝛾′, iff 𝛾 ̸= 𝛾′ and ∀𝑏 ∈ 𝛾, ∃𝑏′ ∈ 𝛾′

such that: 𝑏 ≤ 𝑏′. A sequence 𝛾1𝛾2...𝛾𝑛... of B-cuts is increasing if 𝛾𝑖 < 𝛾𝑗 for each 𝑖, 𝑗 ∈ N
with 𝑖 < 𝑗.

A play 𝜋 complies with a strategy 𝛼 if (1) there is a sequence 𝜇 of observations which is the
projection of an increasing sequence of B-cuts in 𝜋, and (2) every controllable event in 𝜋 is
chosen by the strategy in one of the observations in 𝜇.

Given a strategy 𝛼, we can construct the reduced version of MG(Σ), by removing arcs
corresponding to controllable transitions not chosen by the strategy, and then removing all
states and transitions unreachable from the initial marking. The reduced version will be denoted
by MG𝛼(Σ), and the operation will be referred to as the 𝛼-reduction of MG(Σ). Fig. 3 shows
the reduced version of the marking graph of the net in Fig. 1, when 𝛼 is the strategy described
above.

2.1. Implementable strategies

As defined above, the notion of strategy is not encoded in the net system itself. We will now
investigate the possibility of defining a strategy within the net.

The idea we pursue is this: a strategy is encodable within a net if its decisions can be
represented as extra places, corresponding to causal relations from uncontrollable transitions to
controllable transitions. We will then say that a strategy is implementable if we can add new
places to the given net, so that the runs of the augmented nets are exactly the plays complying
with the strategy in the original net. Formally, we need a notion of “augmented” net system, in
which we add places that restrict the possible behaviours.

For Σ𝑖 = (𝑃𝑖, 𝑇𝑖, 𝐹𝑖,𝑚0𝑖), with 𝑖 = 1, 2, we write Σ1 ⊑ Σ2 if Σ2 is obtained by adding new
places to Σ1, hence 𝑃1 ⊆ 𝑃2, 𝑇1 = 𝑇2, 𝐹1 ⊆ 𝐹2 and new arcs in 𝐹2 have one end in 𝑃2 ∖ 𝑃1,
𝑚01 ⊆ 𝑚02 and 𝑚02 ∖𝑚01 ⊆ 𝑃2 ∖ 𝑃1.

A given strategy 𝛼 might prohibit any occurrence of a given controllable transition, and
might make some uncontrollable transition unreachable in complying plays. Let 𝑇𝛼 be the set
of reachable transitions in complying plays, and let Σ𝛼 be the net system whose underlying net
is the subnet generated by 𝑇𝛼, i.e.: Σ𝛼 = (𝑃𝛼, 𝑇𝛼, 𝐹𝛼,𝑚0𝛼), where 𝑃𝛼 = ∙𝑇𝛼 ∪ 𝑇 ∙

𝛼 , 𝐹𝛼 is 𝐹



Figure 3: The marking graph of the net in Fig. 1 and its reduced version MG𝛼(Σ)

restricted to (𝑃𝛼 × 𝑇𝛼) ∪ (𝑇𝛼 × 𝑃𝛼) and 𝑚0𝛼 = 𝑚0 ∩ 𝑃𝛼.

Definition 1. A strategy 𝛼 for a game on Σ is implementable if there exists a 1-safe net system
Σ′ = (𝑃 ′, 𝑇𝛼, 𝐹

′,𝑚′
0) such that (1) Σ𝛼 ⊑ Σ′; (2) the marking graph of Σ′ is isomorphic to

MG𝛼(Σ).

Consider again the net system in Fig. 1. Suppose that the user can observe all the places in the
net, so that it has full knowledge of the current marking. If his goal is to reach infinitely often
the place 𝑞, then a winning strategy is defined by the following clauses: (1) 𝛼({𝑝0, 𝑠0}) = ∅;
(2) 𝛼({𝑝0, 𝑠1}) = {𝑢1}; (3) 𝛼({𝑝0, 𝑠2}) = {𝑢2}. In this case, the strategy 𝛼 does not prevent
the occurrence of any controllable transition, it only selects which one between 𝑢1 and 𝑢2 to
choose, depending on the observation of {𝑝0, 𝑠1} or {𝑝0, 𝑠2}; therefore the set of reachable
transitions in plays complying with 𝛼, 𝑇𝛼, is 𝑇 itself, and then Σ𝛼 = Σ.

The marking graph of Σ, MG(Σ), is shown on the left side of Fig. 3, whereas the reduced
version MG𝛼(Σ) is on the right side of the same figure. The information needed to take the
right decision in accordance with 𝛼, in this simple case, can be encoded by adding to Σ a couple
of places, one going from 𝑡1 to 𝑢1, the other from 𝑡2 to 𝑢2, as shown in Fig. 4, on the right,
where the new places are drawn in dark grey. It is easy to see that the obtained system has a
marking graph isomorphic to MG𝛼(Σ).

3. An algorithm to decide if a strategy is implementable

In this section, we propose a simple algorithm to decide whether a given strategy is imple-
mentable. The algorithm checks whether the reduced marking graph is isomorphic to the
marking graph of a 1-safe Petri net, and relies on the theory of regions [4]. We first recall some
basic notions related to regions of transition systems.

Region theory and separation problems As remarked above, each node of the marking
graph of a 1-safe Petri net is a set of places. Hence, we can associate to each place its extension,
namely the set of reachable markings to which it belongs: ∀𝑝 ∈ 𝑃 𝑟(𝑝) = {𝑚 ∈ 𝑀 | 𝑝 ∈ 𝑚}.
The extension of a place satisfies the uniform crossing property: for any given transition 𝑡, if



Figure 4: A game net with an implemented strategy

one occurrence of 𝑡 in the marking graph enters 𝑟(𝑝), then all occurrences of 𝑡 do the same,
and analogously when an occurrence leaves 𝑟(𝑝). This property can be defined more abstractly
for general labelled transition systems, giving the notion of a region of a transition system.

The synthesis problem consists in deciding if a given labelled transition system is isomorphic
to the marking graph of a net system, and, if so, in constructing such a net. The problem admits a
solution if the set of regions satisfies the so-called state separation problems and the event-state
separation problems. In this case, we say that the transition system is separated.

Consider now a marking graph MG(Σ), a strategy 𝛼, and the reduced transition system
MG𝛼(Σ) = (𝑄,𝑇𝛼, 𝐴, 𝑞0). Then, it is easy to prove that, for each region 𝑟 of MG(Σ), the set
𝑟 ∩𝑄 is a region of MG𝛼(Σ). This implies that all state separation problems of MG𝛼(Σ) are
solved by those regions, since MG(Σ) is separated by definition. This is not the case for the
event-state separation problems: for each edge labelled with 𝑡 removed from MG(Σ) in the
state 𝑠, we need to check if there is a region without state 𝑠 from which 𝑡 leaves.

The algorithm Given a strategy 𝛼 for a game on Σ, we can now describe an algorithm to
decide whether 𝛼 is implementable. The algorithm first computes MG𝛼(Σ), and then checks if it
is separated by trying to solve each new event-state separation problem. The new regions solving
those problems, if any, encode the flow of information from observations to the controllable
part of the system.

4. Conclusion

In this work we presented a notion of implementable strategy on 1-safe nets, and we provided
an algorithm to decide whether the strategy is implementable. In future works, we plan to
broad the definition of implementable strategy by allowing for strategies modelled by adding
general bounded places. As an example, consider the net on the left of Fig. 5 where the user
can observe the places {3, 4, 5, 6, 10}, and his goal is to reach place 12. A winning strategy is:
𝛼({4, 6, 10}) =H, 𝛼({3, 5, 10}) = 𝛼({3, 6, 10}) = 𝛼({4, 5, 10}) = I. The choice of H can be
represented by adding a place from B to H, and a place from D to H. Instead, the choice of I



Figure 5: An example of non-implementable strategy

depends on the occurrence of either A or C, hence it may be represented with a place allowing
for two tokens, making the net not 1-safe. Although the strategy is not implementable according
to the given definition, the net on the right of Fig. 5 realizes the strategy.

Furthermore, we plan to relax the definition of implementable strategy, by allowing for
implementations in which only parts of the behaviours in the reduced marking graph are
reproducible on the net. Specifically, a strategy is implementable if we can add places to the
initial net so that there is at least a maximal run in the unfolding of the augmented net, and all
its maximal runs are associated to maximal paths of the reduced marking graph.

A similar use of regions can be found in applications to problems of control: in [5] and [6]
regions are used to synthesize maximally permissive controllers avoiding unwanted states;
[7] proposes an implementation based on region theory of a controller, applied to flexible
manufacturing systems.

A general overview of works and approaches to automatic control using Petri nets can be
found in [8].

Acknowledgments

This work is supported by the Italian MUR.

References

[1] F. Adobbati, L. Bernardinello, L. Pomello, A two-player asynchronous game on fully
observable Petri nets., Trans. Petri Nets Other Model. Concurr. 15 (2021) 126–149.

[2] J. Engelfriet, Branching processes of Petri nets, Acta Inf. 28 (1991) 575–591. URL: https:
//doi.org/10.1007/BF01463946. doi:10.1007/BF01463946.

[3] F. Adobbati, L. Bernardinello, L. Pomello, Looking for winning strategies in two-player

https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/BF01463946
http://dx.doi.org/10.1007/BF01463946


games on Petri nets with partial observability, 2022. URL: https://arxiv.org/abs/2204.01603.
doi:10.48550/ARXIV.2204.01603.

[4] E. Badouel, L. Bernardinello, P. Darondeau, Petri Net Synthesis, Texts in Theoretical
Computer Science. An EATCS Series, Springer, 2015. URL: http://dx.doi.org/10.1007/
978-3-662-47967-4. doi:10.1007/978-3-662-47967-4.

[5] A. Ghaffari, N. Rezg, X. Xie, Design of a live and maximally permissive Petri net controller
using the theory of regions, IEEE Transactions on Robotics and Automation 19 (2003)
137–141. doi:10.1109/TRA.2002.807555.

[6] Z. Li, M. Zhou, M. Jeng, A maximally permissive deadlock prevention policy for fms based
on petri net siphon control and the theory of regions, IEEE Transactions on Automation
Science and Engineering 5 (2008) 182–188.

[7] S. Rezig, C. Ghorbel, Z. Achour, N. Rezg, PLC-based implementation of supervisory con-
trol for flexible manufacturing systems using theory of regions, International Journal of
Automation and Control 13 (2019) 619–640.

[8] A. Giua, M. Silva, Petri nets and automatic control: A historical perspective, Annual
Reviews in Control 45 (2018) 223–239.

https://arxiv.org/abs/2204.01603
http://dx.doi.org/10.48550/ARXIV.2204.01603
http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1109/TRA.2002.807555


Deadlocks and livelocks in resource constrained
workflow nets
Gabriel Juhás1, Ana Juhásová2 and Tomáš Kováčik1

1Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava,
Ilkovičova 3, 812 19 Bratislava, Slovakia
2BIREGAL s.r.o. Klincová 37/B, 821 08 Bratislava, Slovakia

Abstract
The paper is presenting a method for detection of locks (both deadlocks and livelocks) in discrete event
systems with shared resources and multiple instances modeled by resource constrained workflow nets.
We consider that multiple instances with determined initial state and a correct final state are running
in workflow nets. We consider workflow processes, in which instances can share several types of
resources, with instances neither creating nor destroying shared resources. It means, that instances
can use resources but the used resources are returned at the latest by the correct finish of the instance.
Such resources are said to be durable. Examples of durable resources include resources of information
systems, such as memory and processors or employees in roles in an organizational structure. We
consider processes, which have enough resources to execute a single instance, such processes are said to
be sound. A lock is a state of the process, where several instances are running but because of the lack
of shared resources not all running instances can finish properly. The main result of the paper is the
theorem stating that in sound workflow processes with several types of shared durable resources for
given initial number of resources and an arbitrary unbounded number of running instances it is enough
to test locks for a finite bounded number of instances, with the upper bound indicated.

Keywords
Petri net, Deadlock, Livelock, Resource constrained workflow net

1. Introduction

In [1] authors work with workflow processes with instances, in which instances share common
resources. The processes are modeled by resource constrained workflow nets, where shared
resources are modeled by so called static places. Except shared resources, instances are inde-
pendent. Shared resources considered in [1] are durable, i.e. the resources are neither created
nor destroyed by instances. Resources in information systems, such as memory, processors,
i/o ports are typical examples of durable resources. Similarly, employees in particular roles
considered by workflow processes can represent an example of durable resources.

The main problem solved in [1] is the problem of correct finish of all instances of a workflow
process with shared durable resources. The problem is solved for processes with one type of
durable resources. The method from [1] decides whether there is a number of shared resources
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such that for this number of resources and any greater number of resources any number of
instances can be correctly finished. If the answer is true, then the workflow process is according
to [1] called sound.

In [2] authors solve the soundness problem for several subclasses of resource constrained
workflow nets. In [3] four necessary conditions of soundness of resource constrained workflow
nets based on structural analysis are presented.

In [4, 5] we defined a technique based on a constructor and a runtime net to detect instance
deadlocks of resource constrained workflow nets (called workflow nets with static places) for
a fixed number of durable resources and an arbitrary number of instances. However, method
from [4] did not work for livelocks.

In [6, 7] authors using a technique based on constructor and using a transformed net from
[4] (called production net in [6, 7]) proved that the soundness problem for resource constrained
workflow nets which are sound for one instance, is decidable even for the case where resources
are not durable. The proof is based on the reduction to the home space problem of Petri nets,
which was proved to be decidable in [8]. At the same time, the papers [6, 7] prove that in general,
i.e. if the soundness for one instance is not required and the resources does not necessarily need
to be durable, the problem of soundness in resource constrained workflow nets is undecidable.
In [9] authors using the constructor from [4] proved, that if the nets are sound for one case, then
the soundness problem is decidable even if the instances are not independent (the investigated
net corresponding to our runtime net is not serializable). For more about serializability see
e.g. [10, 11]. Paper [9] extends an unsuccessful attempt to prove decidability of soundness for
resource constrained workflow nets presented in [12]. In the proof of results from [9] authors
again used reduction to home space problem of Petri nets. As it is written at the end of the
paper [9], soundness of resource constrained workflow nets is decidable, but up to now there
is no effective algorithm, because the algorithm proposed in [9] requires the test of general
reachability in possibly unbounded Petri nets [13, 14, 15, 16, 17]. The similar argument can be
found at the end of original paper solving home space problem [8].

There are workflow processes, which for some fixed initial number of shared resources can
correctly finish any number of instances, but for some greater number of shared resources
the same process cannot finish for some number of instances running in parallel. Thus, such
processes are not sound according to the definition of [1, 9]. An example of such a not sound
process is on Figure 1, which can finish any number of instances for the given number of shared
resources in static places free key, free memory, free processor. However, adding any number of
resources to the static place free key will cause that the process may deadlock for the number
of instances greater than 3. In general, once the number of resources in the place free key is
smaller than the sum of free resources in places free memory and free processor, then the process
will have no deadlock, otherwise it will contain a deadlock for any number of instances greater
of equal the sum of shared resources in places free memory and free processor.

In this work we will prove, that in order to decide, whether the workflow process with
arbitrary finite number of resource types and arbitrary unbounded number of instances with
fixed initial number of durable shared resources will contain a lock (i.e. a deadlock or a liveclock),
it suffices to check the existence of locks for bounded number of instances. We also will show
how to compute such upper bounds.
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Figure 1: A marked remembering workflow net with static places, modeling allocation of memory
units and processors to computing tasks with possibility to constrain the number of tasks, which can be
executed in parallel.

2. Labelled transition systems

As a basic model of process behaviour we will use labelled transition systems [18, 19].

Definition 1 (Labelled transition system).
A labelled transition system is an ordered triple (𝑆,𝐸,−→), where

• 𝑆 is a set of states,
• 𝐸 is a set of events,
• −→⊆ 𝑆 × 𝐸 × 𝑆 is a transition relation.

The fact, that (𝑠, 𝑒, 𝑠′) belongs to −→ is referred as 𝑠 𝑒−→ 𝑠′.

We will use labelled transition systems that have determined an initial state from which any
other state is reachable.

To define reachability of states, we first define the notion of a sequence and the notion of an
index set.

Definition 2 (Index set).
Index set I is a subset of positive integers satisfying: if a positive integer 𝑖 belongs to the index set I,
then any positive integer smaller than 𝑖 belongs to the index set I. If I is a finite nonempty set with
the maximum 𝑛, then the number 𝑛 is referred as 𝑚𝑎𝑥I. If I is the empty set, then 𝑚𝑎𝑥I = 0.



Definition 3 (Sequence).
Let I be an index set and 𝑆 be a set. Then a function 𝛼 : I → 𝑆 associating an element 𝛼(𝑖) from
the set 𝑆 to each index 𝑖 from the index set I, is called a sequence of elements from the set 𝑆. If I is
a finite set, then we say that 𝛼 is finite sequence with length 𝑚𝑎𝑥I. Especially, if I is the empty set,
then we say that 𝛼 is the empty sequence. If I is equal to the set of all positive integers, then we say
that 𝛼 is an infinite sequence.

For illustration, consider a sequence of characters 𝛼 = 𝑎𝑏𝑏𝑎 from the set of characters
𝑆 = {𝑎, 𝑏}. Intuitively, we understand that it is a finite sequence with length 4. In accordance
with Definition 2 we use the index set I = {1, 2, 3, 4}. The sequences 𝛼 is formalized as follows:
𝛼(1) = 𝑎, 𝛼(2) = 𝑏, 𝛼(3) = 𝑏 a 𝛼(4) = 𝑎, i.e. the first element of the sequence 𝛼 is character
𝑎, the second element is 𝑏, the third element is again 𝑏 a the fourth element is character 𝑎.

Definition 4 (Occurrence sequence, reachability).
Let (𝑆,𝐸,−→) be a labelled transition systems. Let 𝑠 ∈ 𝑆 be a state and let 𝜖 : I → 𝐸 be a finite
sequence of events. Sequence 𝜖 can occur in state 𝑠 iff there exists a function 𝜎 : I ∪ {0} → 𝑆

such that 𝜎(0) = 𝑠 and for each positive integer 𝑖 ∈ I: 𝜎(𝑖− 1)
𝜖(𝑖)−→ 𝜎(𝑖). The occurrence of the

sequence 𝜖 in the state 𝑠 leads to the state 𝜎(𝑚𝑎𝑥I).
A state 𝑠′ ∈ 𝑆 is reachable from a state 𝑠 iff there is an occurrence sequence 𝜖, which leads from

𝑠 to 𝑠′.
The fact that a finite sequence 𝜖 can occur in 𝑠 and its occurrence leads to 𝑠′ is referred as

𝑠
𝜖−→ 𝑠′.

Remember, that according to Definition 4 for any state 𝑠 we have: the empty sequence can
occur in 𝑠 and its occurrence leads to 𝑠, i.e. 𝑠 is self-reachable by occurrence of the empty
sequence.

Definition 5 (Pointed labelled transition system).
A pointed labelled transitions system is an ordered quadruple (𝑆,𝐸,−→, 𝑞), where (𝑆,𝐸,−→) is
a labelled transition system and 𝑞 ∈ 𝑆 is its initial state, while for each state 𝑠 ∈ 𝑆 there holds
that 𝑠 is reachable from 𝑞.

3. Petri nets

In this section we briefly introduce the basic definition of Petri nets [20, 21, 22, 23, 24, 25].

Definition 6 (Petri net).
A Petri net is an ordered quadruple (𝑃, 𝑇, 𝐼, 𝑂), where:

• 𝑃 is a set of places
• 𝑇 is a set of transitions
• 𝑃 ∩ 𝑇 = ∅
• 𝐼 : 𝑃 × 𝑇 → N is an input function, where N stands for the set of non-negative integers.
• 𝑂 : 𝑃 × 𝑇 → N is an output function.



A state of a Petri net is given by a marking.

Definition 7 (Marking).
Let 𝑃𝑁 = (𝑃, 𝑇, 𝐼,𝑂) be a Petri net. A function 𝑚 : 𝑃 → N attaching a non-negative integer to
each place is called a marking of Petri net 𝑃𝑁 . The value 𝑚(𝑝) defines the number of tokens in a
place 𝑝 ∈ 𝑃 . A marking will be written in form of a sum of marking of places, i.e.

∑︀
𝑝∈𝑃 𝑚(𝑝)𝑝.

The set of places, for which 𝑚(𝑝) is greater than zero, is called the support of marking 𝑚 and is
denoted by 𝑠𝑢𝑝(𝑚), formally for each 𝑝 ∈ 𝑃 there holds that 𝑝 belongs to 𝑠𝑢𝑝(𝑚) iff 𝑚(𝑝) > 0.

Places can be understood as types of tokens. As an example, if a set of places is given by
𝑃 = {𝑎, 𝑏, 𝑐}, we have three types of tokens, tokens of type 𝑎, tokens of type 𝑏 and tokens of
type 𝑐. Consider a marking 𝑚 : 𝑃 → N such that 𝑚(𝑎) = 2, 𝑚(𝑏) = 0 and finally 𝑚(𝑐) = 1. It
means, that the marking expresses a state with two tokens of type 𝑎, no tokens of type 𝑏 and
one token of type 𝑐, which will be expressed by expression 2𝑎+ 0𝑏+ 1𝑐, or more simply by
expression 2𝑎 + 𝑐 (i.e. two tokens of type 𝑎 and a token of type 𝑐), generally by expression∑︀

𝑝∈𝑃 𝑚(𝑝)𝑝.
The fact, that for markings 𝑚 and 𝑚′ there holds 𝑚(𝑝) ≤ 𝑚′(𝑝) for each 𝑝 ∈ 𝑃 , is denoted

by 𝑚 ≤ 𝑚′. Further, 𝑚 < 𝑚′, respectively 𝑚′ > 𝑚 denotes the fact that 𝑚 ≤ 𝑚′ and there
exists 𝑝 ∈ 𝑃 such that 𝑚(𝑝) < 𝑚′(𝑝). If 𝑚 < 𝑚′, we say that 𝑚 is smaller than 𝑚′, and 𝑚′ is
greater than 𝑚, respectively. The sum of two markings 𝑚 a 𝑚′ is marking 𝑚+𝑚′ such that
(𝑚+𝑚′)(𝑝) = 𝑚(𝑝) +𝑚′(𝑝) for each 𝑝 ∈ 𝑃 . If 𝑚 ≤ 𝑚′, then the difference of markings 𝑚′ a
𝑚 is given by marking 𝑚′ −𝑚 such that (𝑚′ −𝑚)(𝑝) = 𝑚′(𝑝)−𝑚(𝑝) for each 𝑝 ∈ 𝑃 .

Dynamics of a Petri net is given by firing of transitions.

Definition 8 (Transition firing).
Let 𝑃𝑁 = (𝑃, 𝑇, 𝐼, 𝑂) be a Petri net. Let 𝑚 : 𝑃 → N be a marking and 𝑡 ∈ 𝑇 be a transition
of the net 𝑃𝑁 . Transition 𝑡 is enabled to fire in marking 𝑚 iff for each 𝑝 ∈ 𝑃 there holds:
𝑚(𝑝) ≥ 𝐼(𝑝, 𝑡).

If transition 𝑡 is enabled to fire in marking 𝑚, then its firing in 𝑚 leads to marking 𝑚′ such that
for each 𝑝 ∈ 𝑃 there holds: 𝑚′(𝑝) = 𝑚(𝑝)− 𝐼(𝑝, 𝑡) +𝑂(𝑝, 𝑡).

We will consider that a Petri net has initial marking. A Petri net together with an initial
marking will be referred as marked Petri net.

Definition 9 (Marked Petri net).
A marked Petri net is an ordered quintuple 𝑀𝑃𝑁 = (𝑃, 𝑇, 𝐼,𝑂,𝑚0), where 𝑃𝑁 = (𝑃, 𝑇, 𝐼, 𝑂)
is a Petri net and 𝑚0 is a marking of 𝑃𝑁 called initial marking.

Graphically places are depicted as circles, markings of places by number of tokens inside
of places, transitions are depicted as squares. Enabled transitions are filled (by green color).
Non-zero value of input function 𝐼(𝑝, 𝑡) is expressed by an arrow from place 𝑝 to transition
𝑡, while the value greater than one is written by the arc. Non-zero value of output function
𝑂(𝑝, 𝑡), is expressed by an arrow from transition 𝑡 to place 𝑝, while the value greater than one is
written by the arc. These non-zero values will be referred as weights of arcs. All Petri nets used
in this work where modelled in an online Petri net editor, accessible at www.petriflow.com.

Petri nets defines a labelled transition system in a natural way by firing enabled transitions.

www.petriflow.com


Definition 10 (Reachability graph of a Petri net).
Let 𝑃𝑁 = (𝑃, 𝑇, 𝐼, 𝑂) be a Petri net. A labelled transition system (𝑆,𝐸,−→), where

• 𝑆 is the set of all markings, i.e. the set of all functions from 𝑃 to non-negative integers N,
• 𝐸 = 𝑇 ,
• 𝑚

𝑡−→ 𝑚′ iff transition 𝑡 is enabled to fire in marking 𝑚 and firing of 𝑡 in 𝑚 leads to
marking 𝑚′,

is called reachability graph of Petri net 𝑃𝑁 .

We also define reachability graphs of marked Petri nets.

Definition 11. (Reachability graph of a marked Petri Net)
Let 𝑀𝑃𝑁 = (𝑃, 𝑇, 𝐼,𝑂,𝑚0) be a marked Petri net. Let (𝑆,𝐸,−→) be reachability graph
of Petri net 𝑃𝑁 = (𝑃, 𝑇, 𝐼, 𝑂). Let [𝑚0⟩ denote the set of all markings reachable from 𝑚0

in reachability graph of Petri net 𝑃𝑁 . Then pointed labelled transition system ([𝑚0⟩, 𝐸,−→
∩([𝑚0⟩ × 𝐸 × [𝑚0⟩),𝑚0) is called reachability graph of marked Petri net 𝑀𝑃𝑁 . If sequence
𝜖 can occur in 𝑚 and its occurrence in 𝑚 leads to 𝑚′ in the reachability graph of 𝑀𝑃𝑁 , then
we say that sequence 𝜖 is enabled to fire in marking 𝑚 in net 𝑀𝑃𝑁 and its firing in 𝑚 leads to
the marking 𝑚′ in net 𝑀𝑃𝑁 . We also say that marking 𝑚′ is reachable from marking 𝑚 in the
marked Petri net 𝑀𝑃𝑁 .

Definition 12 (Boundedness).
A marked Petri net 𝑀𝑃𝑁 = (𝑃, 𝑇, 𝐼,𝑂,𝑚0) is bounded iff there exists a function 𝑏 : 𝑃 → N,
such that for each marking 𝑚 reachable from 𝑚0 in 𝑀𝑃𝑁 there holds: 𝑚 ≤ 𝑏. Function 𝑏 is
called the bound of net 𝑀𝑃𝑁 .

In the case that a marked Petri net has finitely many places is the boundedness equivalent
with the finiteness of the number of reachable markings. For more results on boundedness see
e.g. [26, 27, 28].

Corollary 1. A marked Petri net 𝑀𝑃𝑁 = (𝑃, 𝑇, 𝐼, 𝑂,𝑚0) with finite set of places is bounded
iff the number of markings reachable from 𝑚0 in 𝑀𝑃𝑁 is finite.

4. Workflow nets

We focus on processes, where instances has a unique start and unique correct finish. In literature,
such systems are modeled by workflow nets [29, 30, 31, 32].

Definition 13 (Workflow net).
A workflow net is a Petri net 𝑃𝑁 = (𝑃, 𝑇, 𝐼, 𝑂) with finite number of places and transitions in
which there exists a unique place 𝑖𝑛 ∈ 𝑃 and a unique place 𝑜𝑢𝑡 ∈ 𝑃 such that

• for each 𝑡 ∈ 𝑇 there holds 𝑂(𝑖𝑛, 𝑡) = 0 and there exists such 𝑡 ∈ 𝑇 that 𝐼(𝑖𝑛, 𝑡) ̸= 0,
• for each 𝑡 ∈ 𝑇 there holds 𝐼(𝑜𝑢𝑡, 𝑡) = 0 and there exists such 𝑡 ∈ 𝑇 that 𝑂(𝑜𝑢𝑡, 𝑡) ̸= 0.



Place 𝑖𝑛 is called input place of workflow net 𝑃𝑁 and place 𝑜𝑢𝑡 is called output place of workflow
net 𝑃𝑁 .

A marked workflow net is a workflow net with a special initial marking, in which only the
input place is marked.

Definition 14 (Marked workflow net).
A marked workflow net is a marked Petri net𝑀𝑃𝑁 = (𝑃, 𝑇, 𝐼,𝑂,𝑚0), where𝑃𝑁 = (𝑃, 𝑇, 𝐼, 𝑂)
is a workflow net and 𝑚0 = 𝑖𝑛, i.e. 𝑚0(𝑖𝑛) = 1 and 𝑚0(𝑝) = 0 for each 𝑝 ∈ 𝑃 different from 𝑖𝑛.

5. Petri nets and workflow nets with static places

Processes with instances and shared resources will be modeled by Petri nets with static places
[4, 5]. Static places inspired by static variables in Java will model shared resources. Petri nets
with static places were inspired by workflow nets with static places originally defined in papers
[33, 1, 3] under the name resource constrained workflow nets.

Definition 15 (Petri net with static places).
Petri net with static places is a quintuple 𝑃𝑁𝑆 = (𝐷,𝑆, 𝑇, 𝐼,𝑂), where

• 𝐷 is a set of dynamic places
• 𝑆 is a set of static places
• 𝐷 ∩ 𝑆 = ∅
• 𝑃𝑁 = (𝑃 = 𝐷 ∪ 𝑆, 𝑇, 𝐼, 𝑂) is a Petri net.

Static places will be depicted by dashed circles.

Definition 16. (Marked Petri net with static places)
Marked Petri net with static places is a sextuple 𝑀𝑃𝑁𝑆 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0), where

• 𝑃𝑁𝑆 = (𝐷,𝑆, 𝑇, 𝐼,𝑂) is a Petri net with static places
• 𝑀𝑃𝑁 = (𝑃 = 𝐷 ∪ 𝑆, 𝑇, 𝐼, 𝑂,𝑚0) is marked Petri net.

We say that a transition is enabled to fire in a marked Petri net with static places 𝑀𝑃𝑁𝑆 if it is
enabled to fire in marked Petri net 𝑀𝑃𝑁 . A reachability graph of a marked Petri net with static
places 𝑀𝑃𝑁𝑆 is the reachability graph of marked Petri net 𝑀𝑃𝑁 . All notion defined for marked
Petri net 𝑀𝑃𝑁 will analogously used for marked Petri net with static places 𝑀𝑃𝑁𝑆.

Definition 17. (Workflow net with static places/resource constrained workflow net) A
workflow net with static places, also called resource constrained workflow net, is a Petri net with
static places 𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂), where 𝑃𝑁 = (𝑃 = 𝐷 ∪ 𝑆, 𝑇, 𝐼, 𝑂) is a workflow net such
that 𝑖𝑛 ∈ 𝐷 and 𝑜𝑢𝑡 ∈ 𝐷.

Initial marking of a marked workflow net with static places contains one token in the input
place, no tokens in dynamic places different from the input place and any number of tokens
representing shared resources in static places.



Definition 18. (Marked workflow net with static places)
A marked workflow net with static places is a sextuple 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼, 𝑂,𝑚0), where

• 𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂) is a workflow net with static places
• 𝑚0 is initial marking such that 𝑚(𝑖𝑛) = 1 and 𝑚(𝑑) = 0 for each dynamic place 𝑑 ∈ 𝐷,

which is different from 𝑖𝑛.

In comparison with [33, 1, 3] we formalize durable resources via (weak) complementary
places [34] of static places.

Definition 19. (Remembering workflow net with static places)
Let 𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂) be such workflow net with static places, that for each places 𝑠 ∈ 𝑆 there
exists a unique (weak)complementary place 𝑑𝑠 ∈ 𝐷 different from 𝑖𝑛 and 𝑜𝑢𝑡, which for each
𝑡 ∈ 𝑇 satisfies 𝐼(𝑑𝑠, 𝑡) − 𝑂(𝑑𝑠, 𝑡) = 𝑂(𝑠, 𝑡) − 𝐼(𝑠, 𝑡). Workflow net 𝑊 is called remembering
workflow net with static places. The set of all complementary places of static places is denoted by
𝐷𝑆 .

The equality 𝐼(𝑑𝑠, 𝑡)−𝑂(𝑑𝑠, 𝑡) = 𝑂(𝑠, 𝑡)− 𝐼(𝑠, 𝑡) in a marked remembering workflow net
with static places implies that in case that𝑂(𝑠, 𝑡)−𝐼(𝑠, 𝑡) = 0, we also have 𝐼(𝑑𝑠, 𝑡)−𝑂(𝑑𝑠, 𝑡) =
0. It means, that firing any transition may create a token in a complementary place 𝑑𝑠 of a
static place 𝑠 iff it consumes a token from the static place 𝑠. Because in any initial marking
the complementary place 𝑑𝑠 is empty, we get that the sum of tokens in a static place 𝑠 and its
complementary place 𝑑𝑠 equals 𝑚0(𝑠).

Corollary 2. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a marked remembering workflow net with static
places. Let 𝑠 ∈ 𝑆 be a static place and let 𝑑𝑠 ∈ 𝐷𝑆 be its complementary place. Then for each
marking 𝑚 reachable from 𝑚0 there holds: 𝑚(𝑠)+𝑚(𝑑𝑠) = 𝑚0(𝑠) and therefore 𝑚(𝑠) ≤ 𝑚0(𝑠).

1-soundness of a marked workflow net with static places is defined analogously to soundness
of workflow nets in [32] as the ability to finish correctly a single instance.

Definition 20. (Final marking of marked workflow net with static places)
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a marked workflow net with static places. A marking 𝑚𝑓

of net 𝑀𝑊 reachable from 𝑚0 is called a final marking of 𝑀𝑊 iff there holds: 𝑚𝑓 (𝑜𝑢𝑡) = 1,
𝑚𝑓 (𝑑) = 0 for each 𝑑 ∈ 𝐷 different from 𝑜𝑢𝑡.

Definition 21. (1-soundness of marked workflow net with static places)
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a marked workflow net with static places and let 𝑜𝑢𝑡 ∈ 𝑃
denote the output place. Marked workflow net with static places 𝑀𝑊 is 1-sound iff for each
marking 𝑚 reachable from 𝑚0 there holds:

• there exists a final marking 𝑚𝑓 of net 𝑀𝑊 , which is reachable from marking 𝑚,
• if 𝑚(𝑜𝑢𝑡) ≥ 1 then 𝑚 is a final marking of net 𝑀𝑊 .

For marked remembering workflow nets with static places we have:



Corollary 3. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a marked remembering workflow net with static
places and let 𝑚𝑓 be a final marking of 𝑀𝑊 . Then 𝑚𝑓 (𝑠) = 𝑚0(𝑠) for each 𝑠 ∈ 𝑆 and therefore
𝑚𝑓 is a unique final marking of 𝑀𝑊 .

For 1-sound marked remembering workflow nets with static places we get:

Lemma 1. If a marked remembering workflow net with static places is 1-sound then the number
of its reachable markings is finite, i.e. the net is bounded.

Proof. Let the number of markings reachable from 𝑚0 is not finite. According to Dickson’s
lemma [35], let 𝑚 and 𝑚′ are markings reachable from 𝑚0 such that 𝑚 < 𝑚′. From definition
of 1-soundness we get that 𝑚′(𝑜𝑢𝑡) = 1 or 𝑚′(𝑜𝑢𝑡) = 0 and 𝑚(𝑜𝑢𝑡) = 1 or 𝑚(𝑜𝑢𝑡) = 0.
Because 𝑚 < 𝑚′, we also get 𝑚(𝑠) ≤ 𝑚′(𝑠) for each 𝑠 ∈ 𝑆.

• The combination 𝑚′(𝑜𝑢𝑡) = 1 and 𝑚(𝑜𝑢𝑡) = 1 means that 𝑚′ = 𝑚𝑓 = 𝑚, what
contradicts that 𝑚 < 𝑚′.

• The combination 𝑚′(𝑜𝑢𝑡) = 0 and 𝑚(𝑜𝑢𝑡) = 1 is in contradiction with 𝑚 < 𝑚′.
• The combination 𝑚′(𝑜𝑢𝑡) = 1 and 𝑚(𝑜𝑢𝑡) = 0 means that 𝑚′ = 𝑚𝑓 . Assuming that
𝑚𝑓 > 𝑚 we get 𝑚(𝑑) = 0 for each 𝑑 ∈ 𝐷). From first item of 1-soundness we further
get that 𝑚𝑓 is reachable from 𝑚 by firing of a sequence of transitions. From definition of
transition firing it is clear that whenever a sequence is enabled to fire from a marking, it
is enabled to fire from any greater marking, and therefore also from 𝑚𝑓 . Because firing
of that sequence leads from 𝑚 to 𝑚𝑓 , its firing from 𝑚𝑓 leads to the marking 𝑚′′ such
that 𝑚′′(𝑜𝑢𝑡) = 𝑚𝑓 (𝑜𝑢𝑡) + (𝑚𝑓 (𝑜𝑢𝑡) − 𝑚(𝑜𝑢𝑡)), i.e. 𝑚′′(𝑜𝑢𝑡) = 1 + (1 − 0)) = 2,
what contradicts with the second item of 1-soundness implying that for each marking
𝑚′′ reachable from 𝑚0 there holds 𝑚′′(𝑜𝑢𝑡) ≤ 1.

• The combination 𝑚′(𝑜𝑢𝑡) = 0 a 𝑚(𝑜𝑢𝑡) = 0 means by assumption 𝑚 < 𝑚′, that there
exists 𝑝 ∈ 𝑃 different from 𝑜𝑢𝑡 such that 𝑚′(𝑝) > 𝑚(𝑝). At the same time from the
first item of 1-soundness we get that 𝑚𝑓 is reachable from 𝑚 by firing a sequence of
transitions. From definition of transition firing it is clear that whenever a sequence
is enabled to fire from a marking, it is enabled to fire from any greater marking, and
therefore also from 𝑚′. Because firing of that sequence leads from 𝑚 to 𝑚𝑓 , its firing from
𝑚′ leads to the marking 𝑚′′ = 𝑚′ + (𝑚𝑓 −𝑚). Because 𝑚′(𝑜𝑢𝑡) = 0 and 𝑚(𝑜𝑢𝑡) = 0,
we get 𝑚′′(𝑜𝑢𝑡) = 1. At the same time 𝑚′(𝑝) > 𝑚(𝑝). If 𝑝 ∈ 𝐷, we get 𝑚′′(𝑝) > 0,
what contradicts the second item of 1-soundness. If 𝑝 ∈ 𝑆, we get 𝑚′′(𝑝) > 𝑚𝑓 (𝑝), what
contradicts Corollaries 2 a 3.

It means that if a marked remembering workflow net with static places is 1-sound, then the
number of its reachable markings is finite and therefore the net is bounded. □

6. Reachability nets

In order to investigate the ability to finish properly arbitrary number of instances running in
parallel, we need to find a net, which will simulate the runtime environment with copies of a



dynamic part of a workflow net for each instance sharing just static places. Such a net should
prohibit the mixing of tokens from different copies. In other words, the net simulating the
runtime environment should separate reachable markings of dynamic places of instances. One
possible way to reach this goal is to use the reachability graph of the original workflow net as
an inspiration.

First we will define some basic notions which will be further used to define such so called
reachability net.

Definition 22 (Notation).
Let 𝑃 be a set, let 𝐴 be a set and let 𝐷 be a set such that 𝐷 ⊆ 𝑃 . Let 𝑚 : 𝑃 → 𝐴 be a function.
Let 𝑚|𝐷 denote restriction of 𝑚 to 𝐷, i.e. 𝑚|𝐷 : 𝐷 → 𝐴 such that 𝑚|𝐷(𝑑) = 𝑚(𝑑) for each
𝑑 ∈ 𝐷. Let 𝑆 be a set such that 𝑆 ⊆ 𝑃 , and let 𝐷 ∩ 𝑆 = ∅ (𝐷 a 𝑆 are disjoint), then we denote
𝑚|𝐷 ∪𝑚|𝑆 = 𝑚|(𝐷 ∪ 𝑆). Let us denote by 𝑃 ∖𝐷 the set difference 𝑃 and 𝐷, as a set satisfying
𝐷 ∩ (𝑃 ∖𝐷) = ∅ and (𝑃 ∖𝐷)∪𝐷 = 𝑃 (we define the set difference only for the case that 𝐷 is a
subset of 𝑃 ). Let [𝑃 → 𝐴] denote the set of all functions from 𝑃 to 𝐴. For 𝐴 being a finite set, let
|𝐴| denote the number of elements of 𝐴.

Definition 23 (Set of reachable D-markings).
Let 𝑀𝑃𝑁 = (𝑃, 𝑇, 𝐼,𝑂,𝑚0) be a marked Petri net. Let 𝐷 be a subset of places, i.e. 𝐷 ⊆ 𝑃 .
Let 𝑚 be a marking of 𝑀𝑃𝑁 . Then function 𝑚|𝐷 is called a D-marking. By symbol [𝑚0⟩|𝐷 we
denote the set of all D-markings 𝑤 satisfying: 𝑤 ∈ [𝑚0⟩|𝐷 iff there exists such 𝑚 ∈ [𝑚0⟩ that
𝑤 = 𝑚|𝐷. It means that symbol [𝑚0⟩|𝐷 denotes the set of all D-markings 𝑚|𝐷 such that 𝑚 is
reachable from 𝑚0. We also say that [𝑚0⟩|𝐷 denote the set of all D-markings reachable from
initial D-marking 𝑚0|𝐷 in 𝑀𝑃𝑁 .

Each reachable D-marking 𝑚|𝐷 from [𝑚0⟩|𝐷 of the original workflow net will become to be
a place in reachability net. In addition, static places of the original workflow net will be static
places of reachability net. Elements of transition relation (𝑚, 𝑡,𝑚′) z −→ of the reachability
graph of original workflow net will be used to create transitions of the reachability net. A
triple (𝑚|𝐷, 𝑡,𝑚′|𝐷) ∈ ([𝑚0⟩|𝐷)×𝑇 × ([𝑚0⟩|𝐷) will be a transition of the reachability net iff
𝑚

𝑡−→ 𝑚′. A transition (𝑚|𝐷, 𝑡,𝑚′|𝐷) of the reachability net will consume exactly one token
from the place 𝑚|𝐷 of the reachability net and it will produce exactly one token in place 𝑚′|𝐷 of
the reachability net. Arcs and their weights between static places and transition (𝑚|𝐷, 𝑡,𝑚′|𝐷)
of the reachability net will be identical with arcs between static places and transition 𝑡 of the
original net. Finally, we add a constructor consisting of two transitions {𝑛𝑒𝑤, 𝑠𝑡𝑜𝑝} and one
place {source}.

In graphical expression of reachability nets, we will label transition (𝑚|𝐷, 𝑡,𝑚′|𝐷) of the
reachability net only by the name of transition 𝑡 of the original net.

Definition 24 (Reachability net).
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a marked workflow net with static places and let 𝑛𝑒𝑤, 𝑠𝑡𝑜𝑝
and 𝑠𝑜𝑢𝑟𝑐𝑒 denote elements satisfying {𝑛𝑒𝑤, 𝑠𝑡𝑜𝑝, 𝑠𝑜𝑢𝑟𝑐𝑒} ∩ (𝐷 ∪ 𝑆 ∪ 𝑇 ) = ∅. Reachability
net of the net 𝑀𝑊 is the marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0), where

• 𝑃 𝑟 = ([𝑚0⟩|𝐷) ∪ 𝑆 ∪ {𝑠𝑜𝑢𝑟𝑐𝑒}.
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Figure 2: A 1-sound marked remembering workflow net with static places, modeling allocation of mem-
ory units and processors to computing tasks with possibility to change the setting for the computation.

• 𝑇 𝑟 = 𝑇 𝑎 ∪ {𝑛𝑒𝑤, 𝑠𝑡𝑜𝑝}, where 𝑇 𝑎 is the set of all triples (𝑥, 𝑡, 𝑦) ∈ ([𝑚0⟩|𝐷) × 𝑇 ×
([𝑚0⟩|𝐷), for which there exists a triple (𝑚, 𝑡,𝑚′) ∈ [𝑚0⟩×𝑇 × [𝑚0⟩, such that 𝑥 = 𝑚|𝐷,
𝑦 = 𝑚′|𝐷 and 𝑚

𝑡−→ 𝑚′, i.e. the transitions of the reachability net are 𝑛𝑒𝑤 a 𝑠𝑡𝑜𝑝 and
such triples (𝑥, 𝑡, 𝑦), where 𝑥 a 𝑦 are D-markings and 𝑡 is enabled to fire in marking 𝑚 in
𝑀𝑊 and its firing leads to 𝑚′ in 𝑀𝑊 , while 𝑥 = 𝑚|𝐷 and 𝑦 = 𝑚′|𝐷.

• 𝐼𝑟(𝑥, (𝑥, 𝑡, 𝑦)) = 1 for each (𝑥, 𝑡, 𝑦) ∈ 𝑇 𝑎

• 𝐼𝑟(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑛𝑒𝑤) = 1 and 𝐼𝑟(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑡𝑜𝑝) = 1, i.e. constructor 𝑛𝑒𝑤 is enabled to fire
only in a marking with a token in place 𝑠𝑜𝑢𝑟𝑐𝑒, similarly 𝑠𝑡𝑜𝑝

• 𝐼𝑟(𝑠, (𝑥, 𝑡, 𝑦)) = 𝐼(𝑠, 𝑡) for each 𝑠 ∈ 𝑆, (𝑥, 𝑡, 𝑦) ∈ 𝑇 𝑎, i.e. arcs from static places to copies
of transitions are copied

• 𝑂𝑟((𝑥, 𝑡, 𝑦), 𝑦) = 1 for each (𝑥, 𝑡, 𝑦) ∈ 𝑇 𝑎

• 𝑂𝑟(𝑖𝑛, 𝑛𝑒𝑤) = 1 and 𝑂𝑟(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑛𝑒𝑤) = 1, i.e. firing of constructor 𝑛𝑒𝑤 creates a token
in place 𝑖𝑛 and returns a token to place 𝑠𝑜𝑢𝑟𝑐𝑒 (remember that from Definition 18 we get
𝑖𝑛 = 𝑚0|𝐷)

• 𝑂𝑟(𝑠, (𝑥, 𝑡, 𝑦)) = 𝑂(𝑠, 𝑡) for each 𝑠 ∈ 𝑆, (𝑥, 𝑡, 𝑦) ∈ 𝑇 𝑎, i.e. arcs from copies of transitions
to static places are copied

• 𝐼𝑟(𝑝, 𝑡) = 0 a 𝑂𝑟(𝑝, 𝑡) = 0 for each other pairs (𝑝, 𝑡) ∈ (𝑃 𝑟 × 𝑇 𝑟)

• 𝑚𝑟
0(𝑠𝑜𝑢𝑟𝑐𝑒) = 1, 𝑚𝑟

0|𝑆 = 𝑚0|𝑆 a 𝑚𝑟
0(𝑥) = 0 for each 𝑥 ∈ [𝑚0⟩|𝐷, i.e. in the initial

marking is one token in place 𝑠𝑜𝑢𝑟𝑐𝑒, tokens in static places are copied and places of the
reachability net equal to reachable D-markings of the net 𝑀𝑊 are empty.

To illustrate a reachability net, we will consider the net in Figure 2
Existence of the complementary places of static places in remembering workflow net implies

following result:



Corollary 4. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a marked remembering workflow net with static
places. Then for each two markings 𝑚 and 𝑚′ from [𝑚0⟩ there holds: if 𝑚|𝐷 = 𝑚′|𝐷 then 𝑚 = 𝑚′.

Corollary 5. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places. Then its reachability net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) has a finite number of
places 𝑃 𝑟 and a finite number of transitions 𝑇 𝑟 .

Places in the reachability net of remembering net represent states of the instance, including
information how many tokens from static places are used by the instance. Each token in a place
of the reachability net represent an instance in the corresponding state. The number of tokens
in a place of the reachability net determine how many instances are in that state. Thus, marking
of the reachability net determines how many instances are in states represented by single places
of the reachability net.

Definition 25 (Final marking of a reachability net).
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a marked workflow net with static places and let a marked
Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability net of the net 𝑀𝑊 . A marking 𝑚𝑟
𝑓 of

the reachability net 𝑀𝑃𝑁 reachable from 𝑚𝑟
0, is called a final marking of 𝑀𝑃𝑁 , if 𝑚𝑟

𝑓 (𝑥) = 0
for each 𝑥 ∈ 𝑃 𝑟 ∖ (𝑆 ∪ {𝑜𝑢𝑡}) (where 𝑜𝑢𝑡 denotes in accordance with the introduced notation the
reachable D-marking given by function 1 · 𝑜𝑢𝑡 from 𝐷 to N).

A lock of the reachability net is defined as a marking, from which no final marking is reachable.

Definition 26. (Lock, deadlock and livelock of a reachability net)
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a marked workflow net with static places and let a marked
Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability net of the net 𝑀𝑊 . A marking 𝑚𝑟

of the reachability net 𝑀𝑃𝑁 reachable from the initial marking 𝑚𝑟
0, is called a lock, if from 𝑚𝑟

no final marking of the reachability net 𝑀𝑃𝑁 is reachable. If no transition of the reachability net
𝑀𝑃𝑁 is enabled to fire in a lock 𝑚𝑟 , then it is called a deadlock of 𝑀𝑃𝑁 , otherwise it is called a
livelock of 𝑀𝑃𝑁 .

7. Basic locks of a reachability net

Following result, which is implied directly by the construction of the reachability net is important
for detection of locks of reachability nets.

Lemma 2. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability
net of the net 𝑀𝑊 . Let marking 𝑚𝑟

1 be reachable from 𝑚𝑟
0 in the reachability net 𝑀𝑃𝑁 . Then

for arbitrary marking 𝑤 : (𝑃 𝑟 ∖ 𝑆) → N satisfying 𝑚𝑟
1|(𝑃 𝑟 ∖ 𝑆) > 𝑤 there exists such marking

𝑚𝑟
2 reachable from 𝑚𝑟

0 in 𝑀𝑃𝑁 , that 𝑚𝑟
2|(𝑃 𝑟 ∖ 𝑆) = 𝑤.

In the following definition we will divide the places of the reachability net according to the
fact, whether they represent states, in which resources from static places are used.



Definition 27 (Places with resources).
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net with static places
and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability net of the net 𝑀𝑊 .

• A place 𝑥 ∈ 𝑃 𝑟 ∖ 𝑆 of the reachability net is called a place without resource 𝑠 for 𝑠 ∈ 𝑆
if either 𝑥 = 𝑠𝑜𝑢𝑟𝑐𝑒 or for the complementary places 𝑑𝑠 ∈ 𝐷𝑆 of place 𝑠 there holds
𝑥(𝑑𝑠) = 0.

• The set of all places without resource 𝑠 is denoted by 𝐵𝑟
𝑠 .

• If place 𝑥 ∈ 𝑃 𝑟 ∖ 𝑆 of the reachability net is a place without resource for each 𝑠 ∈ 𝑆, we
call it simply a place without resources.

• The set of all places without resources is denoted by 𝐵𝑟 .
• A place 𝑥 ∈ 𝑃 𝑟 ∖ 𝑆 of the reachability net is called place with resource 𝑠 for 𝑠 ∈ 𝑆 if for

the complementary place 𝑑𝑠 ∈ 𝐷𝑆 of 𝑠 there holds 𝑥(𝑑𝑠) > 0. The set of all places with
resource 𝑠 is denoted by 𝑍𝑟

𝑠 .
• If for a place 𝑥 ∈ 𝑃 𝑟 ∖ 𝑆 of the reachability net there is 𝑠 ∈ 𝑆 such that 𝑥 is a place with

resource 𝑠, then we call it simply a place with resources.
• The set of all places with resources is denoted by 𝑍𝑟 .
• For a place 𝑥 ∈ 𝑍𝑟 of the reachability net we denote by symbol 𝑍(𝑥) the set of such 𝑠 ∈ 𝑆,

for which 𝑥 ∈ 𝑍𝑟
𝑠 .

Similarly as states, we divide the transitions of the reachability net for those, that need tokens
from static places to be enabled to fire and those, that do not need tokens from static places. We
will divide the places according to the fact, whether there is a transition, which moves a token
from a place with resources and at the same time it requires resources.

Definition 28. (Transitions requiring resources, critical places)
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net with static places
and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability net of the net 𝑀𝑊 .

• A transition (𝑥, 𝑡, 𝑦) ∈ 𝑇 𝑎 is called a transition requiring resources if 𝐼(𝑠, 𝑡) > 0 for some
𝑠 ∈ 𝑆.

• If for a place with resources 𝑥 ∈ 𝑍𝑟 there holds that there is a transition (𝑥, 𝑡, 𝑦) ∈ 𝑇 𝑎

requiring resources, then 𝑥is called a critical place of the reachability net 𝑀𝑃𝑁 .
• The set of all critical places is denoted by 𝐾𝑟 .

On Figure 3 there is the reachability net of the 1-sound marked remembering workflow net
with static places from Figure 2.

The set of places without resources 𝐵𝑟 in the reachability net on Figure 3 is given by six
places: by place source, by place in, by place waiting for memory + waiting for processor + settings
ready, by place waiting for memory + waiting for processor + settings, by place memory disposed
+ processor disposed and by the place out.

The set of places with resources 𝑍𝑟 is given by ten places, two of which are critical.
First critical place of the reachability net is its place waiting for memory + processor allocated

+ settings ready + processor. Second critical place of the reachability net is its place memory
allocated + waiting for processor + settings ready + memory.

On Figure 4 there is a livelock of the process for ten instances.



Corollary 6. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability
net of the net 𝑀𝑊 . Let 𝑠 ∈ 𝑆 be a static place and let 𝑑𝑠 ∈ 𝐷𝑆 be its complementary place. Then
for each marking 𝑚𝑟 reachable from 𝑚𝑟

0 there holds 𝑚𝑟(𝑠) +
∑︀

𝑥∈𝑍𝑟
𝑠
𝑚𝑟(𝑥) · 𝑥(𝑑𝑠) = 𝑚0(𝑠),

and therefore 𝑚𝑟(𝑠) ≤ 𝑚𝑟
0(𝑠) = 𝑚0(𝑠).

Another important result is given as follows:

Lemma 3. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability
net of the net 𝑀𝑊 . Then for arbitrary marking 𝑚𝑟

1 reachable from 𝑚𝑟
0 in the reachability net

there exists a marking 𝑚𝑟
2 reachable from 𝑚𝑟

1 such that 𝑚𝑟
2(𝑥) = 0 for each 𝑥 ∈ 𝑍𝑟 ∖𝐾𝑟 .

Proof. We show, that if a token is in a place 𝑥 ∈ 𝑍𝑟 ∖ 𝐾𝑟 , we can move that token to a
places without resources from 𝐵𝑟 , or to a critical place from 𝐾𝑟 . Repeating the procedure we
can set to zero all places 𝑥 ∈ 𝑍𝑟 ∖ 𝐾𝑟 . Because the original remembering workflow net is
1-sound, from each 𝑥 ∈ 𝑍𝑟 ⊆ [𝑚0⟩|𝐷 is in original workflow net reachable a final marking
𝑜𝑢𝑡∪𝑚0|𝑆. It means, that for each place 𝑥 ∈ 𝑍𝑟 ∖𝐾𝑟 there exists a finite sequence 𝜖 : I → 𝑇 a
𝜎 : I ∪ {0} → [𝑚0⟩|𝐷 such that 𝜎(0) = 𝑥, (𝜎(𝑖− 1), 𝜖(𝑖), 𝜎(𝑖)) ∈ 𝑇 𝑎 for each positive integer
𝑖 ∈ I and 𝜎(𝑚𝑎𝑥I) = 𝑜𝑢𝑡. Let 𝛼 : I → 𝑇 𝑎 be a sequence of transitions from 𝑇 𝑎 such that
𝛼(𝑖) = (𝜎(𝑖− 1), 𝜖(𝑖), 𝜎(𝑖)) for 𝑖 ∈ I.

• Let no transition 𝛼(𝑖), where 𝑖 ∈ I, is a transition requiring resources. Then sequence 𝛼 is
enabled to fire in any marking of the reachability net𝑚𝑟

1 ∈ [𝑚𝑟
0⟩ satisfying𝑚1(𝑥) > 0 and

its firing leads to marking 𝑚𝑟
2, such that 𝑚𝑟

2(𝑥) = 𝑚𝑟
1(𝑥)−1 and 𝑚𝑟

2(𝑜𝑢𝑡) = 𝑚𝑟
1(𝑜𝑢𝑡)+1,

i.e. firing of sequence 𝛼 moves a token from a place with resources 𝑥 of the reachability
net to the place without resources 𝑜𝑢𝑡 of the rechability net.

• Let there is an 𝑖 ∈ I such that transition 𝛼(𝑖) is a transition requiring resources. Let 𝑖 be
the smallest index, for which 𝛼(𝑖) is a transitions requiring resources. Because 𝑥 is not a
critical place, 𝑖 ≥ 2.

– Let 𝜎(𝑖 − 1) ∈ 𝐵𝑟 , i.e. 𝜎(𝑖 − 1) is a place without resources. Then sequence
𝛼|{1, . . . , 𝑖−1} is enabled to fire in each marking of the reachability net 𝑚1 ∈ [𝑚𝑟

0⟩
satisfying 𝑚𝑟

1(𝑥) > 0 and its firing leads to marking 𝑚𝑟
2, such that 𝑚𝑟

2(𝑥) =
𝑚𝑟

1(𝑥)− 1 and 𝑚𝑟
2(𝜎(𝑖− 1)) = 𝑚𝑟

1(𝜎(𝑖− 1)) + 1, i.e. firing of sequence 𝛼 moves
a token from place 𝑥 of the reachability net to a place without resources 𝜎(𝑖− 1) of
the reachability net.

– Let 𝜎(𝑖 − 1) ∈ 𝑍𝑟 , i.e. 𝜎(𝑖 − 1) is a place with resources. Because 𝛼(𝑖) = (𝜎(𝑖 −
1), 𝜖(𝑖), 𝜎(𝑖)) is a transition requiring resources, 𝜎(𝑖 − 1) ∈ 𝐾𝑟 , i.e. 𝜎(𝑖 − 1) is a
critical place. Then sequence 𝛼|{1, . . . , 𝑖− 1} is enabled to fire in each marking of
the rechability net 𝑚𝑟

1 ∈ [𝑚𝑟
0⟩ satisfying 𝑚1(𝑥) > 0 and its firing leads to marking

𝑚𝑟
2, such that 𝑚𝑟

2(𝑥) = 𝑚𝑟
1(𝑥)−1 and 𝑚𝑟

2(𝜎(𝑖−1)) = 𝑚𝑟
1(𝜎(𝑖−1))+1, i.e. firing

of sequence 𝛼 moves a token from place 𝑥 of the reachability net to a critical place
𝜎(𝑖− 1) of the reachability net.

□



If we apply the result of Lemma 3 to locks, we get that from each lock of the reachability net
we can reach a lock, in which from all places with resources only critical places are marked.
These locks are called critical locks.

Definition 29 (Critical locks of a reachability net).
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net with static
places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability net of the net
𝑀𝑊 . Then a lock 𝑚𝑟 , such that 𝑚𝑟(𝑥) = 0 for each 𝑥 ∈ 𝑍𝑟 ∖𝐾𝑟 , is called a critical lock of the
reachability net.

Corollary 7. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability
net of the net 𝑀𝑊 . Then there holds: if an arbitrary marking 𝑚𝑟

1 reachable from 𝑚𝑟
0 in the

reachability net is a lock, then there exists a critical lock 𝑚𝑟
2 reachable from 𝑚𝑟

1.

The lock in Figure 4 is not a critical lock, because the place with resources waiting for memory
+ processor allocated + settings + processor and the place with resources memory allocated +
waiting for processor + settings + memory are not empty. These places with resources are not
critical places of the reachability net.

From marking in Figure 4 the marking in Figure 5 is reachable. The marking in Figure 5 is a
critical lock.

A special set of critical lock are those locks, for which no other places except critical places
and static places are marked. Such lock are called basic locks.

Definition 30 (Basic locks of a reachability net).
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net with static places
and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability net of the net 𝑀𝑊 .
Then a critical lock 𝑚𝑟 , such that 𝑚𝑟(𝑥) = 0 for each place without resources 𝑥 ∈ 𝐵𝑟 , is called a
basic lock of the reachability net.

The following results states, that if 𝑚𝑟
1 is a critical lock, then marking 𝑚𝑟

2 created from 𝑚𝑟
1

by removing all tokens from all places without resources, is reachable from z 𝑚𝑟
0 and therefore

it is a basic lock of the reachability net.

Lemma 4. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability
net of the net 𝑀𝑊 . Then there holds: if an arbitrary marking 𝑚𝑟

1 reachable from 𝑚𝑟
0 in the

reachability net is a critical lock but not a basic lock, then 𝑚𝑟
2, such that 𝑚𝑟

2(𝑥) = 𝑚𝑟
1(𝑥) for each

place with resources 𝑥 ∈ 𝑍𝑟 and 𝑚𝑟
2(𝑥) = 0 for each place without resources 𝑥 ∈ 𝐵𝑟 , is a basic

lock of the reachability net.

Proof. According to Lemma 2, 𝑚𝑟
2 is reachable from 𝑚𝑟

0. Assume, that 𝑚𝑟
2 is not a basic lock.

Because 𝑚𝑟
1 is a critical lock, 𝑚𝑟

2(𝑥) = 0 for each 𝑥 ∈ 𝑍𝑟 ∖𝐾𝑟 , i.e. 𝑚𝑟
2 satisfies the condition of

critical locks. Because 𝑚𝑟
2(𝑥) = 0 for each place without resources 𝑥 ∈ 𝐵𝑟 , 𝑚𝑟

2 satisfies also the
condition of basic locks. It means, that 𝑚𝑟

2 is not a lock. Then there is a sequence of transitions



𝛽 enabled to fire in 𝑚𝑟
2, such that its firing leads to a final marking 𝑚𝑟

𝑓 , where 𝑚𝑟
𝑓 |𝑆 = 𝑚𝑟

0|𝑆.
Because 𝑚𝑟

2(𝑥) = 𝑚𝑟
1(𝑥) for each place with resources 𝑥 ∈ 𝑍𝑟 , i.e. in non-static places of

the reachability net differ 𝑚𝑟
2 and 𝑚𝑟

1 only in marking of places without resources, there also
holds that 𝑚𝑟

2|𝑆 = 𝑚𝑟
1|𝑆, i.e. the markings of static places of 𝑚𝑟

2 and 𝑚𝑟
1 are equal. Then the

sequence 𝛽 is enabled to fire also in 𝑚𝑟
1 and its firing leads to 𝑚𝑟

3 such that 𝑚𝑟
3|𝑍𝑟 = 0 and

𝑚𝑟
3|𝑆 = 𝑚𝑟

0|𝑆.
Because original net 𝑀𝑊 is 1-sound, (similarly as in the proof of Lemma 3) from each

𝑥 ∈ 𝐵𝑟 ⊆ [𝑚0⟩|𝐷 is in 𝑀𝑊 reachable the final marking 𝑜𝑢𝑡 ∪𝑚0|𝑆 of 𝑀𝑊 . It means, that
for each place 𝑥 ∈ 𝐵𝑟 there is a finite sequence 𝜖 : I → 𝑇 a 𝜎 : I ∪ {0} → [𝑚0⟩|𝐷 such that
𝜎(0) = 𝑥, (𝜎(𝑖− 1), 𝜖(𝑖), 𝜎(𝑖)) ∈ 𝑇 𝑎 for each finite positive integer 𝑖 ∈ I and 𝜎(𝑚𝑎𝑥I) = 𝑜𝑢𝑡.
Let 𝛼 : I → 𝑇 𝑎 be the sequence of transitions from 𝑇 𝑎 such that 𝛼(𝑖) = (𝜎(𝑖−1), 𝜖(𝑖), 𝜎(𝑖)) for
𝑖 ∈ I. Sequence 𝛼 is enabled to fire in each marking of the reachability net 𝑚𝑟

1 ∈ [𝑚𝑟
0⟩ satisfying

𝑚1(𝑥) > 0 and𝑚𝑟
1|𝑆 = 𝑚𝑟

0|𝑆 and its firing leads to marking𝑚𝑟
4, where𝑚𝑟

4(𝑥) = 𝑚𝑟
1(𝑥)−1 and

𝑚𝑟
4(𝑜𝑢𝑡) = 𝑚𝑟

1(𝑜𝑢𝑡)+1, i.e. firing of sequence 𝛼 moves a token from a place without resources
𝑥 of the reachability net to a place without resources 𝑜𝑢𝑡 of the reachability net, and also
𝑚𝑟

4|𝑍𝑟 = 0, 𝑚𝑟
4|𝐵𝑟 ∖ {𝑥, 𝑜𝑢𝑡} = 𝑚𝑟

1|𝐵𝑟 ∖ {𝑥, 𝑜𝑢𝑡} a 𝑚𝑟
4|𝑆 = 𝑚𝑟

1|𝑆 = 𝑚𝑟
0|𝑆. By repeating the

firing of sequence 𝛼 we get marking 𝑚𝑟
5, where 𝑚𝑟

5(𝑥) = 0 and 𝑚𝑟
5(𝑜𝑢𝑡) = 𝑚𝑟

1(𝑜𝑢𝑡) +𝑚𝑟
1(𝑥),

i.e. 𝑚𝑟
1(𝑥)-times repeated firing of sequence 𝛼 moves all 𝑚𝑟

1(𝑥) tokens from place without
resources 𝑥 of the reachability net to the place without resources 𝑜𝑢𝑡 of the reachability net,
and also 𝑚𝑟

5|𝑍𝑟 = 0, 𝑚𝑟
5|𝐵𝑟 ∖ {𝑥, 𝑜𝑢𝑡} = 𝑚𝑟

1|𝐵𝑟 ∖ {𝑥, 𝑜𝑢𝑡} and 𝑚𝑟
5|𝑆 = 𝑚𝑟

1|𝑆 = 𝑚𝑟
0|𝑆. By

repeating the procedure for such 𝑥 ∈ 𝐵𝑟 that marking of 𝑥 is not zero, we get a marking 𝑚𝑟
𝑓

such that 𝑚𝑟
𝑓 |((𝐵𝑟 ∖ {𝑜𝑢𝑡}) ∪ 𝑍𝑟) = 0 and 𝑚𝑟

𝑓 |𝑆 = 𝑚𝑟
0|𝑆, i.e. we get a final marking of the

reachability net. This contradicts with the assumption that 𝑚1 is a critical lock. □

By application of Lemma 4 on critical lock from Figure 5 we get the reachable basic lock in
Figure 6.

Altogether, we get the following main result.

Theorem 1. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability
net of the net 𝑀𝑊 . Then there holds: if there exists a lock 𝑚𝑟

1, then there exists a basic lock 𝑚𝑟
2.

We also get:

Corollary 8. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability
net of the net 𝑀𝑊 . If the reachability net has no critical places, then it has no locks.

Critical places are bounded in the reachability net, and therefore basic locks are bounded, i.e.
there are finitely many basic locks.

Definition 31 (Simple bound of critical places).
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net with static
places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability net of the
net 𝑀𝑊 . Let 𝑘 ∈ 𝐾𝑟 be a critical place. Let 𝑠 ∈ 𝑍(𝑘) and let 𝑑𝑠 ∈ 𝐷𝑆 be the complementary



place of 𝑠. Denote 𝑝𝑏(𝑘, 𝑠) = 𝑚0(𝑠)÷ 𝑘(𝑑𝑠), where symbol ÷ denotes integer division. Denote
𝑠𝑏𝑜𝑢𝑛𝑑(𝑘) = min𝑠∈𝑍(𝑘) 𝑝𝑏(𝑘, 𝑠) the minimum of values 𝑝𝑏(𝑘, 𝑠) for 𝑠 ∈ 𝑍(𝑘). The values
𝑠𝑏𝑜𝑢𝑛𝑑(𝑘) is called the simple bound of a critical place 𝑘. The sum of values

𝑠𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) =
∑︁
𝑘∈𝐾𝑟

𝑠𝑏𝑜𝑢𝑛𝑑(𝑘)

is called the simple bound of critical places 𝐾𝑟 .

Corollary 9. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability
net of the net 𝑀𝑊 . Let 𝑚𝑟 be an arbitrary marking of the reachability net reachable from 𝑚𝑟

0.
For each critical place 𝑘 ∈ 𝐾𝑟 there holds 𝑚𝑟(𝑘) ≤ 𝑠𝑏𝑜𝑢𝑛𝑑(𝑘), i.e. the number of tokens in
any reachable marking 𝑚𝑟 does not exceed the simple bound of a critical place. There holds that∑︀

𝑘∈𝐾𝑟 𝑚𝑟(𝑘) ≤ 𝑠𝑏𝑜𝑢𝑛𝑑(𝐾𝑟). In addition, 𝑠𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) ≥ 1.

More exact upper bound of the number of tokens in critical places can be computed as a
solution of the following integer linear programming problem.

Definition 32 (Bound of critical places).
Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net with static places
and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability net of the net 𝑀𝑊 .
Let 𝑦 : 𝐾𝑟 → N be an integer solution of the linear inequality system∑︁

𝑘∈𝐾𝑟

𝑘(𝑑𝑠) · 𝑦(𝑘) ≤ 𝑚0(𝑠) 𝑓𝑜𝑟 𝑠 ∈ 𝑆

𝑦(𝑘) ≥ 0 𝑓𝑜𝑟 𝑘 ∈ 𝐾𝑟

which maximizes the objective function ∑︁
𝑘∈𝐾𝑟

𝑘(𝑑𝑠) · 𝑦(𝑘)

This maximal value
𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) =

∑︁
𝑘∈𝐾𝑟

𝑘(𝑑𝑠) · 𝑦(𝑘)

is called the bound of critical places 𝐾𝑟 .

From the formulation of the integer linear programming problem we get the following result.

Corollary 10. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability
net of the net 𝑀𝑊 . Let 𝑚𝑟 be an arbitrary marking of the reachability net reachable from
𝑚𝑟

0. Then there holds
∑︀

𝑘∈𝐾𝑟 𝑚𝑟(𝑘) ≤ 𝑏𝑜𝑢𝑛𝑑(𝐾𝑟). Moreover, there holds that 𝑠𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) ≥
𝑏𝑜𝑢𝑛𝑑(𝐾𝑟).



Methods for solving the integer linear programming problems can be found e.g. in [36].
For the reachability net in Figure 4 of the 1-sound marked remembering workflow net with

static places from Figure 2 we get 𝑠𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) = 𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) = 4.
From definition of the reachability net we get the following result.

Lemma 5. Let 𝑀𝑊 = (𝐷,𝑆, 𝑇, 𝐼,𝑂,𝑚0) be a 1-sound marked remembering workflow net
with static places and let a marked Petri net 𝑀𝑃𝑁 = (𝑃 𝑟, 𝑇 𝑟 , 𝐼𝑟 , 𝑂𝑟 , 𝑚𝑟

0) be the reachability
net of the net 𝑀𝑊 . Let 𝑚𝑟

1 be an arbitrary marking of the reachability net reachable from 𝑚𝑟
0.

Then for each marking 𝑚𝑟
2 reachable from 𝑚𝑟

1 there holds:∑︁
𝑥∈[𝑚0⟩|𝐷

𝑚𝑟
1(𝑥) ≤

∑︁
𝑥∈[𝑚0⟩|𝐷

𝑚𝑟
2(𝑥)

If 𝑚𝑟
1(𝑠𝑜𝑢𝑟𝑐𝑒) = 0 then there holds:∑︁

𝑥∈[𝑚0⟩|𝐷

𝑚𝑟
1(𝑥) =

∑︁
𝑥∈[𝑚0⟩|𝐷

𝑚𝑟
2(𝑥)

Consider a constrained reachability net for a given positive integer 𝑛 ∈ Z by adding a place,
let us call it a buffer, from which firing of transition 𝑛𝑒𝑤 consumes just one token, while in the
initial marking this place get 𝑛 number of tokens, i.e. 𝑚𝑟

0(buffer) = 𝑛.
Such constrained reachability net preserves all the reachable markings for which the sum of

tokens in places from [𝑚0⟩|𝐷 does not exceed 𝑛. It also preserves the firing of all transitions
from 𝑇 𝑎 in these markings. The transition 𝑛𝑒𝑤 is enabled to fire in such a net exactly 𝑛-times.
Such net is bounded and represent the running of at most 𝑛 instances in parallel. Basic locks in
such a constrained net can be defined analogously as for the reachability net without constraints,
just allowing non zero marking of 𝑏𝑢𝑓𝑓𝑒𝑟.

If one set the initial value 𝑚𝑟
0(buffer) = 𝑠𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) or 𝑚𝑟

0(buffer) = 𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) one can
guarantee that whenever the reachability net has a basic lock then the constrained net has
the basic lock differing at most in the marking of the added place buffer. The constrained
reachability net with 𝑚𝑟

0(buffer) = 𝑠𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) = 𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) = 4 for the reachability net
from Figure 3 is in Figure 7.

8. Conclusion

We have investigated workflow processes with independent instances, which share durable
resources. We have considered the fixed number of resources and arbitrary number of instances.
We modeled such nets by so called 1-sound marked remembering workflow nets with static
places, which are in fact resource constrained workflow nets sound for one instance. We have
shown that detection of deadlocks and livelocks of such processes can be reduced to detection
of basic locks of the constrained bounded reachability nets of 1-sound marked remembering
workflow nets with static places.

One of the main aims of the further research is to find out how to synthesize a minimally
restrictive completion of a net which has deadlocks or livelock in order to avoid them. Another
aim of the further research is to determine the set of initial markings of static places, i.e. to
determine the number of resources, needed to avoid the deadlock and livelocks.
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Figure 3: The reachability net of the 1-sound marked remembering workflow net with static places
from Figure 2
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Figure 4: The reachability net of the 1-sound marked remembering workflow net with static places
from Figure 2 in a livelock for ten instances
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Figure 5: The reachability net of the 1-sound marked remembering workflow net with static places
from Figure 2 in a critical livelock for ten instances
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Figure 6: The reachability net of the 1-sound marked remembering workflow net with static places
from Figure 2 in a basic livelock for four instances



memory allocated+waiting for processor+settings ready+memorywaiting for memory+processor allocated+settings ready+processor

in

waiting for memory+waiting for processor+settings ready

memory to disposee+processor to dispose+memory+processor

memory disposed+processor to dispose+processormemory to dispose+processor disposed+memory

memory disposed+processor disposed

out

computation+memory+processor

source

free memory

free processor

waiting for memory+waiting for processor+settings

waiting for memory+processor allocated+settings+processor memory allocated+waiting for processor+settings+memory

memory allocated+processor allocated+settings+memory+processor

memory allocated+processor allocated+settings ready+memory+processor

buffer

memory allocation

processor allocation

processor allocation

memory allocation

task begin

computation begin

processor dispose memory dispose

memory dispose processor dispose

task end

computation end

newstop

settings save

settings opensettings save settings opensettings save

settings save settings open

settings open

Figure 7: 𝑛-constrained bounded reachability net of the reachability net from Figure 3 for 𝑛 =
𝑠𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) = 𝑏𝑜𝑢𝑛𝑑(𝐾𝑟) = 4
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