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Abstract
The dysplasia grading of Barrett’s esophagus (BE), based on the histomorphological assessment of formalin-fixed, paraffin-
embedded (FFPE) tissue, suffers from high interobserver variability leading to an unsatisfactory prediction of cancer risk. 
Thus, pre-analytic preservation of biological molecules, which could improve risk prediction in BE enabling molecular 
and genetic analysis, is needed. We aimed to evaluate such a molecular pre-analytic fixation tool, PAXgene-fixed paraffin-
embedded (PFPE) biopsies, and their suitability for histomorphological BE diagnostics in comparison to FFPE. In a ring 
trial, 9 GI pathologists evaluated 116 digital BE slides of non-dysplastic BE (NDBE), low-grade dysplasia (LGD), high-
grade dysplasia (HGD), and esophageal adenocarcinomas (EAC) using virtual microscopy. Overall quality, cytological and 
histomorphological parameters, dysplasia criteria, and diagnosis were analyzed. PFPE showed better preservation of nuclear 
details as chromatin and nucleoli, whereas overall quality and histomorphologic parameters as visibility of basal lamina, 
goblet cells, and presence of artifacts were scored as equal to FFPE. The interobserver reproducibility with regard to the 
diagnosis was best for NDBE and EAC (κF = 0.72–0.75) and poor for LGD and HGD (κF = 0.13–0.3) in both. In conclusion, 
our data suggest that PFPE allows equally confident histomorphological diagnosis of BE and EAC, introducing a novel tool 
for molecular analysis and parallel histomorphological evaluation.
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Introduction

Barrett’s esophagus (BE) is a premalignant condition which 
predisposes to esophageal adenocarcinomas (EAC). BE is 
defined histopathologically as the replacement of stratified 
squamous epithelium of the distal esophagus by columnar epi-
thelium that can contain intestinal metaplasia. Routine histo-
morphological assessment of BE and grading of dysplasia from 
formalin-fixed, paraffin-embedded (FFPE) biopsies remains the 
gold standard for risk stratification for patients according to 
their perceived progression risk to EAC [1–3]. The Vienna clas-
sification for grading of BE categorizes lesions as negative for 
dysplasia (NDBE), indefinite for dysplasia (IFD), low-grade 
dysplasia (LGD), high-grade dysplasia (HGD), and invasive 
neoplasia based on architectural and cytological features [2]. 
These include gland architecture, loss of surface maturation, 
and cytological abnormalities such as enlarged nuclei or any 
size variability of nuclei and mitosis. Although the Vienna clas-
sification has improved the international diagnostic classifica-
tion of gastrointestinal epithelial neoplastic lesions, the agree-
ment of dysplasia grading is moderate to poor due to substantial 
interobserver variability (highest among LGD κ = 0.11–0.31) 
[4–6], even among expert pathologists. Moreover, the predic-
tion of cancer risk from histomorphological grading on BE 
remains limited due to the fact that dysplasia does not reliably 
predict progression to cancer, and non-dysplastic BE does not 
provide any morphological features that could be used for risk 
assessment [7, 8]. Notably, abnormal p53 immunohistochem-
istry (IHC) is strongly associated with BE at higher risk of pro-
gression, including patients without evidence of dysplasia [9]. 
Recent studies showed that molecular markers such as changes 
in copy number patterns and the degree of clonal diversity are 
promising biomarkers in BE and could predict cancer progres-
sion years ahead [7, 10–14]. These findings indicate a high 
potential of objective (molecular) biomarkers for future clini-
cal practice and the need for improved pre-analytic procedures 
to allow molecular and genetic analysis.

Formalin has been the standard fixative for many decades, 
resulting in substantial archives of formalin-fixed and paraffin-
embedded samples of BE and EAC in pathology departments. 
These well-defined repositories are frequently used for molec-
ular cancer research. While (mi)RNA, DNA, and proteins can 
be isolated from FFPE samples, the cross-linking property 
of formaldehyde leads to poor-quality molecules and varying 
degrees of molecular degradation depending on fixation times 
[15–17]. Thus, alternative fixation solutions, which allow both 
high-quality molecular and histomorphological analyses, 
may have an advantage over FFPE when including molecular 
analyses as a diagnostic adjunct. The formalin-free PAXgene 
tissue preservation technology simultaneously preserves tissue 
morphology and antigenicity as well as nucleic acids, proteins, 
and phosphoproteins in tissue samples [18–25]. The PAXgene 

tissue system uses a non-cross-linking, non-carcinogenic com-
bination of different alcohols, acids, and a soluble organic 
component to preserve both morphology and biomolecules.

As a prerequisite for the implementation of PAXgene in the 
clinical routine of BE diagnostics, the non-inferiority of tissue 
preservation using PAXgene compared to the current gold stand-
ard formalin still needs to be shown by independent and blinded 
trials. Thus, the aim of this study was to evaluate the quality of 
histo- and cytomorphological features and interobserver vari-
ability of PAXgene-fixed paraffin-embedded (PFPE) biopsies in 
comparison to routine formalin-fixed paraffin-embedded (FFPE) 
samples. In an international ring trial, nine experienced Bar-
rett’s pathologists from Europe, the USA, and Australia blindly 
reviewed a balanced number of PFPE and FFPE biopsies from 
across the diagnostic spectrum (NDBE, LGD, HGD, and EAC). 
Using virtual microscopy and a standardized evaluation form, 
the study compares overall quality, different cyto- and histomor-
phological features, and diagnostic reproducibility between the 
PAXgene system and state-of-the-art FFPE technique for BE 
and EAC diagnostics.

Materials and methods

Assessors

Twenty-one international gastrointestinal (GI) pathologists 
were approached to join the study through direct professional 
contacts. Nine pathologists responded, were recruited to the 
study, and completed the case set of hematoxylin and eosin 
(H&E)– and PAS-stained slides (three pathologists from Ger-
many, two from the USA, and one from Australia, France, the 
Czech Republic, and the Russian federation each). All participat-
ing pathologists had at least 5 years of professional experience 
in gastrointestinal pathology and a work setting of an academic 
teaching hospital. Participating pathologists received emails 
detailing the study objective and study design and were provided 
with personal log-in credentials to the online platform (Aperio 
eSlide Manager) and the online evaluation survey, described 
in the digital case assessment section. The lead study author 
(MB) provided assistance with participating pathologists’ log-
in queries and evaluated the study progress. Pathologists of the 
Institute of Pathology of the Technical University of Munich 
(including two study authors WW and JSH) with experience in 
BE dysplasia assessment and the PAXgene tissue technology 
reviewed all digital slides.

Case selection, scanning, and digital case 
assessments

The senior study author (JSH) selected a representative 
case mix of 116 BE biopsy cases from across the diagnostic 
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spectrum. Inclusion criteria were diagnosis confirmed by 
a second GI pathologist (internal or external, including 
the study author WW) and tissue slides as well as tissue 
block available. All cases were treatment-naïve. The study 
case collection consisted of a total of 59 FFPE cases (15 
NDBE, 15 LGD, 15 HGD, and 14 EAC) and 57 PFPE cases 
(14 NDBE, 15 LGD, 14 HGD, and 14 EAC). FFPE cases 
(from 2013 to 2017) and PFPE cases (from 2014 to 2017) 
were retrieved from the BarrettNET registry [26] enrolled 
at Klinikum rechts der Isar, Technical University of Munich. 
For FFPE processing, biopsies were fixed in 10% neutral-
buffered formalin immediately after endoscopy. For PFPE 
processing, biopsies were fixed using the PAXgene Tissue 
Fix (PreAnalytiX GmbH, Hombrechtikon, Switzerland) 
according to the manufacturer’s protocol for 2–4 h and 
transferred into PAXgene tissue stabilizer to stop the fixa-
tion process. Using a standard protocol, PAXgene-treated 
and formalin-fixed tissues were dehydrated and embedded 
in paraffin. In the case of PAXgene, low-melting tempera-
ture paraffin was used. Sections from all 116 samples were 
stained with hematoxylin and eosin (H&E) and periodic 
acid-Schiff (PAS) for 111 samples. Slides were scanned 
at × 40 resolution, comparable to × 400 magnification of 
conventional light microscopy, using a NanoZoomer Digital 
Pathology (NDP) slide scanner (Hamamatsu, Japan). Scans 
were checked for focus and acuity and rescanned if neces-
sary. Subsequently, slides were anonymized, randomized, 
and blinded for the fixation method and uploaded to the 
password-protected Aperio eSlide Manager (Leica Biosys-
tems). A short user manual for the Aperio eSlide Manager 
and morphometric features was provided with the study pro-
tocol that was sent to each participating pathologist. Each 
participant was asked to evaluate all virtual cases on quality 
criteria, relevant features for BE/EAC diagnostics, and dys-
plasia grading and to give a final diagnosis according to the 
Vienna classification based on the provided H&E and PAS 
staining (more details regarding evaluated items in Table 1). 
Results were entered into an electronic evaluation survey for 
each eSlide (Lime survey).

Ethical approval

The patient studies were conducted in accordance with the 
Declaration of Helsinki. The ethical committee of the Techni-
cal University of Munich approved the study. Written informed 
consent was obtained from all patients as part of the BarrettNET 
registry [26].

Statistical analysis

Comparisons of tissue quality features, architectural changes, 
and cytological abnormalities between fixation methods 

were assessed by the chi-square tests. p values < 0.05 were 
considered significant.

The interobserver reproducibility was assessed by consid-
ering the histological diagnosis (NDBE, LGD, HGD, IFD, 
EAC) as the pivotal variable. The interobserver variability 
between participating pathologists was evaluated by com-
puting Fleiss’ kappa statistics (κf) together with the rela-
tive 95% confidence interval (CI) [27]. The values mostly 
vary between 0 (no agreement) and 1 (absolute agreement). 
A negative value may be obtained in situations where the 
actual agreement is less than a chance one. The magnitude of 
the agreement for each κf was interpreted on the basis of the 
Landis and Koch classification criteria [28]. All statistical 
analyses were performed in R (version 4.1.2).

Results

Study design

Nine pathologists from six countries (Germany, France, 
the USA, Australia, Russia, Czech Republic) agreed to par-
ticipate in the ring trial. Links to the randomized virtual 
slides and to the evaluation surveys were distributed to the 

Table 1  Evaluated items. Table shows evaluated items for each case 
with respective answer possibilities

NDBE, non-dysplastic Barrett’s esophagus; LGD, low-grade dysplasia; 
HGD, high-grade dysplasia; IFD, indefinite for dysplasia; EAC, esoph-
ageal adenocarcinoma

Criteria Answer possibilities

Quality criteria
  • Chromatin Excellent, good, satisfactory, weak, poor
  • Nucleoli Excellent, good, satisfactory, weak, poor
  • Mitosis Excellent, good, satisfactory, weak, poor
  • Basal lamina Excellent, good, satisfactory, weak, poor
  • Mucin or goblet cells Excellent, good, satisfactory, weak, poor
  • Retraction artifact Significant, moderate, minor, not present
  • Edge artifact Significant, moderate, minor, not present

Overall quality Excellent, good, satisfactory, weak, poor
BE/EAC-specific features
  • Atypical mitosis Yes, no
  • Abnormal shapes Yes, no
  • Border irregularities Yes, no
  • Pseudostratification Yes, no
  • Crowding Yes, no
  • Invasiveness Yes, no
  • Surface maturation Maintained, lost

Final diagnosis NDBE, LGD, HGD, IFD, EAC
Certainty of diagnosis Sure, most probably, unsure
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participants together with the study protocol and detailed 
instructions. Each participant was asked to evaluate all 116 
biopsies virtual cases, for which the diagnosis and fixation 
method was blinded. A total of 95 cases were evaluated by all 
nine participants, 20 cases by eight participants, and one case 
by seven participants. Each participant was asked to evalu-
ate the quality of seven basic histo- and cytomorphological 
parameters and the quality of seven histomorphological fea-
tures, relevant for BE/EAC diagnostics and dysplasia grading 
(see Table 1). Overall quality and a final diagnosis should 
be given for each case. In total, 7049 items were evaluated 
by the pathologists regarding histo- and cytomorphological 
quality parameters and 7154 items regarding relevant fea-
tures for BE/EAC diagnostics and dysplasia grading. In total, 
1022 overall quality scores and final diagnosis were assessed, 
respectively. The study design is illustrated in Fig. 1.

Comparison of overall quality and histological 
and cytological features between PFPE and FFPE 
biopsies

A total of seven quality parameters for histological and 
nuclear features (quality of basal lamina, quality of mucin 

or goblet cells, retraction artifacts, edge artifacts and qual-
ity of chromatin, quality of nucleoli, quality of mitosis) 
and the overall quality were assessed by the participat-
ing pathologists in 116 cases. The resulting 7049 qual-
ity scores were separately analyzed in FFPE and PFPE 
samples. Nuclear quality was judged significantly superior 
in PFPE than in FFPE samples. In detail, the quality of 
chromatin and nucleoli was significantly better in PFPE 
samples than in FFPE samples (p = 0.02, p = 0.01), with 
over 65% of PFPE samples being classified as either excel-
lent or good (Fig. 2), compared to ~ 50% of FFPE samples. 
Moreover, the quality of mitosis was judged better in PFPE 
than in FFPE, which did not reach the significance level 
though (p = 0.06). Exemplary slides in high magnifica-
tion to show nuclear details for both fixation methods are 
shown in Fig. 3B. Further histological parameters evalu-
ated such as the quality of basal lamina, mucus, and goblet 
cells and the overall quality were classified as either excel-
lent or good in the majority of samples and did not differ 
between PFPE and FFPE (Fig. 2, p = 0.65, 0.49, and 0.48 
respectively). Less than 5% of samples were judged as 
poor. The analysis of the parameters retraction and edge 
artifacts revealed no differences between PPFE and PFPE 

Fig. 1  Study design. Similar 
numbers of NDBE, LGD, HGD, 
and EAC cases were either 
PAXgene-fixed or formalin-
fixed and paraffin-embedded. 
The diagnosis and fixation 
method was blinded for each 
participant. Each participating 
pathologist (n = 9) was asked to 
evaluate all 116 virtual cases. 
NDBE, non-dysplastic Barrett’s 
esophagus; LGD, low-grade 
dysplasia; HGD, high-grade 
dysplasia; EAC, esophageal 
adenocarcinoma; TUM, Techni-
cal University Munich
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samples (Fig. 2, p = 0.92 and 0.9, respectively). In more 
than 75% of FFPE and PFPE samples, edge and retraction 
artifacts were not present or only minor. Figure 3A dis-
plays exemplary virtual slides used in the trial show-
ing HE-stained PFPE and FFPE for non-dysplastic BE, 
LGD, HGD, and EAC samples, representing those cases 
with the best overlap of the diagnosis within the different 
pathologists.

Comparison of relevant features for Barrett’s 
esophagus diagnostics and dysplasia grading 
between PFPE and FFPE

Next, we evaluated differences in the presence/absence of 
morphological features relevant for BE diagnostics and grad-
ing of dysplasia in FFPE and PFPE samples (Fig. 4). The 
presence of cytomorphological features important for the 
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Fig. 2  Comparison of quality parameters between PFPE and FFPE 
samples in Barrett’s esophagus and EAC diagnostics. Bar charts show 
different quality parameters for tissue architecture and cytological 

parameters for formalin-fixed paraffin-embedded (F) and PAXgene-
fixed paraffin-embedded (P) samples. Chi-square tests were per-
formed, and p values were annotated in the charts
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Fig. 3  H&E staining of NDBE, 
LGD, HGD, and EAC tissue in 
PFPE and FFPE fixation. PFPE 
(left column) and FFPE tissue 
(right column) of A NDBE (top 
row), LGD (2nd row), HGD 
(3rd row), and EAC (bottom 
row). All scale bars represent 
200 µm. B Higher magnification 
of EAC sample showing nuclear 
details. Scale bars represent 
60 µm

PFPE FFPE

N
D
B
E

L
G
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H
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assessment and grading of dysplasia, such as atypical mito-
sis, abnormal nuclear shape, and nuclear membrane irreg-
ularities, did not differ between FFPE and PFPE samples 
(p = 0.85, p = 0.79, and p = 0.58). Moreover, the frequency 
of morphological features such as pseudostratification, gland 
crowding, invasiveness, and surface maturation (scores as 
present or absent) did not vary between FFPE and PFPE 
samples (p = 0.22, p = 0.08, p = 0.52, p = 0.82).

Interrater reproducibility of diagnosis

A final diagnosis was given according to the Vienna clas-
sification criteria [2] for each case, resulting in a total of 
1022 diagnoses: 378 NDBE (37%), 71 LGD (7%), 168 HGD 
(16%), 333 EAC (33%), and 72 IFD (7%). We assessed the 
frequency of diagnosis given by individual pathologists in 
FFPE and PFPE samples (Fig. 5), which were not signifi-
cantly different between fixation methods for most patholo-
gists (chi-square test p > 0.05). Exceptions were pathologists 
4 and 8, who showed significant differences in the frequen-
cies of diagnoses between the FFPE and PFPE sample 
cohort (chi-square test p = 0.005 and p = 0.01). These two 
pathologists showed differences mainly in the categories 
IFD, LGD, and HGD, which are the categories with known 
high interobserver variability. Of note, the exclusion of these 
evaluations did not increase interobserver reliability neither 
for PFPE samples nor for FFPE samples (data not shown). 

Overall, we observed a decrease in the frequency of IFD 
diagnosis in PFPE compared to FFPE with a mean of 9.8% 
and 6.1% of samples being diagnosed as IFD in PFPE and 
FFPE, respectively, which was not significant though (t-test 
p value = 0.2). Concerning the parameter “How sure are 
you about the diagnosis?,” all participating pathologists felt 
equally confident in their diagnosis when evaluating PFPE 
or FFPE samples and were “sure” in their diagnosis in ~ 75% 
of the samples (Fig. 5).

Next, we assessed interrater reliability for individual diag-
noses and fixation methods. The overall level of agreement on 
the entire sample cohort (FFPE and PFPE biopsies) was mod-
erate, with a κf value of 0.54 (CI 0.52–0.56). As expected, the 
level of agreement was highest for NDBE and EAC (κf = 0.72 
and κf = 0.75, respectively) and poorest for LGD (κf = 0.15). 
Next, we analyzed interrater agreement separately for PFPE 
and FFPE samples (Table 2). Regarding all cases included, 
interobserver variability was not remarkably different between 
FFPE and PFPE samples (PFPE κf = 0.53; FFPE: κf = 0.54). 
Kappa scores were marginally higher for HGD and EAC in 
PFPE samples (PFPE: κf(HGD) = 0.3, κf(EAC) = 0.75; FFPE: 
κf(HGD) = 0.24, κf(EAC) = 0.74), while slightly higher values were 
noted for LGD in FFPE samples (PFPE: κf(LGD) = 0.13, FFPE: 
κf(LGD) = 0.18). When combining the diagnoses of HGD and 
LGD to a common category of “any dysplasia,” better inter-
rater reliability was achieved with marginally higher kappa 
scores for PFPE than for FFPE (PFPE: κf(dysplasia) = 0.49, FFPE: 
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Fig. 4  Comparison of specific features for BE and EAC diagnostics 
in PFPE and FFPE. Bar charts show the presence and absence of 
diagnostically relevant features for BE and EAC diagnostics in forma-

lin-fixed paraffin-embedded (F) and PAXgene-fixed paraffin-embed-
ded (P) samples. Chi-square tests were performed, and p values were 
annotated at the top of each chart
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κf(dysplasia) = 0.42). We further evaluated kappa scores in a com-
bined category for HGD and EAC and observed a substantial 
improvement of interrater reliability in both PFPE and FFPE 
(PFPE: κf(HGD/EAC) = 0.63, FFPE: κf(HGD/EAC) = 0.75).

Discussion

The Vienna classification remains the most commonly used 
predictor of esophageal adenocarcinoma risk. As it is based 
on morphological and cytological characteristics, high histo-
morphology quality is required for subsequent risk stratifi-
cation and treatment decision [1–3]. However, due to the 
poor interobserver reproducibility of Barrett’s esophagus 
diagnostics, novel strategies for progression risk prediction 
are in demand, including molecular/genetic biomarkers and 
artificial intelligence. The formalin-free PAXgene system, 
as an alternative tissue preservation method to the stand-
ard formalin fixation, enables histopathological analysis 

and preserves biological molecules at the highest quality, 
which could improve multimodal analytics. Thus, we per-
formed an international ring trial to evaluate the quality of 
histo- and cytomorphological features of PAXgene-fixed, 
paraffin-embedded (PFPE) biopsies and their suitability for 
histomorphological Barrett’s esophagus diagnostics in com-
parison to the gold standard formalin-fixation and paraffin-
embedding (FFPE). Nine gastrointestinal pathologists from 
six countries and three continents blindly evaluated digitized 
slides from 57 PFPE and 59 FFPE biopsies from across the 
diagnostic spectrum of Barrett’s esophagus. Overall quality, 
the quality of cytological and histomorphological features, 
and the presence of artifacts were scored, and a diagnosis 
was given for each biopsy.

The evaluation of in total 7049 quality scores revealed 
that the quality of histo- and cytomorphological features was 
judged as equal or even better in PFPE compared to FFPE. 
The quality of nuclear features was perceived as being of 
significantly better quality in PFPE than in FFPE. Features 
such as chromatin and nucleoli were scored significantly 
better in PFPE than in FFPE. As already described in previ-
ous ring trials for colorectal cancer [25] and non-neoplastic 
tissue of different organs [21], both hematoxylin and eosin 
(H&E) and periodic acid-Schiff (PAS) staining were more 
intense in PPFE than FFPE samples, resulting in a stronger 
contrast. This might explain the perception of a higher 
nuclear quality of PFPE samples, as details such as chroma-
tin, nucleoli, and mitosis are easy to recognize. Nevertheless, 
this did not translate to improved interobserver agreement 
in our study cohort. The classification of Barrett’s dysplasia 
follows international standards, such as the Vienna classifi-
cation. It is based on different degrees of morphological and 
cytological changes and assigns those to different grades of 
dysplasia. Even though such a classification leads to better 
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Fig. 5  A Distribution of diagnoses of participating pathologists. Bar 
charts show distributions of diagnoses of each pathologist for FFPE 
samples (left) and PFPE samples (right). NDBE, non-dysplastic Bar-
rett’s esophagus; LGD, low-grade dysplasia; HGD, high-grade dys-
plasia; EAC, esophageal adenocarcinoma. B Subjective certainty of 

pathologists’ diagnoses. Bar charts show a level of subjective cer-
tainty in pathologists’ diagnoses for formalin-fixed paraffin-embedded 
(F) and PAXgene-fixed paraffin-embedded (P) samples. Chi-square 
tests were performed, and p values were annotated in the charts

Table 2  Interrater variability: The table shows kappa Fleiss scores for 
the entire study cohort including all diagnostic categories

NDBE, non-dysplastic Barrett’s esophagus; EAC, esophageal adenocar-
cinoma; HGD, high-grade dysplasia; LGD, low-grade dysplasia

Categories PFPE FFPE

All cases (n = 116) 0.53 0.54
NDBE 0.72 0.72
EAC 0.75 0.74
HGD 0.30 0.24
LGD 0.13 0.18
Any dysplasia 0.49 0.42
HGD or EAC 0.63 0.75
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agreement between different pathologists, the interobserver 
agreement is still unsatisfactory. This is due to the fact that 
morphological changes are classified in semi-quantitative 
degrees (very subtle, mild, severe), and the integration of 
those semi-quantitative changes results in a final classifica-
tion or diagnosis and presupposes a weighting of the indi-
vidual changes. It is therefore not surprising that even among 
international experts, despite the application of the same 
standards, an individual scope of interpretation leads to a 
different diagnostic evaluation, especially in the category of 
low-grade dysplasia and in the use of the category indefinite 
for dysplasia (best seen for pathologists 4 and 8).

Previous studies showed that the histomorphology of tis-
sues fixed in PAXgene fixative for only 3 h was comparable 
to that of tissues fixed in formalin for 6–8 h, indicating the 
potential in improving laboratory workflow through time 
shortening from sample acquisition to diagnosis in clinical 
routine pathology [21]. Despite tremendous efforts in the 
screening of BE patients, the time-effectiveness and cost-
effectiveness of current surveillance strategies in reducing 
EAC mortality are debatable [29, 30] as > 90% of patients 
presenting with EAC have no prior diagnosis of BE [29, 31], 
and the majority of patients with BE enrolled in surveillance 
programs will never progress to cancer [32, 33]. One reason 
is the challenge of the high variability of dysplasia grad-
ing among pathologists [4–6]. In this ring trial of 116 study 
cases equally balanced concerning diagnostic categories 
(NDBE, LGD, HGD, EAC), most pathologists showed no 
significant difference in their diagnosis frequencies between 
the cohort of PFPE and FFPE samples. Comparing the inter-
observer variability, we observed only moderate interrater 
reproducibility in the overall cohort; however, there was no 
significant difference between PFPE and FFPE. Not surpris-
ingly, there was substantial agreement between pathologists 
for the diagnosis of NDBE and EAC and low agreement in 
LGD and HGD, both in FFPE and PFPE. Thus, the results 
of this ring trial confirm previous studies reporting a high 
interobserver variability in dysplasia grading, highest among 
LGD (κ = 0.11–0.3) [4–6].

One strategy to reduce interobserver variability would 
be the integration of molecular or genetic markers. p53 IHC 
in addition to standard H&E staining has been shown to 
significantly increase interobserver agreement [34], and 
abnormal p53 IHC has been shown to correlate with a risk 
of progression [9]. p53 IHC showed equal immune reactiv-
ity on PFPE sections compared to FFPE sections, if antigen 
retrieval was performed [35]. Moreover, the integration of 
artificial intelligence systems is based on deep learning to 
support pathologist grading. Artificial intelligence (AI) sys-
tems have been shown to significantly improve the grading 
of other (pre)malignant entities [36–39]. Our study showed 
significantly better preserved nuclear features such as chro-
matin and nucleoli together with the increased contrast in 

PFPE samples, which could potentially increase the amount 
of valuable information for AI systems for higher perfor-
mance in image analysis and risk prediction. This could 
potentially impact diagnostic accuracy, as it was shown by 
digital analysis, that chromatin texture was the best discrimi-
nator for the diagnosis of Barrett’s dysplasia [40].

Over the last decades, molecular analyses have been imple-
mented to discriminate patient groups for risk stratification and 
treatment decision to allow personalized molecular prevention. 
Recent studies in the field of BE showed that DNA-derived 
markers such as the detection of changes in copy number pat-
terns and chromosomal instability are promising biomarkers 
[10–12]. Some studies suggest that the risk of BE progression 
can be predicted by the degree of clonal diversity [13, 41]. 
Although this study focuses on the histomorphological aspects 
of PAXgene tissue fixation, investigations of previous PAXgene 
studies have already investigated the quality of nucleic acids 
and proteins derived from PFPE tissues. These studies verified 
that the formalin-free PAXgene fixation technology preserves 
DNA similar to DNA derived from snap-frozen tissue [24, 42, 
43]. Moreover, RNA quality and reliability of gene expression 
data are similar in PFPE and snap-frozen samples [23], whereas 
gene expression profiling from FFPE tissue–derived RNA is 
affected by a high level of fragmentation [24, 44]. In proteomic 
testing, proteins derived from PFPE tissue showed a reactiv-
ity pattern analogous to proteins derived from frozen tissue, 
whereas proteins isolated from FFPE tissue showed reduced 
activity [18]. Therefore, the formalin-free PAXgene method 
offers the opportunity for both high-quality analysis of a broad 
spectrum of biomolecules along with histomorphological anal-
ysis from the same tissue sample.

This international ring trial performed by nine experi-
enced GI pathologists evaluated the suitability of the for-
malin-free PAXgene tissue system for BE diagnostics. Our 
results show that histomorphological tissue quality is better 
preserved in BE biopsies using the PAXgene tissue stabiliza-
tion system, as the quality was judged equal or even better in 
PFPE than in FFPE biopsies. With a rising spectrum of diag-
nostic tools in medical care such as genetic, epigenetic, and 
proteomic techniques and AI image analysis for improve-
ment of diagnosis standardization and treatment decisions, 
the non-cross-linking formalin-free PAXgene fixation could 
therefore substantially contribute to the advancement in 
molecular-guided BE and EAC diagnostics and surveillance.
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