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Abstract
Dynamic epistemic logic (DEL) is a multi-modal logic for reasoning about the change of knowledge in multi-agent systems.
It extends epistemic logic by a modal operator for actions which announce logical formulas to other agents. In Hilbert-style
proof calculi for DEL, modal action formulas are reduced to epistemic logic, whereas current sequent calculi for DEL are
labelled systems which internalize the semantic accessibility relation of the modal operators, as well as the accessibility
relation underlying the semantics of the actions. We present a novel cut-free ordinary sequent calculus, called G4P,A[], for
propositional DEL. In contrast to the known sequent calculi, our calculus does not internalize the accessibility relations,
but—similar to Hilbert style proof calculi—action formulas are reduced to epistemic formulas. Since no ordinary sequent
calculus for full S5 modal logic is known, the proof rules for the knowledge operator and the Boolean operators are those of
an underlying S4 modal calculus. We show the soundness and completeness of G4P,A[] and prove also the admissibility of
the cut-rule and of several other rules for introducing the action modality.

Keywords: Dynamic epistemic logic, sequent calculus, cut elimination.

1 Introduction

Dynamic epistemic logic (DEL) is a framework for reasoning about the change of knowledge in
multi-agent systems. It is based on epistemic logic, a multi-modal logic in which the modal operators
express the knowledge and the belief of the agents. The main additional feature of DEL is the
communication of epistemic information. Using the so-called (epistemic) actions, agents can send
public, private and semi-private announcements to one or more agents. In the logic this is expressed
by a modal operator [u] for epistemic actions u and formulæ of the form [u]ψ with the meaning
that always after executing the action u, the formula ψ holds. Public announcement logic (PAL), a
simplified variant of DEL, restricts actions to public announcements.

There exist several proof calculi for DEL and PAL. Sound and complete Hilbert-style axiomati-
zations are given for PAL by Plaza [37, 38] and for DEL by Baltag et al. [6] and Gerbrandy [17]
(see [42] for an overview). These proof systems are based on Hilbert calculi for epistemic logic and
translate modal formulæ of the form [u]ψ into pure epistemic logic formulæ without announcement
actions. For PAL and DEL also tableaux and display calculi have been developed (Balbiani et al. [4],
Hansen [19], Aucher et al. [1] and Frittella et al. [15]; for a comparison with other proof systems, see
Frittella et al. [16]). A first sequent calculus for DEL has been presented by Baltag et al. [5]. Actions
enjoy a quantal structure; propositions, actions and agents are resource-sensitive. The calculus is
sound and complete but does not admit the elimination of cuts. Dyckhoff and Sadrzadeh [14] refine
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this proof calculus to a cut-free calculus. However, this calculus does not use ordinary sequents but
more complex nested sequents.

This is similar to the situation in modal logic. Only for modal logic systems S4 or smaller, ordinary
sequent calculi are known which are sound, complete and cut-free. For modal logic S5, such proof
systems need global side conditions (as in Braüner [8] or extend the sequence format by additional
structure such as hypersequents (see, e.g. Poggiolesi [41]) and display systems (see, e.g. Dosen [13]);
for an overview, cf. Wansing [43] and Negri [30]. Labelled sequent systems internalize the Kripke
semantics of modal logic into the syntax of the proof system. Such calculi are ordinary sequent
systems which contain not only modalities but also variables and the semantic accessibility relation
(see, e.g. Brünnler [9]). Negri [29] presents a general method for generating contraction- and cut-free
ordinary sequent calculi for a large family of normal modal logics. Her method has been applied by
several authors for constructing labelled cut-free sequent calculi for PAL (see Maffezioli and Negri
[26], Negri [30], Balbiani et al. [2], Nomura et al. [34] and Balbiani and Galmiche [3]). The cut-
free sequent calculus of Nomura et al. [32, 33] for full DEL internalizes the semantic accessibility
relation of the modal operators as well as the accessibility relation underlying the semantics of
the actions.

We present a novel cut-free sequent calculus, called G4P,A[], for propositional DEL. In contrast
to the labelled sequent calculi, our calculus does not internalize the accessibility relations or does
it contain labels, instead the rules for epistemic actions mirror the reduction rules of [7, 42]; these
rules are invertible but do not enjoy the subterm property. As an underlying modal system, we choose
an S4 calculus, since no ordinary sequent calculus for full S5 modal logic is not known. We show
the soundness and completeness of G4P,A[] and prove also the admissibility of the cut-rule and of
several rules for introducing the action modality. Neither for completeness nor for the cut, we apply
the well-known translation of [42]; instead, we give direct proofs of the admissibility of cut and of all
axioms and rules of the Hilbert calculus for DS4P,A. Closely related to our work is the independently
developed labelled sequent calculus of Wu et al. [45] for PAL. Similar to our approach, the proof
rules of [45] follow the structure of the goal and reduce (PAL) formulas to basic epistemic logic
formulas. But in contrast to us, the semantic accessibility relation is internalized and the proofs of
completeness and admissibility of cut use the translation to epistemic logic.

The paper is organized as follows: in Section 2, we recap the basics of epistemic logic and
present the sequent calculus G4P,A together with some derived rules and the main theorems for
soundness, completeness and admissibility of cut. Section 3 contains the main results: we present
the ordinary sequent calculus G4P,A[] for DEL, show some derived rules including a particular kind
of necessitation for dynamic modalities and prove soundness and completeness of G4P,A[] and the
admissibility of cuts. Section 4 concludes with an outlook to future work.

Personal note. John, Martin and Alexander have known each other for many years. Alexander met
John for the first time at the end of the 1990s in the Research Training Group ‘Logic in Computer
Science’2 when he was a PhD student in the group and John a guest researcher. Martin and John
had met much earlier, in 1975 at a garden party of Martin’s doctoral supervisor Kurt Schütte. The
day after the party, John, Martin and the logician Peter Päppinghaus drove together in Martin’s
car to the ‘Colloque International de Logique’ in Clermont-Ferrand. They became good friends,
though communication was difficult. Although each of the three spoke two languages, there was no
common language: John spoke English and French, Martin German and French and Peter German
and English.

2https://gepris.dfg.de/gepris/projekt/271709?language=en
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About 10 years later, a close collaboration developed between John and Martin. John visited
Martin regularly in Passau and later in Munich, Martin was twice in Melbourne with John in the
late 1990s. Together with their students, they worked on two research topics, the development of
constrained λ-calculi and program extraction from structured specifications. Four papers [11, 22, 23,
28] were written on the first topic, as well as the dissertations of Luis Mandel [27] and Matthias Hölzl
[21]. Luis and Matthias were also jointly supervised by Martin and John. On the second topic, John
and Martin wrote three papers [12, 39, 44] together with Hannes Peterreins and Iman Poernomo, a
doctoral student of John. An important part of the joint monograph [40] also deals with this topic.
At that time, Alexander worked on other topics including the semantics of Java [10] and formal
approaches to mobile systems [25] and object-oriented software development [24].

Working and discussing with John is a very pleasant experience. He is not only an outstanding
scientist; he is also a warm-hearted and kind friend and colleague. We are looking forward to many
further inspiring exchanges with him.

2 Epistemic Logic

Propositional epistemic logic is a multi-modal logic. We brief ly recall some basic definitions and
results about Gentzen-type proof systems.

An epistemic signature (P, A) consists of a set P of propositions and a set A of agents. The set
ΦP,A of epistemic formulæ ϕ over (P, A) is defined by the following grammar:

ϕ : := p | false | ϕ1 ⊃ ϕ2 | Kaϕ,

where p ∈ P and a ∈ A. The epistemic formula Kaϕ is to be read as ‘agent a knows ϕ’. The usual
propositional connectives can be added by defining ¬ϕ ≡ ϕ ⊃ false, ϕ1 ∨ ϕ2 ≡ (¬ϕ1) ⊃ ϕ2,
ϕ1 ∧ ϕ2 ≡ ¬(ϕ ⊃ ¬ϕ2) and ϕ1 ↔ ϕ2 ≡ (ϕ1 ⊃ ϕ2) ∧ (ϕ2 ⊃ ϕ1).

An epistemic (S4) structure K = (W , E, L) over (P, A) consists of a set W of worlds, an A-indexed
family E = (Ea ⊆ W × W)a∈A of epistemic accessibility relations and a labelling L : W → P(P)

which determines for each world w ∈ W the set of propositions valid in w. The accessibility relations
of epistemic structures are assumed to be ref lexive and transitive (but not necessarily symmetric as
in S5). For any a ∈ A, (w, w′) ∈ Ea models that agent a cannot distinguish the two worlds w and
w′. An epistemic (S4) state over (P, A) is a pointed epistemic structure K = (K, w) where w ∈ W
determines an actual world.

For any epistemic signature (P, A) and epistemic structure K = (W , E, L) over (P, A), the
satisfaction of an epistemic formula ϕ ∈ ΦP,A by K at a world w ∈ W , written K, w |� ϕ, is
inductively defined as follows for any a ∈ A, p ∈ P and ϕ, ϕ1, ϕ2 ∈ ΦP,A:

K, w |� p ⇐⇒ p ∈ L(w)

K, w �|� false

K, w |� ϕ1 ⊃ ϕ2 ⇐⇒ K, w �|� ϕ1 or K, w |� ϕ2

K, w |� Kaϕ ⇐⇒ K, w′ |� ϕ for all w′ ∈ W with (w, w′) ∈ Ea.

Hence, an agent a knows ϕ at world w if ϕ holds in all worlds w′ which a cannot distinguish from w.
For an epistemic state K = (K, w) and for ϕ ∈ ΦP,A, K |� ϕ means K, w |� ϕ.

The epistemic logic S4 consists of all epistemic formulæ ϕ ∈ ΦP,A such that K, w |� ϕ for
all epistemic structures K = (W , E, L) and all their states w ∈ W . This logic can be axiomatized
in a Hilbert-calculus by the axioms and derivation rules of Table 1 (see, e.g. [42]) where axiom

 
  

            
               

          
                                                               

                                                   



4 A Reduction-based Cut-free Gentzen Calculus for DEL

TABLE 1. Hilbert-style axiomatisation of S4P,A.

TABLE 2. Modal Gentzen system G4P,A for epistemic logic S4P,A.

TABLE 3. Structural rules and cut.

(T), called truth, ref lects the ref lexivity of the accessibility relations and axiom (4), called positive
introspection, their transitivity.

We use the modal Gentzen system G4P,A in Table 2 for the epistemic logic S4P,A. Our system
builds on G3nK for basic modal logic (Hakli and Negri [18]) and for the extension to S4 on the
system S4∗ (Ohnishi and Matsumoto [35]) and the system GS4 (Ono [36]). In our rules, ϕ, ϕ1, ϕ2
range over the formulæ in ΦP,A, p over the propositions in P, a over the agents in A and Γ , Γ ′, Δ, Δ′
over the multisets of formulæ in ΦP,A. In particular, Γ can be empty in (RK), i.e. this multiset can
be dropped; then, (RK) is a direct generalization of (GK).

LEMMA 2.1
All sequents of the form ϕ, Γ ⇒ Δ, ϕ are derivable in G4P,A.

PROOF. By structural induction over ϕ, see, e.g. [18]. �
The structural rules, see Table 3, of weakening and contraction are admissible, and so is cut.

LEMMA 2.2
(Weak) and (Contr) are height-preservingly admissible for G4P,A.

 
  

            
               

          
                                                               

                                                   



A Reduction-based Cut-free Gentzen Calculus for DEL 5

TABLE 4. Additional rules for G4P,A.

PROOF. By induction on the height of the derivation (as in, e.g. [31]).
�

THEOREM 2.3
(Cut) is admissible for G4P,A.

PROOF. As in, e.g. [36].
�

THEOREM 2.4
G4P,A is sound and complete for S4, i.e. for any ϕ ∈ ΦP,A, �G4P,A⇒ ϕ if, and only if, K |� ϕ in all
epistemic S4 states K over (P, A).

PROOF. For soundness, it suffices to check that each rule of G4P,A is valid in S4; for completeness,
that each axiom of the Hilbert-style axiomatization in Table 1 is derivable in G4P,A and that each
rule is admissible. �

Table 4 contains derived rules for the other propositional connectives. Additionally, it shows
admissible rules for truth, (RT) and positive introspection, (LK2) and (RK2).

LEMMA 2.5
For all a ∈ A, all ϕ ∈ ΦP,A and all multisets Γ , Δ of formulæ the following statements hold.

(a) If �G4P,A Γ ⇒ Kaϕ, Δ, then �G4P,A Γ ⇒ ϕ, Δ.
(b) If �G4P,A KaKaϕ, Γ ⇒ Δ, then �G4P,A Kaϕ, Γ ⇒ Δ.
(c) If �G4P,A Γ ⇒ Kaϕ, Δ, then �G4P,A Γ ⇒ KaKaϕ, Δ.

PROOF. For all claims, we proceed by induction over the derivation of the premiss and consider
the last rule applied. The cases (pA), (Lfalse), (L⊃), (R⊃) are immediate since neither Kaϕ in the

 
  

            
               

          
                                                               

                                                   



6 A Reduction-based Cut-free Gentzen Calculus for DEL

succedent nor KaKaϕ in the antecedent is principal in these rules; the same holds for (a) and (c) with
(LT), where Kaϕ is in the succedent.
(a) We only consider (RK). Then Γ = Ka′Γ ′, Γ ′′ and Kaϕ, Δ = Ka′ϕ′, Δ′ for some a′, Γ ′, Γ ′′, ϕ′, Δ′
and �G4P,A Ka′Γ ′ ⇒ ϕ′. If Kaϕ is principal, i.e. Kaϕ = Ka′ϕ′ and Δ = Δ′, then �G4P,A Γ ⇒ ϕ, Δ
follows from weakening �G4P,A KaΓ

′ ⇒ ϕ. If Kaϕ is not principal, i.e. Δ = Ka′ϕ′, Δ′′, then �G4P,A

Ka′Γ ′, Γ ′′ ⇒ Ka′ϕ′, ϕ, Δ′′ by applying (RK) with premiss Ka′Γ ′ ⇒ ϕ′, i.e. �G4P,A Γ ⇒ ϕ, Δ.
(b) We only consider (LT) and (RK).
Case (LT): Then immediately �G4P,A Kaϕ, Γ ⇒ Δ.
Case (RK): Then KaKaϕ, Γ = Ka′Γ ′, Γ ′′ and Δ = Ka′ϕ′, Δ′ for some a′, Γ ′, Γ ′′, ϕ′, Δ′. If a = a′,
then �G4P,A KaKaϕ, KaΓ

′ ⇒ ϕ′; thus, �G4P,A Kaϕ, KaΓ
′ ⇒ ϕ′ by the induction hypothesis, and

hence, �G4P,A Kaϕ, KaΓ
′, Γ ′′ ⇒ Kaϕ

′, Δ′ using (RK). If a �= a′, then �G4P,A Ka′Γ ′ ⇒ ϕ′ and thus
�G4P,A Kaϕ, KaΓ

′, Γ ′′ ⇒ Kaϕ
′, Δ′ again by (RK).

(c) We only consider (RK). Then Γ = Ka′Γ ′, Γ ′′ and Kaϕ, Δ = Ka′ϕ′, Δ′ for some a′, Γ ′, Γ ′′, ϕ′, Δ′,
and �G4P,A Ka′Γ ′ ⇒ ϕ′. If Kaϕ is principal, i.e. Kaϕ = Ka′ϕ′ and Δ = Δ′, then �G4P,A KaΓ

′ ⇒ ϕ,
such that �G4P,A KaΓ

′ ⇒ KaKaϕ by applying (RK) twice, which yields �G4P,A Γ ⇒ KaKaϕ, Δ
by weakening. If Kaϕ is not principal, i.e. Δ = Ka′ϕ′, Δ′′ for some Δ′′, then �G4P,A Ka′Γ ′, Γ ′′ ⇒
Ka′ϕ′, KaKaϕ, Δ′ by applying (RK) with premiss Ka′Γ ′ ⇒ ϕ′, i.e. �G4P,A Γ ⇒ KaKaϕ, Δ. �

The asymmetric rule (RK) may be replaced by a more symmetric variant (LRK) if not only the
truth rule (LT) but also the positive introspection rule (LK2) is present.

LEMMA 2.6
If �G4P,A Γ ⇒ ϕ, then �G4P,A KaΓ , Γ ′ ⇒ Kaϕ, Δ′. Conversely, replace (RK) by (LRK) and call the
resulting system G4′

P,A: if �G4′
P,A

KaΓ ⇒ ϕ, then �G4′
P,A

KaΓ , Γ ′ ⇒ Kaϕ, Δ′.

PROOF. In G4P,A, we have the following derivation to the left, for the converse direction using G4′
P,A

the derivation to the right, where (LT)∗ and (LK2)∗ mean an iterated rule application (including zero
iterations).

�

3 Dynamic Epistemic Logic

We brief ly summarize epistemic actions and DEL following van Ditmarsch et al. [42]. Based on
this, we present our calculus G4P,A[] and prove the admissibility of cut as well as its soundness and
completeness.

An epistemic action structure U = (Q, F, pre) over (P, A) and some logical language L consists
of a finite set of action points Q, an A-indexed family of epistemic action accessibility relations
F = (Fa ⊆ Q × Q)a∈A and a precondition function pre : Q → L. We assume that the accessibility
relations are ref lexive and transitive. For any agent a, (q, q′) ∈ Fa models that agent a cannot
distinguish between occurrences of q and q′. For q ∈ Q, the epistemic formula pre(q) determines a
condition under which q can happen. An epistemic action u = (U , q) over (P, A) and L is given by
the epistemic action structure U = (Q, F, pre) and a designated point q ∈ Q.

 
  

            
               

          
                                                               

                                                   



A Reduction-based Cut-free Gentzen Calculus for DEL 7

The set ΨP,A of dynamic epistemic formulæ over (P, A) is defined as
⋃

n∈N Ψ
(n)
P,A where Ψ

(n)
P,A are

the dynamic epistemic formulæ of depth n; the set u of epistemic actions over (P, A) is defined as⋃
n∈N U

(n)
P,A where U

(n)
P,A are the epistemic actions of depth n. The families (Ψ

(n)
P,A)n∈N and (U

(n)
P,A)n∈N

are mutually recursively defined as follows: Ψ
(0)
P,A is just ΦP,A and the dynamic epistemic formulæ

Ψ
(n+1)
P,A are defined by the following grammar:

ψ : := false | ψ1 ⊃ ψ2 | Kaψ | [u]ψ ,

where u ∈ U
(n)
P,A and U

(n)
P,A comprises the epistemic actions over (P, A) and Ψ

(n)
P,A. The formula [u]ψ

is to be read as ‘the execution of the epistemic action u in the current epistemic state leads to an
epistemic state where the formula ψ holds’. In the following, ψ (and its adorned variants) always
ranges over ΨP,A and u over u.

The product update of an epistemic structure K = (W , E, L) over (P, A) and an epistemic action
structure U = (Q, F, pre) over (P, A) is the epistemic structure K � U = (W ′, E′, L′) over (P, A)

with

W ′ = {(w, q) ∈ W × Q | K, w |� pre(q)}
E′

a = {((w, q), (w′, q′)) ∈ W ′ × W ′ | (w, w′) ∈ Ea, (q, q′) ∈ Fa} for all a ∈ A,

L′(w, q) = L(w) for all (w, q) ∈ W ′.

The product update for epistemic structures is well defined, since the relations E′
a are again ref lexive

and transitive. E′
a ref lects that the uncertainty of an agent a in a world (w, q) is determined by the

uncertainty of a about world w and its uncertainty about the occurrence of q. The product update of
an epistemic state K and an epistemic action u = (U , q) over (P, A) is defined by the epistemic state
(K, w) � (U , q) = (K � U , (w, q)), provided that K, w |� pre(q). Note that all epistemic actions are
deterministic.

EXAMPLE 3.1
(see, e.g. [33]) Let P = {p} and A = {1, 2}. For the current epistemic state, assume that neither
agent 1 nor agent 2 know whether proposition p holds. This situation can be represented by K =
((W , E, L), w0) with W = {w0, w1}, E1 = W 2 = E2 and L(w0) = {p}, L(w1) = ∅, as depicted
below:

(Both accessibility relations are symmetric, as indicated by the arrows, but this is not required in
S4). Now assume that only 1 reads a letter telling that p, such that 1 consequently knows p, but 2
does not. This reading is modelled by rd = ((Q, F, pre), p) with Q = {p, n}, F1 = {(p, p), (n, n)},
F2 = Q2, pre(p) = p and pre(n) = ¬p, graphically shown below:

 
  

            
               

          
                                                               

                                                   



8 A Reduction-based Cut-free Gentzen Calculus for DEL

The epistemic state resulting from executing rd in K, depicted below, is K�rd= ((W ′, E′, L′), (w0, p))

with W ′ = {(w0, p), (w1, n)}, E′
1 = {((w0, p), (w0, p)), ((w1, n), (w1, n))}, E′

2 = W ′2, L′(w0, p) =
{p} and L′(w1, n) = ∅:

Indeed, in this epistemic state K� rd agent 1 knows p.

The syntactic composition U1; U2 of two epistemic action structures Ui = (Qi, Fi, prei), 1 ≤ i ≤ 2
is given by (Q, F, pre) with

Q = Q1 × Q2 ,

Fa = {((q1, q2), (q′
1, q′

2)) | (q1, q′
1) ∈ F1,a, (q2, q′

2) ∈ F2,a} ,

pre(q1, q2) = pre1(q1) ∧ [(U1, q1)]pre2(q2) .

The syntactic composition u1; u2 of two epistemic actions ui = (Ui, qi), 1 ≤ i ≤ 2, is given by
(U1; U2, (q1, q2)). The syntactic composition of epistemic actions is associative up to isomorphism
[42, Prop. 6.9], i.e. it holds for all u1, u2, u3 ∈ UP,A that

u1; (u2; u3) ∼= (u1; u2); u3. (A1)

In the following, we will identify isomorphic epistemic actions.
For an epistemic action u = ((Q, F, pre), q), we write Q(u) for Q, F(u)a for {q′ | (q, q′) ∈ Fa},·u for pre(q), q(u) for q and u · q′ for ((Q, F, pre), q′) whenever q′ ∈ Q. It holds for all a ∈ A,

u1, u2 ∈ UP,A and qi ∈ Q(ui), 1 ≤ i ≤ 2, that

F(u1; u2)a = F(u1)a × F(u2)a (A2)

(u1; u2) · (q1, q2) = (u1 · q1); (u2 · q2) (A3)

·(u1; u2) = ·u1 ∧ [u1]·u2 (A4)

The satisfaction of a dynamic epistemic formula ψ in an epistemic state K over the same epistemic
signature (P, A), written K |� ψ , extends the respective satisfaction of (pure) epistemic formulæ by

K |� [u]ψ ⇐⇒ K |� ·u implies K� u |� ψ .

The DEL DS4P,A consists of all dynamic epistemic formulæ ψ ∈ ΨP,A such that K |� ψ for all
epistemic states K. This logic can be axiomatized in a Hilbert-calculus by the axioms and derivation
rules for , see Table 1, together with the reduction axioms in Table 5, where

∧
abbreviates iterated

conjunction.

 
  

            
               

          
                                                               

                                                   



A Reduction-based Cut-free Gentzen Calculus for DEL 9

TABLE 5. Reduction axioms for DS4P,A

TABLE 6. Modal Gentzen system G4P,A[] for DEL.

Our Gentzen-style calculus G4P,A[] for epistemic dynamic logic extends the epistemic rules in
Table 2 with the action rules in Table 6 where now Γ and Δ always range over ΨP,A. Table 7
comprises some additional rules: on the one hand, the additional propositional connectives can
be directly handled by corresponding derived rules; on the other hand, some admissible rules for
handling actions are offered (see Lemmas 3.7 and 3.8).

EXAMPLE 3.2
Consider the reading action of rd as introduced in Example 3.1.

 
  

            
               

          
                                                               

                                                   



10 A Reduction-based Cut-free Gentzen Calculus for DEL

TABLE 7. Additional rules for G4P,A[].

The rank of a formula ψ and an action u is inductively defined as follows (see [42, Def. 7.38]):

rk(false) = 1

rk(p) = 1

rk(ψ1 ⊃ ψ2) = 1 + max{rk(ψ1), rk(ψ2)}
rk(Kaψ) = 1 + rk(ψ)

rk([u]ψ) = (4 + rk(u)) · rk(ψ)

rk(u) = max{rk(·(u · q)) | q ∈ Q(u)}.

It holds that rk([u]Kaψ) > rk([u]ψ), rk([u]ψ) > rk(·u), rk([u]ψ) > rk(ψ), rk([u]Kaψ) >

rk(Ka[u · q]ψ) for all q ∈ Q(u) and rk([u1][u2]ψ) > rk([u1; u2]ψ).
The following lemmata hold for all ψ ∈ ΨP,A, u, u1, u2 ∈ UP,A, a ∈ A and ΨP,A-multisets Γ and

Δ. We first show that Lemma 2.1 generalizing the axiom rule (pA) to arbitrary formulæ carries over
from G4P,A.

LEMMA 3.3
�G4P,A[] ψ , Γ ⇒ Δ, ψ .

PROOF. We proceed by induction on the rank of ψ . For ψ ∈ ΦP,A, the claim already holds in G4P,A
by Lemma 2.1. We only consider ψ = [u]p and ψ = [u]Kaψ

′; the remaining cases are analogous.
Case ψ = [u]p: We have

 
  

            
               

          
                                                               

                                                   



A Reduction-based Cut-free Gentzen Calculus for DEL 11

Case ψ = [u]Kaψ
′: We have

�
Also, Lemma 2.2 showing the admissibility of (Weak) and (Contr) carries over from G4P,A.

LEMMA 3.4
(Weak) and (Contr) are height-preservingly admissible for G4P,A[].

PROOF. By induction on the height of the derivation.
�

LEMMA 3.5
If �G4P,A[]

·u, Γ ⇒ [u]ψ , Δ, then �G4P,A[] Γ ⇒ [u]ψ , Δ.

PROOF. We proceed by induction over the derivation of �G4P,A[]
·u, Γ ⇒ [u]ψ , Δ and consider

the last rule applied. If therein [u]ψ is principal and ·u is added in the antecedent — as in (R[]p),
(R[]false) and (R[]K) —, then (Contr) is applied. If, e.g. (R[]p) is the last rule, then ψ = p and
�G4P,A[]

·u,· u, Γ ⇒ p, Δ and

If [u]ψ is principal, but ·u is not added in the antecedent—as in (R[]⊃) and (R[][])—then the claim
follows directly from the induction hypothesis.

If [u]ψ is not principal and the rule for [u]ψ in the succedent adds ·u to the antecedent, we first
(from bottom to top) duplicate [u]ψ in the succedent by (Contr), then apply the ‘box’-rule matching
ψ for adding ·u, and finally apply (Weak).

If [u]ψ is not principal and ·u is not added to the antecedent by the ‘box’-rule matching ψ , then the
claim follows directly from the induction hypothesis. �
LEMMA 3.6
All of the ‘box’ rules in G4P,A[] are invertible, i.e.: if �G4P,A[] [u]p, Γ ⇒ Δ, then �G4P,A[] Γ ⇒ ·u, Δ
and �G4P,A[] Γ , p ⇒ Δ, &c.

PROOF. Only a single rule applies to each possible form of [u]ψ in the antecedent and the succedent.
�

We append −1 to a rule name when applying it invertedly. The rules (LK[][]) and (RK[][]) for
treating sequential composition of epistemic actions and repeated boxes equally are both admissible
and invertible.
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LEMMA 3.7

(a) �G4P,A[] Ka[u1; u2]ψ , Γ ⇒ Δ if, and only if, �G4P,A[] Ka[u1][u2]ψ , Γ ⇒ Δ.
(b) �G4P,A[] Γ ⇒ Ka[u1; u2]ψ , Δ if, and only if, �G4P,A[] Γ ⇒ Ka[u1][u2]ψ , Δ.

PROOF. (a) The only applicable rule with Ka[u1; u2]ψ and Ka[u1][u2]ψ principal is (LT) where the
claim follows immediately by (L[][]) or (L[][])−1.
(b) Only (RK) shows Ka[u1; u2]ψ or Ka[u1][u2]ψ principally. If the last rule for obtaining �G4P,A[]
Γ ⇒ Ka[u1; u2]ψ , Δ has been (RK), then Γ = KaΓ

′, Γ ′′ for some Γ ′, Γ ′′ and �G4P,A[] KaΓ
′ ⇒

[u1; u2]ψ . We thus have

The reverse direction uses (R[][])−1. �
We show that the rule (LR[]) is admissible. The rule always assumes the precondition of the

contextual epistemic action to hold; without this precondition, the rule would not apply to an empty
succedent (see Lemma 3.5): the sequent false ⇒ is derivable, but [ff]false ⇒ with ·ff = false must
not be.

LEMMA 3.8
If �G4P,A[] Γ ⇒ Δ, then �G4P,A[]

·u, [u]Γ , Γ ′ ⇒ [u]Δ, Δ′ for all u, Γ ′ and Δ′.

PROOF. We proceed by induction over the derivation of �G4P,A[] Γ ⇒ Δ and consider the last rule
applied.
Case (pA): Then Γ = p, Γ ′ and Δ = p, Δ′ for some p, Γ ′, Δ′. We have

Case (Lfalse): Then Γ = false, Γ ′ for some Γ ′. We have

Case (R⊃): Then Γ = ψ1 ⊃ ψ2, Γ ′ for some ψ1, ψ2, Γ ′ and �G4P,A[] Γ ′ ⇒ ψ1, Δ, as well as
�G4P,A[] ψ2, Γ ′ ⇒ Δ. We have
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Case (R⊃): Then Δ = ψ1 ⊃ ψ2, Δ′, for some ψ1, ψ2, Δ′ and �G4P,A[] ψ1, Γ ⇒ ψ2, Δ′. We have

Case (LT): Then Γ = Kaψ , Γ ′ for some a, ψ , Γ ′ and �G4P,A[] ψ , Γ ′ ⇒ Δ. We have

where the step (Weak) is possible since q(u) ∈ F(u)a by the ref lexivity of F(u) and u · q(u) = u.
Case (RK): Then Γ = KaΓ

′, Γ ′′ and Δ = Kaψ , Δ′ for some a, Γ ′, Γ ′′, ψ , Δ′ and �G4P,A[] KaΓ
′ ⇒

ψ . We have

where
(
(u·q′)·q′′)

q′∈F(u)a,q′′∈F(u·q′)a
= (u·q′)q′∈F(u)a up to contraction by transitivity and ref lexivity.

Case (L[]p): Then Γ = [u′]p, Γ ′ for some u′, p, Γ ′ and �G4P,A[] Γ ′ ⇒ ·u′, Δ, as well as �G4P,A[]
Γ ′, p ⇒ Δ.

where the derivation ∗0 is
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Case (R[]p): Then Δ = [u′]p, Δ′ for some u′, p, Δ′ and �G4P,A[]
·u′, Γ ⇒ p, Δ′.

Case (L[]false): Then Γ = [u′]false, Γ ′ for some u′, Γ ′ and �G4P,A[] Γ ′ ⇒ ·u′, Δ. We have

where the derivation ∗0 is as in (L[]p).
Case (R[]false): Analogous to (L[]false).
Case (L[]⊃): Then Γ = [u′]ψ1 ⊃ ψ2, Γ ′ for some u′, ψ1, ψ2, Γ ′ and �G4P,A[] Γ ′ ⇒ [u′]ψ1, Δ as
well as �G4P,A[] [u′]ψ2, Γ ′ ⇒ Δ. We have

Case (R[]⊃): Analogous to (L[]⊃). Case (L[]K): Then Γ = [u′]Kaψ , Γ ′ for some u′, a, ψ , Γ ′ and
�G4P,A[] Γ ′ ⇒ ·u′, Δ, as well as �G4P,A[] (Ka[u′ · q′]ψ)q′∈F(u′)a , Γ ′ ⇒ Δ. We have

where the derivation ∗0 is as in the case of (L[]p) and the derivation ∗1 is

Case (R[]K): Analogous to (L[]K).
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Case (L[][]): Then Γ = [u1][u2]Kaψ , Γ ′ for some u1, u2, a, ψ and �G4P,A[] [u1; u2]ψ , Γ ′ ⇒ Δ. We
have

Case (R[][]): Analogous to (L[][]). �
We finally show that (Cut) is admissible for G4P,A[]. First, we prove the admissibility of the cut

rule for independent contexts Γ1, Δ1 and Γ2, Δ2.

LEMMA 3.9
For any ψ ∈ ΨP,A and any multisets Γ1, Γ2, Δ1, Δ2 of ΨP,A-formulæ it holds that �G4P,A[] Γ1 ⇒
Δ1, ψ and �G4P,A[] ψ , Γ2 ⇒ Δ2 implies �G4P,A[] Γ1, Γ2 ⇒ Δ1, Δ2.

PROOF. We proceed by a double induction over the rank rk(ψ) of ψ and the height of a deduction.
Case 1: At least one of the sequents of the hypothesis of the claim is an axiom. A proof of the form

is transformed into

Case 2: The cut”=formula is a side formula ψ . We only give some illustrative cases, the
transformations for all the other rules is analogous.
Case 2–(RK): Then

is transformed into
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Case 2–(RK): Then

is transformed into

Case 2–(R⊃): Then

is transformed into

Case 3: In the sequents of both premisses the cut-formula ψ is principal.
Case 3–S4: as for G4P,A, see Theorem 2.3.
Case 3–(L[]p)–(R[]p): Then

is transformed into

where rk(·u) ≤ rk(u) < rk([u]p) and rk(p) = 1 < rk([u]p).
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Case 3–(L[]⊃)–(R[]⊃): Then

is transformed into

where rk(·u) ≤ rk(u) < rk([u](ψ1 ⊃ ψ2)) = (4 + rk(u)) · (1 + max{rk(ψ1), rk(ψ2)}) and
rk([u]ψ1), rk([u]ψ2) < rk([u](ψ1 ⊃ ψ2)).
Case 3–(L[]K)–(R[]K): Then

is transformed into

where the reasoning for h1q′ is iterated over all q′ ∈ F(u)a as exemplified for h1q′
1

and h1q′
2
. It holds

that rk(·u) ≤ rk(u) < rk([u]Kaψ) = (4+ rk(u)) · (1+ rk(ψ)) and rk(Ka[u · q′]ψ) = 1+ (4+ rk(u)) ·
rk(ψ) < rk([u]Kaψ).
Case 3–(L[][])–(R[][]): Then

 
  

            
               

          
                                                               

                                                   



18 A Reduction-based Cut-free Gentzen Calculus for DEL

is transformed into

where rk([u1; u2]ψ) < rk([u1][u2]ψ). �
By admissibility of (Contr), see Lemma 3.4, the admissibility of (Cut) is a direct consequence of

Lemma 3.9.

THEOREM 3.10
(Cut) is admissible for G4P,A[].

PROOF. We obtain �G4P,A[] Γ ⇒ Δ from �G4P,A[] Γ ⇒ Δ, ψ and �G4P,A[] ψ , Γ ⇒ Δ as follows:

�

THEOREM 4
G4P,A[] is sound and complete for DS4P,A.

PROOF. For soundness, it suffices to check that each rule of G4P,A[] is valid in DS4P,A; for
completeness, that each axiom of the Hilbert-style axiomatization Table 5 is derivable in G4P,A[]
and that each rule is admissible. Modus ponens (MP) follows from Theorem 3.10. For the axioms,
we only show the derivations of (red⊃) and (redK); all other case are analogous.
Case (red⊃): We have

Case (redK): We have
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with ∗1 given by

where (R∧)+ denotes iterated application of (R∧), and ∗2 is given by

where (L∧)+ denotes iterated application of (R∧). �

4 Conclusions

We presented the novel ordinary Gentzen-type calculus G4P,A[] for DEL. The special feature of
G4P,A[] is that—instead of internalizing the accessibility relation—the rules for the action modality
correspond to the reduction rules in [7, 42]. The main results of this work are the admissibility of
the cut rule and the completeness of the calculus.

Currently, G4P,A[] is based on S4 modal logic. In the future, we want to extend our calculus to S5
and to include rules for general knowledge and with further action combinators like selection and
iteration. We also want to integrate the calculus into a systematic software development approach
for collective adaptive systems [20].
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