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ABSTRACT

In this paper, we present a processing pipeline for the analysis of

stress and negative affect based on pupillometry. We were able to

show that it is possible to extract meaningful pupil features from

video data recorded by an infrared- (IR-) sensitive webcam and

successfully trained a Support VectorMachine on the corresponding

dataset. Further, we conducted a study that shows that the proposed

pipeline is suitable for the assessment of stress as well as negative

affect during stress eliciting situations in a digital environment.
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1 INTRODUCTION

As the pandemic continues to affect our daily lives, working from

home has become a routine for many. While this shift brings some

potential benefits to workers, such as less commuting and more

flexibility in work schedules, it also comes with considerable chal-

lenges for an employee’s health. A recent meta-study by Oakman

et al. [16] identified a series of physical- and mental health-related

issues related to working at home: pain, self-reported health, safety,

well-being, stress, depression, fatigue, quality of life, strain, and

happiness. Although an employee may be well aware of such prob-

lems, tracking down the often individual causes proves to be a

non-trivial task. Therefore, an important first step in preventing

the manifestation of circumstances that are detrimental to health is

to create awareness. In this paper, we want to specifically address

the problem of recognizing perceived stress and negative emotions

for home office employees in order to provide them with helpful

feedback. A promising technique that, to the best of our knowledge,

has not been investigated in such a scenario so far, is pupillometry.

This is a widely used method to measure conscious and uncon-

scious emotional reactivity, or cognitive load [23] [17]. Changes

in pupil size have been associated with negative emotions, such
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as anxiety, as well as with perceived and physiological stress. An

advantage of pupillometry over other physiological and psycho-

logical measures that are related to emotions (e.g., body posture or

voice) is that pupil dilations are not voluntarily controlled [2]. Fur-

thermore, pupil analysis is usually performed by using images from

an optical sensor as input. This means that data collection is not

only unobtrusively but can potentially also be done with traditional

webcams that are already present in most home offices. Therefore,

pupil responses are a promising means for uncovering stress and

negative emotions when working on a PC. The goal of this paper is

to develop a cost-efficient setup, including an open-source pipeline,

for the assessment and analysis of pupillometric reactivity.

2 BACKGROUND AND RELATEDWORK

2.1 Automatic stress detection

Stress and its negative effects on health and well-being are impact-

ing the lives of many humans around the world. In order to mitigate

or negate the impact of stress, various approaches for automatic

stress detection have been developed utilizing different modalities,

e.g., physiological signals (EEG, ECG, GSR, etc.), video, audio, eye

blinking, or keyboard typing behavior [5]. Moreover, there is an

increasing interest in the automatic detection of stress using wear-

ables. By now, wearables (e.g., smartphones, smartwatches, fitness

trackers) are commonly used in the general population. Therefore,

making the automatic detection of stress applicable in day-to-day

life. Wearables are equipped with capable sensors to measure phys-

iological signals like ECG, PPG, GSR, allowing to gain valuable

insights on perceived stress and emotional arousal [22]. Can et al.

[4] developed a system for automatic stress detection based on heart

activity, skin conductance, and accelerometer data from Samsung

Gear S smartwatches and Empatica E4 wristbands. They trained

six different classifiers with the Weka machine learning toolkit

to distinguish between three levels of stress. Their best classifier

achieved an accuracy of 90.40%. Jebelli et al. [8] developed a mo-

bile deep learning based framework to detect low and high stress

in construction workers during their work at construction sites.

The authors trained several fully connected deep neural network

and convolutional neural network architectures on EEG signals ob-

tained from mobile EEG sensors that have been fit into the workers’

safety hats. For training the classifiers they collected EEG data from

10 construction workers. On their binary classification task, the

best performing fully connected deep neural network achieved an

accuracy of 86.62%, whereas the best convolutional neural network

had a prediction accuracy of 64.20%. Reliable automatic detection of

stress is an important pillar to mitigate the negative effects of stress,

as it can be used to raise peoples’ awareness of stressful situations

in their everyday life. Raising awareness enables them to reflect

on the reason for stress and potential stress eliciting environments.

Schmidt et al. [21] developed a mobile assistant that helps people

cope with their stress. Their coping assistant uses sensor data to

warn the user of increased stress and also reports back why they

might be currently stressed. Next, the assistant proposes targeted

coping strategies on how to deal with the perceived stress. Finally,

automated measures are performed to reduce the stress exposure,

e.g., reducing interruptions by blocking notifications.

2.2 Pupillometry for stress and emotion

recognition

Emotional arousal is associated with the activation of the autonomic

nervous system (ANS), i.e., with an up-regulation of its sympathetic

and a down-regulation of its parasympathetic branch [19]. ANS ac-

tivity is usually assessed by means of electrophysiological measures

such as heart rate (HR) or skin conductance (SC). However, a further

promising ANS marker are pupil responses [23]. Overall, pupil di-

lations can be used as a readout of emotional arousal, because they

are related to negative emotions such as anxiety as well as with the

human stress response. Emotional arousing stimuli are associated

with pupil dilation, i.e., with an increase in pupil diameter [23] [17].

Pupil responses have been successfully applied in several experi-

ments in the field of fear conditioning (e.g., [11], [24]). Moreover,

pupil responses are closely related to subjective and physiological

stress responses (e.g., the activation of the hypothalamic-pituitary

adrenal (HPA) axis; [26] [18]). Furthermore, a recent study has

shown that pupillometry is a suitable tool to measure arousal dur-

ing emotion regulation after an acute stressor [9] [18]. Importantly,

pupil dilations are involuntary responses of the ANS and can, there-

fore, not be voluntarily controlled [17], which is an advantage over

other ANS or psychological measures in the context of stress and

emotional reactivity, as it enables to assess more reliable results,

due to the mitigated influence of social and behavioral interdepen-

dencies. Therefore, pupillometry is a promising tool that might be

superior over other ANS measures for the assessment of stress and

emotions in several settings.

3 PUPILLOMETRY PIPELINE

In order to analyse stress and emotional arousal through pupillom-

etry, we implemented an open-source processing pipeline that is

implemented with the Social Signal Interpretation framework (SSI)

[25]. SSI provides an infrastructure for the development of online

recognition systems from multiple synchronized sensory devices.

The SSI Framework already provides a variety of processing meth-

ods and feature extractors for physiological signals like ECG, PPG,

SC. Therefore, we extended the SSI Framework by implementing a

new SSI plugin named PupilTrackingCore, to extract meaningful

pupil features. In this section, we focus on the details of this plugin.

In order to track the pupil size in an input video, produced by a

video capture device, just like the webcam displayed in Figure 2, we

combined different existing technologies in the PupilTrackingCore

package. To detect the pupil diameter in an arbitrary video frame,

a number of processing steps are performed. An overview of the

architecture, inputs and outputs of the core pupil tracking package

is displayed in Figure 1.

First, we extracted two regions of interest containing the left

and right eye. For this purpose, we incorporated MediaPipe [14],

a framework to build perception pipelines. Part of this framework

is a pipeline to reliably track the human eyes [1]. Amongst other

things, the pipeline returns the position of the iris center as well as

the diameter of the iris. Based on the provided coordinates of both

irises, we crop two regions of interest (R
eye_left

and R
eye_right

) from

the original input frame containing the eyes. The cropped regions

are rectangular with a side length of three times the iris diameter.

This ensures that the entire eye is present in the extracted frames.
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Figure 1: The architecture, inputs and outputs of the core pupil tracking package. A bitmap image with a human face is passed

in, the eyes are detected, their respective pupils are tracked, and the tracking data as well as a debug video rendering are

output.

Each R
eye_*

is automatically optimized by converting it to a gray

scale image and increasing brightness and contrast. To optimize

the contrast between pupil and iris, we sample the brightness of

the pupil and of the surrounding parts of the iris by averaging the

brightness of six cells with a fixed size. One cell covers the pupil

while the other five cover neighboring cells of the pupil. Cells that

might be covered by the eyelid are omitted. Finally, the average

brightness of each cell is calculated and the contrast in the image

is boosted inversely to the difference between the brightness of the

pupil’s cell and the average of all other cells.

Each optimized R
eye_*

is then passed to an instance of the pupil-

tracker PuReST[20], which returns the pupil diameter in pixels as

well as a confidence rating (0..1). In addition to that, we calculate

a normalized pupil diameter (0..1) by dividing the pupil diameter

by the iris diameter. This way, the distance between the capturing

device and the face does not affect the returned size of the pupils.

Whenever the tracking fails, -1 is returned for all dimensions. The

component accepts video frames served from any video capture

device via a Transmission Control Protocol (TCP) socket connection.

Establishing the connection and synchronizing the output with

other components is handled by SSI. This way, it is possible to

use the PupilTrackingCore alongside multiple sensory devices in

multimodal recording and processing pipelines. Additionally, the

PupilTrackingCore package provides the possibility to return a

separate MP4 file for manual inspection of the source video and

tracking results (see Figure 2). In addition to that, we also developed

a stand-alone command-line tool to process pre-recorded videos.
1

4 PILOT STUDY

To assess the feasibility of our processing pipeline and our Pupil-

TrackingCore component we conducted a pilot study. The study

setting had to fulfil two main criteria. First, the setup had to elicit

stress and emotional arousal in the participants. Second, in order to

be comparable to a remote-working environment, the setting had

to take place in virtual space. Therefore, we decided on a virtual

1
Our implementation is available at https://hcai.eu/git/alexanderh/pupil_tracking.git.

job-interview scenario conducted via an online meeting tool. Per-

forming online job-interviews has become a common procedure

in modern working environments. Moreover, job interviews are

by their nature a complex stressful social scenario where differ-

ent aspects of human interaction and perception collude. Previous

research has shown that psychosocial stress also occurs in mock

job interviews [3, 6]. This makes the study setting not only meet

our criteria but also depict a realistic real-world remote scenario.

Furthermore, the physiological response to the stressor can be trans-

lated to other virtual settings, due to the fact that pupil dilations are

involuntary responses of the ANS and cannot be voluntarily con-

trolled [17]. Therefore, it can be assumed that stress and emotional

arousal eliciting situations produce comparable pupil responses. In

order to have a benchmark for our generated pupil features we also

decided to consider two well-established physiological modalities

in the context of automatic stress detection, namely HR and SC

[22].

4.1 Participants

Participants were eight German-speaking young adults (2 male,

28.8 ± 5.7 years), who all had experience with job interviews. Mean

number of previous job interviews was 5.4 ± 2.4 (range 3 to 10).

Seven participants were students and one participant was a full-

time employee. Highest educational degrees were secondary school

(n = 1) in one case, general qualification for university entrance

(n = 4), Bachelor degree (n = 2), and Ph.D. (n = 1). Participants

were recruited from local universities via flyers and mailing lists.

All participants provided written and informed consent.

4.2 Materials

In order to record the different modalities during the remote job-

interview simulation, we utilized different sensors and video-capture

devices. We used the IOM-biofeedback sensor to collect SC and

blood volume pulse. The participant’s audio was recorded using

a studio microphone with a sample rate of 16,000 Hz. The virtual

job interviews were conducted by using an online meeting tool

(ZOOM). Moreover, we utilized different kinds of video capture
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Figure 2: Screenshot of the video returned by the PupilTrackingCore. The middle frame displays the original video recorded

by the IR-sensitive webcam (left). On the right side the cropped regions for the left and right eye are displayed. The bottom

row shows additional tracking information.

devices. For the ZOOM meeting itself, a common webcam was

used. For recording the pupil data, we decided to use two different

devices to be able to investigate the applicability of our approach,

given different setups. We used a Pupil Labs wearable eyetracker

as well as a modified full HD webcam (see the left frame in Fig-

ure 2). Since CMOS sensors used in most low-cost digital cameras

are capable of recording infrared light, we converted a ordinary

webcam to record in the infrared spectrum. We opted to use a

"CONCEPTRONIC AMDIS 1080p Webcam" on which we removed

the infrared filter. This modification isn’t challenging and can be

done in a few minutes with just a screwdriver. In addition to that,

we equipped the webcam with a ring-light of 36 infrared LEDs to

increase the contrast of the pupils.

4.3 Study design and procedure

Participants were invited to the laboratory and were told that phys-

iological reactions during an online job interview will be recorded.

In advance, participants sent their curriculum vitae (CV) to the ex-

perimenter and filled-out an online survey, in which demographic

variables and experiences with job interviews were assessed. After

arrival in the laboratory, they were asked about their dream job and

were equipped with HR and SC sensors. Then, they had ten minutes

to prepare for the interview. The actual interview took place online

via ZOOM through a computer that was placed in front of the partic-

ipants. Participant and interviewer were sitting in separate rooms

during the mock interview. The interviewer tried to ask critical

questions to stress the applicant and to induce negative emotions.

Contents of the interviews included questions about strengths and

weaknesses of the applicant, dealing with difficult situations in

the job, salary expectations, willingness to work overtime, as well

as inconsistencies in the CV. In addition, tasks related to logical

thinking were asked as well as questions about basic knowledge in

the areas of mathematics and language. After the job interviews,

participants were asked about their emotions during the interview

and rated whether they perceived the situation rather as a threat

or as a challenge. After this, participants reported whether they

felt stressed at any time point during the interviews. Afterwards,

participants were instructed to describe as precisely as possible in

which specific situations during the job interviews they felt stress.

This procedure (rating and assignment to specific situations) was

repeated for all of the reported negative emotional states.

4.4 Analysis/Annotation

Figure 3: An instance of NOVA From top downwards: In-

frared video containing the cropped regions for both eyes

with and without tracking information. In the lower part,

several sensor signals, e.g. audio, heart rate, skin conduc-

tance, and pupil diameter are displayed. The bottom row

shows a discrete annotation tier.

The self-reports of the specific situations in which the emotions

were experienced were used as a basis for the annotations. An

experienced psychologist annotated the recordings based on the

participants’ reports and the content of the interviews. Categories

for the annotations were the categories from the questionnaire (i.e.,

stress as well as the reported negative emotions shame, anxiety,

anger) and a neutral state. In total, 301 minutes of data were an-

notated frame by frame. There were no disagreements between

the psychologist’s ratings and the participants’ self-reports, i.e., for
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every situation that was assigned to stress or an emotion by the

participants, a time window could be assigned by the psychologist

and a corresponding annotation could be created. The NOVA tool

[7] was used for annotation. A screenshot of a loaded recording

session from our study is shown in Figure 3.

NOVA complements the SSI framework as it allows to directly

visualize and annotate streams recordedwith the framework, includ-

ing our PupilTracking Core plugin. Since SSI is primarily designed

to build online recognition systems, a trained model can then be

directly used to detect either social cues or as in our case, stress

and negative emotions, in real-time.

4.5 Results

4.5.1 Perceived emotions during the mock job interviews. All par-
ticipants (100%) reported that they felt stressed and uncomfortable

during the job interviews as well as in the preparation phase. Most

of the participants (n = 5, 62.5%) reported that they perceived the

situation as a challenge rather than as a threat. One participant

reported that she felt completely uncomfortable and that she had

a blackout during solving the maths problems. However, no one

had the need to cancel the interview. The other n = 3 participants

(37.5%) rated the situation as rather threatening than challenging.

Further negative emotions that were reported were shame, anxiety,

and anger. Moreover, all participants reported that they forgot that

they were part of an experiment during the interviews. They mainly

attributed this to the virtual setting.

4.5.2 Automatic detection of stress and negative emotions using
pupillometry. During stress and emotional events, pupil size in-

creased. The largest changes in pupil diameter we found were

approximately 33%. Figure 4 shows an example of pupil dilation in

response to an emotional event.

Figure 4: Captured change in pupil diameter before and after

an emotional event.

Moreover, we compared the tracking results when utilizing video

data generated by the Pupil Labs eyetracker in contrast to an IR-

sensitive webcam. Figure 5 displays example frames for successful

and failed tracking. The tracking with the webcam often failed due

to a misalignment of the participant towards the camera. Tracking

with the eyetracker usually failed when participants were looking

downwards or were blinking. In section 3 we described that every

calculated sample also contains information about whether the

tracking was successful or not and how confident the system is in

the tracking result. Based on this information we calculated the

tracking performance. We considered samples with a confidence

value below 0.8 as unsuccessfully tracked. With the data generated

Figure 5: Comparison of the tracking performance between

the modified webcam (images A and B) and the Pupil Labs

eyetracker (images C and D). Images A and D display exam-

ple frames where the tracking failed, whereas images B and

C show examples where the tracking was successful.

from the pupil labs wearable eyetracker 75% of all frames could be

tracked correctly, with the data from the modified webcam 53% of

the frames were tracked successfully. The distance between the we-

bcam and the participants was approximately 40 cms, whereas the

distance between the camera of the eyetracker and the participants’

eye was around 3 cms.

In order to investigate whether our proposed pipeline is capable

of providing meaningful features to detect stress and negative emo-

tions, we trained five One-Vs-All Support Vector Machines (SVM)

to recognize the five different emotional states (stress, shame, anx-

iety, anger, neutral). The features used in training the SVM were

extracted for each frame from the video provided by the modified

webcam. In addition to that, we utilized HR and SC provided by

the IOM-biofeedback sensor as a benchmark for our pupil features.

The resulting feature set consisted of eight-dimensional vectors

(six pupil features + heart rate + skin conductance). To improve

the stability of the system we removed all samples where the con-

fidence of the pupil tracker for a correct prediction fell below the

threshold of 0.8. Subsequently, we split all samples randomly into

fixed sets for training, validation and test using a ratio of 60 / 20

/ 20 for the respective sets. This left us with an overall amount of

18,912 samples for train and 6,304 samples for validation and 6,305

samples for test. Since the class distribution in the training data

is strongly unbalanced (anger: 758, shame: 1,935, anxiety: 2,519,

stress: 9,390, neutral: 4,092), we first randomly removed samples

from the stress-class to match the number of samples in the neutral

class. We then used Synthetic Minority Oversampling to increase

the number of samples from all other classes to match the number

of samples in the neutral class. Therefore, the resulting training set

consists of 20,460 samples evenly distributed over all classes. Before

the training, all features have been scaled to a range between 0 and

1 over the whole dataset. For the final classifier, we first determined

the optimal complexity parameter of the SVM on the validation set.

The final classifier was then trained on both, the training- as well

as on the validation set and evaluated on the test set. We repeated

this experiment three times using different feature sets. The first

feature set consists of only the pupil features described in section 3

for each eye. This feature set achieved an unweighted average recall

of (UAR) 0.4208 on the validation set and 0.4335 on the test set.

The respective distribution of predictions for the model trained on

the pupil feature vectors is shown in Figure 6 and Figure 7. The

second set consists of only the skin conductance feature as well

as the heart rate and managed to achieve an UAR of 0.4302 for

validation and 0.4303 for test. In the third set we fused both feature
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vectors (pupil features + heart rate + skin conductance) to achieve

scores of 0.5123 for validation and 0.5224 for test.

5 DISCUSSION

Wewere able to show that remote mock job interviews are a suitable

use case for the induction of stress and negative emotions such as

shame, anger, and anxiety. Moreover, our results confirm that the

pupil diameter is a valid and reliable measure of negative emotions

and stress that are both associated with autonomic arousal. In

accordance with the literature [23] [17], we found that pupil size

increased when the participants felt stressed or during an emotional

event.

Further, we investigated the applicability of an IR-sensitive web-

cam in regard to tracking results and compared it to a professional

wearable eyetracker. Both sensors come with their advantages and

disadvantages. The biggest benefit of utilizing a wearable eyetracker

is that the distance between the eye and camera lens is very small

and constant. Therefore, the tracking is rarely compromised by the

movements of the participant. In our experiment, we were able

to achieve 75% successfully tracked frames. The missing 25% are

most likely due to blinking and the participants looking down. In

comparison to that, we were able to achieve 53% correctly tracked

frames when utilizing the data generated by our modified webcam.

However, it is important to note that we started recording the partic-

ipants during the preparation phase where some of them were still

wearing masks, due to Covid-19 pandemic safety regulations. Wear-

ing masks compromised the facial tracking of MediaPipe, which

resulted in falsely recognized face regions. Therefore, it might be

that the actual tracking scores for the modified webcam approach

are higher. The downside of wearable devices like the Pupil Labs

eyetracker is that they are always invasive to some extent. Often

they are much bulkier than regular glasses and wearing them for

an extended amount of time during a workday might disturb users.

In contrast to that, utilizing an IR-sensitive webcam for the detec-

tion of stress and negative emotions is non-invasive and allows

the user to move and act freely. However, the camera has a limited

field of view and it is possible that the users accidentally leave the

recordable area. Also, depending on the distance and angle between

the camera and the user the tracking results may be compromised.

However, this can be mitigated by utilizing a high-resolution web-

cam with a wide-angle lens. Also, given that the use case for the

proposed pipeline is a remote working environment the distance

and position of the users towards their PC most likely won’t vary

that much and might even be almost static for the majority of the

day. Another advantage of utilizing a modified webcam over a pro-

fessional eyetracker is that the webcam only costs a fraction of

the price of an eyetracker. Further, it is important to point out that

some of the big business laptop manufacturers like Dell or Lenovo

already equip their latest laptops with IR-cameras. That means de-

pending on the device at hand users might not even need to buy

any additional hardware to utilize the stress and negative emotion

detection pipeline.

In our preliminarymachine learning experiment, using the pipeline

that is described in section 3, we found that the classifier solely

trained with the pupil features achieved an unweighted average

recall of 0.4335 on the test. As a comparison, the benchmark classi-

fier trained with the heart rate and skin conductance features had

an unweighted average recall of 0.4303 on the test set. The pupil

features classifier slightly outperformed our benchmark classifier

on the recorded dataset. This indicates that the pupil features hold

valuable information for the task that can be utilized by the classi-

fier. Looking at the confusion matrices for the validation and test set

(Figure 6 and Figure 7) we can observe that the classes anger, stress,

and neutral are distinguished best in both cases. When looking at

the misclassified samples, we can see that the classes shame and

anxiety are most often confused with stress. The misclassifications

of shame and anxiety as stress is an interesting observation as both

are heavily related to stress [12] [15]. Furthermore, the distribution

of the predictions in the two sets is rather similar, which hints at a

good generalization capability of the classifier. Finally, the results

indicate that it is feasible to use a modified version of an ordinary

webcam to extract reliable features for the detection of stress and

negative emotions in a remote environment.

However, our results are limited to the detection of stress and

associated negative emotions. In future research, it should be in-

vestigated, whether our approach also works for positive emotions

which have also been reported in stressful situations (e.g., so-called

eustress, [10]).

Using the combination of features (pupil features + heart rate

+ skin conductance) we were able to classify stress and negative

emotions of participants with an unweighted average recall of

0.5224. Those results are in line with related research, e.g., Lu et

al. [13] achieved a classification accuracy of 87.59 % considering

three classes (positive, neutral, negative). Also, Zheng et al. [27]

trained several machine learning models for the recognition of four

emotion categories. Their best performing model was a SVM which

achieved an accuracy of 57.05%. Even though related research re-

ported higher accuracy scores it should be kept in mind that our

model was trained on five classes, which increased the complexity

of the classification task. Moreover, the fusion of different modal-

ities, like heart rate, skin conductance and pupillometry for the

automatic detection of stress and negative emotions can also be

applicable for a remote working environment. Our SSI pupillometry

pipeline can easily be extended by additional modalities, as the SSI

framework provides an infrastructure for the development of online

recognition systems from multiple synchronized sensory devices.

In addition to that, SSI already includes support for a large variety

of sensors. Therefore, users could potentially use their already ex-

isting wearables that are capable of sensing physiological signals

and utilize them alongside an IR-sensitive camera. Our proposed

pipeline can be applied on any device running Windows as an oper-

ating system. Starting and stopping the pipeline is handled by the

SSI framework. Moreover, the recognition of stress and negative

affect of our pupillometry pipeline may be used as a foundation

to provide users with coping strategies. The recognition results

can be put into relation with additional context information, e.g.,

elapsed time since the last break. Based on the combined informa-

tion adequate recommendations, like taking a brake and going for

a short walk can be suggested to mitigate the exposure to stress

and negative emotions.
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Figure 6: Confusion matrix for the validation set using only

the train set for training.

Figure 7: Confusion matrix for the test set using train and

validation for training.

6 CONCLUSION

We presented a processing pipeline for the assessment of stress and

negative emotions in a remote environment. Further, we employed

the SSI real-time processing framework for which we implemented

a plugin to run the PupilTrackingCore. We showed that it is possible

to extract meaningful pupil features from video data recorded by a

non-invasive, cost-efficient sensor device that is based on amodified

webcam. Based on the extracted features and annotations we were

able to successfully train a SVM to predict stress and negative

emotions on our recorded dataset. The results of this preliminary

study show that the proposed system can achieve performance

that is in line with other state of the art approaches for the task.

Further, the features extracted with the proposed pipeline hold

additional relevant information over bio-signals. Moreover, the

provided pipeline for pupillometry may be employed alongside

multiple modalities (e.g., HR and SC). Therefore, it is applicable

to a large variety of use cases. Further, our results indicate that

measuring pupil dilation is a promising candidate for detecting

stress and negative emotions in remote working scenarios.
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