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ABSTRACT
In everyday life, Deaf People face barriers because information is
often only available in spoken or written language. Producing sign
language videos showing a human interpreter is often not feasible
due to the amount of data required or because the information
changes frequently. The ongoing AVASAG project addresses this
issue by developing a 3D sign language avatar for the automatic
translation of texts into sign language for public services. The avatar
is trained using recordings of human interpreters translating text
into sign language. For this purpose, we create a corpus with video
and motion capture data and an annotation scheme that allows for
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real-time translation and subsequent correction without requiring
to correct the animation frames manually. This paper presents the
general translation pipeline focusing on innovative points, such as
adjusting an existing annotation system to the specific requirements
of sign language and making it usable to annotators from the Deaf
communities.
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1 INTRODUCTION
Sign languages are complex in a sense that they include various
visual elements such as hand shapes and trajectories, gestures,
facial expressions, and body posture. There are approximately 70
million Deaf or Hard of Hearing (DHH) People worldwide, who
communicate in sign language [35, 36]. Across the globe, each
country has its own sign language, which can differ significantly
from others. But even within the same country, there may be several
dialects, in which different signs represent a distinct meaning (e.g.
[22] for American Sign Language).

There is a misconception that providing a written form of spoken
language to DHH individuals is sufficient for barrier-free commu-
nication or information. However, sign languages have their own
grammar, syntax and linguistic complexity and are therefore lan-
guages in their own right, separated from any spoken language
which is seen by many DHH individuals as a foreign language who,
instead, consider their respective local sign language as their native
language [16]. Thus, written text poses a potential communica-
tion problem for these people and requires appropriate means of
translation into sign languages in order to facilitate communication
between hearing and Deaf People.

A common approach to meet this requirement are videos in
which an interpreter translates the respective content from text
or speech into sign language (e.g., various television broadcasts).
However, this approach is not always practical, seeing that the
videos are expensive to produce, static, and usually contain only a
portion of the original information. If parts of the content change,
the provider is forced to have entirely new videos created by sign
language interpreters. In addition, there are only few sign language
interpreters available which hinders the widespread implementa-
tion of digital barrier-free content. Due to this conundrum, research
approaches have examined the automatic generation of sign lan-
guage translations for some time, usually using a 3D avatar for
visualization [12, 17, 21].

However, automatic translation between sign language and spo-
ken language is a highly complex task. This is partly due to the
complexity of sign languages as they are not simply a concatena-
tion of basic signs, as described in [4]: There are a multitude of
ways to “inflect” a sign by applying modifications to the manual
and non-manual components on order to change the meaning of a
sentence. Non-manual components include, among others, mouth,
eyes, nose, eyebrows and movement of the torso. For example, facial
expressions are used to express emotions and they can take the
role of adjectives and adverbs. Non-manual components can also
have grammatical meaning, e.g., in German Sign language a yes/no-
question is expressed by tilting the head, lifting the eyebrows and
a wide opening of the eyes. As for the manual components, a sign
can be “relocated”, meaning that the position or trajectory of the
hands are altered during a sign. For example, the sign for “walking”
can specify the direction by adjusting the start and end position

of the sign. On top of that, the task of automatic sign language
production (SLP) is made even more difficult due to data on sign
language being comparatively scarce. As a result, SLP remains an
open research issue to this day.

The collaborative project AVASAG [2] is developing a real-time
controlled 3D sign language avatar for the automatic translation of
German text into German Sign Language with the project’s scope
focusing primarily on the field of travel information and services,
transport, and tourism. Within this application domain, meaningful
and barrier-free communication is of essential importance, seeing
that inaccessible information when traveling can lead to severe
consequences in regard to traveling plans, as well as the emotional
state of the affected.

Thus, our project aims to allow real-time translation of text input
into sign language, presented by the 3D avatar. In addition, a user
interface is being implemented which enables human operators to
make corrections to the automatically produced translation of the
avatar. This mode of manual correction by users can therefore be
used, for example, to exchange wrongfully placed signs or fine-tune
specific movements.

To successfully achieve these objectives, our project team in-
volves partners from various domains within computer science,
including avatar animation, machine learning, motion capturing,
and user experience (UX) design. Additionally, the team also in-
cludes DHH individuals as sign language experts, thereby ensuring
high quality of the displayed translation into sign language.

Besides pursuing a human-centred approach with results that
match the expectations of the target group, we provide the following
technical contributions:

• A translation pipeline that supports sufficient naturalness
of animation while still allowing for low effort correction if
the automatic translation fails.

• The creation of a sign language corpus that includes video
and motion capture (MoCap) data as well as a detailed an-
notation including information on subtle movements and
grammar, besides the signs that are performed.

• An innovative simplified “boolean-based”manual annotation
process where annotators only need to mark “meaningful
differences” between recordings and the exact values are
computed automatically.

This paper presents the architecture of the AVASAG project. In the
next section we discuss related work in SLP. We describe the con-
duct and results of focus groups with sign language speakers which
were held at the beginning of the project in Section 3. In Section
4, we give an overview of the project and address its individual
components in detail, with a focus on the annotation.

2 RELATEDWORK
Approaches to sign language production (SLP) typically use 3D
avatars. Many of them, e.g., [12, 17], are based on a transcription
of sign language, such as HamNoSys [14]. Such transcriptions usu-
ally describe individual signs as a composition of discrete-valued
elementary components (e.g., hand shape, facial movements). In
terms of transcription of sign language the work [21] is perhaps
the closest work to ours. The authors encode signs using a default
animation which is then altered by a set of modifiers that must be
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manually adjusted based on the context. The modifiers here can
control facial expressions, gaze, execution speed of a sign and how
the location or trajectory of a sign is changed. A full sentence then
is created by concatenating the resulting animations for the individ-
ual signs. The advantage of transcription-based solutions is that it is
comparatively easy to create or modify animations without having
to manually create the frames for the avatar skeleton. However, the
results of such methods are often described as robotic [20], which
leads to negative perceptions by Deaf users.

Apart from avatar-based approaches, some studies investigate
SLP from a different perspective: In their recent work Stoll et al.
[30] use a Generative Adversarial Network [13] to directly generate
the pixels of the sign language video. This allows for photorealistic
results, which are difficult to achieve with avatars. However, since
the neural network generates the pixel data, subsequent editing of
the translation is limited using this approach.

In [28] Saunders et al. present the first approach of an end-to-end
translation, which they improved in [29]. Here, a written sentence
of spoken language is translated into a sequence of 3D skeletal poses.
The resulting 3D skeleton can subsequently be used to control an
avatar or directly produce a video, similar to the above mentioned
approach in [30]. This strategy has the potential to produce very
fluid and realistic motion. However, it would also make subsequent
correction difficult as one would have to manually adjust the ani-
mation itself.

In our project, we take an approach that enables post-translation
correction while at the same time allowing for sufficiently fluent
movements: As individual signs are recorded with MoCap, the
animation of individual signs itself is fluent. Moreover, in the an-
notation, additional modifications of signs are given as continuous
values rather than discrete ones. If incorrect signs are displayed
in the translation, only the instruction as to which sign should be
shown needs to be replaced. To correct inflections, “3D gizmos” will
be developed for the user interface.

3 REQUIREMENT ANALYSIS AND
INVOLVEMENT OF DHH USERS

In order to ensure that the quality of the avatar-design as well as
that of the sign language performed by the avatar meets the re-
quirements and expectations of Deaf community members, a close
integration of the latter is of central importance for the success of
the project. Such an integration helps not only to establish more
appropriate approaches and results within the project, but also
aids hearing project members to better understand the situation,
pain points and actual needs of Deaf or Hard of Hearing (DHH)
individuals, thus building a bridge between DHH and hearing com-
munities. We therefore aim primarily at a direct exchange with
DHH individuals throughout all phases of the project, establishing,
in addition, research-based appropriate representations of Deaf
People’s abilities and needs, while at the same time securing a con-
tinuous supervision of the project by sign language experts. To do
so, we rely on methods from within the domains of user experience
(UX) and service design. Thus, we focus on analysing and under-
standing our target group with their abilities and needs beforehand
while also evaluating our results with members of the target group
throughout and after the project’s duration.

3.1 Focus groups
As the project focuses primarily on the context of travel information
and services, our first objective in regard to analysing the target
group was to understand the type, origin and effects of the barriers
that Deaf People face here as well as the emotional state these
people are in when doing so. Thus, we conducted focus group
sessions with 10 members of Deaf communities, moderated by a
Deaf member of the research team and evaluated by hearing UX
design experts [32]. The sessions were conducted in a remote setting
as video conferences (due to COVID-19 restrictions), each lasting
between 90 and 120 minutes including a short break of 15 minutes.
A brief discussion guide with questions, goals, and time frames
for each part of the session was prepared beforehand. Seeing that
previous research has discovered strong tendencies of rejection
from DHH communities towards hearing researchers [1, 23] we
were careful to always address participants in their native language,
i.e., German Sign Language (GSL). Thus, all further documentsmade
available to the participants (i.e., email messages, consent forms,
questionnaires, and video conference instructions) were prepared
beforehand both in written German and as recorded GSL-videos,
while the actual sessions themselves were carried out entirely in
GSL. Finally, each session was 1) recorded, 2) translated, and 3)
transcribed as written text for the content to be easily accessible for
non-GSL speakers and available for documentation, publications,
or other forms of reference. Close attention was paid to having
all manuscripts double-checked by at least one hearing and one
deaf interpreter. With this sign-language-centered approach we
wanted to allow participants to express themselves in the language
they feel most comfortable with, thereby receiving a more truthful
impression of their perspectives.

Translating our entire approach into GSL did, however, cause
challenges that were unforeseen to us beforehand, with many of
them being grounded in the fundamental difficulty of translating
content from sign language into written forms of spoken language.
This concerns both, the communication towards participants and
the communication from participants towards researchers, raising
concerns regarding e.g., budgets and duration when translating
material or the matter of the assessing, documenting, and storing
user-content produced in GSL:

"With regard to further utilization such as quoting par-
ticipants within articles or assessing qualitative or quan-
titative measures, text works well, because it can easily
be stored, retrieved, and quickly scanned. However, in
the case of content produced in SL, textual represen-
tations are difficult to establish, seeing that any SL is
based on visual images which can—similar to a picture
or photograph—be described through text but hardly
captured completely without the loss or distortion of the
information contained. If, for instance, we want to quote
a participant from our focus groups within a journal ar-
ticle, we are forced to rely not on the original statement,
but on its interpretation in a verbal language—with the
interpretation being highly subjective as it is commonly
the case when describing images." [32, S. 4]
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Figure 1: Overview of the off-line training (top) and real-
time translation (bottom) pipelines.

Conducting these focus groups taught us not only valuable
lessons in regard to participatory and collaborative research be-
tween Deaf and hearing people [31], but also highlighted moments
of stress and exclusion experienced by Deaf People when travel-
ing. Examples of these include the lack of non-auditive access to
real-time information, uninformed and untrained staff in regards
to the needs of and communication with DHH travelers, or the
text-heavy design of booking and information platforms. Thus,
our results range from such reports on a broad spectrum of ex-
perienced barriers within different types of public transportation
to technological needs and requirements, both inside and outside
the traveling context—results documented and analysed, amongst
other, in the form of personas [7, 8, 19, 27] and user journeys [15]
within the AVASAG project. This exchange with the target group
allowed us to understand their needs and requirements in regard to
supportive technologies such as a sign language avatar which are
directly integrated and considered within the project’s implementa-
tion. In addition, our collected insights form the basis not only for
optimising further exchange with the target group in general, but
especially for finding accessible and appropriate procedures when
evaluating the project’s progress and results with Deaf community
members. Further information on our approach, results and main
lessons learned from a hearing researchers point of view can be
found in [32].

3.2 Future involvement of the DHH
community

While the above described focus groups allowed us an analytic
insight into the user population’s perspectives, further integration
of and cooperation with DHH communities will focus on evaluat-
ing the project’s activities and results. Based on the experiences
collected so far, we need to find ways of conducting sign-language
accessible ways of formative as well as summative evaluation pro-
cedures. These feedback assessments are to be integrated both, in
regard to the annotation mechanisms as well as the design, move-
ment and signing of the final avatar. The following section on the
system overview provides a more detailed discussion on these and
all other components of the AVASAG concept.

4 SYSTEM OVERVIEW
4.1 General architecture
The central concept for the production of sign language in the
project is to encode sentences in sign language into a sequence of
signs and modifications, or “inflections” (as explained in Section
1), for these signs. Figure 1 shows a diagram of the offline training
and real-time translation phases.

The real-time translation process can be described as follows:
Written sentences are translated by a neural network into an in-
termediate representation, which we call MMS (multi modal sign
stream). MMS consists on the one hand of the glosses1 for the signs
that have to be executed and on the other hand of a multitude of
information about inflections of signs that are important for com-
prehensibility and naturalness of sign language. This intermediate
representation is then used to animate the avatar. To do this, ani-
mation data from previously recorded signs in the “vocabulary” is
played back in sequence (connected by transitions) and modified
by the inflections.

With this goal in mind, the offline training process is designed
as follows: A group of domain experts list a set of sentences for the
specific application domain (e.g., traveling information). Then, ex-
pert interpreters translate those sentences into sign language while
being captured via both video recording and MoCap sensors. Fur-
thermore, each time a new sign is encountered, it is recorded again
separately, without the context of the sentence (“non-inflected”),
and added to the vocabulary. The video recordings of the sentences
are then annotated with our annotation tool NOVA. Subsequently,
the MoCap recordings of the sentences as well as the signs in the
vocabulary are used by the “Corpus Animation Analyzer” to com-
pute the inflection parameters that convert the non-inflected form
of the respective sign in the vocabulary to the way it appears in
the sentences. The glosses together with the inflection parameters
form the MMS. This is finally used to train a neural network that
translates sentences into MMS.

In the following sections, we will discuss each of the components
in more detail.

4.2 Motion Capture Dataset
The corpus of the AVASAG project, which is currently under devel-
opment, contains frontal Full-HD videos of signed sentences as well
as synchronously recorded motion capture (MoCap) data for full
body, hands and face. Each video contains one sentence or a few
related sentences in German Sign Language on the topic of travel
information. The recordings so far are between approximately 9
and 40 seconds long.

TheMoCap setup is realizedwith an opticalOptitrack [26] captur-
ing system with twelve Flex 13 optical cameras. Thereby, a spherical
shape is used to increase tracking accuracy in the important area in
front of the person (Figure 2). The signer wears a special suit with
reflective markers attached to it that are recorded in a frequency
of 120 Hz. Finally, each frame contains the 3D information for ev-
ery captured point that is used to reconstruct a human skeleton
including hand and body movement. In order to reduce errors and
inaccuracies we focused the motion capturing on the upper body

1A gloss is a term for a sign in written form.
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Figure 2: The motion capture setup for precise tracking in-
formation at close distances. An Optitrack system with 12
cameras in a spherical shape is used for capturing the move-
ment.

and used a upper-body baseline marker set with 25 markers. For
the facial expression recording, existing technologies with rigs are
not applicable due to the performed gestures near the face. We
evaluated depth cameras especially for the face, which did not work
optimally in our needed range. For this reason, we decided to use a
video-based machine learning approach.

The videos are annotated with glosses, including start and end
time, as well as with original sentences of the spoken language in
German and translations in English. Additional information about
the presented sign language such as movements and grammatical
information is also provided. Furthermore, the corpus is coupled
with a vocabulary in which all signs occurring in the sentences are
entered. Each entry includes video and MoCap data (recorded again
separately) as well as syntactic information about the sign (e.g.,
body contacts). Details about the annotation and the vocabulary
will be discussed in the next section.

4.3 Annotation
In this section we will discuss the annotation scheme and the an-
notation process. The first segment covers the vocabulary, which
contains entries for all signs. After that, we will look at the annota-
tion scheme of the sentences. Since this is relatively complex, we
look at the annotation of two signs taken from a sentence as exam-
ples. We then take a look at our annotation tool NOVA and how
we have adapted it to speed up the annotation of sign language. In
the last segment, we explain how the manual annotation is refined
by analyzing the animation data (which finally results in the MMS
which we use to animate the avatar).

4.3.1 Vocabulary. The vocabulary is a collection of entries for
all the signs that appear in the signed sentences. For each entry,
the sign is recorded individually (i.e., in addition to the recording
of full sentences) via video and MoCap to have it available in its
non-inflected form. These MoCap recordings are used to drive the
avatar and they are needed for the annotation of the sentences, as
explained within the following sections.

For each sign, a gloss, or gloss-ID, is defined in the vocabulary
to uniquely identify it, following the principle of the AUSLAN
annotation scheme [18]. The gloss-ID consists of one or more words
of spoken language trying to describe a common meaning of the
sign to make it easily readable, for example “ARRIVE”, “TRAIN”,
“YOU-ALL”. Additionally, gloss-IDs can have trailing numbers to
distinguish between signs that have similar or the same meaning

but different executions, for example “PASS-THROUGH”, “PASS-
THROUGH2”. Finally, for certain types of signs, the glosses are also
given a particular prefix to clarify their meaning: E.g., numbers
are given the prefix “num:” and gestures that are also common in
spoken language and are not exclusive to sign language are given
the prefix “gest:”, for example “num:11”, “gest:OH-WELL”.

We note here that signs do not have an official name or written
identification. This is because sign languages do not have written
forms that are used for regular communication [18] and so defining
the gloss-IDs is a non-trivial task. In our project the gloss-IDs are
frequently revised by our Deaf members. Sometimes gloss-IDs are
changed to give a more accurate description in spoken language.
Other times, gloss-IDs need to be removed if there is another one
that describes the same sign. This is rather time consuming as one
has to compare the corresponding videos and it becomes more and
more difficult as the number of different signs grows in the corpus.

In addition to the gloss-ID, for each entry syntactic information
is given:

• The number of used hands. (Certain signs are performed
using one hand only [4].)

• If it is relocatable in space.
• If there is contact with other body parts or between hands.
• If mouthing or mouth gestures are present. (In sign language,
mouthing refers to forming a word with the mouth silently
[4].)

• References to all appropriate WordNet synsets [24]. (In short,
in WordNet groups words according to their possible mean-
ings.)

These WordNet will be used for data augmentation (see Section 4.4)
and the other information is needed to ensure that the animation
plays correctly after translation. E.g., contacts must be preserved
even if a sign is changed by inflections or retargeted to avatars of
different body proportions. And if a sign contains mouthings or
mouth gestures, they have precedence over facial expression that
convey a specific mood (e.g., smiling).

4.3.2 Annotation scheme for sentences. The main tier of the annota-
tion scheme is the gloss tier, which consist of the time segmentation
to identify the beginning and end of a sign. Within each time slot,
the annotator inserts the gloss-ID of the vocabulary. The closely
related tiers dominant hand and non-dominant hand must be
annotated only if the hand configurations and/or trajectories are
performing a movement that differs from the non-inflected anima-
tion. Independently from the other, one hand can be annotated with
another gloss-ID (e.g., when performing two signs in parallel), or
as hold if it keeps the last position of the previous gloss, or with a
specific hand-shape-ID when performing a classifier.

The largest group of tiers describe differences in the execution of
a sign during a sentence in comparison with the sign in the vocabu-
lary. Here, the labels in these tiers have the same time segmentation
as the tiers mentioned above. The tiers must be checked with a
boolean true only if meaningful differences with the vocabulary are
noticed. When there is no meaningful difference is apparent, no la-
bel is set instead. For the manual elements the tiers are dominant
hand reloacted and non-dominant hand reloacted. For non-
manuals the tiers are torso, shoulders,head,mouth/mouthings,
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cheecks, eyes, eyebrows, facial expression. We define “mean-
ingful differences” as differences that can be perceived at the motor
level in the execution of the sign, and which the annotator can rec-
ognize as intentional, with the goal of conveying extra or distinct
meaning compared to the sign in the vocabulary. The categories for
differences to be specified are similar to the ones in [21]. However,
the presented scheme here is much simpler as we do not need to
quantify the differences using discrete values. Instead flagging a
difference will trigger the automatic computation of continuous
inflection parameters (see Section 4.3.4).

Finally, explicit grammar roles are also annotated (i.e., why-
question, yes/no-question, and negation). They can span over
multiple glosses in the sentence and are typically related to well-
encodedmotions. Notice that the time segmentation of the grammar
roles is independent from the other tiers. If a negation is present
in the sentence, but no head-shake has been annotated in the head
tier, then a warning of inconsistency will be raised.

To make this concept clearer, let us look at concrete examples.
After recognizing the signs, the annotator needs to enter the associ-
ated glosses, which are defined in the vocabulary. Then one has to
compare how the sign in the sentence differs from the recording in
the vocabulary. For this purpose, Figure 3 shows the recordings of
two signs, each in non-inflected form in the top row and in the pos-
sibly inflected form as performed during a sentence in the bottom
row.

Figure 3: Examples of recorded signs. The left side shows
the signwith gloss “AUFBRUCH” (engl. “DEPARTURE”) and
the right side shows the sign with the gloss “KOMMEN(-von-
hinten)” (engl. “COME(-from-behind)”). The upper row is
the non-inflected form from the vocabulary and the lower
row shows an inflected form during a sentence.

For the sign “DEPARTURE” on the left side of the figure, the
annotation of the inflections is as follows: First, in the eyebrows tier,
a label of true was entered to mark a meaningful difference in the
position. There is also an additional subtle head movement in the
video of the sentence which was labeled in the head tier. Finally,
apart from these differences between the recordings, a final true
label was placed in the why-question tier because this sign is part of
a rhetorical where-question that is asked in the sentence. All other
tiers are left blank.

For the sign “COME(-from-behind)” on the right side of the figure,
meaningful differences in the eyebrows, the eyes, and the torso were
marked. Furthermore, in this sign the non-dominant (left) hand is
in a different position in the recording of the sentence than it is in
the vocabulary recording. This is because the signer left this hand

in the same position as it was at the end of the previous sign and
so a hold label was entered in the tier for the non-dominant hand.

This “boolean-based” annotation simplifies the manual process,
as otherwise, in the example above, the annotators would have to
indicate the direction in which the torso is tilted and how much it
is tilted (e.g., on a fixed scale, from slightly tilted to strongly tilted).
Instead, the exact inflection values will be calculated automatically
using the MoCap data (see Section 4.3.4).

4.3.3 Annotation tool. Our annotation tool NOVA [3] supports a
collaborative annotation process by maintaining a database back-
end, which allows users to load and save annotations from and
to a MongoDB [25] database running on a central server. This
gives annotators the possibility to immediately commit changes
and follow the annotation progress of others. The user interface has
been designed with a special focus on the annotation of continuous
recordings involving multiple modalities.

Different annotation schemes are supported such as discrete and
free schemes. Discrete annotations consist of a list of labelled time
segments. Each segment has a start and and end time and label
name. An annotator has to choose one name from a predefined
list of label names for each label. Free annotations are like discrete
annotations, but here annotators are free to choose the label names.
This is useful if an annotation task can not easily be reduced to a
few labels, for example in case of spoken speech transcriptions.

As we need annotators who know sign language, the amount of
possible contributors is limited and accommodating those who are
willing to participate is essential. In order to provide Deaf annota-
tors with easy access to our annotation software we developed a
browser-based version of our annotation tool. A screenshot of a
loaded recording session is shown in Figure 4.

Figure 4: At the top full-body videos of recording sessions
are displayed. The left one is the recording of a sentence,
the right one is the recording of a single sign. The bottom
half shows different annotation tiers, the top one being the
gloss tier. When editing a gloss label, a menu is displayed,
which can be seen here in the middle. The menu is divided
into three sections. In the top section is a list of all glosses
that have appeared in our recordings so far, in the middle is
a list of glosses for the loaded session, and at the bottom is
a text input field for manual input.

For the project, most annotation tiers can be realized using a
discrete scheme as we have a predetermined list of values. For
example, some tiers only need a single value which is used to
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express a difference in execution, as mentioned before. For the gloss
tier we cannot define a list of possible values beforehand as we can
not wait for all recording sessions to be finished before starting to
annotate. So a free scheme seems suitable at first. However, since
there is no “correct” name for a given sign (see Section 4.3.1) free
scheme as described above is not very practical, too. To ensure that
we always get the correct label name for a sign, the annotators
would have to search through the vocabulary and copy the right
gloss each time. In the long run, this is a very tedious and time-
consuming workflow.

Because of this, we decided to extend the user interface for
the free scheme, see Figure 4: First, we added the possibility to
load a list of label names that are independent from the video
currently annotated from a column of a table and display them
to the annotator. The annotator can simply click on one of these
names to apply it to a label. Generally, this can be used to define a
list of allowed or suggested labels which can updated quickly and
accessed easily by the annotators. In our project, we use this to
show a list of all glosses that were added to the vocabulary (which
is currently stored in a table). This can be seen at the top of the
menu shown in Figure 4. The second feature again allows to load
label names from a table, but here they associated with a specified
recording name inside the table. Meaning, in the table two columns
are needed, one containing the names of the recordings and the
other containing lists of associated label names. This is perhaps less
generally applicable, but more useful for our case: The translations
of the spoken sentences into glosses are prepared before the video
and MoCap recordings are made to ensure a consistent language
and save time during recording sessions. This means that we already
have a list of glosses that are specific to the loaded video before the
annotation begins. These glosses are displayed to the annotators
as well which can be seen at the middle of the menu shown in
Figure 4. This means that the annotators usually only have to pick
a label form a small list of suggestions. In case that a label appears
to missing or wrong, they can search through the displayed list of
all glosses in the vocabulary instead. Also, the usual text input field
for free labels is still present in case they spot a typing error. The
annotators are advised to not use these two options in other cases.
But they are available to not slow on the annotation process in case
of an error.

Another feature we added is the option to load videos via a
URL based on the name of a label. For this, in the table a column of
(certain) label names and one ore more columns with corresponding
links of videos to be shown to the annotator are needed. This feature
could be used to show a tutorial or explanation for certain labels.
In our case, we use it to load non-inflected signs. As explained
earlier, the annotators often have to compare the inflected form
of a sign during a sentence with the non-inflected form. With this
feature, they simply select a label and press a hotkey to load the
non-inflected form. Further, we give annotators the option to play
the regular loaded video and the referenced video in sync for the
duration of the label. This means that the annotators can watch the
sign performed during the sentence and the non-inflected sign in a
synchronized way. The synchronisation is achieved by adjusting
the playback speed of the referenced video depending on the length
of the label and the length of the reference video itself.

Google Sheets documents are currently supported as tables to
load label values or reference videos from. These features (and
various smaller improvements to the user interface) were designed
in consultation with the Deaf members of our team.

4.3.4 Animation data analysis. Because of our “boolean-based” ap-
proach the manual annotation is not sufficient to directly animate
an avatar. And so, after a video was manually annotated, inflection
parameters that transform signs from their non-inflected form into
the way they appear in the sentences must be calculated.

The inflection parameters are computed by comparing and mea-
suring the differences between the performance of the sign in the
sentence vs. its execution in the vocabulary. Such differences are
computed on four levels: hand trajectories, torso shift and rotation,
head rotation, and facial expression. For the first two categories,
the difference is expressed in terms of non-rigid 3D spatial trans-
formations (4x4 matrices) that transform the lines traced in space
by the hand palms or by the torso center with translation, rotation,
scaling, and shearing. For the head, the difference will be a pure
rotational transformation (3x3 matrix) measured at the neck joint.
For the facial expression, the difference will be a vector with the
difference of the weights of all the blend-shapes realizing the facial
skin motion (approximately, each blend-shape corresponds to the
activation of one, or more, facial muscles). The implementation
of the measurement of such differences will be based on trajecto-
ries transformation (e.g., [9]) and mesh registration (see [33] for a
survey).

The gloss labels from the manual annotation together with the
computed inflection parameters form the MMS. Using the MMS,
an Avatar can be animated: The gloss labels are used to play back
non-inflected signs from the vocabulary in sequence. Then, the an-
imation data is modified using the computed inflection parameters.
Finally, information from the vocabulary is used to apply certain
restrictions, e.g., preserving contacts between hands (as described
in Section 4.3.1).

4.4 Automatic translation
The Text2MMS is a machine learning module in charge of the
conversion between written text and the MMS abstraction. For
the task, we design a neural architecture that takes sequences of
words as input and outputs the most probable sequence of glosses
from the vocabulary. Inflection parameters are predicted during
generation as continuous real numbers. The key components of this
architecture (Fig. 5) are: Two encoders, a mapping module and a
decoder. To deal with multimodal inputs, two different encoders are
used, one for texts and another one for MoCap. As MMS contains
glosses which convey the meaning of the sentence, we add a gloss
supervision block in the text encoder to facilitate the training. The
mapping block constitutes a latent space for the different types of
encoded features. Notice that MoCap data can only be used during
training since it will not be available at inference time, but it is
important for the system to be able to relate text and movement.

Considering the fact that even for simpler machine learning
tasks large amounts of data are needed, we will use pre-trained
language models that will be fine-tuned to perform our task [10].
For data augmentation we will generate synthetic data using the
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Figure 5: Overview of the envisaged architecture to convert
from plain text to MMS. The training will benefit from both
MoCap and textual data in a multimodal setting.

Figure 6: Our current avatar performing a sign.

relations in WordNet [24], word classes, and our vocabulary joined
with unsupervised methods when possible [11, 34].

4.5 Avatar
We are currently using one of our existing “human-like” avatars
after adjusting specific aspects to fit our needs (see Figure 6): The
mesh was modified to match the body measurements of the MoCap
actor to avoid errors while retargeting between the MoCap data
and the avatar’s skeleton. For visibility and perceptibility, it is im-
portant that the model has a high contrast between skin, clothes
and background color and that careful lighting with shadows for a
3D effect is chosen [20]. Thus, we chose dark clothes and grey back-
ground for our avatar after discussing it with the Deaf members of
our team.

For the animation synthesis, we use the cloud-based Charamel
software VuppetMaster [6], which supports a 3D real-time render-
ing engine based on WebGL standard, thus making it possible to
run the avatar on all known devices (including browsers) without
any additional installation. Inverse kinematic chains were imple-
mented to allow relocating signs in the signing space and to prevent
the mesh from intersecting with itself as the animation are partly
procedural.

By the end of the project, we want to offer a photorealistic avatar
in addition to the human-like one. For the photorealistic avatar, we
made a first test by scanning a human subject. The highly detailed
mesh and associated texture of the photorealistic avatar were gen-
erated via hybrid photogrammetry approach using eight cameras,
different filter systems and stochastic pattern projections. To ani-
mate the face, we created fifty-one facial action units on the avatar’s
mesh. After the photorealistic avatar is finished, a human-like will

be modeled using the photorealistic as the basis to compare their
acceptance by users.

To allow users to make changes to the generated animation de-
fined by theMMS via a user interface, we are adapting the authoring
tool VM Storybuilder [5].

5 CONCLUSIONS
We presented a system for automatic translation of written text
into sign language, which aims to overcome typical problems of
avatar-based approaches, such as lack of naturalness. We use a neu-
ral network approach to translate German text into an intermediate
representation, which in turn is used to control the avatar. The
representation is very detailed, with information about which sign
should be executed, as well as about subtle movements that are
important for the comprehensibility of sign language. Furthermore,
as a point of innovation, this representation allows easy manual
post-correction of the automatic translation, which is not or only
partially possible with other methods in automatic sign language
production. To train the neural network, we created a corpus for au-
tomated sign language synthesis – an area where machine learning
approaches are limited by the scarcity of data. The corpus includes
synchronous video and MoCap data of signed sentences as well
as individual signs, and detailed annotation that goes well beyond
specifying glosses. To facilitate manual annotation work, we rely on
a novel annotation scheme in which annotators only need to mark
meaningful subtle movements and exact values are then computed
automatically from the MoCap data. In order to be as responsive as
possible to the needs of the Deaf, we conducted focus groups with
members of the Deaf communities. In addition, the sign language
experts of the research team were involved in the design and de-
velopment process from the very beginning and provided valuable
feedback on all components of the system.

So far, we have several hundred recordings of sentences and
different individual signs. We are currently working on the algo-
rithms for computing the inflection parameters and a robust way
of recognizing facial action units in our recordings. After that, we
will perform a systematic evaluation of the signing avatar with
members of the Deaf communities.
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