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Background

Targeted treatment modalities are quickly emerging in 
the clinical management of non-small cell lung cancer 
(NSCLC). Lung cancer is the leading cause of cancer-
related deaths worldwide. For both men and women, lung 
cancer is the most frequently diagnosed cancer entity 
worldwide (11.6% of all cancers) and accounts for 18.4% of 
total cancer-related deaths, according to data from 2018 (1). 
The American Cancer Society estimates, that 228,820 new 

cases and 135,720 deaths from lung cancer are to be expected 
in the United States for the year 2020 (2). Increasing 
knowledge has been gained within the last decade about 
the molecular abnormalities in lung cancer, defining disease 
subsets based on molecular properties (3).

For several years, providing tailored treatment options, 
depending on certain molecular characteristics of the 
disease, has been the standard in everyday clinical practice. 
It is common, however, that over the course of the disease, 
resistance to targeted treatment is acquired. Thus, current 
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research focuses on the establishment of next-generation 
therapeutics, potent enough to overpower mechanisms of 
drug resistance (4-11). Genetic information from tumors 
is used to predict the response to treatment with certain 
targeted therapeutics, e.g., epidermal growth factor tyrosine 
kinase inhibitors (EGFR TKIs).

The approval  of  f i r s t-generat ion EGFR TKIs 
consequently resulted in the development of second- and 
third-generation TKIs like osimertinib, having its specific 
point of impact against certain mutant forms of EGFR. 
Several advantages are provided by this novel group of 
treatment agents: common EGFR activating mutations 
are specifically and effectively addressed; inhibition of 
the EGFR protein harboring the T790M mutation is 
provided (this mutation is responsible for treatment 
failure of EGFR TKIs of the first or second generation); 
as well as the impact against wild-type (WT) EGFR is 
relatively low, which reduces treatment toxicity and adverse  
effects (12). Another example is the ever-expanding group 
of anaplastic lymphoma kinase (ALK) targeting drugs, 
which provide valid treatment modalities for each subject 
having developed resistance to crizotinib, a first-generation 
ALK TKI (12). These next generation ALK TKIs (alectinib, 
ceritinib, brigatinib, ensartinib and lorlatinib) have the 
potential to bind and inhibit mutant forms of ALK. Of 
note, all these novel ALK TKIs have different binding 
affinities, depending on specific resistance mutations, so 
as a method to find tailored treatment modalities for each 
individual, exact identification of these resistance mutations 
is mandatory (4). Since the evolution of the tumor 
microbiology over the course of the disease may lead to a 
change in mutations, allowing for additional therapeutic 
options, repeated tissue biopsies have been advocated. 
However, this approach comes with a considerable risk 
for the respective patient, and depending on performance 
status cannot be applied to each individual (4). For instance, 
computed tomography (CT)-guided lung biopsy has a 5% 
rate of major complications (13).

Until today, there is only one predictive tumor biomarker 
which is routinely tested to outline patients suitable for first 
line immunotherapy, i.e., programmed cell death 1 ligand 1 
(PD-L1) as evaluated by means of immunohistochemistry 
from tissue sections (14). PD-L1 is thus routinely assessed 
in many pathology laboratories throughout the world, 
however the assessment can sometimes be challenging due 
to biologic or technical limitations (15). PD-L1 expression 
is found in malignant-, but also in immune-cells, rendering 
a careful assessment of the PD-L1 status even more 

complicated (16,17). Moreover, there is a considerable 
intratumoral heterogeneity regarding PD-L1 expression, 
and small biopsies may not be representative of the whole 
tumor (17).

Tumor mutational burden (TMB) in biopsies of cancer 
tissue has been outlined as a new biomarker, especially for 
outlining NSCLC patients for treatment with immune 
checkpoint inhibitors, like nivolumab and ipilimumab (18). 
However, until today cross laboratory technical standards 
and validation of TMB analysis are still lacking, making 
the implementation of TMB into everyday clinical practice 
difficult (19). The prediction of therapeutic response based 
on PD-L1 immunohistochemistry from tissue biopsies, 
or else, TMB assessment, is not always possible due to a 
very small amount of tumor tissue or a minor proportion 
of cancer cells in the biopsy specimen. Furthermore, in 
a few patients with a relatively high TMB and high PD-
L1 expression, immunohistochemistry might still be false 
negative (17).

As an alternative, liquid biopsy is an emerging diagnostic 
tool, already used in clinical routine in lung cancer patients 
in some specialized treatment facilities. Originally, the 
term liquid biopsy defined circulating tumor cells (CTCs), 
but today also comprises circulating cell-free tumor DNA 
(cfDNA) as well as exosomes (3). Liquid biopsies are utilized 
either as a method for the diagnosis of lung cancer, or as a 
tool to monitor treatment response or for the detection of 
minimal residual disease after curative surgery (3). 

A variety of liquid biopsy platforms have been established 
in order to outline mechanisms of drug resistance that 
have developed over time. The liquid biopsy approach 
has been recommended by the new College of American 
Pathologists (CAP)/International Association for the 
Study of Lung Cancer (IASLC)/Association for Molecular 
Pathology (AMP) guideline for the molecular testing 
of NSCLC patients (20). Of note, liquid biopsy cannot 
substitute for an initial diagnostic tissue biopsy. Only in 
rare cases where tissue cannot be obtained via tissue biopsy, 
liquid biopsy may serve as a tool to acquire the histologic 
diagnosis (21). In some cases, tissue biopsy material is 
small, which prevents the pathologist to carry out all the 
necessary molecular tests, so the acquisition of new tissue 
for conducting further analyses would be urgently required. 
Liquid biopsy is the alternative option in this scenario as 
well. Moreover, liquid biopsy is more cost-effective when 
compared to conventional tissue biopsy (22). It has also 
been found that molecular properties of CTCs provide a 
more accurate picture of the actual systemic tumor load, 
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furthermore reflecting more accurately the heterogeneity 
within a given tumor specimen, as well as tumor biology of 
metastases, which cannot be covered with single-site biopsy 
only (23,24).

When making liquid biopsy techniques widely available 
in clinical routine, methods of sample collection, storage 
and shipping have to be optimized and standardized across 
treatment centers. In a recent study (25), the cell- and 
DNA-stabilizing properties of Streck Cell-Free DNA 
BCT blood collection tubes have been analyzed. These 
tubes allow for the shipping of whole blood at ambient 
temperature, while the integrity of cfDNA is still provided, 
preventing the dilution of cancer-derived DNA with WT 
DNA from the genome. According to this report, collection 
of whole blood from healthy individuals in cfDNA BCTs, 
followed by storing for a time period of five days or less, 
at room temperature, did not compromise DNA quality 
and mutation background levels. Mutant circulating 
tumor DNA (ctDNA) in the blood obtained from patients 
with colorectal cancer, and acquired using cfDNA BCTs, 
remained stable over a time period of three days of storage 
at room temperature. Still, as a consequence of storage 
at ≤10 ℃ and at 40 ℃ for a longer time period, levels of 
healthy DNA from the genome, and an unusually large 
cell plasma interface, along with reduced plasma volumes, 
were observed (25). Thus, correct handling and storing, a 
preferably short storage time and quick sample analysis are 
key factors to achieve the maximum diagnostic benefit from 
liquid biopsy.

In this review article, we aim to elucidate the pros and 
cons of liquid biopsy, as well as current clinical relevance, 
use in everyday practice and limitations.

We present the following article  in accordance with 
the Narrative Review  reporting checklist (available at  
http://dx.doi.org/10.21037/tlcr-21-3).

Methods

Relevant data about the topic of liquid biopsy, with a special 
focus on NSCLC, was obtained via a PubMed search (26). 
We specifically searched for “liquid biopsy”, “non-small 
cell lung cancer”, and in this context for “circulating tumor 
DNA”, “circulating tumor cells”, “mutations”, “plasma 
micro RNAs”, “tumor-educated platelets”, “exosomes” 
and “clinical application”. Our focus was to include mainly 
literature published from 2010 onwards, omitting, if 
possible, older studies.

Results

Circulating tumor DNA

CtDNA counts among the group of cfDNA. In 1948 
already, little quantities of cfDNA in blood plasma or -serum 
samples of human beings, have been detected. In 1977, 
cfDNA was outlined in blood samples of cancer patients, 
and after 17 further years it was genotyped as a tumor 
marker (27). ctDNA originates from tumor cell apoptosis, 
necrosis and extracellular vesicles which tumor cells secrete. 
Contrary to genomic DNA, ctDNA which is found in 
blood samples is at large part fragmented, ranging from  
180 base pairs (bp) to 1,000 bp, if the origin is apoptosis, and  
10,000 bp if the origin is necrosis (28). Extracellular vesicles 
are of crucial importance for intercellular communication, 
thus containing large fragments of double-stranded DNA 
(>10 kb) embodying KRAS-, p53- and EGFR-mutations 
(29,30). Of note, ctDNA only accounts for a very small 
fraction, namely <1% of total cfDNA, meaning that 
conventional sequencing approaches are not sensitive 
enough for the detection of EGFR mutations in cfDNA. 
Recently, novel approaches have been found to increase the 
sensitivity of assays for the detection of EGFR mutations 
(31,32). The amplification-refractory mutation system 
(ARMS)/Scorpion assay contains primers that use specific 
probes with enhanced allelic specificity, which are able to 
detect and differentiate WT, as opposed to mutant DNA, 
reducing the degree of background to a minimum. When 
primers match completely, a selective amplification of 
mutated gene sequences is realized. Peptide nucleic acids 
(PNAs), on the contrary, are utilized to selectively suppress 
the WT PCR manufacture. Next-generation sequencing 
(NGS) is a method for the detection of a subgroup of 
specific genes, analyzing the entire genome of a given 
tumor. Very differently to techniques which can only outline 
pre-known mutations, individual resistance mechanisms 
can be determined by NGS. NGS makes use of DNA 
polymerases, catalyzing the consolidation of fluorescence-
labeled nucleotides into a DNA template, simultaneously 
with sequential DNA synthesis. This process is extended 
across millions of fragments contemporaneously (33). 

Of note, also urine and saliva can be used for the 
detection of EGFR mutations, since DNA, mRNA, micro 
RNA (miRNA), proteins and metabolites are incorporated 
in saliva, which serve as potential predictive biomarkers 
for either cancer, or other systemic conditions (34). Short-
length, tumor-derived DNA fragments can also be detected 
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in the urine, which serves as a method, for example, to 
detect KRAS mutations in colon cancer patients (35). 
Recently, a mutation-enriched PCR coupled with NGS 
was used as a urine platform to detect T790M- and L858R 
mutations, and also exon 19 deletions in NSCLC (36). 
This urine platform proved good sensitivity with 93% for 
T790M mutations, 80% for L858R mutations and 83% 
for exon 19 deletions (with tissue-based results used as a 
reference) (36).

For ctDNA extraction and analysis, attention has to be 
paid to accurate blood sample collection, handling, and 
storage procedures, in order to enable an exact molecular 
analysis (4). Factors that influence the accuracy of ctDNA 
analysis are the way of storing and blood sample transport, 
but also how much time elapses between blood taking 
and the extraction of plasma. The two most prominent 
methods for the acquisition of ctDNA is the use of 
ethylenediaminetetra-acetic acid (EDTA) tubes for blood 
plasma acquisition, as well as utilizing preservative tubes, 
manufactured specifically for cell-free DNA extraction. The 
amount of blood that has to be drawn is not standardized 
yet, however, most institutions collect 20 mL (37). EDTA 
tubes are easily available and cost-efficient compared to 
other preservative tubes. However, the use of EDTA means 
that the blood sample has to be processed shortly after 
acquisition (38). Conversely, special preservative tubes for 
ctDNA, such as Streck (La Vista, Nevada) Cell-Free DNA 
BCT effectively preserves the quality of tiny fragments 
of DNA, lasting several days, upon storage at room 
temperature, without the requirement of on-site processing 
techniques (25).

CfDNA, on the contrary, reflects the sum of all ctDNA, 
irrespective of origin. CtDNA only describes a subset of 
DNA specifically originating from the tumor (4). CfDNA 
collection tubes contain preservative reagents stabilizing 
blood cells with nuclei, so their disintegration and the 
consequential leaking of genomic DNA into the tube is 
averted. Moreover, the way exonuclease normally works, 
is blocked in the conservant tube, so cfDNA degradation 
is inhibited (39). In case EDTA tubes are used instead of 
preservative tubes, samples have to be processed within 1 
to 2 hours after collection (40). A major hazard to ctDNA 
analysis is impurity caused by genomic DNA, released from 
lysed leukocytes, which happens when blood samples are 
not immediately handled and processed. Notably, even 
upon optimal sample storing, shipping and processing, the 
proportion of tumor-derived mutant forms of an allele is 
very small, often less than 1% of the total DNA (mutant 

plus wild type) for a given gene sequence (41). Keeping 
this in mind, it becomes evident that the contamination 
of the cfDNA sample by DNA from the genome, caused 
by incautious sample processing, leads to a consequential 
dilution of mutant cfDNA fragments, even below detection 
level. It is also recommended to centrifuge the blood tube 
twice (the so-called double-spin technique), once in the 
original collection tube and then a second time in another 
tube after having transferred the plasma, ensuring a more 
efficient purification.

In clinical practice, more than one technique has been 
engineered to analyse the presence and quality of ctDNA. 
For example, the amplification of single gene loci, or else, 
a whole genome sequencing approach (42,43). In the first 
studies on this topic, polymerase chain reaction (PCR)-
based amplification of certain mutations, specifically linked 
to cancer, was utilized (21). Allele-specific PCR makes the 
trustworthy amplification of certain and well-known cancer-
associated mutations possible. Still, sensitivity especially 
in early-stage lung cancer is very low. Digital PCR poses 
an improvement, because samples are partitioned into 
multiple and smaller reactions, which considerably increases 
sensitivity (22). Conventional as well as digital PCR-based 
approaches test for a confined number of common and well-
defined mutations. Hence, this approach is only applicable 
for patients with common driver mutations. NGS has 
expanded the applicability of ctDNA testing, utilizing a 
combination of multiplexed PCR assays which are designed 
to intensify only a minor number of hot-spot regions, 
screening for gene mutations and quantifying the fraction 
of mutated alleles (24,44). The limitation of this technique 
is, that only a small number of genes is interrogated and 
copy number variations or structural variants cannot be 
detected if the breakpoint sequence has not been previously 
characterized. There is also an approach combining hybrid 
capture followed by NGS, which maintains an extremely 
high level of sensitivity while it allows for a larger variety 
of gene aberrations to be quantified (45). Additionally, deep 
sequencing of the whole exome (46), or genome (47,48) can 
provide comprehensive ctDNA profiling. However, deep 
sequencing techniques are exclusively used in individuals 
with an advanced malignant condition, because the costs per 
sample are considerable, and the sensitivity is rather low.

CTCs

CTCs have to be enriched in blood samples for optimum 
detection, with can be carried out by label-dependent 
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or label-independent strategies. The label-dependent 
method targets specific antigens on target cells, using 
complementary molecules, like antibodies. Conjugation 
of these complementary molecules is realized by magnetic 
beads or specific surfaces in a microfluidics platform. In 
terms of label-dependent approaches, assays based on 
immuno-magnetism, targeting EpCAM, are applied most 
widely (49). Label-independent CTC enrichment methods 
separate CTCs, making use of their physical rather than 
their biological properties (i.e., size, density, electrical 
properties, inertial effect of flow). Variations in size are 
utilized by filtering techniques, as well as the CTCs ability 
to deform, when compared to other blood cells (50). For 
example, the cell size in small cell lung cancer (SCLC) 
and NSCLC ranges from 7.2 to 15 µm in diameter, as 
it was measured in biopsies (51), however, CTCs can be 
considerably smaller.

CTCs as tumor markers usually provide a good-quality 
immunohistochemical staining. Thus, not only EGFR 
mutations can be outlined (as it is mainly done with ctDNA), 
but also ALK-, ROS1- and RET rearrangements, MET 
amplifications, as well as BRAF- and HER2 mutations (52). 
While it is rather difficult to detect ALK rearrangements in 
ctDNA (53), ALK status of CTCs can be assessed relatively 
easily by immunohistochemistry or by fluorescence in situ 
hybridization (FISH) (54). Still, the applications and studies 
that involve CTCs in genotyping of lung cancer remain few, 
as compared to the analysis techniques utilizing ctDNA. A 
considerable limitation would be the heterogeneous number 
of CTCs, varying widely among different cancer specimens, 
but also the fact that physical properties of CTCs change 
considerably during the disease course. In the majority of 
patients suffering from metastatic colorectal-, breast- or 
prostate cancer, CTCs can be outlined with good reliability. 
In lung cancer, however, CTC detection is still applicable 
only in selected cases, because only approximately 10% 
of patients suffering from NSCLC show  ≥5 CTCs per  
7.5 mL (55).

Testing for EGFR mutations

EGFR gene mutations have been found to occur in 43% 
of lung adenocarcinomas in subjects with a negative 
smoking history, and in 11% of lung adenocarcinomas 
of smokers (56). Worldwide, the highest rates of EGFR 
mutations have been reported in the Asian ethnicity (57). 
Multiple randomized trials have confirmed the benefit 
on progression-free survival (PFS) by treatment with the 

EGFR TKIs erlotinib, gefitinib and afatinib as compared 
to chemotherapy in the case of EGFR-mutant metastatic 
NSCLC (58-60). Thus, testing for EGFR mutations is 
one of the key factors in molecular analysis of NSCLC, 
necessary to provide optimum and tailored treatment for 
each patient. Tissue analysis remains the gold standard 
in screening for EGFR mutations. However, when tissue 
samples do not suffice for molecular testing, or the risk of 
biopsy is too high, liquid biopsy often becomes the only 
option.

The cobas EGFR Mutation Test v2 is a real-time PCR-
based assay, originally applied on formalin-fixed paraffin-
embedded tumor specimens (61). In the ENSURE clinical 
trial, comparing first line erlotinib administration with 
gemcitabine in combination with cisplatin, the application 
on plasma samples was validated (60).

The sensitivity of testing for EGFR mutations via ctDNA 
testing is dependent upon the total amount of ctDNA in the 
bloodstream, which can vary between patients, but also in 
one and the same patient at different timepoints. The half-
life of ctDNA has been shown to be <2 hours (62). Tumor 
burden also strongly determines ctDNA concentration, 
and patients with more extensive disease tend to harbor 
higher levels of ctDNA (45). Previous data indicate, that 
extrathoracic disease (M1b) improves the likelihood of 
detecting EGFR mutations by liquid biopsy, as compared to 
intrathoracic disease (M1a or M0) (63). Of note, currently 
available ctDNA tests for EGFR prioritize specificity over 
sensitivity, so false negative results are far more common 
than false positives (64). Digital PCR- or NGS-based 
approaches screening for EGFR mutations may achieve 
lower detection limits compared to conventional PCR, thus 
providing a better sensitivity. It has to be kept in mind, that 
platforms testing for multiple common driver mutations 
in NSCLC are best suited to interpret negative results 
for EGFR mutations. For example, if a patient is tested 
negatively for EGFR mutations, but positive for KRAS 
mutation, the negative predictive value is much higher, as in 
a test for EGFR only which comes back negative (42).

An algorithm showing the current recommendation for 
EGFR mutation status analysis is illustrated in Figure 1.

Plasma miRNAs, exosomes and tumor-educated platelets 
(TEPs)

Liquid biopsy not only comprises the analysis of CTCs or 
ctDNA, but also the analysis of miRNAs, exosomes, tumor-
associated antigens and TEPs (65). Small non-coding 
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RNAs, including miRNA, are stabilized by processing 
proteins in the circulation—contrary to cell-free RNA 
which is rapidly degraded in the bloodstream. miRNA 
can be quantified using quantitative reverse transcription 
PCR (RT-PCR) (66). However, in the previously published 
studies about the clinical application of miRNA screening 
as a liquid biopsy technique, different sets of markers and 
thresholds for positivity have been used and thus, circulating 
miRNA-based techniques are at present not applicable for 
everyday clinical routine. In essence, miRNAs are small 
regulatory RNA molecules (about 22 nt in size), modulating 
the activity of specific mRNA targets and playing an 
important role in a vast variety of biochemical processes (67). 
In a carefully designed study on prostate cancer by Mitchell 
and colleagues, the role of miRNA as cancer detection 
biomarkers was analyzed (66). MiRNAs have been shown to 
be dysregulated in cancers (68), their expression patterns in 
human cancers are tissue-specific (69), and they are usually 
highly preserved in formalin-fixed tissue samples (70). The 

authors of this study assumed that miRNAs exhibit good 
stability in plasma and serum as well. First, small RNAs 
with a size range of 18–24 nt were isolated from plasma 
samples using radioactive labeling (66). A fraction of RNAs 
with a size of ≈22 nt, characteristic of miRNAs, was isolated 
from the pool of blood-based RNA. RT-PCR analysis 
was performed in order to clarify whether these RNAs 
feature markers characteristic of miRNAs. Indeed, 93% of 
sequences comprised characteristic miRNA markers, serving 
as a proof that miRNAs are present in human plasma (66). 
Three miRNAs (miR-15b, miR-16 and miR-24) were 
specifically quantified using TaqMan quantitative RT-PCR 
analysis, and were all readily detectable in the plasma of 
each analyzed individual. Interestingly, when testing the 
stability of miRNAs in plasma, incubation of plasma at 
room temperature for up to 24 hours, or subjecting them 
to eight cycles of freeze-thawing had but a minimal effect 
on miRNA levels. Next, the presence of tumor-derived 
miRNA in plasma was proven in a mouse xenograft model 

Figure 1 Current paradigm for the use of plasma genotyping in clinical practice. (A) In patients diagnosed with NSCLC, when tissue 
samples cannot be used for mutation analysis, ctDNA genotyping by means of plasma analysis is recommended. EGFR tyrosine kinase 
inhibitor (TKI) treatment may be initiated based of plasma ctDNA testing. (B) When patients acquire resistance to first line EGFR TKI 
treatment, liquid biopsies can compensate tumor biopsies—given the fact that also tissues analysis is often not accurate in diagnosing the 
complex and heterogeneous pattern of acquired drug resistance. Figure adapted after Huang et al. (3).
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of prostate cancer (71). Two miRNAs, miR-629 and miR-
660 were both found to be expressed in prostate cancer 
cells. Levels of these miRNAs were basically not detectable 
in healthy control mice, but in each of the tumor-bearing 
mice, they were readily detected (66). Moreover, levels of 
these miRNAs were also moderately correlated with tumor 
mass, indicating that the abundance of plasma miRNAs 
reflects overall tumor burden. Noteworthy, in this xenograft 
experiment, miRNAs were found not to be associated with 
CTCs, as demonstrated by two centrifugation processes, 
which should pellet any intact cells. However, in the pellet 
material no miRNAs were found, but still, miRNAs were 
present in the supernatant remaining after the final 12,000 ×g  
centrifugation. As a final step, Mitchell et al. sought to 
outline miRNAs as disease biomarkers in patients suffering 
from prostate cancer. Candidate miRNAs were outlined 
based on previously published data on miRNA expression 
profiles in prostate cancer—and additionally, healthy 
subjects were screened for these miRNAs in their plasma, 
and miRNAs that were found in the healthy donors were 
excluded (66). As a result, miR-100, miR-125b, miR-141, 
miR-143, miR-205, and miR-296 remained as candidate 
prostate cancer biomarkers. Next, these candidate miRNAs 
were analyzed in 25 individuals suffering from metastatic 
prostate cancer, and in 25 healthy male control subjects. 
MiR-141 showed the most striking differential expression, 
being 46-fold overexpressed in the serum of prostate cancer 
patients, when compared with the healthy controls (66). 
Notably, serum levels of miR-141 could detect individuals 
with prostate cancer with a sensitivity of 60% and a 
specificity of 100%. Moreover, miR-141 and prostate-
specific antigen (PSA) values moderately correlated, as 
shown by Pearson and Spearman correlation analysis.

Also for NSCLC, several studies have focused on 
the specific impact of circulating miRNAs, when used 
as biomarkers, applying high-throughput technologies  
(72,73). An increased expression of miR-29, as well as the 
decrease of seven miRNAs (miR-146b, miR-221, let-7a, 
miR-155, miR-17-5, miR-27a and miR-106a) was seen 
in a RT-PCR analysis in serum samples of early-stage 
NSCLC patients (74). When a certain panel of miRNAs 
from the blood plasma (miR-21, miR-126, miR-210 and 
miR-486-5p) was used as a diagnostic tool for the detection 
of NSCLC, sensitivity was 86.2% and specificity was 
96.6%. Interestingly, adenocarcinomas were more likely 
diagnosed using these miRNAs, as opposed to squamous 
cell carcinomas (75). A panel comprising the miRNAs miR-
483, miR-193a-3p, miR-25, miR-214 and miR-7 showed 

a significantly stronger expression in NSCLC patients 
when compared to control subjects (76). When used as 
detection tools for early pro-tumorigenic changes in high-
risk individuals, circulating miRNA signatures, composed 
of reciprocal ratios of 24 miRNAs with both diagnostic 
and prognostic value could be outlined (77). Consecutively, 
this miRNA Signature Classifier (MSC) has been approved 
in a cohort comprising 1,000 consecutive blood plasma 
specimens, stemming from 4,099 tumor patients, showing 
a good diagnostic performance with a sensitivity of 87% 
and a specificity of 81% (78). Still, the application of 
routinely using circulating miRNAs in everyday clinical 
practice has not been implemented. The main reason is 
the heterogeneity of existing studies on miRNAs as cancer 
detection biomarkers, their limited sample size, a lack 
of prospective analysis and lack of a large external and 
unbiased validation (79).

Another approach to liquid biopsy is through exosome 
analysis (80). Exosomes are defined as round, nano-
sized vesicles, their diameter ranging between 40 and  
100 nm, and their density being about 1.13–1.19 g/mL (81). 
Immune cells, stem cells, as well as malignant cells count 
among the cell species that routinely release exosomes (82). 
Exosomes are created via the endocytic pathway, and certain 
multivesicular bodies, stemming from early endosome 
maturation, release them into the extracellular space. 
The release of exosomes takes place under the endosomal 
sorting complex, which is required for their transport, and 
with the aid of related proteins (83). Multivesicular bodies 
can fuse with the plasma membrane, inducing the release of 
exosomes into the extracellular space (84). Because of their 
endocytic origin, the composition of exosomes reflects that 
of their parental cells. Moreover, the exosomes’ lipid bilayer 
is stable and relatively resistant to degradation, allowing for 
the identification of the original cells (85). Tumor-derived 
exosomes are related to tumor progression (86). Exosome 
function in tumor cells may considerably differ from normal 
cells, and exosomes are generally more abundant in tumor 
cells. Exosome levels were found to be upregulated in body 
fluids of lung cancer patients, which means that exosomes 
might play a crucial role in the development and disease 
progression of lung cancer (80). One study (87) assessed 
the association of circulating cancer exosome levels, 
exosomal small RNAs and exosomal miRNAs with the 
presence of lung adenocarcinoma, and their influence on 
prognosis. Plasma samples of 27 individuals were analyzed. 
Exosome levels were indeed higher in the adenocarcinoma- 
compared to the control group, with mean plasma values 
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of 2.85 versus 0.77 mg/mL, respectively. Rodriguez and 
colleagues demonstrated recently that exosome levels in 
bronchoalveolar lavage samples from lung cancer patients 
were significantly elevated, when compared to that of non-
tumor bearing subjects (88). In a study on lung cancer cells, 
the TP53 pathway was found to be involved in exosome 
secretion into the medium (89). In general, tumor-derived 
exosomes play an important role in tumor angiogenesis 
and invasion, and they have the potential to proliferate in 
receptor cells, thereby facilitating disease progression and 
metastatic spread (90). In recent years, research has put 
increasing focus on the investigation of certain molecules 
in exosomes, which form the exosomes’ pathophysiological 
properties. Thereby it was found that tumor plasma 
contained a higher level of exosome-related miRNA, 
meaning that altered molecular profiles of exosomes 
are possibly involved in tumor-associated biological  
processes (80). The exosomal cargo, which is usually 
significantly dysregulated in cancer tissue, may serve as a 
diagnostic, prognostic and predictive biomarker for lung 
cancer, as accumulating evidence suggests. Modification of 
receptor cells by tumor-derived exosomes is a likely event 
in carcinogenesis, as shown in a study by Wang et al., where 
treatment with tumor-derived exosomes led to a differential 
expression of long non-coding RNAs and of protein-coding 
mRNA as well (91). All relevant exosome-related biomarker 
studies published have focused primarily on exosome-
derived miRNAs and proteins. For instance, Cazzoli et al. 
outlined 742 different miRNAs for an in-depth analysis, 
comparing 10 patients with lung adenocarcinoma, 10 with 
lung granulomas and 10 current smokers with no known 
lung disease (92). Based on their findings, the authors of 
this study developed a screening panel comprising four 
miRNAs (miR-378a, miR-379, miR-139-5p and miR-200b-
5p) to distinguish potentially malignant lung nodules from 
non-nodules. The panel showed 87.5% sensitivity and 
72% specificity (92). Additionally, a diagnostic panel was 
developed, comprising six miRNAs (miR151a-5p, miR-
30a-3p, miR-200b-5p, miR-629, miR-100, and miR-154-
3p), to discriminate between lung adenocarcinoma and 
-granuloma. With this screening panel, a sensitivity of 96% 
and a specificity of 60% was achieved. Another research 
group (93) established a screening panel which consists of 
six miRNAs (miR-19b-3p, miR-21-5p, miR-221-3p, miR-
409-3p, miR-425-5p, and miR-584-5p), for detection in 
plasma samples for the diagnosis of lung adenocarcinoma. 
In particular, miR-19-3p, miR-21-5p, and miR-221-3p 

were strikingly upregulated in exosomes, which had been 
extracted from peripheral blood plasma from patients with 
lung adenocarcinoma (93).

Apart from miRNAs, the peripheral blood of cancer 
patients is also a pool of so-called TEPs (44). Healthy cells 
present in the tumor microenvironment are continuously 
released into the blood stream of cancer patients, and TEPs 
count among them (94). There is a well-known interaction 
between blood platelets and tumor cells, affecting tumor 
growth and dissemination (95). This interaction affects the 
RNA profile of blood platelets (94). In a study from 2015, 
mRNA sequencing of TEPs from 283 platelet samples was 
performed, and sequencing profiles of 228 patients with 
localized and metastatic disease were compared to profiles 
of 55 healthy controls. TEP sequencing could distinguish 
tumor patients from the healthy individuals with 96% 
accuracy (94). Across six different tumor types (among them 
also NSCLC), the location of the primary tumor could 
be determined with an accuracy of 71%. Tumor-specific 
educational programs in TEPs were primarily dependent 
on tumor type, less so by tumor stage or the presence of 
metastases. Still, previous research has shown an influence 
of blood platelets on tumor cell dissemination (96), as well 
as metastatic spread (95). Although the above-mentioned 
study on TEPs suggests a possible future application as 
another liquid biopsy approach, more research on larger 
patient cohorts is still warranted until TEP-based liquid 
biopsy techniques are ready for implementation into clinical 
routine.

Liquid biopsy in today’s everyday clinical practice

Currently, applications for liquid biopsy testing in 
NSCLC are increasingly emerging. CfDNA testing is 
mainly performed in patients with early-stage and curable  
disease (97). The presence of circulating tumor cfDNA after 
treatment with a curative intention, strongly correlates with 
minimal or molecular residual disease (45,98). Recurrence 
of disease is predicted by the presence of cfDNA, signifying 
a worse outcome. A recent study evaluated the benefit 
of consolidation immunotherapy in patients with locally 
advanced NSCLC who underwent chemo-radiotherapy 
with a curative intention (42). Consolidation therapy 
improved outcomes in patients with cfDNA minimal 
residual disease-positive status, whereas patients who had no 
evidence of minimal residual disease in cfDNA assessment, 
no benefit of consolidation immunotherapy was seen. 
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Hence, cfDNA status as an indicator of minimal residual 
disease could guide decisions regarding adjuvant therapy 
after curative-intent treatment regimens (97). According 
to recent investigations, about 40–50% of early-stage and 
curable NSCLC may be detected using NGS-based cfDNA 
screening techniques (45).

In a study by Heeke et al., an assessment of routine 
clinical practice of liquid biopsy for testing of EGFR status 
in NSCLC was conducted in a single-center trial (99). The 
authors analyzed 345 blood plasma samples by means of the 
US Food and Drug Administration (FDA) approved Cobas 
EGFR mutation test V2, and 103 samples by means of the 
Therascreen EGFR Plasma RSQ PCR Kit. The trial was 
performed over the time period of three years (comprising 
in total 395 plasma samples of 324 patients). Eleven plasma 
samples were independently validated using the Cobas Test, 
and 130 samples were further analyzed using Stilla digital 
PCR (99). According to this study, the median time from 
blood puncture to the validated clinical report of the liquid 
biopsy was 4 working days. In 119 (30%) of the specimens, 
an activating EGFR mutation was found. The authors 
suggest, on the basis of their findings, that the Cobas test 
kit is more robust and produced more reproducible assays 
for the detection of EGFR mutations in plasma samples as 
compared to the Therascreen kit. Thus, it was primarily 
implemented as the principal testing device (99). The 
additional use of digital polymerase chain reaction (dPCR) 
testing improved the detection of T790M mutations in 
the plasma samples, but not the detection of primary 
EGFR mutations. In this analysis, it was evident that liquid 
biopsies were mostly recommended for patients receiving 
EGFR TKI treatment. PCR-based assays were specifically 
requested for 183 (46%) of cases to search for T790M 
mutations – mostly because of progressive disease upon 
EGFR-TKI treatment. In 144 (36%) of cases, PCR-based 
assays were requested due to the impossibility of acquiring 
a conventional tissue sample (99). The authors conclude 
that PCR-based assays are effective, especially when used 
supplementary to the Cobas EGFR mutation test kit. 
Turnaround time from blood taking to clinical report is 
short in liquid biopsy, and acceptance in patients is high 
because of the limited invasiveness and small risk of the 
procedure. The most effective use, according to the authors, 
is the search for resistance mutations in patients receiving 
EGFR-targeted treatment. Another promising opportunity 
for the use of liquid biopsy is NGS analysis of cfDNA, for 
the follow-up of the genomic profile of the tumor over the 

disease course (99).
In 2018, the IASLC released a consensus paper with 

their current recommendations on performing liquid biopsy 
in lung cancer (37). According to the IASLC, liquid biopsy 
comprises CTCs, circulating exosomes, platelet RNA and 
circulating tumor RNA (ctRNA) as well (4,100). CtDNA 
still remains the most widely investigated method in liquid 
biopsy for lung cancer patients. It is crucial to point out, 
that the accessibility to different techniques, platforms, test 
reimbursements and drugs varies considerably between 
different countries and treatment facilities. Thus, the 
current standard of care and the clinicians’ and pathologists’ 
experience in a given treatment center have to be taken into 
account when giving recommendations on liquid biopsy as 
well.

At present,  the difference between serum- and 
plasma analysis for variant detection in ctDNA is under 
investigation (101,102). Randomized clinical phase III trials 
are currently ongoing for gefitinib (IPASS) and afatinib 
(LUX-Lung 3), which examine the EGFR mutation status 
in tumor DNA extracted from standard tissue biopsy 
specimens, comparing the results to EGFR analysis of 
ctDNA extracted from serum liquid biopsy specimens 
(5,103). Sensitivity levels of ctDNA EGFR mutation analysis 
using a real-time PCR (qPCR)-based assay, according to 
these studies, added up to 43.1%, considering tissue-based 
analysis as a reference. In the phase IV clinical trial for 
gefitinib (IFUM) and the phase III trials for afatinib (LUX-
Lung 6 and 3), EGFR mutation status was determined 
in plasma samples (103-105). Sensitivity of plasma tests 
in these studies was 65.7% and 60.5%, respectively (the 
mutation detection rate using serum samples, however, was 
considerably lower with only 28.6%) (106).

In the ASSESS trial, which included 1,288 patients from 
Japan and Europe, the concordance among plasma samples 
and tissue-based analysis of EGFR mutations was 89%, 
showing a high specificity of 97%, yet a low sensitivity of 
only 46% (107). In the EURTAC phase III study assessing 
erlotinib, the feasibility of ctDNA testing from blood 
samples (serum and plasma for each patient), evaluation 
of the EGFR mutation status and consecutive correlation 
with outcome, was carried out (59). In ctDNA drawn from 
97 blood samples at baseline, EGFR mutation status was 
evaluated by means of a peptide nucleic acid-mediated 
qPCR assay, and EGFR mutations were discovered in 78% 
of patients. The specificity, according to this study, reached 
100%. In this analysis, both serum and plasma samples were 
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used for analysis, however, the authors did not state whether 
there was a difference between the two options (59).

For everyday clinical practice, the IASLC recommends 
the following claims, based on the data mentioned above (4): 

First, plasma analysis is preferred over serum for ctDNA 
extraction. Second, the maximum time limit from blood 
taking to the extraction of plasma must not exceed two 
hours in case of EDTA tubes, and three days in case of 
special ctDNA sampling tubes. Third, a double-spin plasma 
isolation technique is strongly suggested. Fourth, blood 
samples must not be frozen if the plasma has not yet been 
extracted, irrespective of the type of sampling tube. Fifth, 
EDTA tubes and cfDNA preservative tubes can both be 
used for ctDNA extraction – however, if using EDTA tubes, 
rapid sample processing is crucial. Sixth, two standard 10 
mL tubes per patients should be drawn to enhance the 
accuracy of analysis. Seventh, DNA extraction has to be 
carried out with protocols or kits specifically designed for 
small fragmented DNA (4).

Table 1 illustrates different liquid biopsy products 
currently tested in clinical studies, or already applied in 

everyday clinical routine.

Discussion and conclusion

Although today still sporadically used in clinical routine, 
liquid biopsy gains increasing popularity. Various different 
approaches and techniques are already available, differing 
considerably with regards to cost and level of sensitivity.

Liquid biopsy may be used for the primary assessment of 
mutations status, with a special focus on EGFR mutations 
– or else, as a screening tool during the disease course to 
assess treatment response or the secondary development of 
resistance mutations.

With this review of the literature, we sought to shed light 
onto the complex landscape of liquid biopsy techniques, 
and current applicability. In future, it is likely that the 
development of evermore precise, as well as cost-efficient 
liquid biopsy approaches will allow it to become standard 
in everyday practice, probably replacing tissue biopsy at 
large part. Thus, complication rates for patients could be 
minimized and constant disease monitoring would become 

Table 1 List of liquid biopsy companies (108)

Company Product/clinical trial Mode of application Reference

Grail SUMMIT trial Blood test aiming at the detection of various cancer types, including 
lung cancer

(109)

Guardant 360 Lunar-2 Detection of early-stage malignant disease in asymptomatic subjects at 
increased risk

(110)

Freenome Screening test An algorithm for the early detection of colorectal carcinoma and 
precancerous lesions of the colon, i.e., advanced colon adenomas

(111)

Biocept Target SelectorTM ctDNA 
EGFR Kit

Detection of EGFR mutations (112)

Inivata InVisionSeqTM; 
InVisionFirstTM-Lung

A panel comprising about 40 biomarkers (mutations, CNVs, SNVs, 
fusions and indels) for the molecular profiling, monitoring and diagnosis 
of advanced cancers

(113)

Cynvenio The LiquidBiopsy® 
Platform

NGS-based technique for the detection of mutations; very high 
sensitivity (only 1 target cell per mL/blood required)

(114)

CellMaxLife FirstSightCRCTM CTCs are used for colorectal cancer profiling, and for screening of 
colorectal adenomas and colorectal cancer

(115)

Exosomedx Exosome-based 
biomarker tests

Used for the diagnosis of non-small cell lung cancer and prostate 
cancer

(116)

Biodesix GeneStrat® test Providing blood-based mutation results of EGFR, ALK, ROS1, RET, 
BRAF and KRAS for cancer diagnosis

(117)

Personal Genome 
Diagnostics

PlasmaSELECTTM-R 64 Cancer diagnosis using NGS with a panel of 64 genes (118)

Table adapted after Chen and Zhao (108).
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considerably easier.
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