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Abstract: Available systemic treatment options for cancers of the genitourinary system have
experienced great progress in the last decade. However, a large proportion of patients eventually
develop resistance to treatment, resulting in disease progression and shorter overall survival.
Biomarkers indicating the increasing resistance to cancer therapies are yet to enter clinical routine.
Long non-coding RNAs (lncRNA) are non-protein coding RNA transcripts longer than 200 nucleotides
that exert multiple types of regulatory functions of all known cellular processes. Increasing evidence
supports the role of lncRNAs in cancer development and progression. Additionally, their involvement
in the development of drug resistance across various cancer entities, including genitourinary
malignancies, are starting to be discovered. Consequently, lncRNAs have been suggested as factors
in novel therapeutic strategies to overcome drug resistance in cancer. In this review, the existing
evidences on lncRNAs and their involvement in mechanisms of drug resistance in cancers of the
genitourinary system, including renal cell carcinoma, bladder cancer, prostate cancer, and testicular
cancer, will be highlighted and discussed to facilitate and encourage further research in this field.
We summarize a significant number of lncRNAs with proposed pathways in drug resistance and
available reported studies.

Keywords: lncRNA; drug resistance; chemoresistance; prostate cancer; renal cell carcinoma; bladder
cancer; seminoma

1. Introduction

Cancers of the genitourinary system, including renal cell carcinoma (RCC), bladder cancer (BC),
prostate cancer (PCa), and testicular cancer (TC) add up to being responsible for 626,000 cancer related
deaths worldwide each year. Together they account for about 14% of all malignancies, respectively [1].
While TC has a comparably good prognosis even in metastatic treatment settings, outcomes for
RCC, BC, and PCa strongly vary depending on tumor stage and clinico-pathological biomarkers [2].
However, because of the introduction and availability of novel drugs such as second generation
antiandrogens in castration resistant PCa (CRPC) [3] or immune checkpoint inhibitors in BC and
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RCC [4,5], outcomes are improving. Yet, resistance to systemic cancer therapy is a great obstacle in
cancer treatment and represents a complex process involving genetic and epigenetic mechanisms.
Insensitivity to systemic cancer treatment may be divided into intrinsic, i.e., resistance is present before
any treatment, and acquired resistance by selection pressure [6].

Long non-coding RNAs (lncRNA) are non-protein coding RNA molecules with a length of
more than 200 nucleotides and exert regulatory function in various cellular processes [7–12]. Briefly,
a lncRNA may act as a signal, guide, decoy or scaffold for other non-coding RNAs or proteins and
thereby alter various cellular functions [13]. In cancer, lncRNAs can act as both tumor suppressors and
oncogenes and their involvement in cancer development and progression, including in genitourinary
cancers, was repeatedly demonstrated [14].

In this review, we give a comprehensive overview of the existing evidence on the mechanisms
of drug resistance involving lncRNAs in cancers of the genitourinary system as they may represent
future therapeutic targets (Table 1).
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Table 1. Long non-coding RNAs (lncRNAs) associated with drug resistance in cancers of the genitourinary system: Abbreviations: RCC- renal cell carcinoma,
OS—overall survival, PFS—progression free survival, DFS—disease-free survival, BRFS—biochemical recurrence free survival, NA—not applicable.

lncRNA Drug
Resistance

Influence on
Resistance
↑/↓

Expression
Pattern Pathway Patient

Tissue
In Vivo
Models

Clinical
Endpoint

Outcome
(High Expression)

Cohort
Size Database Multivariate

Analysis

Hazard Ratio
(HR) (95%CI,

p-Value)
Ref

RCC

SRLR Sorafenib ↑ ↑

SRLR/
NF-KB/

IL-6/
STATA3

Yes Yes
PFS,

treatment
response

Poor 161 Institutional Yes
PFS: 0.407

(0.222–0.744,
p = 0.003)

[15]

ARSR Sunitinib ↑ ↑

ARSR/
miR-34/

AXL
ARSR/
miR-34/
c-MET

Yes Yes
PFS,

treatment
response

Poor 84 Institutional Yes
PFS: 2.9,
(1.2–7.1,

p = 0.017)
[16]

ADAMTS9-AS2 5-fluorouracile,
Cisplatin ↓ ↓

ADAMTS9-AS2/
miR-27-3p/

FOXO1
yes No OS, DFS Good 258

76
GEIPA

Institutional No NA [17]

NEAT1 Sorafenib ↑ ↑

NEAT1/
miR-34a/
c-MET

Yes No OS, PFS Poor 102 Institutional No NA [18]

GAS5 Sorafenib ↓ ↓

GAS5/
miR-21/
SOX5

Yes Yes No NA NA NA NA NA [19]

Bladder cancer

UCA1

Cisplatin/gemcitabine ↑ ↑

UCA1/
CREB/

miR-196a-5p/p27Kip1
Yes Yes No NA NA NA NA NA [20]

Cisplatin ↑ ↑
UCA1/Wnt6/Wnt

signaling Yes Yes No NA NA NA NA NA [21]

NA ↑ ↑
UCA1/miR-582-5p/
ATG7-autophagy Yes Yes No NA NA NA NA NA [22]

TUG1 Cisplatin ↑ ↑
TUG1/miR-194-5p/

CCND2 Yes Yes OS Poor 87 Institutional No NA [23]

PVT1 Doxorubicin/
cisplatin ↑ ↑

PVT1/
Wnt/

β-catenin
Yes No No NA NA Institutional NA NA [24]

FOXD2-AS1 Gemcitabine ↑ ↑
FOXD2-AS1/miR-143/

ABCC3 No Yes No NA NA NA NA NA [25]
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Table 1. Cont.

lncRNA Drug
Resistance

Influence on
Resistance
↑/↓

Expression
Pattern Pathway Patient

Tissue
In Vivo
Models

Clinical
Endpoint

Outcome
(High Expression)

Cohort
Size Database Multivariate

Analysis

Hazard Ratio
(HR) (95%CI,

p-Value)
Ref

DLEU1 Cisplatin ↑ ↑
DLEU1/miR-99b/

HS3ST3B1 Yes No OS Poor 406
485

TCGA
(UALCAN/
KMplotter)

No
OS: 1.65

(1.2–2.26)
p = 0.0016

[26]

MST1P2 Cisplatin ↑ ↑

MST1P2/
miR-133b/
Sirt1/p53

No No No NA NA NA NA NA [27]

HIF1A-AS2 Cisplatin ↑ ↑
HIF1A-AS2/HMGA1/

p53 family Yes No No NA NA NA NA NA [28]

GHET1 Gemcitabine ↑ ↑ GHET1/ABCC1 Yes No No NA NA NA NA NA [29]

MALAT1 Cisplatin ↑ ↑
MALAT1/miR-101-3p/

VEGF-C Yes No No NA NA NA NA NA [30]

lncRNA-LET Gemcitabine ↓ ↓
LncRNA-LET/NF90/

miR-145 Yes Yes OS Good 60 Institutional No p = 0.0014 [31]

GAS5 Doxorubicin ↓ ↓
GAS5/
Bcl-2 Yes No OS Good 82 Institutional No

OS: 0.4824
(0.2865–0.8122

p = 0.006)
[32]

LBCS Cisplatin/gemcitabine ↓ ↓

lnc-LBCS/
hnRNPK/EZH2/

SOX2
Yes Yes OS, DFS Good 120/185 Institutional

TCGA-GEPIA Yes

OS: 0.2721,
p < 0.0001

DFS: 0.3029
p < 0.0001
OS: 0.3663
p = 0.0165

[33]

Prostate cancer

UCA1 Docetaxel ↑ ↑

UCA1/
miR-204

/Sirt1
No No No NA NA NA NA NA [34]

CASC2 Docetaxel ↓ ↓ CASC2/miR-183/SPRY2 Yes No No NA NA NA NA NA [35]

MALAT1
Docetaxel ↑ ↑

MALAT1/miR-145-5p/
AKAP12 Yes Yes No NA NA NA NA NA [36]

Enzalutamide ↑ ↑ MALAT1/SF2/AR-v7 No Yes No NA NA NA NA NA [37]

Linc00673 Paclitaxel
Docetaxel ↑ ↑

Linc00673/Dnmt1-3/
KFL4 Yes Yes No NA NA NA NA NA [38]

Linc00518 Paclitaxel ↑ ↑
Linc00518/miR-216-5p/

GATA6 Yes No OS Poor 45 Institutional No NA [39]

CCAT1 Paclitaxel ↑ ↑
CCAT1/miR-24-3p/

FSCN1 Yes No No NA NA NA NA NA [40]
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↑/↓
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Tissue
In Vivo
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(High Expression)
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Size Database Multivariate
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Hazard Ratio
(HR) (95%CI,

p-Value)
Ref

DANCR Docetaxel ↑ ↑
DANCR/miR-24a-5p/

JAG1 Yes Yes No NA NA NA NA NA [41]

HOXD-AS1 Bicalutamide
Paclitaxel ↑ ↑ HOXD-AS1/WDR5 No Yes PFS Poor 309 TCGA Yes

2.827,
(1.297–6.161)

p = 0.009
[42]

FEZF1-AS1 Paclitaxel ↑ ↑
FEZF1-AS1/miR-25-3p/

ITGB8 Yes Yes No NA NA NA NA NA [43]

HOTTIP Cisplatin ↑ ↑ HOTTIP/Wnt/β-catenin Yes No No NA NA NA NA NA [44]

PCGEM1 Enzalutamide ↑ ↑ PCGEM1/AR3-splicing No Yes No NA NA NA NA NA [45]

HOTAIR Enzalutamide ↑ ↑ HOTAIR/AR Yes No BRFS Poor NA GEO No NA [46]

LBCS Bicalutamide ↓ ↓
LBCS/

hnRNPK/AR Yes No BRFS
PFS Good 374 TCGA Yes

BRFS: 0.447
(0.235–0.967)

p = 0.040
[47]

Testicular Cancer

H19 Cisplatin ↑ ↑ H19/miR-106-5p/TDRG1 Yes Yes No NA NA NA NA NA [48]
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2. Long Non-Coding RNAs and Drug Resistance in Renal Cell Carcinoma

According to the GLOBOCAN database, kidney cancer accounts for 338,000 of cancer diagnoses
worldwide each year [1], making it the second and third most common cancer of the urogenital system
in men and women, respectively. Ninety percent of malignancies of the kidney account for RCC,
which is derived from the epithelium of renal tubules [49]. The most frequent pathological subtypes
are clear cell (ccRCC), papillary RCC, and chromophobe RCC, which account for 70–80%, 10–15%,
and 3–5%, respectively [50]. This traditional classification has become far more complex as RCCs can
display various histological features of other subtypes and these novel molecular classifications bring
new perspectives [51]. For localized disease, surgery represents the treatment of choice. However,
some patients eventually experience recurrence and develop metastasis or already present with
metastatic dissemination at the time of diagnosis. In these cases, palliative treatment systemic
therapy is indicated. As RCC shows insufficient response to chemotherapy [52], immunotherapy with
interleukin-2 and IFNα were some of the first agents used in the systemic treatment of RCC with
only moderate success [53]. Novel targeted therapies such as the multikinase inhibitors sunitinib and
sorafenib, which target vascular endothelial growth factor receptor (VEGFR) and platelet derived
growth factor receptor (PDGFR) thereby inhibiting angiogenesis, improved these outcomes [54,55].
Nonetheless, the introduction of immune checkpoint inhibitors such as nivolumab, pembrolizumab and
combinations with antiangiogenetic agents in the treatment of ccRCC drastically improved the outcome
of metastatic RCC [5,56]. However, a significant number of patients still do not benefit from these novel
therapeutic concepts and currently available predictive biomarkers, such as PD-L1 expression perform
insufficiently [57]. Therefore, understanding the mechanisms of drug resistance is crucial. Importantly,
intratumor heterogeneity plays an important role in treatment failures in RCC patients [58,59]. In RCC,
lncRNAs were described to engage in pathogenesis and disease progression and were suggested as
novel diagnostic tools [60]. However, although lncRNAs participate in the regulation of checkpoint
inhibitors, studies investigating the development of resistance to checkpoint inhibitors in RCC are
lacking [61,62]. To date, only data on lncRNAs and their role in in the development of resistance to
multikinase inhibitors and chemotherapy are available.

2.1. lncRNAs Promoting Drug Resistance in RCC

2.1.1. SRLR

The sorafenib resistance-associated lncRNA in RCC (SRLR) was first functionally investigated by
Xu et al. [15] who reported SRLR to promote resistance to treatment with the multi-kinase inhibitor
sorafenib. Overexpression of SRLR was observed in RCC cells and the tissue of patients that were
resistant to sorafenib. Mechanistically, SRLR directly interacts with the transcription factor NF-KB
which subsequently activates interleukin-6 (IL-6) transcription and autocrine IL-6 secretion in RCC cells.
This results in the activation of the STAT3 pathway and sidesteps the inhibition of receptor tyrosine
kinases such as VEGFR and PDGFR by sorafenib (Figure 1). This was experimentally confirmed both
in vitro and in vivo [15]. The relationship of SLRL and IL-6 was only recently confirmed in a study
investigating SRLR in polycystic ovary syndrome [63]. In a clinical dataset that included 95 RCC
patients, higher expression levels of lncRNA SRLR were associated with reduced progression-free
survival (PFS) (HR = 0.407, 95%CI = 0.222–0.744, p = 0.003) and was additionally related to low benefit
to treatment with sorafenib, and high levels of IL-6 [15].

2.1.2. ARSR

The lncRNA activated in RCC with sunitinib resistance (ARSR) significantly impacts resistance to
treatment with the multikinase inhibitor sunitinib in RCC [16]. Mechanistically, by acting as a competing
endogenous RNA (ceRNA), ARSR sequesters miR-34 and miR-449 and thus increases the levels of their
targets AXL and c-MET, thereby promoting sunitinib resistance (Figure 1). ARSR is overexpressed
in sunitinib resistant cells and reciprocally ARSR expression is increased by AXL through activation
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of FOXO transcriptional factors. This suggests a positive feedback loop between AXL and ARSR in
sunitinib-resistant RCC. Interestingly, sunitinib resistance may also be transferred from cells resistant to
sunitinib to sunitinib-sensitive cells via exosome-mediated transmission. Targeting of ARSR could be
used as a novel therapeutic approach to overcome sunitinib resistance, as shown in in vivo and in vitro
experiments [16]. Moreover, pretreatment ARSR levels in the plasma of RCC patients is significantly
correlated with poor PFS for high vs. low ARSR expression (HR = 2.9, 95% CI = 1.2–7.1, p = 0.017),
corroborating these findings [16]. A recent study also proposed single nucleotide polymorphisms
(SNP) of the ARSR sequence as potential biomarkers for RCC outcome [64].
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Figure 1. Examples of long non-coding RNAs (lncRNAs) and mechanisms of drug resistance in renal
cell carcinoma (RCC). (A) lncRNA Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) sponges
miR-34a and as a result, increases c-MET expression. (B) lncRNA growth arrest specific transcript 1
(GAS5) sponges miR-21 thereby preventing it from targeting SRY-Box transcription factor 5 (SOX5)
leading to increased sensitivity to sorafenib. (C) lncRNA sorafenib resistance-associated lncRNA in
RCC (SRLR) recruits NF-κB to the interleukin 6 (IL-6) promoter, resulting in increased autocrine IL-6
secretion and bypassing of blocked vascular endothelial growth factor receptor (VEGFR) and platelet
derived growth factor receptor (PDGFR). (D) lncRNA activated in RCC with sunitinib resistance
(ARSR) can be secreted via exosomes from sunitinib resistant cells and can be incorporated from
sunitinib sensitive cells, thereby transferring drug resistance. ARSR sponges miRNAs and consequently
promotes AXL and c-MET expression promoting sunitinib resistance. (created with Biorender.com).

2.1.3. NEAT1

The nuclear paraspeckle assembly transcript 1 (NEAT1) and its function as an oncogenic lncRNA
is already well investigated in multiple studies [65]. NEAT1 has been reported to promote resistance to
chemotherapy [66,67]. In RRC, NEAT1 may inhibit response to sorafenib treatment by regulation of the
NEAT1/miR-34a/c-MET axis by acting as a sponge for miR-34a [18] (Figure 1). Both, c-MET and miR-34a
were already reported to impact chemoresistance in other cancer entities such as esophageal cancer
and osteosarcoma [68–70]. Moreover, NEAT1 shows high expression in RCC cell lines and tissues.
Additionally, overexpression of NEAT1 was correlated with epithelial–mesenchymal transition (EMT)
and also significantly correlated with poor OS and PFS in RCC; although no uni- and multivariate
analyses were implemented in the study by Liu et al., along with no xenograft models [18].

2.2. lncRNAs Enhancing Drug Sensitivity in RCC

2.2.1. ADAMTS9-AS2

The lncRNA ADAMTS9 antisense RNA 2 (ADAMTS9-AS2) was already reported to influence
drug resistance in cancer. However, its role may vary depending on the cancer type as downregulation
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of ADAMTS9-AS2 in breast cancer was reported to increase tamoxifen resistance, whereas its
downregulation was associated with increased sensitivity to temozolomide in glioblastoma [71,72].
In RCC, ADAMTS9-AS2 is downregulated and high expression is significantly associated with better
OS [17]. By sequestering miR-27-3p, overexpression of ADAMTS9-AS2 resulted in increased FOXO1
expression and restored chemosensitivity to 5-fluorouracil and cisplatin. However, confirmation
in in vivo experiments is missing [17]. To date, chemotherapy is not a valid treatment option in
RCC as it has proven ineffective, therefore the direct clinical impact of the study is limited [52].
However, targeting lncRNAs may overcome chemoresistance in RCC in the future and may establish
chemotherapy as a valid treatment option in RCC.

2.2.2. GAS5

The lncRNA growth arrest specific transcript 1 (GAS5) was reported to influence RCC resistance
to sorafenib in a study by Liu and colleagues [19]. The tumor suppressive role of GAS5 in RCC
carcinogenesis and progression has already been repeatedly demonstrated [73]. In terms of its impact
on sorafenib resistance, it was shown to act as a sponge for miR-21 and upregulation of GAS5
resulted in likewise upregulation of the transcription factor sex determining region Y-box protein 5
(SOX5), conferring increased sensitivity to sorafenib [19]. This was demonstrated by multiple in vitro
and in vivo models. All effectors in the GAS5/miR-21/SOX5 pathway as proposed by Liu et al. [19]
have already been reported to be effectors in chemoresistance individually, which corroborates
these results [74–77].

3. lncRNAs and Drug Resistance in Bladder Cancer

With approximately 550,000 new cases in 2018, BC represents the seventh most frequent tumor type
in our population [78]. The most common histological type is urothelial carcinoma (UC), accounting
for approximately 90% of all bladder cancers. Other less frequent subtypes are squamous cell
carcinoma and adenocarcinoma [79]. Based on the TNM classification and histopathological grading,
two major subtypes of UC—non-muscle-invasive carcinoma (NMIBC; around 80% at diagnosis) and
muscle-invasive carcinoma (MIBC) are distinguished [80].

NMIBC is a heterogeneous disease with a good prognosis and curability, nevertheless around
70% of cases recur and about 10% progress into an invasive phenotype [81]. The standard-of-care
for NMIBC currently is transurethral resection of bladder tumor (TURBT) with optional addition of
intravesical therapy (mitomycin C, doxorubicin, gemcitabine, or BCG—Bacillus Calmette-Guerin) [82].
In the case of MIBC, the standard treatment protocol involves radical cystectomy with neoadjuvant
or adjuvant chemotherapy with gemcitabine/cisplatin. Also, in metastatic disease which develops
in 50% of MIBC cases, cisplatin-based chemotherapy in combination with gemcitabine remains the
main therapeutic modality [83]. Moreover, novel treatment options such as immune checkpoint and
fibroblast growth factor receptor (FGFR) inhibitors were introduced [4,84]. Despite recent advances
in BC systemic treatment, eventual treatment resistance is responsible for cancer progression and
death and its molecular mechanisms remain rather unclear. LncRNAs play a major part in BC
pathophysiology [14,85,86] and therefore are suggested as essential molecules in drug resistance.
Further research of lncRNA involvement in BC chemoresistance may thus improve current treatment
and reveal new therapeutic targets in BC.

3.1. lncRNAs Promoting Drug Resistance in BC

3.1.1. UCA1

The lncRNA urothelial cancer-associated 1 (UCA1) plays an important role in BC tumorigenesis
as shown by increased proliferation, invasion, migration, as well as therapy resistance of UC cell
lines [86]. Regarding cisplatin chemoresistance, high expression of UCA1 in resistant cells significantly
increases cell viability during cisplatin treatment. Moreover, overexpression positively regulates
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expression of Wnt6, subsequently activating Wnt signaling [21], which was previously connected
with chemoresistance in cancer [87]. In addition to cisplatin, UCA1 was also studied in relation to
gemcitabine resistance, where functioning via the UCA1/CREB/miR-196a-5p axis is proposed [20].
In this paradigm, UCA1 activates the AKT signaling pathway, which results in proto-oncogenic
transcription factor CREB (cAMP response element-binding protein) phosphorylation. Active CREB
then positively regulates expression of oncogenic miR-196a-5p (Figure 2) [20]. It has been shown that
the suppression of miR-196a could attenuate resistance to cisplatin in lung cancer cell lines and relates
to drug efflux-related proteins such as multidrug resistance1 (MDR1), multidrug resistance associated
protein 1 (MRP1), endonuclease non-catalytic subunit (ERCC1), survivin, or Bcl-2 [88]. However, in BC,
miR-196a-5p controls p27Kip1 expression by directly binding to its 3′UTR [20]. As a cyclin-dependent
kinase (CDK) inhibitor and activator of cleaved-caspase 3, p27Kip1 can promote drug resistance via
cell apoptosis [89]. Most recent reports showed a new regulatory network involving miR-582-5p and
ATG7-mediated autophagy inhibition [22]. It is presumed that UCA1 serves as a miRNA sponge and
binds mature miR-582-5p. Among miR-582-5p direct targets is also ATG7—an E1-like activating enzyme
involved in autophagy [90], which is often activated as a protective mechanism of resistant cancer cells
during chemotherapy [91]. Indeed, miR-582-5p-mediated suppression of ATG7 could inhibit autophagy,
indicating the UCA1/miR-582-5p/ATG7 pathway regulates BC anti-cancer drug response [22].
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Figure 2. Examples of long non-coding RNAs (lncRNAs) and mechanisms of drug resistance in bladder
cancer (BC). (A) lncRNA macrophage stimulating 1 pseudogene 2 (MST1P) sponges miR-133b thereby
preventing it from targeting sirtuin 1 (Sirt1). This leads to increased Sirt1 expression and inhibition
of p53 by Sirt1 and thus increased chemoresistance. (B) lncRNA taurine up-regulated 1 (TUG1)
recruits enhancer of zeste homolog 2 (EZH2) to the miR-194-5p promoter resulting in hypermethylation
and thus inhibited miR-194-5p transcription. Additionally, TUG1 sponges miR-194-5p preventing it
from targeting cyclin D2 (CCND2) leading to increased expression and enhanced chemoresistance.
(C) lncRNA low expressed in bladder cancer stem cells (LBCS) recruits EZH2 and heterogeneous nuclear
ribonucleoprotein K (hnRNPK) to the SRY-box transcription factor 2 (SOX2) leading to hypermethylation
and thereby inhibiting chemoresistance. (D) lncRNA urothelial cancer associated 1 (UCA1) activates the
Akt-pathway and thereby enhances phosphorylation of cAMP response element-binding protein (CREB)
transcription factor. CREB promotes the transcription of miR-196a-5p which targets p27Kip1 tumor
suppressor, leading to enhanced chemoresistance by UCA1 upregulation. (created with Biorender.com).

3.1.2. TUG1

Taurine-upregulated gene 1 (TUG1) is a lncRNA initially identified in the development of
retina [92]. Recent findings have proven its association with various cancers; dysregulated expression
level of TUG1 was described in colorectal cancer [93], gastric cancer [94], non-small cell lung cancer
(NSCLC) [95], hepatocellular cancer [96], and BC [85,97]. Mechanisms enabling TUG1 to regulate
cellular processes including chemoresistance were, for instance, described in lung cancer [95] though its
biological function in BC is still unclear. Yu et al. [23] showed that TUG1 can induce the chemoresistance
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to cisplatin in BC through the TUG1/miR-194-5p/CCND2 axis. In detail, TUG1 influences miR-194-5p
level via sponging mature miR-194-5p molecules and enhancer of zeste homolog 2 (EZH2)-related
promoter methylation. Both ways lead to miR-194-5p down-regulation resulting in higher levels
of its direct target cyclinD2 (CCND2) and thus chemoresistance to cisplatin promotion (Figure 2).
Interestingly, this regulatory mechanism impacts proliferation and apoptosis of BC as well [23].

3.1.3. PVT1

Another chemoresistance-related lncRNA is plasmacytoma variant translocation 1 (PVT1).
This 1716 nt long transcript is overexpressed in various human cancers [98–100] and its regulative effect
on chemosensitivity was already closely described in cervical cancer [98], gastric cancer [99] and lung
cancer [100]. In BC, PVT1 overexpression was confirmed in chemo-resistant tissues, where it negatively
correlates with response to cisplatin and doxorubicin. Also, in T24/DR cell lines, PVT1 knockdown
reduced resistance to cisplatin and doxorubicin and led to suppression of MDR1 and MRP1 expression.
Moreover, PVT1 suppression inhibits Wnt/β-catenin signaling probably via miR-200b which is
epigenetically silenced by PVT1. This proposed mechanism is supported by the observed restoration
of chemoresistance in PVT1 knockdown T24/DR cells after β-catenin upregulation [24].

3.1.4. FOXD2-AS1

FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is an oncogenic cancer-related lncRNA,
which was reported to be overexpressed in BC and was connected to tumor stage, recurrence as
well as poor prognosis. FOXD2-AS1 promotes BC cell proliferation, migration, and invasion mainly
via regulation of Tribbles pseudokinase 3 (TRIB3), which negatively regulates Akt [101]. Recently,
a study by An et al. [25] described the involvement of FOXD2-AS1 in gemcitabine resistance of
BC. In gemcitabine-resistant BC cells, a high level of this lncRNA led to the upregulation of known
genes that are associated with drug resistance, such as MDR1, MRP2, LDL receptor-related protein 1
(LRP1), or ATP binding cassette subfamily C member 3 (ABCC3) protein [25]. The ABCC3 protein
is demonstrably increased in BC cells and enhances cell proliferation, drug resistance, and aerobic
glycolysis [102]. The bioinformatic analysis in this study then identified miR-143 as the intersection
between FOXD2-AS1 and ABCC3, as miR-143 is predicted to target the ABCC3 3′-UTR and at the same
time matched with FOXD2-AS13′-UTRs. Indeed, FOXD2-AS1 acted as a ceRNA miR-143 and thereby
increased ABCC3 protein expression and accelerated gemcitabine resistance [25].

3.1.5. DLEU1

The deleted in lymphocytic leukemia 1 lncRNA (DLEU1) was discovered due to its location on
chromosome 13q14.3, a region which is commonly deleted in chronic B-cell lymphocytic leukemia [103–105].
Beside DLEU1, this locus also hosts miR-15a and miR-16 which are the first ever discovered ncRNAs
to be involved in human diseases [106–109]. Though in hematopoietic tumors DLEU1 can act as a
potential tumor suppressor [110], in other cancers including cervical cancer [111], colorectal cancer [112],
and NSCLC [113] it has been shown to exert oncogenic function. In BC, DLEU1 is significantly increased
and induces cell proliferation, invasion, and cisplatin resistance. The mechanism involves sponging
miR-99b [26], which was described as a tumor suppressive factor in multiple cancers [114,115].
The same function is suggested in BC where miR-99b shows significant downregulation [26] and
targets, among other genes, FGFR3 [115] which is constitutively activated in NMIBC [116]. Sponging
miR-99b by DLEU1 results in increased expression of oncogenic membrane protein HS3ST3B1 [26].
Although limited information about the exact function in BC is known, in other tumors HS3ST3B1 is
associated mainly with EMT [117].

3.1.6. MST1P2

Association with resistance to cisplatin in BC was documented for macrophage stimulating 1
pseudogene 2 (MST1P2). MST1P2 was reported to be significantly upregulated in cisplatin-resistant
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BC cell lines where it serves as a ceRNA. Indeed, MST1P2 sponges miR-133b, where the expression
level was downregulated in the same cell lines [27]. Interestingly, the participation of miR-133b in the
regulation of chemoresistance was already described in ovarian cancer [118], colorectal cancer [119],
and osteosarcoma [120]. Among direct targets of this short RNA is oncogene Sirt1 (Sirtuin 1) which was
proposed as a possible effector of MST1P2/miR-133b mediated drug resistance [27]. Sirt1 overexpression
can inactivate p53, which results in a low response of cancer cells with unmutated p53 to DNA-damaging
chemotherapeutics [121] and thus inhibition of cancer cells apoptosis (Figure 2).

3.1.7. HIF1A-AS2

The hypoxia-inducible factor-1 alpha antisense RNA-2 (HIF1A-AS2) is a natural antisense transcript
of hypoxia-inducible factor-1alpha (HIF-1α) which was suggested to play a crucial part in tumorigenesis,
mainly via regulation of the HIF-1α pathway [122]. In BC, HIF1A-AS2 displays an oncogenic
function since it promotes cell proliferation, migration, and suppresses apoptosis [123]—however,
the exact molecular regulatory mechanisms are yet to be elucidated. Interestingly, HIF1A-AS2 is
highly upregulated also in cisplatin-resistant BC cells and tissues and contributes to BC cisplatin
chemoresistance [28]. Previous reports in glioblastoma showed that HIF1A-AS2 interacts with proteins
IGF2BP2 and DHX9 while enhancing the expression of their targets such as high mobility group
AT-hook 1 (HMGA1) [124]. A similar mechanism takes place in BC drug resistance where HMGA1
overexpression facilitated by HIF1A-AS2 inhibits the transcriptional activity of p53 family proteins
leading to cisplatin-induced apoptosis restraint [28].

3.1.8. GHET1

The oncogenic lncRNA gastric carcinoma proliferation-enhancing transcript 1 (GHET1) is
upregulated in BC tissues, where its level is associated with tumor size, higher tumor stage, lymph node
involvement, and adverse prognosis [125]. A recent report showed that GHET1 is also related to
sensitivity to gemcitabine in BC. Based on statistics using TCGA (The Cancer Genome Atlas) datasets,
a high level of GHET1 was correlated with increased expression of the ABCC1 gene, which is related
to multidrug resistance [29]. This protein was already associated with chemotherapeutic resistance in
BC [126], nevertheless, the exact mechanism of GHET1 regulation of the expression of ABCC1 is still
unknown. However, it is presumed that the underlying mechanism involves regulation of miRNAs
targeting ABCC1 as described in glioma, where GHET1 promoted a malignant phenotype through
down-regulation of miR-216a [127].

3.1.9. MALAT1

Another lncRNA mediating cisplatin resistance in BC is metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1). Liu et al. [30] showed that this function is based on the regulation of
the miR-101-3p/VEGF-C pathway. In detail, direct interaction between MALAT1 and miR-101-3p,
which was demonstrated to be a tumor suppressor [128], impairs targeting and leads to VEGF-C
overexpression [30]. This cytokine has been earlier described as a possible effector in BC chemoresistance
via regulation of a mammary serine protease inhibitor maspin [129]. In addition, miR-101-3p reportedly
enhances sensitivity of BC to cisplatin also by targeted silencing of EZH2 and MRP1 expression [130].

3.2. lncRNAs Enhancing Drug Sensitivity in BC

3.2.1. lncRNA-LET

The lncRNA-low expression in tumor (lncRNA-LET) was suggested to be involved in drug
response in BC. As shown in the study of Zhuang et al. [31], gemcitabine treatment of chemoresistant
urothelial cancer cells led to lncRNA-LET down-regulation and to the enrichment of cancer stem-like cell
population. Subsequent deregulation of the lncRNA-LET/NF90/miR-145 pathway promoted stemness
of cancer cells and led to chemoresistance. This complex mechanism is initiated by gemcitabine
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treatment-related upregulation of TGFβ1. Activation of TGFβ/SMAD signaling by SMAD binding
element (SBE) in the lncRNA-LET promoter represses this lncRNA which results in greater stability of the
NF90 protein [31]. Nuclear factor 90 (NF90) is a double-stranded RNA-binding protein participating in
various cellular processes such as transcription, translation, or mRNA stabilization [131]. Interestingly,
NF90 was also described as an adverse regulator in the miRNA processing pathway [132]. Indeed,
in this case NF90 acts as competitor for the association of the microprocessor complex with pri-miR-145
resulting in miR-145 biogenesis inhibition. Subsequently, the downregulation of miR-145 leads to
higher expression of cancer stemness regulatory genes Krüppel-like factor 4 (KLF4) and high-mobility
group AT-hook 2 (HMGA2) [31] and thus chemoresistance. Direct regulation of KLF4 with miR-145
was reported previously in connection with the vascular smooth muscle cell phenotype [133].

3.2.2. GAS5

GAS5 participates in chemotherapeutic resistance to doxorubicin in urothelial carcinoma, although
the underlying mechanism remains unclear. In BC cells resistant to doxorubicin, the GAS5 expression
level was shown to be negatively correlated with the chemotherapy resistance to this drug [32].
Moreover, GAS5 overexpression positively correlated with apoptosis induced by doxorubicin treatment,
as the repressed expression of anti-apoptotic protein Bcl-2 was observed. Inversely, upregulation of
Bcl-2 reversed the inhibitory effect of GAS5 on chemoresistance to doxorubicin in chemo resistant
cells [32]. This is no surprise, as GAS5 is notably known for apoptosis promotion, mainly via
Bcl-2 suppression and caspase-3 upregulation, which is possibly facilitated through the miR-155
regulatory pathway [134].

3.2.3. LBCS

The lncRNA LBCS (low expressed in bladder cancer stem cells) acts as an important tumor
suppressor in bladder cancer stem cells (BCSC) self-renewal and chemoresistance [33]. In addition to
downregulation in BC, its level associates with tumor grade, response to chemotherapy treatment,
and prognosis. The chemoresistance suppression is executed by guiding the hnRNPK–EZH2
complex [33]. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an important cancer-related
RNA- and DNA-binding protein associated with poor prognosis in BC [135], while EZH2 is a
histone methyltransferase that acts as an oncogene important for self-renewal [136]. As mentioned
before, LBCS acts as a scaffold, thereby facilitating the formation of the hnRNPK/EZH2 complex.
Subsequent recruitment of the complex to the SOX2 promoter mediates H3K27me3 and leads to SOX2
suppression [33]. A low level of LBCS therefore contributes to the upregulation of SOX2, a previously
confirmed marker for stem-like tumor cells in BC [137] and thus to chemoresistance of BCSC (Figure 2).

4. lncRNAs and Drug Resistance in Prostate Cancer

PCa is the most frequent malignant tumor in males and the second most common cause for
cancer-related death, accounting for 10% of all cancer deaths. In 2019, roughly 174,650 patients were
confronted with a PCa diagnosis in the USA [138]. Depending on clinico-pathological risk factors,
standard therapy options for curative non-metastatic stages include watchful waiting for low-risk PCa
or radical prostatectomy and radiotherapy for PCa with high-risk features. Approximately 4% of PCa
cases are diagnosed with primary metastatic disease and several patients experience distant recurrence
in treatments with curative intention [139]. Standard systemic therapy in palliative settings are based on
androgen deprivation therapy (ADT) [140]. Yet, a significant proportion of patients eventually progress
on ADT and develop castration resistant PCa (CRPC). This is due to androgen-independent signaling
of the androgen receptor (AR) and consecutive androgen-independent downstream signaling [141].
Treatment options upon progression into CRPC include novel antiandrogens such as abiraterone [142] or
enzalutamide [3] and chemotherapy regimens with docetaxel [143] and cabazitaxel [144]. Non-coding
RNAs were reported to participate in PCa carcinogenesis [14,145,146]. Their potential involvement in
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the development of resistance to chemotherapy and ADT may pave the way for future therapeutic
targets to overcome drug resistance in PCa.

4.1. lncRNAs Promoting Drug Resistance in PCa

4.1.1. UCA1

UCA1 plays a role in drug resistance across several cancer entities [147]. In PCa, UCA1 acts as
a ceRNA and upregulation enhances tumor cell proliferation and progression [148,149]. Moreover,
UCA1 may influence chemoresistance in PCa by sponging miR-204 (Figure 3B) [34]. Wang et al. [34]
demonstrated the regulation of chemosensitivity via a UCA1/miR-204/Sirt1 pathway. Increased
expression of UCA1 leads to the downregulation of miR-204 levels, resulting in elevated expression
of Sirt1, which represents a target of miR-204 [34]. Sirt1 was previously demonstrated to enhance
chemoresistance in PCa, corroborating this result [150]. Interestingly, elevated levels of UCA1 and
Sirt1 and accordingly reduced levels of miR-204 were found in drug resistant PCa cancer cell lines,
as compared to wildtype cell lines. Down- or upregulation of UCA1 or miR-204, respectively, improved
docetaxel sensitivity and negatively influenced the expression of P-glycoprotein, a membrane pump
that plays a major role in chemoresistance [34,151].
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Figure 3. Examples of long non-coding RNAs (lncRNAs) and mechanisms of drug resistance in prostate
cancer (PCa). (A) lncRNA low expression in bladder cancer stem cells (LBCS) recruits heterogeneous
nuclear ribonucleoprotein K (hnRNPK) to the androgen receptor (AR) mRNA thereby preventing
its translation. (B) lncRNAs sponge microRNAs and prevent them from binding to their targets.
This leads to increased expression of the target proteins and induction of chemoresistance. (C) lncRNA
cancer susceptibility candidate 2 (CASC2) acts as a competing endogenous RNA and sponges miR-183.
This leads to increased expression of sprouty RTK signaling antagonist 2 (SPRY2) and restores resistance
to chemotherapy. (D) lncRNA LINC00673 recruits DNMT1, DNMT22, and DNMT33 to the Krüppel-like
factor 4 (KLF4) promoter and inhibits its transcription through increased methylation. This leads to
increased chemoresistance. (E) lncRNA HOX transcript antisense RNA (HOTAIR) is increased under
androgen deprivation and directly binds to the AR. This prevents AR ubiquitination and degradation
by E3-ubiquitin-protein-ligase MDM2 and leads to AR signaling despite androgen deprivation
therapy in castration resistant PCa. (F) lncRNA HOXD antisense RNA 1 (HOXD-AS1) recruits
WD repeat-containing protein 5 (WDR5) to the promoter of chemo- and castration resistance-associated
genes and mediates histone H3 lysine 4 tri-methylation (H3K4me3), thereby regulating the expression
of target genes. (created with Biorender.com).
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4.1.2. MALAT1

lncRNA MALAT1 facilitates resistance to docetaxel in PCa through a MALAT1/miR-145-5p/

AKAP12 axis, as proposed by Xue et al. [36], who demonstrated MALAT1 and A-kinase anchoring
protein 12 (AKAP12) competing for miR-145-5p. Consequently, overexpression of MALAT1 leads to
increased docetaxel resistance in DU145 and PC3 PCa cell lines, both in in vitro and in vivo models.
MALAT1 levels were also demonstrated to be significantly increased in docetaxel-resistant cells
as compared to chemosensitive cells [36]. This corroborates previous results of altered MALAT1
expression in cancer [152,153]. Furthermore, MALAT1 was found to be involved in PCa invasion,
proliferation and progression [154–156]. However, MALAT1 may also play a part in CRPC and in
the pathogenesis of enzalutamide resistance [37], Enzalutamide is a second-generation AR antagonist
that significantly improves outcomes after failure of primary ADT [3,157]. Wang et al. [37] found
that MALAT1 mediated enzalutamide resistance, as it is a regulator of AR-v7 (also called AR3).
AR-v7 is the most abundant splicing variant of AR and strongly associated to enzalutamide resistance
in CRPC [158]. Mechanistically, overexpressed MALAT1 may influence enzalutamide resistance by
forming a complex with the pre-mRNA splicing factor SF2 and thereby promoting its activity and
positively regulating AR-v7 splicing. The suppression of MALAT1 as a potential therapeutic approach
to overcome resistance to enzalutamide was shown in vitro and in vivo, respectively [37]. Interestingly,
MALAT1 expression levels were higher in circulating tumor cells (CTC) of CRPC patients and analysis
of the TCGA dataset revealed adverse prognosis of PCa patients with MALAT1 overexpression [37].

4.1.3. LINC00673

lncRNA LINC00673, which was found to be overexpressed in PCa, may affect drug resistance
by recruiting DNA-methyltransferases (DNMT1, DNMT3a, and DNMT3b) to the KLF4 promoter.
This results in enhanced methylation and epigenetic regulation of KLF4 expression (Figure 3D) [38].
KFL4 is involved in the regulation of many cellular functions such as cell growth, proliferation and
differentiation, and may act as both a tumor suppressor and oncogene in a cellular context-dependent
manner. In cancer, KLF4 function is frequently lost due to hypermethylation of CpG islands in the
promotor region [159]. Suppression of LINC00673 led to improved chemosensitivity through increased
KLF4 activity in both in vitro and in vivo experimental models and additionally reduced proliferation
in PCa cell lines [38]. This is in line with results in gastric cancer, where epigenetic suppression of KLF4
through LINC00673 was associated with poor OS (HR = 2.989, 95%CI 1.126–5.178, p = 0.001) [160].

4.1.4. LINC00518

Increased levels of LINC00518 were found in both PCa cell lines and in PCa tumor tissues [39].
However, even higher expression levels were reported in chemoresistant PCa cell lines and PCa
patients who were resistant to paclitaxel treatment and LINC00518 was related to poor outcome in a
study by He et al. [39], that enrolled 45 patients. Missing uni- and multivariate analyses should be
considered as a limitation. The authors proposed LINC00518 to enhance chemoresistance through a
LINC00518/miR-216b-5p/GATA6 pathway. The sponging of mir-216-5p with LINC00518 prevents it
from binding to its target, the transcription factor GATA6 [39]. GATA6 is involved in the pathogenesis
and progression of several cancer entities [161]. Interestingly, miR-216b-5p additionally appears to play
a role in drug resistance of other malignancies, such as melanoma and NSCLC, however, other target
proteins were allocated to this effect [100,162]. Nonetheless, this supports the results by He et al. [39].

4.1.5. CCAT1

The colon cancer-associated transcript 1 (CCAT1) is an oncogenic lncRNA which has been widely
reported to participate in cancer development and its utility as a biomarker in colorectal cancer has
been demonstrated [163,164]. Accordingly, CCAT1 was demonstrated to be upregulated in PCa and
was shown to enhance PCa proliferation, migration and invasion [40,165,166]. Only recently has
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the regulation of CCAT1 in metastatic CRPC via Vir-like m6A methyltransferase-associated protein
(VIRMA)-dependent RNA-methylation become better understood [167]. In addition, Li et al. [40]
identified CCAT1 as a potential novel target to influence drug resistance in PCa. Mechanistically,
CCAT1 sequesters miR-24-3p and prevents it from targeting its downstream target fascin actin-bundling
protein 1 (FSCN1), leading to increased FSCN1 expression levels and enhanced resistance to paclitaxel.
Previous reports support the role of FSCN1 in chemoresistance [168,169].

4.1.6. DANCR

The lncRNA differentiation antagonizing non-protein coding RNA (DANCR) affects chemoresistance
of PCa cells by acting as a ceRNA, in this case for miR-34a-5p. miR-34a-5p was identified to directly
bind to the 3′UTR of JAG1 (Jagged 1) mRNA leading to a reduction in JAGI expression levels [41].
Both, DANCR and JAG1 were found to be overexpressed in both PCa tissues of docetaxel-resistant
patients and the docetaxel-resistant PCa cell lines DU-145 and PC-3. Silencing of DANCR could
restore sensitivity to docetaxel treatment in vitro through the proposed DANCR/miR-34-5p/JAG1 axis,
resulting in lower expression of P-glycoprotein and MRP1 and LRP1 proteins, which are associated
with drug resistance in cancer [41]. JAG1 is part of the Notch signaling pathway and has been
associated with disease progression and poor outcome in various cancer entities [170]. Interestingly,
both JAG1 and miR-34-5p have already been demonstrated to influence drug resistance in other cancer
entities [171,172], supporting the results of Ma et al. [41].

4.1.7. HOXD-AS1/HAGLR

The lncRNA HOXD antisense RNA 1 (HOXD-AS1), also called HAGLR (HOXD antisense
growth-associated long non-coding RNA) is strongly related to cancer [173]. It is overexpressed in
CRPC cell lines and its expression significantly associates with adverse prognostic clinico-pathological
biomarkers such as Gleason-score, T-stage and nodal invasion [42]. In fact, increased HOXD-AS1 levels
were significantly associated with poor PFS (HR 2.827, 95%CI 1.297–6.161, p = 0.009) in an analysis that
included 309 PCa patients from the TCGA database [42]. Moreover, besides promoting cell proliferation,
HOXD-AS1 enhances castration resistance to bicalutamide therapy as well as chemoresistance to paclitaxel
in vitro and in vivo [42]. Mechanistically, HOXD-AS1 recruits WD repeat-containing protein 5 (WDR5),
thereby mediating histone H3 lysine 4 tri-methylation (H3K4me3) (Figure 3F) [42,174]. This results
in activated transcription of castration and chemoresistance, as well as proliferation-associated genes
including PKL1, AURKA, FXM1, CDC25C, UVE2C, CCNA2, and CCNB1 [42]. Gu et al. [42] conclude
that HOXD-AS1 may represent a future therapeutic target to reinstall castration- and chemosensitivity.

4.1.8. FEZF1-AS1

lncRNA FEZ family zinc finger 1—antisense RNA 1 (FEZF1-AS1) is an oncogenic lncRNA that is
upregulated among various human malignancies. Its relation to tumor proliferation, migration and
invasion, as well as its involvement in EMT through influencing tumorigenesis-associated pathways
such as STATA3 and Wnt/β-catenin, has been demonstrated [175]. In PCa, FEZF1-AS1 regulates
resistance to paclitaxel via the FEZF1-AS1/miR-25-3p/ITGB8 pathway [43]. By sponging miR-25-3p,
which directly targets ITGB8, FEZF1-AS1 prevents degradation of ITGB8 mRNA, resulting in preserved
influence on chemoresistance as well as cell viability, EMT, and cell autophagy [43]. Wang et al. [43]
demonstrated that silencing of FEZF1-AS1 could restore sensitivity to paclitaxel both in vitro and
in vivo. ITGB8 has been shown to alter treatment resistance in several cancer entities, including ovarian
and hepatic cancers and glioblastoma [176–178].

4.1.9. HOTTIP

The lncRNA HOXA distal transcript antisense RNA (HOTTIP) is strongly connected to cancer and
has previously been reported to enhance tumor progression and chemoresistance [179]. Jiang et al. [44]
were the first to investigate HOTTIP’s involvement in PCa chemoresistance. As reported, suppression
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of HOTTIP resulted in increased cisplatin sensitivity in the PCa cell lines DU-145 and PC-3 by inhibiting
Wnt/β-catenin signaling [44]. This corroborates a number of previous studies that found HOTTIP to
promote chemoresistance in numerous cancer entities [180–182], including osteosarcoma in which
the regulation of Wnt/β-catenin by HOTTIP was also described [182]. However, Jiang et al. [44] did
not investigate if other potential effectors such as miRNAs or proteins are involved in the connection
between HOTTIP and Wnt/β-catenin regulation and moreover in vivo models are missing.

4.1.10. PCGEM1

PCGEM1 (prostate cancer gene expression marker 1) may regulate AR splicing and expression
of AR3 (AR-v7) [45], and therefore participate in the development of enzalutamide resistance [158].
Mechanistically, in a recent study by Zhang et al. [45] PCGEM1 expression is promoted by androgen
deprivation, leading to intracellular transfer in nuclear speckles. Furthermore, PCGEM1 regulates
the activity of the splicing factors nhRNP A1 and U2AF65, which are competing for AR3 splicing.
This results in suppression (mediated through nhRNP A1) or enhancement (mediated through
U2AF65) of AR3 expression by alternative splicing. [45]. Nevertheless, available data is conflicting.
Parolina et al. [183] report opposite results as PCGEM1 is downregulated under androgen deprivation
and no nuclear speckles were formed. In conclusion, the role of PCGEM1 in PCa and AR-regulation is
not yet conclusively defined, considering several studies showing inconsistent results [45,183–185].

4.1.11. HOTAIR

The lncRNA HOX transcript antisense RNA (HOTAIR) is upregulated in CRPC and may impact
the development of enzalutamide resistance [46]. HOTAIR is suppressed by androgen through
the AR protein and therefore upregulated under androgen deprivation and in CRPC. Moreover,
increased HOTAIR expression was associated with shorter survival in a Kaplan–Meier analysis of two
publicly available databases (p = 0.04, no uni- and multivariate models conducted) [46]. However,
under androgen deprivation, HOTAIR expression increases and directly interacts with the AR protein
at its N-terminal end and subsequently prevents ubiquitination and consequent degradation by the
E3-ubiquitin-protein-ligase MDM2. This preserves AR-signaling and transcriptional activity, thereby
leading to castration resistance (Figure 3E). In a cell culture model of enzalutamide resistant cells,
HOTAIR expression steadily increased over the time as cells were exposed to enzalutamide treatment,
indicating its indispensable role in developing resistance to enzalutamide [46].

4.1.12. LBCS

The lncRNA LBCS was only recently described to exert regulatory function of AR-signaling
in CRPC [47]. Specifically, LBCS expression is decreased in CRPC cell lines models and decreased
expression was significantly and independently associated with shorter biochemical recurrence-free
survival (BRFS) (HR = 0.447, 95%CI = 0.235–0.967, p = 0.040). It was demonstrated that induced
overexpression of LBCS could reinstall sensitivity to androgen deprivation by recruiting hnRNPK
binding directly to the AR mRNA and thereby limiting AR translation and activation [47] (Figure 3A).
The mechanism of hnRNPK involvement in AR regulation has been reported previously [186].

4.2. lncRNAs Enhancing Drug Sensitivity in PCa

CASC2

Another lncRNA connected to docetaxel resistance in PCa cell lines is cancer susceptibility
candidate 2 (CASC2) which has been associated with chemoresistance across various cancer entities,
including gastric cancer [187], glioma [188], breast cancer [189], cervical cancer [190] and NSCLC [191].
In PCa, higher expression levels of CASC2 prevented miR-183 from binding to the 3′UTR of sprouty RTK
signaling antagonist 2 (SPRY2) by acting as a ceRNA, thus preserving SPRY2 expression and inhibiting
the downstream ERK signaling pathway, which is linked to chemoresistance [35,192] (Figure 3C).
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Activation of the ERK pathway in chemoresistant PCa cell lines was confirmed by a recent study
investigating chemoresistance in PCa [40]. As a result, CASC2 promoted sensitivity to docetaxel in
PCa cells [35].

5. lncRNAs and Drug Resistance in Testicular Cancer

TC accounts for 1% of cancers in males, which is approximately 55,000 patients per year
worldwide [1,193]. Germ cell tumors are responsible for 95% of TC cases and can be subdivided into
seminomas and non-seminomas [194].

Treatment strategies for localized TC include surgery (hemicastration or castration) as well as
adjuvant chemotherapy depending on the presence of risk factors such as tumor extension and tumor
marker decline (AFP, βhCG, LDH) after surgery, which classifies patients in good, intermediate and
poor risk groups [195]. As for systemic therapy options, standard-of-care in the adjuvant as well as
first-line metastatic setting is cisplatin-based chemotherapy [196].

In TC, noncoding RNAs have already been investigated in regards to their involvement in
pathogenesis and their potential utility as clinical biomarkers [197,198]. The fact that patients with TC
show great response to cisplatin-based chemotherapy may be a reason why data on lncRNAs in the
development of chemoresistance is extremely limited. In fact, to the best of our knowledge, there is
only one study that investigated this subject [48].

H19

H19 is a well-investigated oncogenic lncRNA across various cancer types [199]. Regarding its
involvement in chemoresistance in seminoma, Wei et al. [48] found H19 expression to be increased
in the tissues of seminoma patients who were resistant to cisplatin-based chemotherapy, as well as
in a cisplatin-resistant seminoma cell line. By acting as a ceRNA and thereby sponging miR-106-5p,
which targets testis development related 1 (TDRG1), overexpression of H19 results in enhanced
TDRG1 expression and reduced sensitivity to cisplatin treatment [48]. The authors proposed TDRG1,
whose expression is exclusive in testis, to influence chemoresistance based on a previous work,
which reported TDRG1 affecting resistance to cisplatin treatment in seminoma by regulating the
PI3K/Akt/mTOR pathway [48,200,201]. Wei et al. [48] validated the promotion of chemoresistance by
H19 in additional in vivo experiments, however, they only used one single cell line throughout their
study and tissue samples of only 10 patients were used. Therefore, the results must be interpreted
with caution and should only be considered hypothesis-generating until confirmed by further research.
H19 was found to impact cisplatin resistance in other cancer entities [202–205], which is in line with
and may support the results by Wei et al. [48].

6. Conclusions

In this review, we gave a comprehensive overview of lncRNAs and their involvement in drug
resistance in cancers of the genitourinary system. Understanding the relation between lncRNAs and
the biomarkers use and the development of drug and therapy resistance is crucial as lncRNAs may
represent powerful therapeutic targets to overcome drug resistance and improve the outcome of
cancer patients [206–209].
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