
 International Journal of 

Molecular Sciences

Review

RNA-Binding Proteins as Important Regulators of
Long Non-Coding RNAs in Cancer

Katharina Jonas 1,2 , George A. Calin 3 and Martin Pichler 1,2,3,*
1 Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG),

8036 Graz, Austria; katharina.jonas@medunigraz.at
2 Research Unit for Non-Coding RNAs and Genome Editing, Medical University of Graz (MUG),

8036 Graz, Austria
3 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center,

Houston, TX 77030, USA; gcalin@mdanderson.org
* Correspondence: martin.pichler@medunigraz.at; Tel.: +43-316385-81320

Received: 6 April 2020; Accepted: 21 April 2020; Published: 23 April 2020
����������
�������

Abstract: The majority of the genome is transcribed into pieces of non-(protein) coding RNA,
among which long non-coding RNAs (lncRNAs) constitute a large group of particularly versatile
molecules that govern basic cellular processes including transcription, splicing, RNA stability,
and translation. The frequent deregulation of numerous lncRNAs in cancer is known to contribute
to virtually all hallmarks of cancer. An important regulatory mechanism of lncRNAs is the
post-transcriptional regulation mediated by RNA-binding proteins (RBPs). So far, however, only a
small number of known cancer-associated lncRNAs have been found to be regulated by the interaction
with RBPs like human antigen R (HuR), ARE/poly(U)-binding/degradation factor 1 (AUF1), insulin-like
growth factor 2 mRNA-binding protein 1 (IGF2BP1), and tristetraprolin (TTP). These RBPs regulate,
by various means, two aspects in particular, namely the stability and the localization of lncRNAs.
Importantly, these RBPs themselves are commonly deregulated in cancer and might thus play a major
role in the deregulation of cancer-related lncRNAs. There are, however, still many open questions,
for example regarding the context specificity of these regulatory mechanisms that, in part, is based on
the synergistic or competitive interaction between different RBPs. There is also a lack of knowledge
on how RBPs facilitate the transport of lncRNAs between different cellular compartments.

Keywords: long non-coding RNAs (lncRNAs); RNA-binding proteins (RBPs); cancer;
post-transcriptional regulation; RNA stability

1. Introduction

The concept that RNA merely serves as an intermediate, conveying the genetic information encoded
in the form of DNA to be translated into proteins, has long been overthrown [1,2]. In fact, the vast
majority of the genome does not code for proteins but is transcribed into various types of so-called
non-coding RNAs (ncRNAs), which by themselves fulfill a multitude of pivotal regulatory functions [2–5].
Among these ncRNAs, one large group with particularly versatile functions are the long non-coding RNAs
(lncRNAs), a class of ncRNAs that are defined as being longer than 200 nucleotides [6]. These lncRNAs
can originate from different genomic locations. Most are interspersed between protein-coding genes
(long intergenic non-coding RNAs, lincRNAs), while others are transcribed from the sense or antisense
strands of introns and also exons of coding genes, and yet another type of lncRNAs originates from
enhancer regions (eRNA) [7–9]. Rather recently it has been discovered that the class of lncRNAs is even
more diverse, as it not only includes linear transcripts but also circular RNAs (circRNAs), which are a
product of an mRNA splicing process referred to as backsplicing [10].
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Compared to protein-coding genes, lncRNAs are poorly conserved between different species and
their expression levels are rather low [7,8]. Initially, this led to the belief that they were nothing but
transcriptional noise [6–8]. Soon, however, it was discovered that lncRNAs do exhibit considerable
functionality, for example as regulators of transcription [6–8]. Mechanisms of transcriptional regulation
by lncRNAs are multifarious and can occur either in cis or in trans, meaning either closer to or
further away from the lncRNA’s site of transcription, respectively [6,7]. A frequent mechanism of
transcriptional regulation via lncRNAs is the recruitment, or prevention of such, of components of
chromatin or histone-modifying complexes, like polycomb repressive complexes or histone deacetylase
complexes [11–13]. LncRNAs can also direct transcription factors or cofactors to promoter regions
of genes and facilitate the formation of chromatin loops between distant enhancers and promoters,
as observed for some eRNAs [9,14–17]. Another way that they can impact transcription is by interfering
with the RNA polymerase II transcription machinery, thereby blocking transcriptional initiation or
elongation [18]. LncRNAs are important regulators not only at the level of transcription but also at
the post-transcriptional level [6,7]. They regulate pre-mRNA splicing by interacting with splicing
factors or with the mRNA itself [19–22]. A well-studied example for this is metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1), an lncRNA that interacts with serine/arginine (SR) splicing
factors, thereby influencing their subnuclear distribution, phosphorylation status, and consequently
their activity [20]. Apart from splicing, lncRNAs also regulate mRNA stability and translation by
interacting with translation factors and proteins involved in mRNA decay, or by acting as so-called
competitive endogenous RNAs (ceRNAs) [23–27]. These ceRNAs sponge up microRNAs (miRNAs)
and thus prevent them from binding to and inducing degradation or translational repression of their
mRNA targets [25–27].

According to the NONCODE database (version v5.0), 96,308 lncRNA genes have been identified in
the human genome [28]. Steadily increasing focus is now being put on the functional annotation of these
lncRNAs, especially regarding their role in disease [28]. Their implications in cancer are of particular
interest, as many lncRNAs have been found to be deregulated in cancer [29]. According to lnc2Cancer,
a database for human lncRNAs with experimentally supported cancer associations, 1614 different lncRNAs
were found to be implicated in a total number of 165 cancer subtypes [30], influencing different aspects
of cancer biology like proliferation [31–35], apoptosis [34–36], invasion [32,35–37], metastasis [38–41],
angiogenesis [41–43], drug resistance [35,44], and genome stability [45]. According to lnc2Cancer,
the most studied cancer-associated lncRNAs are MALAT1 [46], H19 [47], HOX antisense intergenic
RNA (HOTAIR) [48], maternally expressed 3 (MEG3) [49], taurine upregulated 1 (TUG1) [50], antisense
non-coding RNA in the INK4 locus (ANRIL) [51] and nuclear-enriched abundant transcript 1 (NEAT1) [52].

While lncRNAs are distinguished from protein-coding mRNAs in several aspects, they also share
certain similarities [6,7]. Many of them are, for example, spliced, 3′ polyadenylated, and 5′ capped,
just like mRNAs [6,7]. This post-transcriptional regulation is a crucial aspect in the life of both coding
and non-coding RNAs and is primarily facilitated by RNA-binding proteins (RBPs), as they dynamically
coordinate the maturation, transport, and stability of all types of RNA [53,54]. Thus, changes in the
expression level or functionality of RBPs can have profound and far-reaching consequences [53]. In fact,
just like lncRNAs, there are numerous RBPs that are altered in cancer [53]. To fully elucidate the role
and implications of lncRNAs in cancer it has to be understood how they themselves are regulated.
Therefore, this review will put a focus on the regulation of lncRNAs by RBPs in the context of cancer.
The RBPs that are discussed in this review (for a summary see Table 1) were thus chosen because they
are, just like the lncRNAs they regulate, known to play a role in cancer. Even though these examples
do not cover all regulatory interactions between RBPs and lncRNAs they include well-known RBPs
and extensively studied cancer-associated lncRNAs and give a comprehensive overview of the two
main aspects of post-transcriptional regulation of lncRNAs, namely lncRNA stability on the one hand
and lncRNA transport and localization on the other hand.
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Table 1. RNA-binding proteins (RBPs) and how they regulate known cancer-associated long non-coding RNAs (lncRNAs). Ago2: argonaute-2; CCR4-NOT: carbon
catabolite repressor 4–negative on TATA; CNOT1: CCR4–NOT transcription complex subunit 1; CRM1: chromosomal maintenance 1; HOTAIR: HOX antisense
intergenic RNA; HULC: highly up-regulated in liver cancer; lncRNA-HGBC: lncRNA highly expressed in gallbladder carcinoma; MALAT1: metastasis-associated lung
adenocarcinoma transcript 1; NEAT1: nuclear-enriched abundant transcript 1; NEXT: nuclear exosome targeting; RMRP: RNA component of mitochondrial RNA
processing endoribonuclease; TUG1: taurine upregulated 1.

RNA-Binding Protein Regulated lncRNA Regulatory Mechanism Reference

Human antigen R (HuR)

NEAT1 Stabilization by shielding from RNA decay-promoting proteins [55]

lncRNA-HGBC Stabilization by shielding from RNA decay-promoting proteins [56]

lncRNA-p21 Promotion of degradation by recruitment of let7–Ago2 [57]

HOTAIR Promotion of degradation by recruitment of let7–Ago2 [58]

RMRP Facilitation of nuclear export via interaction with CRM1 [59]

Serine/arginine-rich splicing factor 1 (SRSF1) NEAT1 Stabilization by an unknown mechanism [60]

Arginine/uridine-rich RNA element
(ARE)/poly(U)-binding/degradation factor 1 (AUF1) NEAT1 Destabilization, probably by recruitment of a deadenylase complex [61]

Polyadenylate-binding protein 1 (PABPN1) NEAT1 Promotion of degradation by recruitment of NEXT–exosome [62,63]

TUG1 Promotion of degradation by recruitment of NEXT–exosome [62,63]

Insulin-like growth factor 2 mRNA-binding protein 1
(IGF2BP1)

HULC Promotion of degradation by recruitment of the deadenylase
complex CCR4–NOT via CNOT1 [64]

H19 Targeting of lamellipodia and perinuclear regions [65]

Tristetraprolin (TTP) HOTAIR Promotion of degradation, most likely by recruitment of the
deadenylase complex CCR4–NOT [66,67]

G-rich RNA sequence-binding factor 1 (GRSF1) RMRP Retention in the mitochondrial matrix by an unknown mechanism [68]

Heterogeneous nuclear ribonucleoprotein K
(hnRNPK) MALAT1 Retention in the nucleus by an unknown mechanism [69,70]
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2. RBPs Regulating lncRNA Stability

2.1. Human Antigen R (HuR)

The human antigen R (HuR), the protein product of the ELAV1 gene, is a ubiquitously
expressed RBP that contains three RNA recognition motifs (RRMs) via which it preferentially binds to
adenylate/uridylate-rich RNA elements (AREs) [71–73]. AREs are signals for rapid RNA degradation,
and by blocking these recognition sites HuR can stabilize its RNA interaction partners [71–73]. HuR is
frequently upregulated in cancer cells and is known to be involved in many hallmarks of cancer, such as
invasion, angiogenesis, and inflammation, by post-transcriptionally regulating various cancer-related
mRNAs [71,72,74–76]. HuR not only binds to protein-coding mRNA but also interacts with lncRNAs,
thereby influencing their stability both in a positive and negative manner [55–58,77].

An example of an lncRNA that is well-known to be associated with cancer and whose stability has
been found to be enhanced by HuR in ovarian cancer is NEAT1 [55]. NEAT1 exists in two isoforms,
NEAT1_1 and NEAT1_2, with lengths of 3.7 kb and 22.7 kb, respectively [25,78]. The longer of the
two isoforms, NEAT1_2, is a crucial architectural component of nuclear paraspeckles, which are large
ribonucleoprotein (RNP) complexes [25,78]. NEAT1 is, just like HuR, frequently upregulated in many
types of cancer, where it contributes to the progression of the disease by acting as a ceRNA sponging
up different miRNAs [25,79–81]. A study by Chai et al. found NEAT1 also to be upregulated in
human ovarian cancer tissue and ovarian cancer cell lines compared to non-cancerous tissue and cell
lines [55]. Additionally, they observed similarly elevated mRNA levels of HuR and, based on RNA
immunoprecipitation (RIP) results, the authors postulated a direct interaction between NEAT1 and
HuR [55]. RIP assays present a simple and widely used method to study RNA–protein interactions
(for a comprehensive review on this and other methods to study RNA–protein interactions see [82])
and are based on the use of antibodies to precipitate and isolate a protein of interest together with its
associated RNAs [82]. Furthermore, they showed that overexpression of HuR in an ovarian carcinoma
cell line (OVCAR-3) resulted in significantly increased levels of NEAT1, whereas HuR knockdown led
to a reduction of NEAT1 [55]. This suggests that the increased levels of NEAT1 found in ovarian cancer
could, at least partly, be caused by the elevated levels of the RBP HuR and its stability-promoting
effect [55].

A similar scenario was discovered for HuR and lncRNA-HGBC (lncRNA highly expressed
in gallbladder carcinoma) by Hu and colleagues [56]. LncRNA-HGBC was first identified in a
microarray-based analysis to be highly upregulated in gallbladder cancer tissue from nine patients
and was then shown to be linked to gallbladder cancer proliferation and invasion in vitro as well
as in vivo [56,83]. Using an RNA pulldown assay, where the in vitro transcribed biotin-labeled
lncRNA-HGBC was incubated with lysate from a gallbladder cancer cell line and pulled down with
streptavidin beads followed by mass spectrometry analysis of the associated proteins, HuR was
identified as an interaction partner of lncRNA-HGBC [56]. This interaction was further verified
with an RIP assay [56]. Using different fragments of the lncRNA, the authors were able to pinpoint
the binding site to a region containing an ARE [56]. The knockdown of HuR in gallbladder cancer
cells led to increased decay of lncRNA-HGBC, suggesting that by shielding the identified ARE of
lncRNA-HGBC, HuR stabilizes the cancer-associated lncRNA and thereby potentially contributes to
gallbladder carcinogenesis [56].

Contrary to the stabilizing function of HuR that is commonly observed there are also reports that
HuR can promote the degradation of certain RNA interaction partners like the ~3-kb-long p53-regulated
lncRNA-p21, which is generally downregulated in cancer [29,57]. In an RIP assay carried out with
lysate from HeLa cells, Yoon et al. found lncRNA-p21 to be enriched in the HuR immunoprecipitate [57].
Upon further investigating the interaction between lncRNA-p21 and HuR, the authors found that, in
contrast to what they expected, small interfering RNA (siRNA)-mediated knockdown of HuR in HeLa
cells increased the steady-state level and the half-life of lncRNA-p21 [57]. The mechanism behind this
effect was, as the study concluded, that HuR promoted the recruitment of the miRNA let7 and the
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argonaute-2 (Ago2) protein, a component of the RNA-induced silencing complex (RISC), resulting in
the degradation of lncRNA-p21 [57,84]. In line with this, the presence of an antagomir of let7 led to an
increase of the levels of lncRNA-p21 despite HuR overexpression, highlighting that the destabilizing
effect of HuR on lncRNA-p21 is mediated via let7–Ago2 [57]. The same mechanism was subsequently
uncovered for HOTAIR [58]. HOTAIR is transcribed from the antisense strand of the HOXC gene
cluster and is one of the most studied oncogenic lncRNAs [13,30]. One of many mechanisms of action of
HOTAIR is genome-wide transcriptional regulation, for example by recruitment of polycomb repressive
complex 2 (PRC2) proteins [13]. By performing an in vitro biotinylated pulldown assay combined
with RNA digestion, followed by quantitative reverse transcription PCR (RT-qPCR) analysis of the
fragments of HOTAIR that were, due to being bound by HuR, protected from digestion, the binding
sites of HuR on HOTAIR were mapped [58]. The results showed that HuR was most frequently bound
between positions 1028 and 1272 of the 2158-nt-long lncRNA [13,58]. This sequence is, in general,
AU-rich (https://www.ncbi.nlm.nih.gov/gene/; gene ID 100124700), and thus in accordance with the
binding specificity of HuR. Why is it then that HuR, in this case, does not contribute to increased
stability by its usual mechanism of interfering with the binding of RNA decay-promoting proteins to
these AU-rich recognition sites? One explanation could be that, in the case of lncRNA-p21 and HOTAIR,
HuR binds to AU-rich sequences that do not conform with the classical ARE motif, which minimally
consists of UUAUUUAUU, and which are thus not serving as target sites for decay-promoting RBPs
like ARE/poly(U)-binding/degradation factor 1 (AUF1) and tristetraprolin (TTP) [85]. It is also possible
that the classical mechanism of HuR to block other RBPs is of no further consequence in cases where the
RNA interaction partner additionally contains a binding site for let7, whose recruitment is favored by
HuR. HuR–let7–Ago2-mediated RNA degradation via RISC very likely outweighs any RNA stabilizing
effects exerted by HuR.

The RBP HuR is an important post-transcriptional regulator that can modulate RNA stability both
positively and negatively by either inhibiting or promoting the interaction with other RBPs or miRNAs.
What also makes HuR particularly interesting is the fact that its binding sites are very frequent across
the genome, as has for example been shown by a transcriptome-wide analysis using photoactivatable
ribonucleoside enhanced crosslinking and immunoprecipitation (PAR-CLIP), a method that, first of
all, is distinguished from RIP as it includes a UV crosslinking step, thereby reducing the detection of
non-specific RNA–protein interactions and that, secondly, incorporates nucleotide analogs which enable
a more precise determination of the interaction site between RNA and RBP [82,86]. This PAR-CLIP
study identified around 26,000 HuR binding sites, many of which were intronic [86]. Another study by
Bakheet et al. found that, in fact, 25% of all human introns contain AREs and that HuR is the RBP
that most frequently recognizes these intronic AREs [85]. This high number of HuR binding sites,
particularly in intronic regions, suggests that there might be far more lncRNAs than identified so far for
which stability is regulated by HuR. Given the frequent overexpression of HuR in many malignancies,
therein might also lie a considerable contribution to the deregulation of lncRNAs in cancer.

2.2. Serine/Arginine-Rich Splicing Factor 1 (SRSF1)

Serine/arginine-rich splicing factor 1 (SRSF1) is another RBP that is commonly overexpressed in
cancer and that exerts oncogenic effects, for example in glioma, by regulating splicing, RNA stability,
and nuclear export [60,87]. SRSF1 contains two RRMs at its C-terminal end, a canonical RRM
followed by a pseudo-RRM, with the latter playing a more prominent part in determining substrate
specificity [88]. The pseudo-RRM binds to RNA in a sequence-specific manner, namely to a GGA motif,
that unlike canonical RRMs does not involve the β-sheet surface of the protein but a single α-helix [89].
CLIP analysis combined with high-throughput sequencing has identified a large number of SRFS1
binding sites across different classes of RNA transcripts, including ncRNAs [90].

A study by Zhou et al. aimed to investigate the mechanistic involvement of SRSF1 in
gliomagenesis [60]. By RNA-sequencing (RNA-seq) they discovered that the knockdown of SRSF1 in
two glioma cell lines resulted not only in differential expression of mRNAs but also of ncRNAs [60].

https://www.ncbi.nlm.nih.gov/gene/


Int. J. Mol. Sci. 2020, 21, 2969 6 of 22

From a list of 14 lncRNAs that were deregulated in both cell lines, one candidate in particular caught
their attention, namely NEAT1, which was downregulated by the SRSF1 knockdown [60]. RIP assays
showed that SRSF1 is a direct interaction partner of both NEAT1 isoforms and SRSF1 knockdown was
found to result in faster degradation of NEAT1, highlighting a stabilizing role of SRSF1 for NEAT1 [60].
Therefore, the oncogenic lncRNA NEAT1 seems to be independently stabilized by two different
RBPs, by HuR and SRSF1, which are both frequently overexpressed in cancer [55,60]. Unlike HuR,
the mechanism by which SRSF1 promotes the stability of NEAT1 is not known, but likely follows a
similar scheme.

2.3. ARE/Poly(U)-Binding/Degradation Factor 1 (AUF1)

The name AUF1 encompasses four different proteins that originate from the HNRNPD gene
and are generated by alternative splicing [91]. All four AUF1 isoforms form dimers and contain two
tandem RRMs that include RNP sequence motifs [91]. Via these domains AUF1 primarily, but not
exclusively, binds to U-rich RNA sequences of AREs, therefore competing with HuR [61,71–73,85,91].
In addition, it has been found to bind to non-canonical U-rich and GU-rich sites [61,91]. Upon binding,
AUF1 promotes the decay of its RNA target [91]. Cytoplasmic mRNA degradation is primarily initiated
and also rate-limited by deadenylation, meaning by the excision of the poly(A) tail, which is mostly
performed by one of two major deadenylase complexes, carbon catabolite repressor 4–negative on
TATA (CCR4–NOT) and chromatin assembly factor 1–negative on TATA (CAF1–NOT) [91]. There is no
evidence so far that AUF1 is associated with one of these two complexes, but it is generally believed to
facilitate the assembly of other deadenylase complexes [91,92]. The post-transcriptional regulation of
mRNA by AUF1 is more complex however, and AUF1 binding does not only induce RNA degradation
but can also have quite the contrary effect, namely stabilizing mRNA or promoting translation [93,94].
Accordingly, also the implications of AUF1 in cancer are diverse and it has been found to exert both
tumorigenic as well as tumor-suppressive effects [92,95–97].

Previously, two examples were given for RBPs that stabilize NEAT1 [55,60]. AUF1, on the other
hand, was found to destabilize this tumor-promoting lncRNA [61]. From a PAR-CLIP analysis in
HEK293 cells, Yoon et al. identified NEAT1 as a target of AUF1, which was validated by a RIP assay in
HeLa cells and an in vitro binding assay [61]. Subsequently, knockdown of AUF1 was observed to
increase the half-life of NEAT1 and the number of nuclear paraspeckles, which were distributed more
diffusely throughout the nucleus than in control cells, where they clustered into foci [61]. By regulating
the stability and the subnuclear localization of NEAT1, AUF1 was also found to affect the nuclear
export of some NEAT1 target mRNAs [61].

Apart from NEAT1, Yoon et al. also confirmed MALAT1 as an interaction partner of AUF1 [61].
MALAT1, as mentioned in the introduction, is yet another lncRNA that has been studied intensely in
recent years due to its involvement in cancer, for example by regulating alternative splicing [20,30].
AUF1 did not, despite interacting with it, affect the stability of MALAT1 [61]. It is not yet clear why
targeting by AUF1 has a destabilizing effect on NEAT1 but no apparent impact on the stability of
MALAT1. As the post-transcriptional effects exerted by AUF1 are diverse, it is likely that they are
context-specific, meaning that the consequences of AUF1 binding to an RNA target could depend
on the RNA sequence, RNA structure, post-transcriptional modifications of AUF1 itself, or the
competition/interaction with other RBPs [91]. There are, thus, still many open questions regarding
AUF1. Considering the fact that AUF1 binding sites in the genome have been found to be very frequent,
with 86,833 being even more numerous than HuR binding sites, and that an astounding 66.8% of these
are located in introns, AUF1 is most likely regulating far more lncRNAs than identified so far [61].
Answering the open questions regarding the mechanisms behind AUF1 function and uncovering
further lncRNA targets of AUF1 are therefore worthwhile areas for future research.
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2.4. Polyadenylate-Binding Protein 1 (PABPN1)

PABPN1 is a nuclear RBP that binds to the 3′ poly(A) tail of RNA and, in doing so, stimulates
poly(A) synthesis by the poly(A) polymerase [62]. A study lead by Beaulieu et al. focused on
investigating the impact of PABPN1 on overall gene expression by conducting an RNA-seq analysis
of PABPN1-depleted HeLa cells [62]. Interestingly, they observed that the lack of PABPN1 did not
affect the expression level of most mRNAs but had a greater impact on the levels of polyadenylated
lncRNAs, with 60 being upregulated more than 2-fold and 16 being downregulated [62]. As the number
of upregulated lncRNAs was higher, the study then focused on these candidates [62]. Many of the
upregulated lncRNAs were still uncharacterized, but there were also a few more prominent examples,
like NEAT1 and TUG1 [62]. TUG1, which stands for taurine upregulated 1, is a lncRNA that has been
found to be overexpressed in numerous types of cancer, like small cell lung cancer, cervical cancer,
and hepatocellular cancer, and to contribute to various aspects of cancer biology, like proliferation,
invasion, metastasis, apoptosis, differentiation, and drug resistance [35,98–100]. The transcript that
was upregulated the most, and was therefore picked by the authors for further investigations, was the
lncRNA small nucleolar RNA, C/D box 60 host gene (SHG60), the gene of which, as the name implies,
also encodes, in an intron, the small nucleolar RNA, C/D box 60 (SNORD60) [62]. Importantly,
SNORD60 was not upregulated by the PABPN1 knockdown, but only the spliced and polyadenylated
SHG60 transcript, indicating that the regulation by PABPN1 occurred on the post-transcriptional level
rather than on the transcriptional level [62]. Indeed, PABPN1 was found to promote the degradation of
SHG60 in a polyadenylation-dependent manner, in cooperation with the RNA helicase mRNA transport
4 (hMTR4)/superkiller viralicidic activity 2-like 2 (SKIV2L2) [62]. hMTR4/SKIV2L2 is an important
coactivator of the RNA exosome, a nuclear RNA degradation machinery consisting of a catalytically
inactive nine-subunit core that associates with two ribonucleases, ribosomal RNA processing protein 6
and 44 (hRRP6 and hRRP44) [63,101,102]. Apart from coactivators, the exosome also requires the help
of adaptor proteins that guide the entire complex to its RNA targets [63,101,102]. Coactivators and
adaptors of the exosome often appear in large complexes, like the nuclear exosome targeting (NEXT)
complex or the poly(A) tail exosome targeting (PAXT) connection [63,101]. The PAXT connection
has been discovered more recently and contains the zinc finger C3H1-type containing (ZFC3H1)
protein, which functions as a linker between PABPN1 and hMTR4 [63]. ZFC3H1 thereby completes the
pathway that connects the poly(A)-binding PABPN1 to the nuclear exosome [63]. Via their interaction
with different RBPs the NEXT and the PAXT complex guide the exosome towards different types
of RNAs [63]. While NEXT, via the RNA-binding motif protein 7 (RBM7), generally targets shorter
unprocessed RNAs, PAXT targets longer polyadenylated transcripts, like lncRNAs, via the interaction
with PABPN1 [62,63]. The PABPN1–NEXT–exosome pathway thus represents one possibility of how
nuclear polyadenylated lncRNAs, among them also cancer-associated lncRNAs like TUG1 and NEAT1,
are targeted for degradation [62,63].

In the case of NEAT1, its interaction with PABPN1 is, besides its interaction with AUF1, already the
second mechanism that is known to promote its decay. Altogether, NEAT1 is an excellent example of a
cancer-associated lncRNA, which is collectively regulated by multiple RBPs that can either enhance its
stability (HuR and SRSF1) or promote its degradation (AUF1 and PABPN1). The interplay between
all these different RBPs thereby constitutes a very important post-transcriptional mechanism that
fine-tunes the level and thus activity of NEAT1.

2.5. Insulin-Like Growth Factor 2 mRNA-Binding Protein 1 (IGF2BP1)

IGF2BP1, together with IGF2BP2 and IGF2BP3, belongs to a family of RBPs that is expressed in
embryonic tissue and frequently reactivated in different types of cancers but rarely expressed in normal
adult tissue [103,104]. Due to its regulation of stability, localization, and translation of numerous
mRNAs like c-Myc [105,106], beta-catenin [107], and KRAS [108], it plays a role in embryogenesis and
tumor development [103,104]. IGF2BP1 carries two RRMs in its N-terminal region and four hnRNP-K
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homology (KH) domains in the C-terminus, which are primarily responsible for its interaction with
RNA targets in an N6-methyladenosine (m6A)-dependent manner [103,104].

The m6A modification is a reversible and the most abundant RNA modification and stems from
the addition of a methyl group to the N-6 position of adenosine by proteins like methyltransferase-like 3
(METTL3), METTL14, and Wilms’ tumor 1-associating protein (WTAP) [109,110]. These proteins
form a complex that recognizes and interacts with the consensus motif RRACH (R = G/A
and H = A/C/U), a motif that is not only frequently found in mRNA but also in lncRNAs,
particularly in circRNAs [109,110]. There are various RBPs, like IGF2BP and the family of YTH
domain-containing proteins, that, so to say, read m6A modifications, selectively bind to m6A-modified
sites, and subsequently regulate RNA stability, alternative splicing, transport, and translation [109,110].
Hence, the proteins responsible for generating m6A modifications, the ones reading them, like
IGF2BP1, and those removing them, namely fat mass and obesity-associated protein (FTO) and AlkB
homolog 5 (ALKBH5), altogether impact not only mRNAs but also lncRNAs on the post-transcriptional
level [109–111]. As this includes oncogenes and tumor suppressors alike, aberrant levels of the
m6A modification are linked to tumorigenesis and cancer progression, and have thus received quite
some interest in research lately [109–111]. For example, in hepatocellular carcinoma (HCC) the
methyltransferase METTL3 is elevated and contributes to tumor progression by generating higher
levels of m6A modification in the suppressor of cytokine signaling 2 (SOCS2) mRNA which results
in its increased degradation mediated by the YTH N6-methyladenosine RNA-binding protein 2
(YTHDF2) [112]. The knowledge on how proteins generating, reading, or erasing m6A modifications
regulate the function of specific cancer-related lncRNAs is yet still very limited. MALAT1, for example,
has been found to contain an m6A modification site [113]. The methylation at this site induces a
structural change in a stem-loop that facilitates binding of the heterogeneous nuclear ribonucleoprotein
C (hnRNPC), an RBP that affects mRNA stability, splicing, and export [113]. The effect of hnRNPC
binding on MALAT1 has however not been identified so far [113].

IGF2BP1 presents an exception of an m6A-binding RBP with a documented effect on a
cancer-associated lncRNA, namely the ~500-nt-long lncRNA highly up-regulated in liver cancer
(HULC) [64]. HULC, as described by its name, is “highly up-regulated in liver cancer” and contributes
to carcinogenesis, not only in the liver, by acting as a ceRNA [26,64,114,115]. While the expression of
HULC in HCC was previously described to be induced by the transcription factor cAMP response
element-binding protein (CREB), there was not much known about the regulation of HULC on the
post-transcriptional level [64]. Consequently, Hämmerle and colleagues aimed to investigate the role
that RBPs play in regulating this lncRNA [64]. For this purpose, they employed an RNA affinity
purification assay in which they identified the IGF2BP family as specific interaction partners of
HULC [64]. However, only IGF2BP1 was found to have an impact on the stability of the lncRNA [64].
Knockdown of the RBP in HepG2 cells almost doubled the half-life of HULC, whereas overexpression
decreased its level, indicating a destabilizing effect of IGF2BP1 on the HCC-associated lncRNA [64].
Upon trying to understand the mechanism behind this effect, the authors of the study found that
IGF2BP1 interacted with CCR4-NOT transcription complex subunit 1 (CNOT1), a component of the
deadenylase complex CCR4-NOT, which induces 3′-5′-decay of cytoplasmic RNAs [64]. Interestingly,
IGF2BP1 had previously only been known to increase the stability of its RNA targets, as exemplified
by c-Myc, which is shielded from the degradation trough endoribonucleases by being sequestered in
so-called messenger ribonucleoproteins (mRNPs) that are formed by IGF2BP1 together with various
other RBPs [103–106]. The study by Hämmerle et al. was the first to report a destabilizing function
exerted by IGF2BP1 [64]. Why does IGF2BP1 stabilize most of its mRNA targets but promote the
degradation of the lncRNA HULC? Whether it shields an RNA or subjects it to degradation via the
CCR4–NOT complex is assumed to depend on the contribution of other protein interaction partners,
like CNOT1 or the mRNP components, whose involvement, in turn, might rely, on the one hand,
on sequence or structural motifs present in the RNA target and, on the other hand, on post-translational
modifications of IGF2BP1 itself [104]. For example, it was found that Scr-mediated phosphorylation of
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IGF2BP1 could induce the release of an mRNA from mRNPs [116]. That post-translational modifications
of IGF2BP1 might play a crucial role in regulating the activity of this RBP was also suggested by the
findings of Hämmerle and colleagues [64]. They did not observe a negative correlation between the
mRNA level of IGF2BP1, which is in fact upregulated rather than downregulated in HCC, and the
level of HULC, which is highly elevated in HCC but whose decay was found to be promoted by
IGF2BP1 [64,103]. This indicates that the activity of IGF2BP1 might somehow be impeded in HCC
by post-translational mechanisms [64,103]. Given the importance of IGF2BP1 in cancer development,
for example by regulating c-Myc and HULC, future studies will most likely put a stronger focus on
how this RBP is regulated. Moreover, as the m6A consensus sequence, to which IGF2BP1 binds, is a
rather frequent motif also in lncRNAs, further cancer-associated lncRNAs that interact with IGF2BP1
might be identified in the future. Also, the impact of other m6A-binding RBPs on cancer-related
lncRNAs will likely receive more focus in future research, especially in light of the recent development
of an improved method that allows quantitative profiling of m6A modifications at single-nucleotide
resolution [117].

2.6. Tristetraprolin (TTP)

Besides the two previously discussed examples HuR and AUF1, TTP is another RBP that binds
to AREs, adenylate/uridylate-rich RNA motifs that function as signals for the rapid degradation of
RNA [61,66,71–73,85,91]. While HuR promotes the stability of RNAs by shielding these recognition
sites, AUF1 recruits, upon binding to AREs, components of the RNA degradation machinery [71–73,91].
The exact components are not yet known [91]. In case of TTP, on the other hand, it is well documented
that it interacts with CCR4–NOT, one of the two major deadenylase complexes responsible for RNA
decay, as well as with PM/Scl-75, a component of the exosome [66]. In addition, TTP also interacts
with PABPN1, thereby interfering with polyadenylation, and is involved in mRNA decapping [66].
In summary, TTP destabilizes its RNA targets via multiple different pathways [66]. As there are
numerous oncogenes amongst the targets of TTP, it is generally regarded as a tumor suppressor [66].
Accordingly, TTP is frequently downregulated in cancer and its low expression or inactivation by
phosphorylation is associated with cancer development and progression as well as with poor patient
prognosis [66]. Examples for oncogenes that are destabilized by TTP at the mRNA level are Twist1 and
Snail1 [118], Cyclin D1 and c-Myc [119], and Bcl-2 [120]. There is also one cancer-associated lncRNA
that has been reported to be destabilized by TTP, namely HOTAIR [67]. Even though this relation was
not reported in the context of cancer but observed in a study investigating the role of TTP and HOTAIR
in trophoblasts [67], it can be assumed that this also holds true for cancerous cells where HOTAIR is
generally upregulated and TTP downregulated [13,66]. Consequently, the reduced levels of functional
TTP in cancer, and thus reduced RNA degradation, could be a general mechanism contributing to the
increased levels of cancer-associated lncRNAs. Future studies will certainly identify more lncRNA
targets of TTP.

3. RBPs Regulating lncRNA Transport and Localization

3.1. Human Antigen R (HuR)

For a lncRNA to fulfill its function in a cell it is not only important how much of this lncRNA
is present in a cell but equally, or potentially even more important, whether the lncRNA is properly
transported to and located at its site of action. While lncRNAs are frequently enriched in the nucleus,
where they are for example involved in transcriptional regulation, they can also be located in the
cytoplasm or in mitochondria and can be shuttled between these different compartments in response to
different cellular conditions [8,59,121,122]. There is, however, not a lot known about how this transport
of lncRNAs is regulated and facilitated [59,121]. The RPB HuR constitutes one exception as it is known
to not only regulate the level of lncRNAs by affecting their stability but has also been found to have an
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impact on lncRNA localization [55–58,68,77]. The different regulatory mechanisms that HuR exerts on
its lncRNA targets are illustrated in Figure 1.
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Figure 1. The RNA-binding protein (RBP) human antigen R (HuR) can regulate long non-coding RNAs
(lncRNAs) by different means. First, by binding to its target lncRNA in the nucleus it can facilitate
its subsequent nuclear export by interaction with the importin β superfamily member chromosomal
maintenance 1 (CRM1). Secondly, by shielding lncRNAs from RNA decay promoting RBPs like
ARE/poly(U)-binding/degradation factor 1 (AUF1) and tristetraprolin (TTP), HuR can enhance lncRNA
stability. Thirdly, by recruitment of let7–Argonaute-2 (Ago2) it can promote lncRNA degradation via
the RNA-induced silencing complex (RISC).

A study by Noh et al. found HuR to bind to both the 3′ and 5′ end of the RNA component of
mitochondrial RNA processing endoribonuclease (RMRP), a 265-nt-long lncRNA that is best known as
a component of the mitochondrial RNA-processing endoribonuclease (RNase MRP) complex and that
is also involved in mitochondrial DNA replication [68,121]. Rather recently, an additional role of RMRP
in different types of cancer has been reported by multiple publications that describe a contribution of
RMRP to, for example, cancer cell proliferation, migration, and invasion, by sponging up different
miRNAs [123–126]. According to Noh and colleagues, HuR binds to RMRP already in the nucleus
and subsequently facilitates its nuclear export [68]. HuR itself can shuttle back and forth between the
nucleus and cytoplasm in response to different stimuli [71,72]. The export of HuR from the nucleus
occurs in a chromosomal maintenance 1 (CRM1)-dependent manner [68,127]. CRM1 is a member of the
importin β superfamily that facilitates the nuclear export of proteins, to which it can bind either directly
or via adaptors, as well as of RNA, in which case adaptor proteins are necessary [59,128]. Noh et al.
showed that not only silencing of HuR itself in HEK293 cells but also of CRM1 led to significantly
reduced cytoplasmic levels of nascent RMRP [68]. Importantly, there was no additive effect when both
HuR and CRM1 were knocked down, highlighting that the nuclear export of RMRP was facilitated via
the HuR–CRM1 axis [68]. While affecting the localization of RMRP, HuR was not observed to have
an impact on the steady-state levels, meaning the stability, of the lncRNA [68]. As discussed in the
first half of the review, there are a number of cancer-related lncRNAs whose stability is regulated by
HuR [55–58,77] and based on the frequency of HuR binding sites it can be anticipated that more will
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be identified in the future. However, so far, RMRP is the only lncRNA whose nuclear export has been
reported to be mediated by HuR.

3.2. G-Rich RNA Sequence-Binding Factor 1 (GRSF1)

Even though the lncRNA RMRP is encoded in the nucleus, it is also present in mitochondria [68,121].
As detailed above, Noh et al. uncovered that the first step in the transport pathway of RMRP, the export
from the nucleus into the cytoplasm, is facilitated by the RBP HuR [68]. In the same study the authors
also reported that the subsequent import of RMRP into mitochondria seemed to be mediated via
two import machineries, the TOM/TIM machinery and polynucleotide phosphorylase (PNPase) [68].
The TOM/TIM machinery consists of a translocase complex of the outer mitochondrial membrane
(TOM) and two different inner membrane translocases (TIM) that together enable the transport of
proteins across both mitochondrial membranes into the matrix [129]. The PNPase is located in the
mitochondrial intermembrane space and promotes the import of RNA from the cytoplasm into the
mitochondrial matrix [68,130]. How exactly RMRP is transported by these machineries and which
RBPs it interacts with in order to do so has not been elucidated [68]. What Noh et al. did report was
that the RBP GRSF1, while not directly contributing to its import, promoted the accumulation of RMRP
in the mitochondrial matrix [68]. GRSF1 contains three RRMs via which it binds to a G-rich recognition
motif (AGGGGD, with D = A/U), subsequently regulating splicing, polyadenylation, and export of its
RNA targets [68,121,131]. One isoform of GRSF1 is located in mitochondria where it forms granules
with newly synthesized mitochondrial RNAs, among them the two mitochondrial lncRNAs lncCyt b
and lncND5, which carry 10 and 21 GRSF1 consensus-binding sites, respectively [121,131]. Knockdown
of GRSF1 in immortalized primary fibroblasts decreased the overall level of these two mitochondrial
lncRNAs by about half [131]. Noh et al., however, reported that the whole-cell level of RMRP
was not affected by GRSF1 knockdown, but only its accumulation in the mitochondrial matrix [68].
Hence, GRSF1 seems to retain RMRP in the matrix once it has been imported, thereby facilitating its
enrichment at its specific site of action [68].

RMRP is not the only example of a nuclear-encoded lncRNA that can be transported into
mitochondria. MALAT1 was also found to be present in mitochondria [122]. Under normal
conditions, MALAT1 is mostly located in the nucleus where it regulates alternative splicing and
gene expression [20,122,132]. In HCC, however, Zhao et al. observed an increased level of MALAT1
within mitochondria [122]. An RNA-fluorescent in situ hybridization (FISH) assay combined with
mitochondrial staining showed that MALAT1 was highly enriched in HepG2 mitochondria but barely
detectable in non-cancerous hepatic cells [122]. This mitochondrial accumulation of the lncRNA
in HCC appears to enhance mitochondrial energy metabolism, thus potentially contributing to the
oncogenic effects that MALAT1 exerts in HCC [122,133]. Interestingly, the study observed that for the
mitochondrial lncRNA lncCyt b the situation is the other way around, namely that in non-cancerous
cells it is located primarily in the mitochondrial matrix, where it is bound by GRSF1, but in HepG2 cells,
it shows increased presence in the nucleus [122]. How the shuttling of these two lncRNAs between the
nucleus and mitochondria is mediated is not known so far. It is clear, however, that different RBPs,
like HuR and GRSF1, must play a central role in this process and that deregulations in this network
of RBPs are responsible for the aberrant localization of lncRNAs in cancer, as observed for MALAT1
and lncCyt b in HCC. In case of lncCyt b, a disturbed interaction with GRSF1 could be one factor
contributing to this phenomenon.

3.3. Insulin-Like Growth Factor 2 mRNA-Binding Protein 1 (IGF2BP1)

The oncofetal RBP IGF2BP1 has already been discussed in regard to its destabilizing effect on the
HCC-associated lncRNA HULC, which is mediated by the recruitment of the deadenylase complex
CCR4–NOT via CNOT1 [64]. In addition to regulating the stability of both mRNA and lncRNA, IGF2BP1
also plays a role in coordinating RNA localization [65,103–108,134–137]. IGF2BP1 is mostly cytoplasmic
where it forms, together with its RNA targets and other RBPs, mRNP granules [103–106,134]. When not
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associated with these mRNPs, IGF2BP1 can also translocate to the nucleus where it has been found
to bind to mRNA already during transcription [135,136]. As IGF2BP1 contains two nuclear export
signals (NES) within its second and fourth RNA-binding KH domain it is subsequently exported
back into the cytoplasm together with its bound RNA target [135,136]. Hence, IGF2BP1 facilitates
the nuclear export of its RNA target [135,136]. The prime example of this is given by beta-actin.
IGF2BP1 binds to the beta-actin mRNA as soon as it is transcribed and subsequently enables its
export into the cytoplasm, where IGF2BP2 either locates to perinuclear regions or interacts with and
moves along the cytoskeleton towards the cell periphery, more precisely towards newly forming
lamellipodia [134,136,137]. Here, IGF2BP2 is phosphorylated by the Src-kinase, which results in the
disassociation of the beta-actin mRNA and its localized translation [137].

Following the same mechanism as observed for the beta-actin mRNA, IGF2BP1 also regulates the
subcytoplasmic distribution of the lncRNA H19 [65]. H19 is a 2.3-kb-long, spliced and polyadenylated
lncRNA that is, similarly to IGF2BP1, expressed during embryonic development and reactivated
in several types of cancer [65,103,104,138]. H19 shows a diverse range of actions: it functions as a
ceRNA, induces or represses the transcription of various genes, and interacts with and thus modulates
the activity of different proteins like p53, thereby contributing to all hallmarks of cancer [138,139].
Runge et al. discovered that IGF2BP1 binds to the 3′ end of H19 with high affinity and thereby targets
the lncRNA to lamellipodia and perinuclear regions of proliferating mouse embryonic fibroblasts [65].
In growth-arrested confluent cells, the IGF2BP1–H19 complex was dispersed more evenly in the
cytoplasm [65]. It has been discovered that H19 seems to contribute to the migratory behavior
and branching morphogenesis of epithelial cells, processes that are essential during embryogenic
development but that also enable migration, invasion and metastasis of cancerous cells [65,140].
This function of H19 coincides well with the targeting of IGF2BP1-H19 to the leading edge of
proliferative cells.

3.4. Heterogeneous Nuclear Ribonucleoprotein K (hnRNPK)

The above discussed examples of RBPs are involved in the transport or localization of
cancer-associated lncRNAs outside of the nucleus. In general, lncRNAs, however, tend to be enriched
in nuclear fractions [8]. A well-studied RBP that plays a role in the nuclear accumulation of lncRNAs is
the heterogeneous nuclear ribonucleoprotein K (hnRNPK) [69]. The exact mechanism of how hnRNPK
can retain RNAs in the nucleus is however still unknown [69]. HnRNPK fulfills a wide variety of
cellular functions, for example by acting as a transcription factor, regulating translation, and serving as
a hub for various signaling pathways [141]. Numerous studies have observed oncogenic effects as well
as a prognostic relevance of hnRNPK in different types of cancer, like breast, colorectal, and gastric
cancer, where its overall levels are increased and it is aberrantly localized in the cytoplasm [142–144].
The binding of hnRNPK to RNA occurs via the interaction of its three KH domains, which are a type
of RNA-binding motif first discovered in and therefore named after the RBP, with poly-C sequences
in the RNA targets [145,146]. Lubelsky and Ulitsky, by screening a library of short fragments from
nuclear mRNAs and lncRNAs, discovered a specific consensus sequence that is bound by hnRNPK
and mediates nuclear accumulation [69]. This sequence consists of a 42-nt-long fragment that overlaps
with Alu repeats, a very common type of short interspersed element (SINE), in antisense orientation
and that contains three stretches of at least six pyrimidines (C/T), with two of these stretches matching
the consensus sequence RCCTCCC (R = A/G) [69]. They termed the sequence SINE-derived nuclear
RNA LOcalizatIoN (SIRLOIN) [69].

SIRLOINs are found in 13.1% of human lncRNAs and 7.5% of mRNAs and contribute substantially
to the nuclear enrichment of RNA transcripts [69]. An example of a cancer-associated lncRNA
that contains a SIRLOIN and is retained in the nucleus by hnRNPK is MALAT1 [69]. As stated
before, the nuclear accumulation of MALAT1 has, however, been found to be disturbed in HCC,
where undefined reasons lead to an increased mitochondrial presence of the lncRNA [122]. A recent
study by Nguyen et al. showed that the deletion of a SINE in MALAT1 and the hence disrupted
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interaction with hnRNPK resulted in a more frequent translocation to the cytoplasm [70]. This was
accompanied by increased DNA damage and apoptosis due to the redistribution of a protein called
transactive response DNA binding protein 43 kDa (TDP-43) to the cytoplasm along with MALAT1 to
which it is bound [70]. Aberrant expression and localization of hnRNPK, commonly observed in cancer,
could thus also play a role in the change of MALAT1 localization in HCC. As reviewed elsewhere, there
are numerous examples for interactions between lncRNAs and hnRNPK where they jointly regulate
gene expression by various means [145]. Thus, the deregulation of hnRNPK in cancer has far-reaching
ramifications as it affects the function and localization of lncRNAs [145].

4. Conclusions

LncRNAs are versatile regulators of basic cellular processes, like transcription, splicing,
and translation. There are numerous examples of lncRNAs that are deregulated in various types
of cancer, thereby contributing to cancer initiation and progression. In order to better understand
these implications of lncRNAs in cancer, it is necessary to understand how lncRNAs are regulated.
An important form of regulation of lncRNAs occurs at the post-transcriptional level and is mediated by
a network of RNA-binding proteins. In the case of cancer-associated lncRNAs, their regulation by RBPs
is of particular interest because RBPs themselves are frequently deregulated in various malignancies
and could thus constitute a major contribution to the deregulation of lncRNAs. Despite the existence
of a vast number of both RBPs and lncRNAs, so far, only a rather small number of RBPs have been
documented to explicitly regulate cancer-related lncRNAs. In this review we chose to discuss several
of the interactions between well-known RBPs that also have been found to play a role in cancer,
and extensively studied cancer-associated lncRNAs. These interactions, in particular, have an impact
on the stability and the transport or subcellular localization of lncRNAs, both of which are essential
for a lncRNA to properly fulfill its functions. Post-transcriptional modifications, like m6A, are also
playing a role in this regard as they affect the binding of certain RBPs. The mechanisms by which
RBPs regulate lncRNAs are diverse and the same RBP can have different effects on different lncRNAs,
highlighting their context specificity that, in large parts, depends on the synergy or competition with
other RBPs or also miRNAs. A prime example for an RBP that itself is commonly upregulated in
cancer and that has been found to regulate multiple cancer-associated lncRNAs by various means
is HuR. While stabilizing some, it promotes the degradation of others and has also been implicated
in the nuclear export of a lncRNA. As the number of predicted HuR binding sites in the genome,
especially in intronic regions, is high, many more lncRNAs than identified so far might be regulated
by this RBP. In general, there is still a lot to uncover regarding the regulation of lncRNAs by RBPs.
Not much is known yet about how m6A modifications affect the function of specific cancer-associated
lncRNAs, how lncRNAs are shuttled between or retained within different cellular compartments,
how post-translational modifications of RBPs affect their regulation of lncRNAs, and how different
RBPs either compete or collaborate in order to regulate the destiny and function of a target lncRNA.
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Abbreviations

Ago2 Argonaute-2
ALKBH5 AlkB homolog 5
ANRIL Antisense non-coding RNA in the INK4 locus
ARE Arginine/uridine-rich RNA element
AUF1 ARE/poly(U)-binding/degradation factor 1
CAF1-NOT Chromatin assembly factor 1–Negative on TATA
CCR4–NOT Carbon catabolite repressor 4–Negative on TATA
ceRNA Competitive endogenous RNA
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circRNA Circular RNA
CNOT1 CCR4–NOT transcription Complex Subunit 1
CREB cAMP response element-binding protein
CRM1 Chromosomal maintenance 1
eRNA Enhancer RNA
FISH Fluorescent in situ hybridization
FTO Fat mass and obesity-associated protein
GRSF1 G-rich RNA sequence-binding factor 1
HCC Hepatocellular carcinoma
HGBC Highly expressed in gallbladder carcinoma
hMTR4 mRNA transport 4
hnRNPC Heterogeneous nuclear ribonucleoprotein C
hnRNPK Heterogeneous nuclear ribonucleoprotein K
HOTAIR HOX antisense intergenic RNA
hRRP44 Ribosomal RNA processing 44
hRRP6 Ribosomal RNA processing 6
HULC Highly up-regulated in liver cancer
HuR Human antigen R
IGF2BP1 Insulin-like growth factor 2 mRNA-binding protein 1
KH hnRNP-K homology
lincRNA Long intergenic non-coding RNA
lncRNA Long non-coding RNA
M6A N6-methyladenosine
MALAT1 Metastasis-associated lung adenocarcinoma transcript 1
MEG3 Maternally expressed 3
METTL14 Methyltransferase-like 14
METTL3 Methyltransferase-like 3
mRNP Messenger ribonucleoprotein
ncRNA Non-coding RNA
NEAT1 Nuclear-enriched abundant transcript 1
NES Nuclear export signal
NEXT Nuclear exosome targeting
PABPN1 Polyadenylate-binding protein 1
PAR-CLIP Photoactivatable ribonucleoside enhanced crosslinking and immunoprecipitation
PAXT Poly(A) tail exosome targeting
PNPase Polynucleotide phosphorylase
PRC2 Polycomb repressive complex 2
RBM7 RNA-binding motif 7
RBP RNA-binding protein
RIP RNA immunoprecipitation
RISC RNA-induced silencing complex
RMRP RNA component of mitochondrial RNA processing endoribonuclease
RNase MRP Mitochondrial RNA-processing endoribonuclease
RNA-seq RNA-sequencing
RNP Ribonucleoprotein
RRM RNA recognition motif
RT-qPCR Quantitative reverse transcription PCR
SHG60 Small nucleolar RNA, C/D box 60 host gene
SINE Short interspersed element
SIRLOIN SINE-derived nuclear RNA localization
siRNA Small interfering RNA
SKIV2L2 Superkiller viralicidic activity 2-like 2
SNORD60 Small nucleolar RNA, C/D box 60
SOCS2 Suppressor of cytokine signaling 2
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SRSF1 Serine/arginine-rich splicing factor 1
TDP-43 Transactive response DNA binding protein 43 kDa
TIM Translocase of the inner mitochondrial membrane
TOM Translocase of the outer mitochondrial membrane
TTP Tristetraprolin
TUG1 Taurine upregulated 1
WTAP Wilm’s tumor 1-associated protein
YTHDF2 YTH N6-methyladenosine RNA-binding protein 2
ZFC3H1 Zinc finger C3H1-type containing
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