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Abstract: Long non-coding RNAs (IncRNAs) are defined as non-protein coding transcripts with a
minimal length of 200 nucleotides. They are involved in various biological processes such as cell
differentiation, apoptosis, as well as in pathophysiological processes. Numerous studies considered
that frequently deregulated IncRNAs contribute to all hallmarks of cancer including metastasis,
drug resistance, and angiogenesis. Angiogenesis, the formation of new blood vessels, is crucial for
a tumor to receive sufficient amounts of nutrients and oxygen and therefore, to grow and exceed
in its size over the diameter of 2 mm. In this review, the regulatory mechanisms of IncRNAs
are described, which influence tumor angiogenesis by directly or indirectly regulating oncogenic
pathways, interacting with other transcripts such as microRNAs (miRNAs) or modulating the tumor
microenvironment. Further, angiogenic IncRNAs occurring in several cancer types such as liver,
gastrointestinal cancer, or brain tumors are summarized. Growing evidence on the influence of
IncRNAs on tumor angiogenesis verified these transcripts as potential predictive or diagnostic
biomarkers or therapeutic targets of anti-angiogenesis treatment. However, there are many unsolved
questions left which are pointed out in this review, hence driving comprehensive research in this
area is necessary to enable an effective use of IncRNAs as either therapeutic molecules or diagnostic
targets in cancer.
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1. Introduction

While 80% of the human genome is transcribed into RNA, less than 2% of the genome is translated
into proteins [1]. For quite a long time, the non-translated region of the genome was wrongly viewed
as “junk DNA”. Transcripts of this area represent the group of non-coding RNAs as they are never
translated into proteins [2]. In the last decades, science focused on the relatively new field of non-coding
RNAs, discovering multiple subgroups. In general, they can be classified into small non-coding
RNAs, including families such as microRNA (miRNA), endogenous small interfering RNA (siRNA),
piwi interacting RNA (piRNA), and long non-coding RNA (IncRNA) [3].

LncRNAs are non-coding transcripts with a minimal length of 200 nucleotides and are transcribed
by the enzyme RNA polymerase II or RNA polymerase III. Similar to mRNAs, most IncRNAs are 5’
capped, spliced, and polyadenylated after transcription [4,5]. Compared to mRNAs, IncRNAs contain
fewer but longer exons and their expression levels across different tissues are commonly lower [5,6].
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Interestingly, recent studies unexpectedly discovered peptides encoded from non-coding RNAs such
as IncRNAs, which were considered to lack translational potential. Functional peptides translated from
IncRNAs underline the significance of their encoding potential [7]. Matsumoto et al. published the
IncRNA LINC00961 translated polypeptide, named small regulatory peptide of amino acid response
(SPAR). SPAR inhibits the activation of mammalian target of rapamycin complex 1 (mTORC1), which is
part of the mTOR pathway and controls cellular growth [8]. LincRNA00908 encodes a polypeptide,
which indirectly influences angiogenesis by binding the transcription factor Signal Transducer And
Activator Of Transcription 3 (STAT3), and hence inhibits its phosphorylation, which decreases Vascular
Endothelial Growth Factor (VEGF) expression [9]. LncRNAs are further divided according to their
genomic localization into: (a) sense IncRNAs, which are located on the same strand as the protein-coding
gene, (b) antisense IncRNAs, which are located on the antisense strand of the protein-coding gene,
(c) bidirectional IncRNAs, which are transcribed in the opposite direction from the promotor, (d)
intronic IncRNAs, which originate from introns, and (e) intergenic IncRNAs (lincRNA), which are
located between two genes [10] (Figure 1).
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Figure 1. Schematic representation of long non-coding RNA (IncRNA) biogenesis and IncRNA function.

According to their genomic localization, IncRNAs are divided into sense, anti-sense, bidirectional,
intronic, or intergenic IncRNAs. They are transcribed by RNA polymerases and are often spliced,
5" capped, and polyadenylated. Some IncRNAs are further translated into proteins, most of them
function immediately after transcription on genome regulation or as binding partners for molecules
inside (e.g., transcripts such as microRNAs (miRNAs)) or outside the nucleus (e.g., proteins).

7

In the last few years, IncRNAs received growing attention and were characterized as “key players”
in various hallmarks of cancers due to their regulatory function in physiological processes, like cell
differentiation and apoptosis, as well as their involvement in pathophysiological processes [11-13].
LncRNAs have a broad range of interaction partners inside and outside the nucleus, and therefore play
a role in diverse cellular mechanisms. One the one hand, IncRNAs can bind to nucleic acids such as
DNA, mRNAs, or miRNAs [14]. On the other hand, proteins and peptides are known to be potential
interaction partners forming complexes with IncRNAs. Furthermore, IncRNAs contain structural
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elements such as loops, that enable binding of small-weight molecules. Kazimierczyk et al. [14]
published a comprehensive review about the IncRNA interactome focusing on the IncRNA interactions
in more detail. This large interactome of IncRNAs (Figure 2) involves them in a variety of regulatory
processes such as chromatin remodeling, DNA methylation, or histone modification. Further,
IncRNAs are involved in transcriptional, post-transcriptional, as well as epigenetic regulation [5,14].
Numerous studies have confirmed an aberrant expression of IncRNAs in various cancer types such as
liver, gastrointestinal, or brain cancers, and discovered their crucial role in tumorigenesis. Due to their
influence on gene expression, IncRNAs impact carcinogenesis by acting either as tumor-suppressive or
oncogenic IncRNAs [15].
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Figure 2. Overview of the IncRNA interactome. Possible interactions partners of IncRNAs are nucleic
acids such as DNA, messenger RNA (mRNA), and miRNA, as well as proteins and peptides and
small-weight compounds. Due to their broad variety of interaction partners, IncRNAs can further
influence multiple cellular processes.

Angiogenesis is known as the process of growing new blood vessels, which is physiologically
essential for evolving organs, wound healing, and pregnancy. In general, angiogenesis is distinguished
in vasculogenesis, which describes forming new blood vessels during embryogenesis, and the classical
angiogenesis including the prenatal growth and remodeling of the primary vascular network. In adults,
angiogenesis is transiently activated for processes such as wound healing [16]. Moreover, this angiogenic
pathway is adapted under pathological conditions in many diseases including cancer, in which it may
be constantly activated because of the angiogenic switch [10,11].

In 1971, Folkman described tumor angiogenesis for the first time as a hallmark of cancer,
which enables metastasis and tumor growth beyond a limited size [17,18]. To exceed a tumor size
with a diameter of 2 mm, the formation of blood vessels is vital in order to sufficiently supply the
tumor with nutrients and oxygen. The angiogenic switch is guided by signaling molecules such as
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the vascular endothelial growth factor (VEGF) which induces angiogenesis and neovascularization
in cancer [19]. Beside such signaling factors, recent studies consider IncRNAs as possible drivers for
tumor angiogenesis [4,20].

This review aims to provide an insight into the function of IncRNAs in tumor angiogenesis,
emphasizing their regulatory mechanisms among different tumor types.

2. Tumor Angiogenesis

As described above, if tumors reach a diameter of 2 mm, cancer cells undergo the angiogenic switch
recruiting new blood vessels to ensure an adequate supply of oxygen and nutrients. Newly constructed
blood vessels enable the disposal of metabolic waste and facilitate metastatic spread, as they provide
tumor cells a way into the blood flow [19,21].

Under hypoxia, the state of low oxygen, cancer cells prevent hypoxia inducible factors (HIFs)
from degradation. HIF is a heterodimeric transcription factor consisting of a cytoplasmic x-subunit
and a B-subunit [17]. Usually, HIF-« is degraded upon initial hydroxylation, which enables the
recognition by the von Hippel-Lindau (VHL) tumor suppressor protein, thereby targeting it for the
degradation by the proteasome [18]. However, under hypoxic conditions, which are frequently
encountered in cancer, HIF-« is translocated into the nucleus, where it forms an active heterodimer
with the 3-subunit. In turn, the heterodimer binds to hypoxia response elements, further leading
to aerobic glycolysis known as the Warburg effect or the activation of angiogenesis [22,23]. Thereby,
IncRNAs increase the expression of proangiogenic factors such as VEGFE. The VEGF family and
its receptors (VEGFR) play a major role in tumor angiogenesis by activating multiple signaling
pathways such as endothelial proliferation, vascular permeabilization, or mobilization of progenitor
cells, to name a few examples [24]. Beside VEGEF, a variety of proangiogenic regulators might be
released, including diverse growth factors: fibroblast growth factor (FGF), epidermal growth factor
(EGF), transforming growth factor (TGF), and angiopoietin 1 and 2 (Ang-1 and Ang-2). Another key
process in tumor angiogenesis is the activation of oncogenic pathways like the signal transducer
and activator of transcription 3 (STAT3) signaling pathway, and the target of rapamycin (mTOR)
pathway including Nuclear Factor Kappa B (NF-kB) and Wnt/3-catenin pathways, which further
promote the release of proangiogenic factors [25]. Furthermore, cancer cells recruit immune cells
such as macrophages, mast cells, and neutrophils to infiltrate the tumor, contributing to a complex
tumor microenvironment (TME). The so-called tumor-associated macrophages (TAM) support tumor
angiogenesis by releasing matrix metalloproteinases (MMPs). This group of growth factors is comprised
of 23 members, which degrade extracellular matrix (ECM) as well as membrane components between
the tumor and the blood vessel [26,27]. Therefore, they enable the release of matrix-bound VEGF,
binding to their endothelial receptor and stimulating endothelial cells to activate the mitogen-activated
protein kinase (MAPK) signaling pathway, resulting in enhanced cell proliferation [24,26]. In contrast
to proangiogenic factors, tissue inhibitors of metalloproteinases (TIMPs), interleukins, interferons,
and thrombospondin-1 (TSP-1) also influence the complex mechanisms of tumor angiogenesis by acting
as antiangiogenic regulators [28]. Finally, the released proangiogenic regulators recruit three types
of stem cells from the bone marrow, leading to tube formations. While endothelial progenitor cells
(EPCs) construct the lumen of new angiogenic sprouts, hematopoietic stem cells act as proangiogenic
stimulators, tissue remodeling, as well as endothelial survival factors. Further, mesenchymal stem
cells turn into pericytes stabilizing the newly formed blood vessels for the tumor [21].

The complex cascade of the pathological angiogenic process clearly demonstrates the importance
of the TME, which includes both cells that are present under non-cancerous conditions, as well as
cells that are recruited by the tumor such as the mesenchymal stem cells [29]. Beside recruited
stem cells from the bone marrow, cancer stem cells are also involved in tumor angiogenesis.
They form a critical subpopulation of tumor cells with self-renewable capacity that drives nearly
every step of tumorigenesis, including angiogenesis [30]. Cancer cells evolved a contact-free way to
stimulate angiogenesis by releasing exosomes to remodel the TME, which can further influence tumor
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angiogenesis. Several studies have shown that tumor-derived exosomal IncRNAs can be taken up by
neighboring cells to regulate angiogenesis [31].

3. Mechanisms of IncRNAs Regulating Tumor Angiogenesis

Tumor angiogenesis is driven by a deranged equilibrium of factors that stimulate or oppose
angiogenesis by binding to surface receptors of vascular endothelial cells [17] (Figure 3). Recent studies
reported that IncRNAs might serve as key regulators in tumor angiogenesis by regulating
tumor-associated cells, influencing oncogenic pathways directly and indirectly, or by binding other
RNA transcripts [4,20]. This section will provide an overview of the different possibilities of IncRNAs
to regulate tumor angiogenesis and give some important examples, respectively.
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Figure 3. Schematic representation of the regulating mechanisms of IncRNAs influencing tumor
angiogenesis: (1) protein binding and regulating pathways indirectly by recruiting transcription factors
or directly affecting oncogenic pathways, (2) interacting with transcripts such as mRNA or miRNA,
and (3) regulating neighboring cells, including the tumor microenvironment cells, e.g., cancer stem
cells (CSC), macrophages, and endothelial cells. The latter mechanism is possible due to exosomal
transport of IncRNAs. Exemplary IncRNAs for each shown mechanism are named in the figure.

3.1. LncRNAs Regulate Angiogenesis through Activating Pathways or by Binding Proteins in Tumor Cells

Altered expression levels of IncRNAs associated with oxygen-deficient conditions have been
reported in many cancer types [32-34]. Due to the current state of knowledge, most hypoxia-related
IncRNAs are involved in the HIF pathway. LncRNAs can either regulate the HIF pathway upstream by
acting as a promoter of HIF or function as a direct downstream target of HIF [20]. Yao etal. [34] published
IncRNA-HIF2PUT as a direct upstream promoter inducing HIF-2ox expression in colorectal cancer and
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therefore increasing angiogenesis. The activation of the transcription factor HIF-2 upregulates the
expression of its downstream target IncRNA Nuclear Paraspeckle Assembly Transcript 1 (NEAT1)
in breast cancer, resulting in an increased cell proliferation [35]. In addition to the possibility of
IncRNAs acting as an up- or down-stream target, either positive or negative feedback loops promote
or suppress angiogenesis, owing to the strong co-expression of some IncRNAs and their corresponding
mRNAs [20]. For instance, due to their co-expression, IncRNA hypoxia-inducible factor-1 alpha
subunit antisense RNA 2 (HIF-1A-AS2) binds to HIF-1a-mRNA, forming a negative feedback loop by
preventing angiogenesis in non-tumor tissue. However, the exact pathway is not yet uncovered [4].
Different oncogenic pathways may be activated to increase angiogenesis by inducing growth factors
such as the major contributor VEGF. Some IncRNAs activate or stabilize STAT3 and therefore indirectly
increase VEGF expression [9,36-38]. For instance, IncRNA plasmacytoma variant translocation 1
(PVT1) activates STAT3, which leads to an upregulation of VEGF in gastric cancer. A positive feedback
loop further increases the angiogenic capacity of PVT1 [36]. Similarly, IncRNAs were found to activate
oncogenic Phosphatidylinositol-4,5-Bisphosphate 3-Kinase/AKT Serine-Threonine Kinase/mammalian
target of rapamycin (PI3K/Akt/mTOR) or Wnt/(3-catenin signaling, resulting in the upregulation of
VEGE. Li et al. [39] published the proangiogenic role of IncRNA OR3A4 by indirectly upregulating VEGF
through the activation of the Akt/mTOR pathway in hepatocellular cancer. Several studies indicate an
overexpression of IncRNA growth arrest-specific 5 (GAS5) reducing angiogenesis via inhibiting the
Wnt/[3-catenin signaling axis in cancer cells [40]. Other IncRNAs regulate angiogenesis by modulating
the transcription factor NF-«B, such as LINC01410 in gastric cancer [41]. Tabruyn et al. [42] recently
reviewed the role of NF-«kB in tumor angiogenesis by highlighting its controversial proangiogenic
function in tumor cells, while an activation of NF-«B inhibits angiogenesis in endothelial cells.

However, IncRNAs are not limited to act as decoys or bind and guide transcription factors to
promoter regions of genes involved in angiogenic pathways, as described in some examples above.
Furthermore, IncRNAs can also be associated with proteins to inhibit their secretion. For instance,
the IncRNA associated with microvascular invasion in hepatocellular carcinoma (MVIH) interacts with
the antiangiogenic factor phosphoglycerate kinase 1 (PGK1) to reduce its secretion in hepatic cancer [43].
A protein—-IncRNA interaction can also affect the stability of the protein. For example, linc00665 binds
the Y-box binding protein 1 (YB-1 protein), thus preventing it from degradation, and subsequently
increasing angiogenesis in lung cancer [44]. Furthermore, IncRNAs are able to regulate enzymatic
activity by binding to proteins, as illustrated by the interaction between IncRNAs and proteins of
the Matrix Metallopeptidase (MMP) family. As these enzymes are either upstream or downstream
targets in different signaling pathways including HIF, VEGF, and transforming growth factor beta
(TGF-p), it affects tumor angiogenesis [27]. Metastasis-associated lung adenocarcinoma transcript
1 (MALAT-1) is a conserved IncRNA, whose expression is increased under hypoxia and which is
associated with tumor angiogenesis. It was shown that this IncRNA promotes MMP7 expression via
an indirect activation through the Wnt/3-catenin signaling pathway, thus facilitating angiogenesis in
colorectal cancer [20].

3.2. Interaction of IncRNAs with miRNAs or mRNAs

Another group of non-coding RNAs, which is involved in many cellular processes, is the family
of miRNAs. They negatively regulate gene expression by binding to the three prime untranslated
region (3’UTR) of mRNAs, leading to the degradation, destabilization, or translational repression of
the respective mRNA targets [45]. In 2005, Yang and colleagues [46] first indicated the role of miRNAs
in a study of angiogenesis conducted in mouse models. Nowadays, a variety of either proangiogenic
miRNAs or antiangiogenic miRNAs are known in different cancer types [47].

A further possibility of IncRNAs to indirectly influence tumor angiogenesis is the interaction with
these miRNAs which are modulating their activity, and vice versa: (1) LncRNAs can act as molecular
sponges for miRNAs, resulting in a repressed function of the miRNA. The mechanism of competitive
endogenous RNA (ceRNA) has been widely investigated in tumor angiogenesis. (2) Furthermore,
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it was shown that binding of miRNAs to IncRNAs might lead to their degradation [4,20,25]. (3) Another
possible way to affect each other is the competition of some IncRNAs and miRNAs for the same mRNA.
(4) Other IncRNAs are able to generate miRNAs. These interactions of non-coding RNAs clearly
state the complexity of the interplay between non-coding RNAs and tumor angiogenesis as they are
involved in many biological pathways [4].

To give some examples for discovered non-coding RNA interactions, MALAT-1 was found to
sponge miRNAs. The decrease of miR-200 and miR-145 leads to an upregulation of the protein SRY-Box
transcription factor 2 (Sox2), and hence increases stem cell properties [4]. Further, in lymphoma and
glioblastoma cells, MALAT-1 is targeted by miR-9 for decay inside the nucleus. Besides the interaction
with MALAT-1, miR-9 also affects angiogenesis by targeting VEGF [48]. The crosstalk between two
noncoding RNAs, that both have an impact on tumor angiogenesis, is an example for the complex
regulation of tumor angiogenesis modulated by non-coding RNAs. Another example is lincRNA-p21,
which is in general activated by p53 and binds to let-7 miRNA, thereby inhibiting its angiogenic
functions [49]. On the contrary, results by Yoon et al. [50] indicate that an overexpression of let-7
miRNAs in cervical cancer leads to a degradation of lincRNA-p21. Many studies have investigated
the ceRNA functions of IncRNAs acting as molecular sponges for miRNAs in different cancer types.
Both nuclear and cytoplasmic IncRNAs can modulate angiogenesis by inhibiting miRNA activity [51].
The IncRNA taurine upregulated 1 (TUG1) can either act as a tumor suppressor or as oncogenic
IncRNA [6]. In endometrial carcinoma, TUG1 enhances the expression of Vascular Endothelial Growth
Factor A (VEGFA) by directly binding miR-34a-5p and miR-299 [52]. The extended regulation of
angiogenesis by IncRNAs through miRNA interaction offers a relatively new research field, also with
possibilities for therapeutic discoveries [4].

Beside proteins and miRNAs, in some cases, IncRNAs can bind to mRNAs and influence the
angiogenesis this way. An example is the IncRNA MVIH, which interacts with the mRNA of ribosomal
protein S24 isoform C, found in colorectal cancer. Herein, it promotes angiogenesis through an
increased stability of both transcripts [53].

3.3. LncRNAs Affecting Neighboring Cells of the Tumor

Beside influencing angiogenesis through mechanisms within tumor cells, IncRNAs can affect the
function of adjacent cancer cells, non-cancerous cells in the TME, or surrounding endothelial cells,
to promote angiogenesis.

Cancer stem cells (CSCs) are a small subgroup of cancer cells that provide self-renewal capacity
similar to stem and progenitor cells. These cells play a regulatory role in every step of tumor progression,
from tumor initiation to metastasis formation. Recent studies showed the impact of IncRNAs on
angiogenesis by regulating CSCs [30,54]. As an example, Jiao et al. [55] provided data indicating
that MALAT-1 induces epithelial-mesenchymal transition in pancreatic cancer cells, thereby gaining
stem cell-like properties. Furthermore, MALAT-1 knockdown leads to a decreased expression of
CSC markers [55]. Advanced studies of this group suggest the proangiogenic effect of MALAT-1 by
promoting stem cell-like phenotypes with the binding of miR-200c and miR-145, thereby upregulating
the self-renewal factor Sox2 [56]. The crosstalk between CSCs and the TME mediate signaling pathways
such as TGF-p3, MAPK, or VEGF, further influencing tumor angiogenesis [30,54].

LncRNAs can also remodel the microenvironment of the tumor. As described above,
macrophages infiltrate the tumor and constitute the major component of the TME. On the one
hand, IncRNAs can recruit macrophages to infiltrate the tumor by activating a downstream signaling
of cytokines, such as the IncRNA CamK-A [25]. On the other hand, IncRNAs are involved in the
polarizations of macrophages. For instance, IncRNA-MMP2 was found to influence TME remodeling
as it correlates with the level of M2 polarization. Further, silencing IncRNA-MMP2 in macrophages
inhibits M2-induced angiogenesis [57].

LncRNAs can be delivered to endothelial cells via tumor-derived exosomes to promote
angiogenesis in endothelial cells. Exosomes are membrane-bound extracellular vesicles with a
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diameter of 30-100 nm, which are released by living cells. Recent studies have demonstrated this
contact-free way to modulate angiogenesis [31]. As an example, glioma cells release exosomes loaded
with IncRNA-POU Class 3 Homeobox 3 (POU3F3), which are in turn internalized with endothelial cells.
As a consequence, IncRNA-POU3E3 expression levels increase within these cells and angiogenesis is
promoted in vitro and in vivo [58].

4. LncRNAs Regulating Tumor Angiogenesis in Different Cancer Types

Several IncRNAs were reported to increase or decrease angiogenesis in various cancer types,
modulating this hallmark of cancer by different intracellular processes (Table 1). For instance,
IncRNA TUG1 promotes angiogenesis in cervical cancer by an exosomal transport of the IncRNA
to the receptor human umbilical vein endothelial cells (HUVECsS), thus enhancing their angiogenic
capacity [59]. In comparison, the same IncRNA accelerates angiogenesis by upregulating VEGF
expression through miRNA binding, namely miR-299 in glioblastoma [60] and miR-34-5p in liver
cancer [52]. Likewise, angiogenic InNcRNA MALAT-1 and highly upregulated in liver cancer (HULC)
induce hepatic angiogenesis by sponging miRNAs as well. Additionally, less common IncRNAs such
as Colorectal Neoplasia Differentially Expressed (CRNDE) [61], Opa interacting protein 5-antisense
RNA 1 (OIP5-AS1) [62], and LINCO00488 [63] are also known to induce liver cancer angiogenesis
by functioning as ceRNA. In the following section, angiogenic IncRNAs are summarized by their
regulatory mechanisms occurring in different tumor types.

Table 1. Overview of long non-coding RNAs (IncRNAs) influencing tumor angiogenesis through
different regulatory mechanisms in various cancer types.

LncRNA Impact on Angiogenesis  Regulatory Mechanism Reference

1. Hepatic Cancer

BZRAP1-AS1
MVIH
OR3A4
PTENP1
UBE2CP3

CRNDE
HULC
LEF1-AS1
LINCO00488
MALAT-1
OIP5-AS1
TUG1

=

Activating pathways or
protein binding

W =
W

Interacting with
transcripts

191 le\Ne)\Jie ) Ne) e Mo )N I o))
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cox-2
H19

Affecting neighboring
tumor cells
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—— | —— e e — — | —————
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N

2. Gastrointestinal
Cancer

AKO001058
FLANC
GAS5
HNF1A-AS1
LINC00858
LINC01314
MALAT-11
MVIH
NBAT1
OR3A4
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Table 1. Cont.
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LncRNA Impact on Angiogenesis Regulatory Mechanism Reference
PVT1 0 [36]
SUMOI1P3 T [79]
TPT1-AS1 0 [80]
LINCO01410 T . . [41]
IncRNA-HNF1A-AS1 1 Imf::{f:;f ‘t’glth [81]
ZFAS1 1 P [82]
INcRNA-APC1 . Affecting neighboring [83]
tumor cells
CASC2 1 X [84]
OR3A4 1 uniknown [33]
3. Brain Tumor
Activating pathways or
HULC T protein binding [85]
PAXIP1-AS1 ) [86]
PDIA3P1 l [87]
SLC26A4-AS1 ! [88]
H19 7 [89,90]
LINC01116 0 [91]
MCM3AP-AS1 T Interacting with [92]
SBF2-AS1 T transcripts [93]
SNHG15 0 [94]
TUG1 ) [60]
XIST T [95,96]
AHIF 0 [97]
CCAT2 7 Affecting neighboring [98]
HOTAIR T tumor cells [99]
POUS3F3 0 [58]
4. Reproductive System Cancer
CASC2 ! [100]
LINC00284 T Activating pathways or [101]
PVT1 1 protein binding [102]
TUG1! 1 [59,103]
DANCR T [104]
MEG3 1 [4,105,106]
PCAT3 ) Interacting with [107]
PCAT9 T transcripts [107]
RBMS3-AS3 1 [108]
SCAMP1 T [109]
CCDST l Affecting neighboring [110]
MALAT-1 ) tumor cells [111]
5. Lung Cancer
LINCO00665 T [44]
LINCO00667 7 [112]
lincRNA-p21 T N [113]
Activating pathways or
LOC100132354 T protein binding [114]
MEG3 7 [4,105,115]
MVIH T [116]
TNK2-AS1 T [38]
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Table 1. Cont.

LncRNA Impact on Angiogenesis Regulatory Mechanism Reference
F63 l [117]
FBéIX:_‘?Sl T Interacting with . 5191]8;()
5 ! transcripts [119,120]
MCM3AP-AS1 ) [121]
PVT1 T [122]
HOXA11-AS T unknown [123]
6. Breast Cancer
EFNA3 T [124]
HIF-1A-AS2 l S [4]
A h
LINC00908 1 Ctlvatmg pgt ways or 9]
protein binding
MALAT-1 T [125]
MEG3 l [126]
NKILA l [127]
RAB11B-AS1 T [128]
LINC00968 1 Interactmg with [129]
transcripts
IncRNA-Hh 1 Affecting neighboring [130]
tumor cells
7. Other Cancer Types
HOTAIR T N [131]
Activat th
MALAT-11 1 O B Ty O [56,132,133]
PANTR1 1 P & [134]
DANCR T Interacting with [135]
LINCO00511 T transcripts [136]
SNHG6 7 [137]
RP11-79H23.3 l [138]
TUG1 T [139]
RAMP2-AS1 T Affecting neighboring [140]
H19 T tumor cells [141]

1 more than one regulatory mechanism is known in this tumor type. | factor has anti-angiogenic effect; T factor

has pro-angiogenic effect. Abbreviations: AHIF: antisense transcript of hypoxia factor-la; BZRAP1-AS1:
benzodiazapine receptor associated protein 1 antisense RNA 1; CASC2: cancer susceptibility 2; CCAT2:
Colon cancer associated transcript 2; CRNDE: Colorectal Neoplasia Differentially Expressed; DANCR: differentiation
antagonizing non-protein coding RNA; EFNA3: Ephrin A3; F63: F630028010Rik; GAS5: growth arrest-specific 5;
HIF-1A-AS2: hypoxia-inducible factor-1 alpha subunit antisense; HOTAIR: HOX Transcript Antisense Intergenic
RNA; HULC: highly upregulated in liver cancer; IncRNA-APCI1: adenomatous polyposis coli; LEF1-ASI:
lymphoid enhancer-binding factor 1, MALAT-1: Metastasis-associated lung adenocarcinoma transcript 1;
MCMB3AP-AS1: micro-chromosome maintenance protein 3-associated protein; MEG3: maternally expressed
gene 3; MVIH: microvascular invasion in hepatocellular carcinoma; NBAT1: neuroblastoma-associated transcript
1; NKILA: Nuclear Factor Kappa B (NF-«B) Interacting IncRNA; OIP5-AS1: OPA-interacting protein 5 antisense
transcript 1; OR3A4: Olfactory Receptor Family 3 Subfamily A Member 4; PANTR1: POU Class 3 Homeobox 3
(POU3F3)-adjacent non-coding transcript 1; PAXIP1-AS1: paired box (PAX)-interacting protein 1-antisense RNA1;
PCAT3/9: Prostate Cancer Associated 3/9; PDIA3P1: protein disulfide isomerase family A member 3 pseudogene 1;
PTENP1: phosphatase and tensin homolog pseudogene 1; PVT1: plasmacytoma variant translocation 1; SBF2-AS1:
SBF2 antisense RNA 1; SCAMP1: secretory carrier membrane protein 1; SNHG6: small nucleolar RNA host gene
6; SNHG15: small nucleolar RNA host gene 15; SUMO1P3: Small ubiquitin-like modifier 1 pseudogene 3; TUG1:
Taurine upregulated 1; UBE2CP3: ubiquitin conjugated enzyme E2C pseudogene 3; XIST: X-inactive specific
transcript; ZFAS1: ZNFX1 antisense RNA1.

4.1. Hepatic Cancer

As mentioned in the previous section, the IncRNA OR3A4 is upregulated in hepatocellular
carcinoma (HCC), which is the most frequent liver cancer type. OR3A4 accelerates angiogenesis
via activation of the Akt/mTOR pathway and thereby further increases the secretion of VEGF [39].
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On the contrary, tumor-suppressive IncRNA PTENP1 expression is decreased in HCC cells. PTENP1
overexpression suppresses the PI3K/Akt axis and inhibits HIF, leading to suppressed angiogenesis
in vitro [65]. The IncRNA BZRAP1-AS1 binds to the promotor of thrombospondin (THB1),
an endogenous antiangiogenic factor, and recruits DNA methyltransferase 3b, thus inducing the
hypermethylation of the THB1 promoter and leading to the inhibition of THB1 transcription.
The THB1 depletion further increases VEGF expression, thereby promoting angiogenesis in HCC [64].
By activating ERK/HIF-1« signaling, the overexpressed IncRNA, named ubiquitin conjugated enzyme
E2C pseudogene 3 (UBE2CP3), promotes the VEGF secretion from HCC cells into the TME [66].
The study of Yuan and colleagues [43] determined that IncRNA MVIH binds to the antiangiogenic
factor PGK1. This interaction leads to an inactivation of PGK1, which accelerates angiogenesis in HCC.

As the name indicates, HULC (highly upregulated in liver cancer) was first characterized to be
highly upregulated in HCC. The interaction between HULC and miR-107 results in the upregulation
of E2F Transcription Factor 1 (E2F1), which subsequently results in the activation of the sphingosine
kinase 1 (SPHK1) promoter. Consequently, SPHK1 generates sphingosine 1 phosphate, which was
found to accelerate angiogenesis in liver fibrosis, HCC, and breast cancer [67]. In hepatoblastoma (HB),
another type of liver cancer, the highly expressed IncRNAs CRNDE and TUG1 were shown to bind
miR-203 and miR-34-5p, respectively. By acting as a ceRNA, these IncRNAs prevent the suppressive
miRNA function on the target gene VEGF [52,61]. Therefore, IncRNA TUG1 might be responsible for
the hypervascularity, which is characteristic for hepatoblastoma [52]. Similar results were found in
HCC, where IncRNAs MALAT-1 and OIP5-AS1 induce angiogenesis because of an upregulated VEGF
expression by sponging miR-140 and miR-3163, respectively [62,69]. Another example of IncRNAs
promoting tumor angiogenesis in liver cancer by their ceRNA function is LINC00488. This IncRNA
sponges miR-330-5p, thereby upregulating the protein talin 1 in relation to angiogenesis in HCC [63].
Beside LINC00488, Dong et al. [68] suggested IncRNA LEF1-AS1 to promote angiogenesis in HCC.
This hypothesis is based on knockdown experiments showing significantly reduced tube formations
as compared to control conditions. Mechanistically, the authors hypothesized that the binding of
LEF1-AS1 and miR-136-5p may further upregulate its target WNK1. WNKTI1 itself was shown to be
associated with an increased level of MMP2, MMP9, and VEGF expression [68].

Generally, CSCs are known to influence the TME by releasing signaling extracellular organelles,
the exosomes. Conigliaro et al. [71] described the ability of cluster of differentiation 90 (CD90+) liver
CSCs to promote an angiogenic phenotype of endothelial cells by releasing exosomes containing
IncRNA H19. This study highlights IncRNA H19 as an important player of exosome-mediated VEGF
increase in HCC [71]. The group of Ye [70] investigated the impact of IncRNA cox-2 expression
in macrophage polarization, that is commonly uncontrolled in HCC. A transient siRNA-mediated
knockdown of IncRNA cox-2 reduced the polarization of M1-macrophages and accelerated M2
macrophage polarization, leading to increased HCC angiogenesis [70].

4.2. Gastrointestinal Cancer

The IncRNAs PVT1, TPT1-AS1, and FLANC are highly expressed in gastrointestinal cancers
and have been shown to increase tumor angiogenesis by protein interactions inside the nucleus,
which further lead to an upregulation of VEGF [36,37,80]. The group of Zhang [80] recently reported
that the binding of IncRNA TPT1-ASI1 to the nuclear factor 90 (NF90) increases the mRNA stability of
VEGF and therefore facilitates angiogenesis in colorectal cancer (CRC). VEGF expression is increased
by STATS3 activation through lincRNAs PVT1 and FLANC and hence, angiogenesis rises in gastric
cancer (GC) and CRC, respectively [36,37]. Beside the correlation of PVT1 and VEGF expression by
preventing STAT3 from degradation, the oncogenic function of this IncRNA is enhanced by a positive
feedback loop with STATS3, as it promotes PVT1 transcription [36]. Further, IncRNA SUMO1P3 is
highly expressed in colon cancer cells and tissue, while a knockdown decreased tube formations,
VEGEF expression, and angiogenesis in vivo [79]. LncRNAs GAS5 [40], OR3A4 [33], and LINCO01314 [75]
are found at low expression levels in gastrointestinal cancer. An overexpression of these IncRNAs
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leads to a decline of angiogenesis via repressing the Wnt/3-catenin pathway [33,40,75]. Tang et al. [75]
investigated that an upregulation of LINC01314 decreased kallikrein 4 expression and further inhibited
the Wnt/f3-catenin pathway, as well as the expression of VEGF in GC. The knockdown of lincRNA
AKO001058 also decreased angiogenic cytokine expression of VEGF and Ang-2 in CRC through a
hypermethylation of the metallopeptidase ADAM Metallopeptidase With Thrombospondin Type 1
Motif 12 (ADAMTS12) promoter [72]. Recently, the group of Xu [74] described the angiogenic role of
linc00858 in colon cancer. This IncRNA facilitates angiogenesis by an upregulation of the transcript
factor Hepatocyte Nuclear Factor 4 Alpha (HNF4«) to sustain a repression of WNK Lysine Deficient
Protein Kinase 2 (WNK2), a kinase that functions as growth suppressor [74]. LncRNA HNF1A-AS1
also promotes colon cancer angiogenesis by an indirect activation of the MAPK pathway [73]. In GC,
the activity of IncRNA neuroblastoma-associated transcript 1 (NBAT1) is suppressed by the interaction
with the transcription factor SOX9, forming a negative feedback loop. Yan and colleagues [78] indicated
that the antiangiogenic function of NBAT1 as an overexpression reduced tube formations in vitro.
Besides its role in HCC, MVIH is suggested to modulate angiogenesis in CRC indirectly as this IncRNA
is stabilized by its binding to the mRNA of ribosomal protein 524 isoform c. Hence, it causes a repression
of PGK1 and promotes angiogenesis [53]. Oncogenic IncRNA MALAT-1 enhances tumor angiogenesis
either in CRC or GC [76,77]. In vitro experiments propose MALAT-1 as an angiogenic regulator in GC
by modulating the vascular endothelial (VE)-cadherin/3-catenin complex, which regulates vascular
permeability [77].

Sun et al. [76] showed that in CRC, MALAT-1 can bind and suppress miR-126-5p, whose target is
VEGEF. In response to the nuclear transcription factor SP1, the upregulated IncRNA ZNFX1 antisense
RNA1 (ZFAS1) acts as a sponge for miR-105 in CRC. The induced repression of miR-105 due to this
direct binding consequently promotes VEGF expression [82]. Zhang and colleagues [41] investigated
the ceRNA function of LINC01410 for miR-532, which results in an upregulation of neutrophil cytosolic
factor 2 and the activation of the NF-kB pathway. Activated NF-«kB sustains an upregulation of
LINCO01410, forming a positive feedback loop in GC [41]. Further, IncRNA-HNF1A-AS] increases tube
formation and facilitates GC angiogenesis in vivo. Mechanistically, IncRNA-HNF1A-AS1 sponges
miR-30b-3p, thereby activating the PI3K/Akt signaling pathway [81].

Wang et al. [83] hypothesize that IncRNA-APC1 would inhibit angiogenesis by reducing the
exosome production in CRC cells. Previously, it has been reported that tumor-derived exosomes
promote angiogenesis without the necessity of common angiogenic factors [83].

In addition to the above-mentioned IncRNAs, the upregulated IncRNA OR3A4 and downregulated
IncRNA cancer susceptibility 2 (CASC2) were also found to influence GC angiogenesis. However,
the exact mechanism is not yet known [33,84].

4.3. Brain Tumor

Recently, Wang et al. [87] described an increased expression of IncRNA protein disulfide
isomerase family A member 3 pseudogene 1 (PDIA3P1) in glioblastoma cells, which is activated at
the transcriptional level by the HIF heterodimer. PDIA3P1 can further sponge miR-124-3p, which is
found to inhibit angiogenesis by targeting NRCP1 in glioblastoma [87,120]. Zhu et al. [85] reported the
correlation between HULC and micro-vessel density, VEGF expression, and endothelial cell-specific
molecule 1, which is suggested to modify angiogenic capacity of HULC through PI3K/Akt/mTOR
signaling in gliomas. An overexpression of IncRNA SLC26A4-AS1 was associated with antiangiogenic
effects in glioma [88]. Yu et al. [88] hypothesized a IncRNA-dependent recruitment of NF-«kB1 to
the promotor of neuronal pentraxin 1, causing an upregulation and hence, decreasing angiogenesis.
The IncRNA PAX-interacting protein 1-antisense RNA1 (PAXIP1-AS1) enhances angiogenesis in glioma
by recruiting a transcription factor to the KIF14 promotor, which is a prognostic marker in glioma
patients as it has been associated with glioma aggressiveness in prior studies [86,142].

In brain tumors, IncRNAs TUG1, LINC01116, X-inactive specific transcript (XIST), SNHG15,
and RNA SBF2 antisense RNA 1 (SBF2-AS1) are suggested to induce angiogenesis by their cceRNA
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function on different miRNAs [60,91,93-95]. In glioblastoma cells, the highly expressed IncRNA
TUGI1 favors angiogenesis by inhibiting miR-299, which has a binding site for VEGF [60]. The data
of Ye et al. [91] showed that a LINC01116 knockdown suppresses glioma angiogenesis in vivo.
They suggest that LINC01116 may regulate posttranscriptional VEGF by binding miR-31-5p. Similar,
XIST sponges miR-485 in human brain microvascular endothelial cells (HBMEC). Hence, miR-485
binding enables SOX7 to further increase VEGF expression level [95]. Additionally, Cheng et
al. [96] identified a correlation of IncRNA XIST and miR-429 in glioma cells affecting angiogenesis.
The knockdown of XIST reduces glioma angiogenesis in vitro and in vivo [96]. Likewise, the knockdown
of IncRNA SNHGI15 reduced the expression levels of proangiogenic Cdc42 and VEGF because miR-153
is no longer sponged and subsequently, tumor angiogenesis in glioma cells is suppressed [94]. In the
work of Hai et al. [93], IncRNA SBF2-AS1 was identified to promote glioblastoma angiogenesis by
binding to miR-338, thereby accelerating the expression and secretion of EGFL7. On the contrary,
the IncRNA micro-chromosome maintenance protein 3-associated protein (MCM3AP-AS]) is targeted
by miR-211 and coupled in the RNA-induced silencing complex (RISC). As a result, when the miRNA
target Kriippel-like factor 5 is activated, glioblastoma angiogenesis is increased via the downstream
regulation of angiogenic factor AGGF1 [92]. Furthermore, IncRNA H19 facilitates glioblastoma cell
angiogenesis in vitro and in vivo [89,90]. Angiogenic function of H19 in glioma-induced endothelial
cells is enabled by miR-29a suppression to inhibit the proangiogenic vasohibin 2 [90].

In the work of Dai et al. [97], the IncRNA antisense transcript of hypoxia factor-1a (AHIF) is
revealed as a regulator of exosomal segregation of VEGF in glioblastoma. Several studies have shown
the potential of glioma cells to enhance angiogenesis by IncRNA containing exosomes. This contact-free
way to transport proangiogenic transcripts such as POU3F3, HOX Transcript Antisense Intergenic RNA
(HOTAIR), or Colon cancer associated transcript 2 (CCAT2) to endothelial cells leads to an increased
expression level of VEGF and thereby promotes angiogenesis [58,98,99].

4.4. Reproductive System Cancer

The group of Iden [102] found that IncRNA PVT1 is upregulated in cervical cancer cell lines in
response to hypoxia, which is associated with poor patient prognosis. Furthermore, an overexpression
of IncRNA cancer susceptibility candidate 2 (CASC2) in cervical cancer inhibits angiogenesis in vitro via
the MAPK pathway [100]. The knockdown of the oncogenic IncRNAs TUG1 and LINC00284 diminished
angiogenesis in ovarian cancer [101,103]. TUG1 may inhibit angiogenesis in vitro by suppressing TGF-f3
signaling pathway via the downregulation of the angiogenic factor leucine-rich-x-2-glycoprotein-1.
Additionally, TUG1 induces other angiogenic growth factors such as VEGF [103]. LINC00284 favors
angiogenesis by recruiting NF-kB to the mesoderm-specific transcript (MEST) promotor to repress
the transcription, consequently increasing the expression of proangiogenic proteins such as MMPs or
VEGEF [101].

The upregulated IncRNA differentiation antagonizing non-protein coding RNA (DANCR) was
first reported to increase angiogenesis in ovarian cancer. Knockdown experiments exhibit an increased
miR-145 expression, which is a direct target of DANCR and finally leads to a downregulation of
VEGEF [104]. Recently, highly expressed IncRNA SCAMP1 was also found to accelerate angiogenesis
in ovarian cancer as it disabled miR-137 function by binding. MiR-137 acts as a negative regulator
of the C-X-C motif chemokine, which participates in gastric cancer progression [109]. The loss of
maternally expressed gene 3 (MEG3), which encodes a tumor-suppressive IncRNA, is associated with
tumorigenesis in many cancer types as it mediates various cellular factors and pathways, such as
P53, proangiogenic genes, or miRNAs [4,105]. Ye and colleagues [106] investigated a regulatory
axis of IncRNA MEG3, miR-421, and the growth factor platelet-derived growth factor receptor o
(PDGFRA) by binding to each other. An overexpression of the IncRNA RBMS3-AS3, which is usually
downregulated in prostate cancer, demonstrated the ceRNA function of the IncRNA on miR-4534.
By inhibiting the function of miR-4534, expression of the antiangiogenic vasohibin-1 rises. Consequently,
expression levels of the proangiogenic factors MMP2, MMP9, and VEGF increase, thereby promoting
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angiogenesis [108]. Fang’s work showed that transient silencing of the prostate cancer-specific IncRNAs
PCAT3 and PCAT9 decreases tumor angiogenesis. The sequences of both IncRNAs include miR-203
binding sites, which enables an increased expression of the SNAI2 protein [107].

In ovarian cancer, a crosstalk between epithelial ovarian cancer cells (EOCs) and endothelial
cells may facilitate angiogenesis as EOCs release exosomes including MALAT-1. Exosomal MALAT-1
enhances angiogenesis by dysregulating angiogenic genes like VEGF in HUVEC cell models and
in vivo [111]. Similarly, Lei and Mou proposed IncRNA TUGI to be transported via exosomes from
cervical cancer cells to HUVEC cells, increasing their angiogenic capacity. Furthermore, silenced TUG1
expression is associated with a decreased expression level of several proangiogenic genes such as
VEGF, MMP9, and TGE-3 [59].

Additionally, Ding et al. [110] showed that the downregulation of IncRNA CCDST influences
angiogenesis in cervical cancer. Investigations of the underlying mechanisms indicated that the IncRNA
binds the proangiogenic DHX9 and targets it for degradation. However, in human papillomavirus
(HPV)-infected cervical cancer, the virus-encoded proteins lead to a decrease of CCDST expression and
consequently, to the increase of DHX9 abundance to induce malignant behaviors [110].

4.5. Lung Cancer

The IncRNA LINC00667 is strongly expressed in non-small cell lung cancer and stabilizes the
angiogenic growth factor VEGF [112]. Wang et al. [38] pointed out that the IncRNA TNK2-AS1
binds STATS3 to stabilize it and increases the expression of VEGF. Furthermore, STAT3 promotes
IncRNA TNK-AS] transcription, building a positive feedback loop [38]. In lung adenocarcinoma,
IncRNAs LOC100132354 and linc00665 influence angiogenesis by regulating VEGF expression [44,114].
Mechanistically, linc00665 stabilizes YB-1 protein from degradation, hence activating VEGF expression,
leading to increased angiogenesis in vitro and in vivo [44]. In contrast to the detected downregulation
of MEGS3 in lung cancer, Li et al. [105] published data detecting an enhanced expression of MEG3 in lung
adenocarcinoma, promoting VEGF-mediated angiogenesis by activating Akt signaling. This hypothesis
proposes MEG3 as a cell-specific angiogenesis promotor, as Lui and colleagues [115] detected a
significant downregulation of MEG3 in lung adenocarcinoma. The expression of the upregulated
lincRNA-p21 correlates with the expression of angiogenic genes such as MMP2 presenting its angiogenic
function [113]. As an overexpression of the IncRNA, MVIH is associated with tumor angiogenesis and
MVIH expression is upregulated in lung cancer, further influencing MMP2 and MMP9, it may affect
lung cancer tumor angiogenesis [116].

The upregulated IncRNAs PVT1 and FBXL19-AS1 both accelerate angiogenesis by acting
as a ceRNA on miR-29 and miR-431-5p, respectively [118,122]. Apart from brain tumors,
IncRNA MCMB3AP-AS] is also upregulated in lung cancer binding to miR-340-5p. Therefore,
the downstream target KPNA4 is activated and promotes angiogenesis [121]. Quin et al. [117] propose
an antiangiogenic function of IncRNA F630028010Rik (F63) by sponging miR-223-3p, which causes
a downregulation of VEGF expression. The downregulated IncRNA GASS5 can affect angiogenesis
negatively by binding to miR-29-3p together with phosphate and tensin homolog (PTEN). Subsequently,
this inhibits the phosphorylation of PI3K/Akt and thereby decreases VEGF expression [119,120].

Furthermore, the GAS5 expression level in tumor-derived exosomes correlates with tube formations
as exosomes of lung cancer cells having low GAS5 expression promoting tube formation and vice
versa [119].

Besides the previously mentioned IncRNAs, oncogenic IncRNA HOXA11-AS is highly expressed
in non-small cell lung cancer, regulating angiogenesis positively. However, the exact molecular
mechanism is still unclear [123].

4.6. Breast Cancer

Inresponse to hypoxia, IncRNA EFNA3 is induced in breast cancer (BC), leading to an accumulation
of Ephrin-A3, both facilitating metastatic spread [124]. Niu et al. [128] discovered IncRNA RAB11B-AS1
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as a novel target of HIF2 leading to an upregulation of angiogenic factors such as VEGF. As mentioned
before, the IncRNA HIF-1A-AS2 seems to act as a counter to tumor angiogenesis as its co-expression
with HIF1« leads to a negative feedback loop. As IncRNA HIF-1A-AS2 binds to the corresponding
mRNA, resulting in its degradation. However, the exact mechanism has not yet been uncovered [4].
The expression of IncRNA MEGS3 is lost in different tumors including BC, which leads to an increased
expression of proangiogenic genes. MEG3 overexpression suppresses the PI3K/Akt signaling pathway
further, leading to a decreased expression of VEGF [126]. Similarly, Luo et al. [127] recently showed
that the overexpression of IncRNA NF-«B Interacting IncRNA (NKILA) inhibits angiogenesis by
reducing IL-6 secretion via modulation of the NF-kB signaling pathway. The IncRNA MALAT-1 is
upregulated in human BC tissue and its expression correlates with VEGF, suggesting MALAT-1 as
another angiogenic IncRNA in BC [125]. Recently, Wang et al. [9] investigated that lincRNA00908
encodes a small regulatory peptide of STAT3 (ASPRS), which is downregulated in triple-negative
BC. ASRPS directly binds to STAT3, therefore inhibiting its phosphorylation, which decreases VEGF
expression [9].

LINCO00968 acts as a ceRNA by binding the miRNA hsa-miR-423-5p in BC. Therefore, a decreased
amount of LINC00968 induces an increased expression of its binding partner. Hsa-miR-423-5p
further downregulates PROX1 and inactivates its function to repress MMP14, thereby promoting
angiogenesis [129].

Zhou and colleagues [130] described IncRNA-Hh, which is transcribed by EMT cells, to obtain
CSC-like properties [20,130].

4.7. Other Cancer Types

The commonly upregulated IncRNA MALAT-1 upregulates proangiogenic factors such as VEGF
and FGF2 in osteosarcoma by activating the mTOR/HIF-1« signaling pathway as well as via a positive
feedback loop of HIF-1x and the IncRNA [133]. In nasopharyngeal carcinoma, IncRNA HOTAIR
is highly expressed and enhances angiogenesis in vitro and in vivo. Mechanistically, the IncRNA
regulates angiogenesis either directly through binding to the VEGF promotor or indirectly via increasing
VEGF and Ang-2 expression by upregulating glucose-regulated protein 78 expression [131]. In clear
cell renal cell carcinoma, a knockdown of IncRNA POU3F3-adjacent non-coding transcript 1 (PANTR1)
leads to a reduction of angiogenic parameters and less tube formations [134].

Recently, IncRNA SNHG6 and DANCR were identified to accelerate angiogenesis in
cholangiocarcinoma by competitively binding miRNAs, thus leading to an increased expression
of transcriptional factors [135,137]. In detail, SNHG6 binds miR-101-3p to prevent the inhibition
of the transcription of E2F Transcription Factor 8 (E2F8) [137], whereas the DANCR-miR-345-5p
interaction upregulates Twistl. In osteosarcoma, proangiogenic IncRNA TUGL functions via silencing
miR-143-5p, increasing the miRNA target HIF-1 [139]. Zhao et al. [136] identified linc00511 promoting
angiogenesis in pancreatic ductal adenocarcinoma by competitively binding to hsa-miR-29b-3p.
The induced repression of this miRNA finally promotes the VEGF expression and upregulates its
expression [136]. Chi et al. [138] proposed IncRNA RP11-79H23.3 functioning as a ceRNA and
further regulating tumorigenesis of bladder cancer by modulating the PTEN/PI3K/Akt pathway.
They demonstrated that an overexpression reduces angiogenesis in vivo, whereas a downregulation
increases the amount of formed micro-vessels within the tumor [138].

As mentioned above, current studies provided an insight on the correlation between tumor
angiogenesis and CSCs. Jiao et al. [56] suggested that MALAT-1 promotes pancreatic angiogenesis
by enhancing stem cell-like properties. Huang et al. [132] investigated the proangiogenic function of
MALAT-1 in thyroid cancer by regulating the FGF2 secretion of TAMs. Chondrosarcoma cells transport
IncRNA RAMP2-AS1 in exosomes and thereby promote angiogenesis in HUVECs through sponging
miR-2355-5p and hence, upregulate the expression of VEGFRs [140].

The commonly dysregulated IncRNA H19 is upregulated in bladder cancer cells and tissue and
promotes angiogenesis in vivo [141].
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5. Therapeutic Potential

The studies of IncRNAs regulating tumor angiogenesis have given strong evidence that they
might be a promising target in cancer therapy, as a deregulation of these non-coding RNAs can lead to
pathological changes.

Nowadays, different possibilities to regulate IncRNA expression by RNA interference in viral
vectors or plasmids are known. For instance, cancer therapy using a plasmid containing H19 gene
regulator sequence and diphteria toxin A (DTA) was tested in clinical trials in bladder, pancreatic,
and ovarian cancer [143]. For silencing IncRNA expression, siRNAs are a widely used tool. For instance,
1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with FLANC targeting siRNA
reduces angiogenesis and metastasis, demonstrating its potential as a therapeutic target in the
future [37].

Another possibility to depress tumor angiogenesis offers a functional modulation such as altering
the physiological interaction between IncRNA and miRNA. The option of functional regulation can be
combined with gene therapy. For instance, Wang and colleagues [144] investigated an adenoviral vector,
which includes lincRNA-p21 and a miRNA responsive element (MRE) of miR-451. Due to the MRE,
the vector is delivered into CSC, preventing the activation of the Wnt/B-catenin pathway and finally
eliminating CSCs in CRC [144]. In prior sections, the possibility of exosomal transport of non-coding
RNAs between cells and its impact on angiogenesis was described. Cheng et al. [145] published a
detailed review of the different options utilizing exosomes as potential therapeutic targets in glioma
cancer. On the one hand, targeting exosomal transport would be a potential anticancer strategy. On the
other hand, exosomes could be used as a therapeutic drug delivery system. Beside therapeutic options,
exosomes can be used as predictive and diagnostic biomarkers [145].

Further, some drugs were found to regulate the expression levels of IncRNAs. Ye et al. [106]
demonstrated anisomycin as a potential anticancer drug by suppressing angiogenesis, invasion,
and proliferation by regulating the IncRNA MEGS3 in ovarian cancer. As mentioned before, MEG3
sponges miR-421, further regulating the growth factor PDGFRA and activating the Notch pathway
to induce tumor growth and angiogenesis. This ceRNA function of MEG3 can be inhibited by
anisomycin [106].

Beside the possibility to act as a therapeutic target, circulating RNAs in plasma or serum
build a non-invasive possibility for diagnostic application. Therefore, IncRNAs can also function as
diagnostic biomarkers, although they might be stable as fragments in human liquids. In prostate
cancer, IncRNA MALAT-1 can be used to distinguish patients from healthy controls [146]. Tong et
al. [147] described plasmatic IncRNA POU3E3 as a diagnostic biomarker for esophageal squamous cell
carcinoma patients. In combination with a current biomarker, the serum squamous cell carcinoma
antigen, a more efficient diagnostic rate can be reached compared to the efficiency of RNA or antigen
alone [147]. Furthermore, IncRNAs can function as key markers and specific IncRNA expression
patterns even enable a differentiation between subtypes, for example in renal cell carcinoma [148].

Due to their specificity, IncRNAs may become useful biomarkers and outstanding therapy targets
in cancer treatment. However, at present, the state of knowledge of IncRNAs and their role in diseases
is incomplete. A considerable amount of research is necessary to enable an effective use of IncRNAs as
either therapeutic molecules or diagnostic targets.

6. Conclusions

Studying IncRNAs has become an important research field as they are involved in basic cellular
processes. Recent studies accentuated their critical role in different diseases, such as cancer. There are
numerous examples of deregulated IncRNAs in various types of tumors, thereby contributing to
different hallmarks of cancer, such as angiogenesis. In this review, we focused on the mechanisms of
IncRNAs with which they regulate tumor-induced angiogenesis, including: (a) modulating oncogenic
pathways directly or indirectly by binding pathway involved proteins, (b) interacting with RNA
transcripts, or (c) modulating the TME. Key IncRNAs in angiogenesis such as MALAT-1 are deregulated
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in various cancer types, influencing angiogenesis by affecting different mechanisms. On the one
hand, MALAT-1 is found to activate the Wnt/3-catenin pathway indirectly in response to hypoxia
in CRC [20]. On the other hand, MALAT-1 also promotes CRC angiogenesis by its ceRNA function
on miR-126-5p as the binding increases the expression of the miRNA target VEGF [76]. On top of
that, tumor-derived MALAT-1 is transported in exosomes to HUVEC cells, enhancing angiogenesis by
dysregulating proangiogenic genes like VEGF in vivo [111]. Angiogenesis-modulating IncRNAs can
occur in different cancer types, influencing diverse mechanisms. Therefore, this article summarized
angiogenic IncRNAs depending on their occurrence in different cancer types and further explained their
regulatory mechanism concerning tumor angiogenesis. Due to their specificity, IncRNAs may become
outstanding therapy targets in cancer treatment. Nowadays, studies establish different methods
using gene therapies or functional modulations of IncRNAs to inhibit the process of angiogenesis.
Besides the opportunity of being a therapeutic target, IncRNAs offer the potential of a diagnostic
biomarker. To resume the prior given example, the angiogenic IncRNA MALAT-1 enables an effective
diagnosis of prostate cancer through the detection of MALAT-1 fragments in human plasma [146].
Although IncRNAs show a huge potential due to the variety of regulatory mechanisms, there are
still many unanswered questions. Understanding the complex process of IncRNAs regulating tumor
angiogenesis may provide new antiangiogenic therapeutics as well as prognostic or diagnostic
biomarkers in cancer.
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