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Abstract

In the papers [3] and [4] we had found an upper bound for the expected
number of shadow vertices for linear optimization problems which are dis-
tributed according to the Rotation-Symmetry-Model, denoted by Em,n(S),
with m inequality-restrictions and n variables. This bound was a function

m
1

n−1 · n3 · Const.
It applies to all dimension-pairs (m ≥ n) and all distributions, which guar-
antee independence, rotation-symmetry and identity of the distribution of
the restriction vectors.
However, the bound is not sharp in dependency upon n. An asymptotical

lower bound had been proven in the form m
1

n−1 ·n2 ·Const., where asymp-
totic means n fixed, m → ∞. At the same time we know from [2] and [4]

that an asymptotical upper bound of the form m
1

n−1 · n2 · Const. exists.
We understand the discrepancy to the general bound, when we consider
the real aim of the analysis. It should deliver a common upper bound for
all rotation-symmetric distributions and all possible pairs of dimensions
(m ≥ n). This task leads to technical complications in the proof com-
ing from the difficulty of exact calculations of space angles and from the
requirement of dealing with any kind of rotation-symmetric distribution
simultaneously.
In the paper in hand we increase the precision significantly by using an
improved method for estimating spherical angles.
Finally we obtain a general new upper bound of size

m
1

n−1 · n
5
2 · Const.

∗dedicated to Prof. Dr. Helmut Brakhage on the occasion of his retirement
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1 Introduction and Notation

In this paper we try to sharpen and to simplify the polynomiality-proof from [4]
for Em,n(S), which is the expected number of shadow-vertices in linear program-
ming problems of the type

maximize vTx subject to aT1 x ≤ 1, . . . , aTmx ≤ 1 where x, v, a1, . . . , am ∈ IRn.
(1)

We assume a distribution of the linear programming problems corresponding to
the stochastic model (RSM):

The vectors a1, . . . , am, v and an auxiliary vector u are dis-
tributed on IRn\{0} independently, identically and symmet-
rically under rotations.

(2)

This assumption justifies concentration on the nondegeneracy-cases, which are
almost sure.

Nondegeneracy is valid, if any n vectors out of
{a1, . . . , am, v, u} are linear independent, and if any n + 1
vectors out of {a1, . . . , am, v, u} are in general position.

(3)

For problems of type Em,n(S) our figure delivers the expected number (1) of pivot
steps when m inequalities and n variables are present and when we project on
Span(u, v).

Let X be the feasible region {x | aT1 x ≤ 1, . . . , aTmx ≤ 1 }.
A vertex x∗ is called shadow vertex of X with regard to u
and v, if orthogonal projection on Span(u, v) maps x∗ on a
vertex of the two-dimensional image of X in Span(u, v).

(4)

For S we could give a dual characterization in the space of the ai in [4]. This char-
acterization admits an integral representation for Em,n(S) by means of stochastic
geometry. The latter describes the probability, that a certain basic solution of
problem (1) actually is a shadow vertex, and it multiplies that probability with

the number of candidates, i.e.
(
m
n

)
. The integral representation achieved by that

way can be simplified significantly by two coordinate-transformations. The result
is the following form:

Em,n(S) =

(
m

n

)
· n · {(n− 2)!}2 · λn−1(ωn) · λn−2(ωn−1)·

1∫
0

G(h)m−n
∫

IRn−1

√
1−h2∫
0

|Θ− cn−1
n |

∫
IRn−2

· · ·
∫

IRn−2

|λn−2{KH(c1, . . . , cn−1)}|2 ·

W (c1, . . . , cn−1) f(c1) · · · f(cn−1) dc1 . . . dcn−1 dΘf(cn) dcn dh. (5)
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That integral geometrically describes the expected number of those facets of the
polytope KH(a1, . . . , am) which are intersected by Span(u, v). Very profitable is
the comparison with a closely related figure Em,n(Z), which gives the expected
number of facets being intersected by the ray IR+v. The integral formula for that
purpose is:

Em,n(Z) =

(
m

n

)
· n · {(n− 2)!}2 · λn−1(ωn) · λn−2(ωn−1)·

1∫
0

G(h)m−n
∫

IRn−1

√
1−h2∫
0

|Θ− cn−1
n |

∫
IRn−2

· · ·
∫

IRn−2

|λn−2{KH(c1, . . . , cn−1)}|2 ·

V (c1, . . . , cn) f(c1) · · · f(cn−1) dc1 · · · dcn−1 dΘf(cn) dcn dh. (6)

This comparison turns out to be advantageous, since we know that

Em,n(Z) ≤ 1, (7)

and therefore

Em,n(S) ≤ Em,n(S)

Em,n(Z)
. (8)

The similarity of the integrals in numerator and denominator simplifies the eval-
uation of the quotient. Its estimation becomes easier than that of (5).
But first we have to explain the notation.

We use the abbreviations Span, KH, KK for linear hull, convex hull, convex
cone respectively.
Ωk resp. ωk denote the unit ball resp. the unit sphere in IRk.

Ωk := {x | ||x|| ≤ 1, x ∈ IRk} and ωk := {x | ||x|| = 1, x ∈ IRk}. (9)

λk stands for the k-dimensional Lebesgue-measure. Hence

λn(Ωn) =
π
n
2

Γ(n+2
2

)
and λn−1(ωn) =

2π
n
2

Γ(n
2
)
. (10)

c1, . . . , cn are (column-)vectors in IRn, i.e. c = (c1, . . . , cn)T .
c = (c1, . . . , cn−1)T and c = (c1, . . . , cn−2)T give the corresponding truncated
vectors.
The result of our special coordinate-transformations will be:
cn1 = . . . = cnn = h, cn−1

1 = . . . = cn−1
n−1 = Θ with h ≥ 0, Θ ≥ 0, where h,Θ ∈ IR.

Let f describe the density function of our distribution on IRn

and let F do the same for the probability F (r) := P (||x|| ≤ r) for r ∈ [0,∞],

(F (r) is the so-called radial distribution function). (11)
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The marginal distribution function for the given distribution will be called G, hence

G(h) := P (xn ≤ h) ∀h ∈ IR. (12)

W (c1, . . . , cn−1) stands for the spherical angle generated by KK(c1, . . . , cn−1),
respectively for the share of the corresponding unit ball in the hyperplane
H(0, c1, . . . , cn−1) which belongs to that convex cone:

W (c1, . . . , cn−1) :=
λn−1(Ωn ∩KK(c1, . . . , cn−1))

λn−1(Ωn−1)
=
λn−2(ωn ∩KK(c1, . . . , cn−1))

λn−2(ωn−1)
.

(13)
Analogously we interpret the figure V (c1, . . . , cn) from formula (6) as the spherical
angle resp. the intersection-share of the cone KK(c1, . . . , cn):

V (c1, . . . , cn) :=
λn(Ωn ∩KK(c1, . . . , cn))

λn(Ωn)
=
λn−1(ωn ∩KK(c1, . . . , cn))

λn−1(ωn)
. (14)

Now we are going to exploit a consequent refinement of the principle of pointwise
comparison in order to describe the relation between W and V more precisely.
This enables us to find an improved estimation for the quotient. The new method
turns out to be superior to the application of the principle of Cavalieri, which had
been used so far. After that we can simulate the proof from [4] with improved
parameters. So we can save a factor O(

√
n).

Theorem 1
For all distributions according to our rotation-symmetry-model (2) we have

Em,n(S) ≤ m
1

n−1 · n
5
2 · Const. (15)

Corollary 1
Also this enables us to improve the upper bound (known from [4]) for the expected
number of pivot steps st of the dimension-by-dimension algorithm for complete
solution of (1) to

Em,n(st) ≤ m
1

n−1 · n
7
2 · Const. (16)

2 Exploitation of the principle of pointwise comparison

According to our method used so far the key to the derivation of an upper-bound
for Em,n(S)

Em,n(Z)
lies in the pointwise comparison for identical values of t :=

√
h2 + Θ2.

This makes a significant simplification of the integral quotient possible, since
several figures in the numerator- and the denominator-integral remain invariant
as long as t is fixed. This holds because

• the internal distribution of the ”random variables” (ˆ̂c,Θ, h)T in {c | cn =
h, cn−1 = Θ} is identical for all pairs (h,Θ) with constant value of t :=√
h2 + Θ2 ,
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• the stochastic weight of those configurations with identical t is almost the
same,

• the spherical measures W (c1, . . . , cn−1) do not vary, when c1, . . . , cn−1 and
t remain fixed, but h and Θ vary simultaneously.

With the substitution t :=
√
h2 + Θ2 , T :=

√
t2 − h2 we obtain

Em,n(S)

Em,n(Z)
=

n
1∫
0
t
t∫

0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n |

∫
IRn−2

· · ·
∫

IRn−2

|λn−2{KH(c1, . . . , cn−1)}|2

1∫
0
t
t∫

0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n |

∫
IRn−2

· · ·
∫

IRn−2

|λn−2{KH(c1, . . . , cn−1)}|2·

·W (c1, . . . , cn−1) f(c1) · · · f(cn−1) dc1 · · · dcn−1 f(cn) dcn dh dt

·V (c1, . . . , cn) f(c1) · · · f(cn−1) dc1 · · · dcn−1 f(cn) dcn dh dt
≤

≤ sup
t∈ [0,1]

n
t∫

0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n |

∫
IRn−2

· · ·
∫

IRn−2

|λn−2{KH(c1, . . . , cn−1)}|2

t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n |

∫
IRn−2

· · ·
∫

IRn−2

|λn−2{KH(c1, . . . , cn−1)}|2

·W (c1, . . . , cn−1) f(c1) · · · f(cn−1) dc1 · · · dcn−1 f(cn) dcn dh

·V (c1, . . . , cn) f(c1) · · · f(cn−1) dc1 · · · dcn−1 f(cn) dcn dh
. (17)

We take into regard that W (c1, . . . , cn−1) is proportional to

λn−2(ωn∩KK(c1, .., cn−1)) =
∫

KH(c1,..,cn−1)

√
h2 + Θ2√

h2 + Θ2 + ˆ̂c
T ˆ̂c

n−1 d
ˆ̂c =

∫
KK(c1,..,cn−1)∩ωn

λ(dw)

where (ˆ̂c, T, h)T is an element in the (T, h) area and w = (ˆ̂c,T,h)

||(ˆ̂c,T,h)T || . By parti-

tioning the (T, h) area in infinitesimally small surface-elements dˆ̂c we have also
partitioned the surface of ωn ∩ KK(c1, . . . , cn−1) in infinitesimally small sur-
face elements M(w) implicitly. Their extensions may be different, but they
all are extremely small. Also the figures M(w) admit a characterization of
λn−1(ωn ∩KK(c1, . . . , cn)). This holds because

ωn ∩KK(c1, . . . , cn) =
⋃

w∈ωn∩KK(c1,...,cn)

[KK{cn,M(w)} ∩ ωn].

Denote KK{cn,M(w)} ∩ ωn by M̃(cn, w), then

λn−2(ωn ∩KK(c1, . . . , cn−1)) =
∫

KK(c1,...,cn−1)∩ωn

λ(dw) and
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λn−1(ωn ∩KK(c1, . . . , cn)) =
∫

KK(c1,...,cn−1)∩ωn

λn−1(M̃(cn, w))

λn−2(M(w))
λ(dw). (18)

Let us interpret M(w) as the result of a projection of dˆ̂c on ωn. The surface-
element M(w) is in any case dependent upon (T, h) and upon ˆ̂c. So we are allowed
to cumulate over all w, which result from fixing t and ˆ̂c, but varying (T, h). This
yields (by using I for the indicator of an event):

Em,n(S)

Em,n(Z)
≤ sup

t∈ [0,1]

∫
IRn−2

λn−1(ωn) · n ·
t∫

0
G(h)m−n T−1

∫
IRn−1

|T − cn−1
n |·

∫
IRn−2

λn−2(ωn−1)
t∫

0
G(h)m−n T−1

∫
IRn−1

|T − cn−1
n |·∫

IRn−2

· · ·
∫

IRn−2

|λn−2{KH(c1, . . . , cn−1)}|2 I(ˆ̂c ∈ KH(c1 . . . cn−1))·∫
IRn−2

. . .
∫

IRn−2

|λn−2{KH(c1, . . . , cn−1)}|2 I(ˆ̂c ∈ KH(c1, . . . , cn−1))·

λn−2(M(w(ˆ̂c, T, h))) f(c1) · · · f(cn−1) dc1 · · · dcn−1 f(cn) dcn dh dˆ̂c

λn−1(M̃(cn, w(ˆ̂c, T, h))) f(c1) · · · f(cn−1) dc1 · · · dcn−1 f(cn) dcn dh dˆ̂c
≤

≤ sup
t∈ [0,1]

sup
ˆ̂c∈IRn−2

λn−1(ωn) · n ·
t∫

0
G(h)m−n T−1

∫
IRn−1

|T − cn−1
n |·

λn−2(ωn−1)
t∫

0
G(h)m−n T−1

∫
IRn−1

|T − cn−1
n |·∫

IRn−2

· · ·
∫

IRn−2

|λn−2{KH(c1, .., cn−1)}|2 I(ˆ̂c ∈ KH(c1, .., cn−1))λn−2(M(w(ˆ̂c, T, h)))∫
IRn−2

. . .
∫

IRn−2

|λn−2{KH(c1, .., cn−1)}|2 I(ˆ̂c ∈ KH(c1, .., cn−1))λn−1(M̃{cn, w(ˆ̂c, T, h)})

f(c1) · · · f(cn−1) dc1 · · · dcn−1 f(cn) dcn dh

f(c1) · · · f(cn−1) dc1 · · · dcn−1 f(cn) dcn dh
. (19)

For further simplification we try to estimate λn−1(M̃{cn, w(ˆ̂c, ., .)}) by means of
λn−2(M(w)).

3 A refined analysis of the spherical angle

In [4] the principle of Cavalieri had been applied in order to achieve an upper
bound for V (c1, . . . , cn) in terms of W (c1, . . . , cn−1). This time we use a more
precise method.
Let w be a surface-point of ωn, belonging to KK(c1, . . . , cn−1) simultaneously.
That w is induced by a point (ˆ̂c, T, h)T in KH(c1, . . . , cn−1), whose projection on
ωn is exactly w. Let M(w) be an infinitesimally small area about w in ωn and
let M̂(w) be the intersection of KK(M(w)) and the tangential space at w to ωn,
both belonging to the hyperplane H(0, c1, . . . , cn−1), which holds all those points.
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Then Dim(M̂(w)) = n − 2. Span(w, z) is orthogonal to M̂(w), where z is the
normal vector to W (c1, . . . , cn−1) (orientied towards en and normalized). Hence
M̂(w)) ⊂ w + Span(w, z)⊥. If M(w) is small enough, then M̂(w) represents a
sufficiently precise approximation for M(w). We are interested in the spherical
angle (with respect to ωn), which is induced by M(w) in cooperation with an
arbitrary point q ∈ ωn, i.e.

λn−1(KK{q,M(w)} ∩ ωn)

λn−1(ωn)
. (20)

We may suppose, that q = en and w ∈ Span(en, en−1), i.e. w =
(0, . . . , wn−1, wn)T . For abbreviation we write M̃(w) := M̃{en, w}. Then the
spherical angle of the cone under consideration is determined by the three for-
mulas

spherical angle = horizontal extension · depth-extension, (21)

.

horizontal extension of en onM(w) :=
λn−2{x | ||x|| = 1, xn = 0, Span(x, en) ∩M(w) 6= ∅}

λn−2{x | ||x|| = 1, xn = 0}
(22)

depth-extension of en on M(w) =
λn−2(ωn−1)

λn−1(ωn)
·

1∫
wn

√
1− h2

n−3
dh. (23)

It is known that λn−2(ωn−1)
λn−1(ωn)

·
√

1− h2
n−3

is the marginal density of the surface-
share of ωn along the n-th coordinate. For all points x of the ”equatorial set” in
the numerator of (22) we move on ωn ∩ Span(en, x) starting from en in direction
to the equator (xn = 0) until M(w) is reached. The infinitesimality of M(w)
confirms that this is approximately until h = wn.

Remark 1
For the horizontal extension the following formula holds

λn−2(M(w)) · cos ( 6 (z, ŵ⊥))

(1− (wn)2)
n−2
2

, (24)

where ŵ⊥ stands for (0, . . . , 0,−wn, wn−1)T . So it is the tangential vector, ori-
ented towards en to the set ωn ∩ Span(en, en−1) at w. 6 denotes the respective
angle between the corresponding vectors.
The total spherical angle is calculated by

λn−2(ωn−1)

λn−1(ωn)
·

1∫
wn

√
1− h2

n−3
dh · λn−2(M(w)) · cos ( 6 (z, ŵ⊥))

(1− (wn)2)
n−2
2

. (25)
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Of course, this formula holds for wn < 0, too. In that case, the horizontal
extension is the same (symmetry between en and −en). Different is the behaviour
of the depth-extension, where the traversed angle between en and w now exceeds
π
2
.

Sometimes we will use the abbreviation η := wn.

Lemma 1
The spherical angle under consideration admits the following transformations.

λn−2(ωn−1)

λn−1(ωn)
·

1∫
wn

√
1− h2

n−3
dh · λn−2(M(w)) · cos ( 6 (z, ŵ⊥))

(1− η2)
n−2
2

= (26)

=
λn−2(ωn−1)

λn−1(ωn)
·

1∫
|wn|

√
1− h2

n−3
h dh · λn−2(M(w)) · cos ( 6 (z, ŵ⊥))

(1− η2)
n−2
2

1∫
wn

√
1− h2

n−3
dh

1∫
|wn|

√
1− h2

n−3
h dh

=

=

〈
λn−2(ωn−1)

λn−1(ωn)
· (1− η2)

1
2 · 1

n− 1
· λn−2(M(w)) · cos ( 6 (z, ŵ⊥))

〉 1∫
wn

√
1− h2

n−3
dh

1∫
|wn|

√
1− h2

n−3
h dh

Here, the term in 〈〉 gives the Cavalieri-estimation for the spherical angle.

Remark 2
The expression (1− η2)

1
2 · cos ( 6 (z, ŵ⊥)) tells the distance of the point en to the

hyperplane H(0, c1, . . . , cn−1) (whose normal vector is z).

Proof

en = (en
T ŵ⊥)ŵ⊥ + (en

Tw)w = (1− η2)
1
2 ŵ⊥ + ηw

=⇒ zT en = (1− η2)
1
2 (zT ŵ⊥) = (1− η2)

1
2 cos ( 6 (z, ŵ⊥)). 2

Remark 3
If we multiply the distance mentioned above with 1

n−1
·λn−2(M(w))· λn−2(ωn−1)

λn−1(ωn)
, then

we exactly obtain the estimation from [4] by means of the formula of Cavalieri.
Here M(w) has replaced ωn ∩KK(c1, . . . , cn−1).

Proof
The Cavalieri-estimation works as follows:

λn(KH{0, M̃(w)})
λn−1(KH{0,M(w)})

λn−1(Ωn−1)

λn(Ωn)
≥ λn−1(Ωn−1)

n · λn(Ωn)
(distance of en toH(0, c1, . . . , cn−1)) =

=
λn−2(ωn−1)

(n− 1) · λn−1(ωn)
(1− η2)

1
2 · cos ( 6 (z, ŵ⊥)) 2 (27)
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Now look at Lemma 1. The factor obtained there outside 〈〉 tends to ∞ for
wn → −1. Already at wn = 0 it yields an enlargement of the denominator-
integral by the factor 1

µn
. Here we use (as often in the following) the notation

µn := 2·λn−2(ωn−1)
(n−1)λn−1(ωn)

.

Remark 4
For µn the following relations hold [4]√√√√ 2(n− 2)

(n− 1)2π
≤ µn =

2 · λn−2(ωn−1)

(n− 1)λn−1(ωn)
≤
√

2

(n− 1)π
. (28)

Lemma 2
The term

1∫
wn

√
1− h2

n−3
dh

(n− 1)
1∫
|wn|

√
1− h2

n−3
hdh

=

1∫
η

√
1− h2

n−3
dh

(n− 1)
1∫
|η|

√
1− h2

n−3
hdh

=

1∫
η

√
1− h2

n−3
dh

(1− η2)
n−1
2

(29)
represents a monotonously decreasing, convex function of wn = η in the interval

[−1, 1].

Proof
The first derivative is of value

−(1− η2)
n−3
2 (1− η2)

n−1
2 +

1∫
η

√
1− h2

n−3
dh · η(1− η2)

n−3
2 (n− 1)

(1− η2)n−1
=

=

−(1− η2)
n−1
2 +

1∫
η

√
1− h2

n−3
dh · η(n− 1)

(1− η2)
n−1
2

+1
(30)

This shows that the value of the derivative at η = 0 is just −1.
For η < 0 convexity is obvious. this results from the numerator being positive

and increasing towards −1. Its derivative is
1∫
η

√
1− h2

n−3
dh · (n− 1).

The denominator is positive and increases while η grows.
So, also the derivative of the total expression increases with η.
In order to assure this behaviour also for η > 0, we perform additional transfor-
mations, which are feasible only here.

(30) =

−
1∫
η

√
1− h2

n−3
2 h dh · (n− 1) +

1∫
η

√
1− h2

n−3
2 dh · η(n− 1)

(1− η2)
1∫
η

√
1− h2

n−3
2 h dh

=
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= − 1

1 + η
·

1∫
η

√
1− h2

n−3
2 · h−η

1−η dh

1∫
η

√
1− h2

n−3
2 · h dh

=

= − 1

1 + η
·


1∫
η

√
1− h2

n−3
2 · h−η

1−η dh

1∫
η

√
1− h2

n−3
2 dh

 ·


1∫
η

√
1− h2

n−3
2 · h dh

1∫
η

√
1− h2

n−3
2 dh


−1

.

The first quotient decreases while η grows. The rest gives a relation between
two expectation values. For growing η we observe a transformation of weights
in favour of higher values of h. Hence the expectation value in the last brackets
grows. For the objective figure in the first expectation value h−η

1−η the effect is just
the opposite. The larger η becomes, the steeper is the relative descent of the
density-function. So, the large values of the objective figure (variable) get less
and less weight. So the quotient (relation) decreases. The negative total term
cannot avoid increasing and also the derivative grows. 2

Now, let us quantify the improvement. Difficult is the treatment of
1∫
wn

√
1− h2

n−3
dh. In the case wn >> 0 a simple approximation is given by

1∫
wn

√
1− h2

n−3
dh ∼

1∫
wn

√
1− h2

n−3
· h dh =

1

n− 1
· (1− (wn)2)

n−1
2 . (31)

In the interval 1 > h > wn > Const. we have underestimated the integral at
most by a factor Const. Now we derive an estimation for all wn > 0 and we set
η for wn.

Lemma 3
1∫
η

√
1− h2

n−3 · h dh
1∫
η

√
1− h2

n−3
dh

≤ η + (1− η) · 2 · λn−2(ωn−1)

(n− 1)λn−1(ωn)
∀ η > 0. (32)

Proof

1∫
η

√
1− h2

n−3 · h dh
1∫
η

√
1− h2

n−3
dh

= η +

1∫
0

√
1− [η + (1− η)x]2

n−3
· x dx

1∫
0

√
1− [η + (1− η)x]2

n−3
dx

· (1− η) ≤∗

≤ η +

1∫
0

√
1− [x]2

n−3
· x dx

1∫
0

√
1− [x]2

n−3
dx

· (1− η) = η + (1− η) · 2 · λn−2(ωn−1)

(n− 1)λn−1(ωn)
.(33)
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* holds, because we know that for 0 ≤ xk ≤ xg ≤ 1 :

1− x2
k

1− x2
g

=
(1− xk)(1 + xk)

(1− xg)(1 + xg)
≤ 1− xk

1− xg

=⇒ 1− x2
k

1− x2
g

≤ (1− η)2(1− x2
k) + 2η(1− η)(1− xk)

(1− η)2(1− x2
g) + 2η(1− η)(1− xg)

=
1− [η + (1− η)xk]

2

1− [η + (1− η)xg]2
.

This means a transformation of weights in favour of higher x-values, as soon as
η decreases. The extremal case is η = 0. There the expectation value of x is the
largest. 2

Corollary 2
For η = wn > 0 the total spherical angle possesses the following lower bound:

λn−1(M̃(w))

λn−1(ωn)
≥
[
λn−2(ωn−1)

λn−1(ωn)

1

n− 1
· (1− η2)

1
2 cos ( 6 (z, ŵ⊥)) · λn−2(M(w))

]
1

η + (1− η) · µn

Remark 5
The correction derived above consists of the factor 1

η+(1−η)·µn . It will contribute

to a decrement of the total expression (19) particularly, when η << 1. In case of

η → 0 this factor will converge towards (n−1)λn−1(ωn)
2·λn−2(ωn−1)

= 1
µn

.

Remark 6
If we formulate corollary 2 for sections of the unit ball in the type known from
[4], then we obtain:

λn(KK{en,M(w)} ∩ Ωn)

λn(Ωn)
≥

≥ λn−1(Ωn−1)

n · λn(Ωn)

distance of cn
||cn|| to H(0, c1, . . . , cn−1)

η + (1− η)µn
λn−1(KH{0,M(w)}).(34)

4 Insertion into the old proof

w has been created by normalization of a vector (ˆ̂c, T, h)T such that ˆ̂c ∈ IRn−2,
where T =

√
t2 − h2. Now we try to fix ˆ̂c and t. After that we vary h (and

implicitly T ) over all possible values. w is now a function of (ˆ̂c, T, h), namely

w(ˆ̂c, T, h) =
1√

h2 + T 2 + ˆ̂c
T ˆ̂c

 ˆ̂c
T
h

 =
1√

t2 + ˆ̂c
T ˆ̂c

 ˆ̂c
T
h

 . (35)

As we already know from §3, the combination of a point w with a point q = cn
||cn||

yields an improvement factor compared with the estimation used before. This

11



factor will be called

Φ(wT
cn
||cn||

) = Φ(w(ˆ̂c, T, h)T
cn
||cn||

) = Φ(η) =

1∫
η

√
1− h2

n−3
dh

(1− η2)
n−1
2

1
n−1

with η = wT
cn
||cn||
(36)

This factor Φ can also be regarded as a monotonously decreasing function of η
such that Φ : [−1,+1]→ IR+. So we obtain the following estimation:

Em,n(S)

Em,n(Z)
≤

λn(Ωn)
λn−1(Ωn−1)

· n2 ·
t∫

0
G(h)m−n T−1

∫
IRn−1

|T − cn−1
n | f(cn) dcn dh

t∫
0
G(h)m−n h

Tt

∫
IRn−1

|T − cn−1
n |2 1

||cn||Φ(w(ˆ̂c, T, h)T cn
||cn||)f(cn)dcn dh

.(37)

For simplification we try to exploit the convexity of Φ, which had been proven
in Lemma 2. We consider a cn and cumulate each time over a quadrupel of
corresponding points cni, i = 1, 2, 3, 4, resp. over the points ξi := 1

||cni||cni. Let
cn1 := cn induce the following four points:

ξ1 :=
1

||cn||
cn1 :=

1

||cn||

 cn
cn−1
n

h

 , ξ2 :=
1

||cn||
cn2 :=

1

||cn||

 −cncn−1
n

h

 ,

ξ3 :=
1

||cn||
cn3 :=

1

||cn||

 cn
−cn−1

n

h

 , ξ4 :=
1

||cn||
cn4 :=

1

||cn||

 −cn
−cn−1

n

h

 . (38)

The barycenter of the four points cni lies in

 0
0
h

, the barycenter of the ξi is

located in h
||cn||en = 1

||cn||

 0
0
h

.

Lemma 4
We achieve a decrement of the denominator of (37), if we consistently use the
point h

||cn||en instead of cn
||cn|| in the argument of Φ.

Proof
In the denominator of (37) all points cni have the same density f . cn1 and cn2 are
even identically weighted (with exception of Φ ), because here only the (n− 1)th
coordinate is relevant. The same holds for the two other points cn3 and cn4.

Let w.l.o.g. cn−1
n ≤ 0 and ˆ̂c

T
cn ≤ 0 as well as w = 1√

h2+T 2+ˆ̂c
T ˆ̂c

 ˆ̂c
T
h

 with T > 0.
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Hence the weight of the two points ξ1 and ξ2 will be greater than that of the pair
ξ3 and ξ4, since |T − cn−1

n | > |T + cn−1
n |. Now the convexity of Φ yields:

|T − cn−1
n |2 · (Φ(wT ξ1) + Φ(wT ξ2)) + |T + cn−1

n |2 · (Φ(wT ξ3) + Φ(wT ξ4))

|T − cn−1
n |2 · 2 + |T + cn−1

n |2 · 2
≥

≥ Φ

(
wT
|T − cn−1

n |2 · (ξ1 + ξ2) + |T + cn−1
n |2 · (ξ3 + ξ4)

|T − cn−1
n |2 · 2 + |T + cn−1

n |2 · 2

)
=: Φ(wT ξ). (39)

Here ξ is a vector with the properties ξ = 0, ξn−1 ≤ 0, ξn = h
||cn|| . Since Φ

increases while η = wTx decreases, and because

wT ξ =
h2 + Tξn−1

||cn||
√
h2 + T 2 + ˆ̂c

T ˆ̂c
≤ h2

||cn||
√
h2 + T 2 + ˆ̂c

T ˆ̂c
= wT

h

||cn||
en, (40)

the replacement mentioned above yields a smaller value of the denominator. 2

Since in any case

wT
h

||cn||
en = η ≥ 0, (41)

we may make use of the following estimation:

Lemma 5
The denominator of (37) is decreased, if Φ(w(ˆ̂c, T, h)T cn

||cn||) is replaced by

1

η + (1− η)µn
=

1
wn h
||cn|| + (1− wn h

||cn|| )µn
. (42)

Lemma 6
For given t and h and after fixing h

||cn||en as reference point the worst (smallest)

improvement-factor (according to 42) is (where we varied over all values of ˆ̂c):

Ψ(h, t, r) :=
1

h·h
||cn||·t + (1− h·h

||cn||·t)µn
. (43)

Proof
The figure (42) is monotonously decreasing for growing wn. But the greatest value
of wn in (35) will be generated by

ˆ̂c = 0 and w =
1√

h2 + T 2

 0
T
h

 =
1

t

 0
T
h

 .2 (44)
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So one obtains

Em,n(S)

Em,n(Z)
≤

λn(Ωn) · n2 ·
t∫

0
G(h)m−n T−1

∫
IRn−1

|T − cn−1
n | f(cn) dcn dh

λn−1(Ωn−1)
t∫

0
G(h)m−n h

Tt

∫
IRn−1

|T − cn−1
n |2 1

||cn||Ψ(h, t, r)f(cn)dcn dh
.

(45)

5 Calculation of the Expected Number

We change to polar coordinates and use ||cn|| = r = r(cn), h, γ(cn) ∈ ωn−1, such
that

cn =

( √
r2 − h2 γ(cn)

h

)
and cn =

√
r2 − h2 γ(cn).

For abbreviation we set R := R(r, h) =
√
r2 − h2.

Analyzing (45) we exploit the fact that for fixed r(cn) we have

1

r(cn)

 ∫
ωn−1(R)

|T − cn−1
n |2dγR(cn)

 =
1

r(cn)

[
T 2 +

1

n− 1
R2
]
Rn−2λn−2(ωn−1) .

(46)
For the numerator we analoguously obtain∫
ωn−1(R)

|T − cn−1
n |dγR(cn) =

∫
cn−1
n ≤−T≤0

T + |cn−1
n |dγR(cn) +

∫
0≤T≤cn−1

n

|cn−1
n | − TdγR(cn)

+
∫

−T≤cn−1
n ≤0

T + |cn−1
n |dγR(cn) +

∫
0≤cn−1

n ≤T

T − |cn−1
n |dγR(cn)

=
∫

−T≤cn−1
n ≤T

T dγR(cn) +
∫

|T |≤|cn−1
n |

|cn−1
n | dγR(cn)

= T ·
∫

ωn−1(R)

dγR(cn) +
∫

|T |≤|cn−1
n |

|cn−1
n | − T dγR(cn)

≤
∫

ωn−1(R)

max{R, T} dγR(cn). (47)

Now we have an upper bound for our quotient

Em,n(S)

Em,n(Z)
≤

λn(Ωn) · n2 ·
t∫

0
G(h)m−n T−1

1∫
h
Rn−3r−n+2 max{T,R} dF (r) dh

λn−1(Ωn−1)
t∫

0
G(h)m−n h

Tt

1∫
h
Rn−3r−n+1(T 2 + 1

n−1
R2)Ψ(h, t, r) dF (r) dh

.

(48)
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Use of the very pessimistic estimation

T 2 +
1

n− 1
R2 ≥ 1

n− 1
·max{T 2, R2} (49)

yields

Em,n(S)

Em,n(Z)
≤

λn(Ωn)n2 (n− 1)
t∫

0
G(h)m−n T−1

1∫
h
Rn−3 r−n+2 max{T,R} dF (r) dh

λn−1(Ωn−1)
t∫

0
G(h)m−n h

Tt

1∫
h
Rn−3r−n+1 max{T 2, R2}Ψ(h, t, r) dF (r) dh

(50)
Now we are decided to partition the area of integration (r, h) ∈ [h, 1] × [0, t]
in different subareas. For each part we will estimate the corresponding integral
quotient from above. The very worst item of those upper bounds gives us -
according to the principle of pointwise comparison - an upper bound for the
complete integral-quotient.
Here a permutation of the order of integrations is recommended.

Em,n(S)

Em,n(Z)
≤ λn(Ωn)n2 (n− 1)

λn−1(Ωn−1)
·

·


t∫

0

r∫
0
G(h)m−n T−1Rn−3 r−n+2T dh dF (r)+

t∫
0

r∫
0
G(h)m−nT−1ht−1Rn−3r−n+1T 2Ψ(h, t, r) dh dF (r)+

+
1∫
t

t∫
0
G(h)m−nT−1Rn−3r−n+2Rdh dF (r)

+
1∫
t

t∫
0
G(h)m−nT−1ht−1Rn−3r−n+1R2Ψ(h, t, r) dh dF (r)

 .(51)

The partition-subsets will be:

B1 := {(r, h)|0 ≤ r ≤ t ∧ 0 ≤ h ≤ µnr} ∪ {(r, h)|t ≤ r ≤ 1 ∧ 0 ≤ h ≤ µnt}

B2 := {(r, h)|0 ≤ r ≤ t ∧ µnr ≤ h ≤ µnt}

B3 := {(r, h)|t ≤ r ≤ 1 ∧ µnt ≤ h ≤ t} ∪ {(r, h)|µnt ≤ r ≤ t ∧ µnt ≤ h ≤ t} .(52)

(The combination r ≤ µnt ≤ h cannot occur, because of r ≥ h.)
For each subarea we are able to derive bounds for Ψ(h, t, r).

Lemma 7
In B1:

Ψ(h, t, r) =
1

h·h
r(cn)·t + (1− h·h

r(cn)·t)µn
≥ 1

µn + (1− µn)µn
≥ 1

2µn
. (53)
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In B2:

Ψ(h, t, r) =
1

hh
r(cn)t

+ (1− hh
r(cn)t

)µn
≥ 1

h
r(cn)

µn + (1− h
r(cn)

µn)µn
≥ 1

h
r(cn)
{1 + µn}

≥ 1

2h
r

(54)
In B3 we have in case of t ≤ r

Ψ(h, t, r) =
1

h·h
r(cn)·t + (1− h·h

r(cn)·t)µn
≥ 1

h
t

+ (1− h
t
)µn
≥ 1

2h
t

(55)

and in case of r ≤ t

Ψ(h, t, r) =
1

h·h
r(cn)·t + (1− h·h

r(cn)·t)µn
≥ 1

h
r

+ (1− h
r
)µn
≥ 1

2h
r

. (56)

The rest of the paper deals with deriving upper bounds for (51) on the different
subareas. The corresponding integral-quotients will be denoted by Q1, Q2, Q3.

Proposition 1
In B1 = {(r, h)|0 ≤ r ≤ t ∧ 0 ≤ h ≤ µnr} ∪ {(r, h)|t ≤ r ≤ 1 ∧ 0 ≤ h ≤ µnt} we
have

Q1 ≤
4λn(Ωn)n2(n− 1)e

1
π

λn−1(Ωn−1)
√

1− µn2
. (57)

Proof

Q1 ≤
2λn(Ωn)n2(n− 1)

λn−1(Ωn−1)
·

·


t∫

0

µnr∫
0
G(h)m−nRn−3 r−n+2 dh dF (r) +

1∫
t

µnt∫
0
G(h)m−nT−1Rn−2r−n+2 dh dF (r)

t∫
0

µnr∫
0
G(h)m−n Th

trµn
Rn−3r−n+2 dh dF (r) +

1∫
t

µnt∫
0
G(h)m−n h

Ttµn
Rn−1r−n+1 dh dF (r)


≤ 2λn(Ωn)n2(n− 1)µn

λn−1(Ωn−1)
√

1− µn2
·

·


t∫

0

µnr∫
0
G(h)m−nRn−3 r−n+2 dh dF (r) +

1∫
t

µnt∫
0
G(h)m−nT−1Rn−2r−n+2 dh dF (r)

t∫
0

µnr∫
0
G(h)m−n h

r
Rn−3r−n+2 dh dF (r) +

1∫
t

µnt∫
0
G(h)m−n h

Tt
Rn−2r−n+2 dh dF (r)


≤ 2λn(Ωn)n2(n− 1)µn

λn−1(Ωn−1)
√

1− µn2
·

max

max
0≤r≤t

µnr∫
0
G(h)m−nRn−3r−n+2 dh

µnr∫
0
G(h)m−n h

r
Rn−3r−n+2 dh

, max
t≤r≤1

µnt∫
0
G(h)m−nT−1Rn−2r−n+2 dh

µnt∫
0
G(h)m−n h

Tt
Rn−2r−n+2 dh


16



≤ 2λn(Ωn)n2(n− 1)µn
λn−1(Ωn−1)

√
1− µn2

·max

max
0≤r≤t

µnr∫
0
Rn−3 r−n+2 dh

µnr∫
0

h
r
Rn−3r−n+2 dh

, max
t≤r≤1

µnt∫
0
T−1Rn−2r−n+2 dh

µnt∫
0

h
Tt
Rn−2r−n+2 dh


(Here we made use of the fact that G(h) grows with h

r
resp. with h

t
.)

The first quotient is constant with respect to variation of r.
In the second quotient R

r
· t
T

is increasing with h
t
, hence there the maximal argu-

ment is r = t. We obtain

Q1 ≤
2λn(Ωn)n2(n− 1)µn
λn−1(Ωn−1)

√
1− µn2

·

µnt∫
0
T n−3t−n+2 dh

µnt∫
0
ht−1T n−3t−n+2 dh

.

But on [0, µnt] the term Tn−3

tn−3 =
√

1− h2

t2

n−3

is almost constant, because it is 1
at h = 0, it is monotonously decreasing in the interior of the interval, and at
h = µnt we have

√
1− µ2

n

n−3

≥
√

1− 2

(n− 1)π

n−3

=
(

1− 2

π

1

n− 1

) 1
2

(n−3)

> e−
1
π .

So we can enlarge the density of the numerator by replacing it by 1
t

and diminish

the density of the denominator by replacing it by 1
t
e−

1
π . Now we have increased

the quotient and we obtain

Q1 ≤
2λn(Ωn)n2(n− 1)1

t
e

1
πµn

λn−1(Ωn−1)
√

1− µn2 1
t

·

µnt∫
0
dh

µnt∫
0
ht−1 dh

=
4λn(Ωn)n2(n− 1)e

1
π

λn−1(Ωn−1)
√

1− µn2
. 2

Proposition 2
For B2 = {(r, h)|0 ≤ r ≤ t ∧ µnr ≤ h ≤ µnt} we obtain

Q2 ≤
2λn(Ωn)n2(n− 1)

λn−1(Ωn−1)
√

1− µn2
. (58)

Proof

Q2 ≤
2λn(Ωn)n2 (n− 1)

λn−1(Ωn−1)
·

t∫
0

µnt∫
µnr

G(h)m−nRn−3 r−n+2 dh dF (r)

t∫
0

µnt∫
µnr

G(h)m−nTt−1hr−1rh−1Rn−3r−n+2 dh dF (r)

≤ 2λn(Ωn)n2(n− 1)

λn−1(Ωn−1)
√

1− µn2
, because in B2 it holds that T

t
≥
√

1− µn2. 2
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Now only the rest of the integral (h > µnt) remains for evaluation. Here we
cannot ignore the influence of the monotonously increasing function G(h), since
it forces R

r
to become very small (it pushes h to the top, i.e. to t). Therefore we

manage the growth of G(h) in another way this time. Let us take into account
the integral only after that ĥ, where G(ĥ) = (1− 1

m−n+1
). The rest of the integral

can be discussed and analyzed by simple arguments.
Consider the term for the third area B3

Q3 ≤
2λn(Ωn)n2 (n− 1)

λn−1(Ωn−1)
· (59)

·

t∫
µnt

r∫
µnt

G(h)m−nRn−3 r−n+2 dh dF (r) +
1∫
t

t∫
µnt

G(h)m−nT−1Rn−2r−n+2 dh dF (r)

t∫
µnt

r∫
µnt

G(h)m−n T h r
t r h

Rn−3r−n+2 dh dF (r) +
1∫
t

t∫
µnt

G(h)m−n Rh t
T r t h

Rn−2r−n+2 dh dF (r)

.

In [4] it is explained in detail, how to achieve a greater value than Q3 by changing
to a distribution function F , such that for a certain r the following holds:

F (r) =

{
0 r ≤ r
F (r) r > r

. (60)

We have chosen r in such a way, that there the one-point-distribution-quotient
(all weight on one radius)

t∫
µnt

G(h)m−nT−1Rn−2r−n+2 dh

t∫
µnt

G(h)m−nT−1Rr−1Rn−2r−n+2 dh
becomes maximal over r ∈ [t, 1]. (61)

Values with r ≤ t yield smaller one-point-distribution-quotients in (59), because

r∫
µnt

G(h)m−nRn−3r−n+2 dh

r∫
µnt

G(h)m−nTt−1Rn−3r−n+2 dh
≤

t∫
µnt

G(h)m−nT n−3t−n+2 dh

t∫
µnt

G(h)m−nTt−1T n−3t−n+2 dh
. (62)

Notice that T
t

on [µnt, t] decreases monotonously. The smallest values of that “ob-
jective variable” will be attained at h ≈ t. But now we perform a transformation
of weights right here according to{

Rn−3

Tn−3 for h ≤ r
0 for r ≤ h ≤ t

(monotonously decreasing with h) (63)

from the right to the left in (62). This transformation supports larger values of
T
t

and decreases the right quotient from (62).
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So we choose a r ≥ t with maximal quotient and we concentrate all weight of the
r ≤ r on the one r, i.e. we deal with the quotient

Q′3 =
2λn(Ωn)n2 (n− 1)

λn−1(Ωn−1)
·

1∫
t

t∫
µnt

G(h)m−nT−1Rn−2r−n+2 dh dF (r)

1∫
t

t∫
µnt

G(h)m−nT−1Rr−1Rn−2r−n+2 dh dF (r)

. (64)

Here, Q3 ≤ Q
′
3. This has the following reason. Because simultaneously the figure

r∫
µnt

G(h)m−nRn−3r−n+2 dh =

1∫
µnt
r

G(qr)m−n
√

1− q2
n−3

dq (65)

increases monotonously as a result of the monotony of G, we observe an increment
of weight for growing r until t. Afterwards, (r > t) the weight increases as a result
of the monotony of R

r
. Finally we know that more weight than had been before on

the radii r ∈ [µnt, r], is now relocated on the extremal radius r. So, our integral
quotient is smaller now.
We evaluate the Q′3-quotient only on [max{µnt, h̃}, t], where h̃ is chosen in such
a way, that

GF (h̃) := G(h̃) = 1− 1

m− n+ 1
. (66)

For the distribution induced by F it is sure that

GF (h̃) = 1− 1

m− n+ 1
≥ GF (h̃) because of GF (h) ≤ GF (h) ∀ h. (67)

So we have ∀ h ∈ [µnt, t] such that h < h̃ : GF (h) ≤ GF (h) ≤ 1− 1

m− n+ 1
.

(68)
The pointwise integral quotient from Q

′
3 has for fixed h the form:

1∫
t
Rn−2r−n+2dF (r)

1∫
t
Rn−1r−n+1dF (r)

≤

 1∫
t

Rn−1r−n+1dF (r)

−
1

n−1

because of

1∫
t

dF (r) = 1. (69)

Besides of that the following relation holds as a result of the definition of G:

1∫
h

Rn−1r−n+1dF (r) = (n− 1)

1∫
h

1∫
h
r

(1− σ2)
n−3
2 σdσdF (r) ≥

≥ 2 · λn−1(ωn)

λn−1(ωn)

1∫
h

1∫
h
r

(1− σ2)
n−3
2 dσdF (r) = 2[1−GF (h)]. (70)
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Hence we know for all pointwise integral-quotients

1∫
t
Rn−2r−n+2dF (r)

1∫
t
Rn−1r−n+1dF (r)

≤ {2[1−GF (h)]}−
1

n−1 . (71)

So, for all h < h̃, it is guaranteed, that the pointwise quotient cannot become
larger than

2−
1

n−1 · [m− n+ 1]
1

n−1 . (72)

Still [max{µnt, h̃}, t] remains to be analyzed.
The integral quotient restricted on that region will be denoted by Q′′3. In the area
under consideration it holds that

G(h) ≥ 1− 1

m− n+ 1
and hence [G(h)]m−n ≥ e−1.

So, the nontrivial case h̃ < t yields

Q′′3 ≤
2eλn(Ωn)n2 (n− 1)

λn−1(Ωn−1)
·

1∫
t

t∫
max{h̃,µnt}

T−1Rn−2r−n+2 dh dF (r)

1∫
t

t∫
max{h̃,µnt}

T−1Rn−1r−n+1 dh dF (r)

. (73)

Let ζ be the lower bound for the inner integration area. For each r the following
estimation is known.

Lemma 8

t∫
ζ
T−1Rn−1r−n+1 dh

t∫
ζ
T−1Rn−2r−n+2 dh

≥ 1

r

√
1

3
(r2 − ζ2). (74)

Proof

t∫
ζ

1√
t2−h2

√
r2−h2 n−1

rn−1 dh

t∫
ζ

1√
t2−h2

√
r2−h2 n−2

rn−2 dh
≥

t∫
ζ

h√
t2−h2

√
r2−h22

r2
dh

t∫
ζ

h√
t2−h2

√
r2−h2
r

dh
≥ 1

r


t∫
ζ

h√
t2−h2 (r2 − h2) dh

t∫
ζ

h√
t2−h2 dh


1
2

=

=



√
t2−ζ2∫
0

(r2 − t2 + u2)du

r2

√
t2−ζ2∫
0

du



1
2

=

[
1
3
(t2 − ζ2) + (r2 − t2)

] 1
2

r
=

[
1
3
(r2 − ζ2) + 2

3
(r2 − t2)

] 1
2

r
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In the first row it is exploited, that the expectation value of an objective-variable
decreases, when the density is multiplied with a function, which is monotonously
decreasing with the objective variable. 2

Insertion into (73) yields

Q′′3 ≤
2e
√

3λn(Ωn)n2(n− 1)

λn−1(Ωn−1)
·

1∫
t

t∫
ζ
T−1Rn−2r−n+2 dh dF (r)

1∫
t

t∫
ζ
T−1Rn−2r−n+2 dh

√
r2−ζ2
r

dF (r)

. (75)

If we replace t by τ in the upper limit of the integration interval and if we let
move τ down to ζ+, then the following term increases.

2e
√

3λn(Ωn)n2(n− 1)

λn−1(Ωn−1)
·

1∫
t

τ∫
ζ

1√
t2−ζ2

Rn−2r−n+2 dh dF (r)

1∫
t

τ∫
ζ

1√
t2−ζ2

Rn−2r−n+2 dh

√
r2−ζ2
r

dF (r)

(76)

This is true, because we have carried out a transformation of weights in favour
of smaller values of r . We conclude

Q′′3 ≤
2e
√

3λn(Ωn)n2(n− 1)

λn−1(Ωn−1)
·

1∫
t

1√
t2−ζ2

√
r2−ζ2

n−2

rn−2 dF (r)

1∫
t

1√
t2−ζ2

√
r2−ζ2

n−2

rn−2

√
r2−ζ2
r

dF (r)

=

=
2e
√

3λn(Ωn)n2(n− 1)

λn−1(Ωn−1)
·

1∫
t

√
r2−ζ2

n−2

rn−2 dF (r)

1∫
t

√
r2−ζ2

n−1

rn−1 dF (r)

≤ 2e
√

3λn(Ωn)n2(n− 1)

λn−1(Ωn−1)
·max

{
(m− n+ 1)

1
n−1 ,

1√
1− µn2

}
. (77)

Proposition 3
In B3 = {(r, h)|t ≤ r ≤ 1 ∧ µnt ≤ h ≤ t} ∪ {(r, h)|µnt ≤ r ≤ t ∧ µnt ≤ h ≤ t} it
is true that

Q3 ≤
2e
√

3λn(Ωn)n2(n− 1)

λn−1(Ωn−1)
·max

{
(m− n+ 1)

1
n−1 ,

1√
1− µn2

}
. (78)

Theorem 2

Em,n(S) ≤
√

2π·2·e·
√

3·(n)
3
2 ·(n−1)·max

(m− n+ 1)
1

n−1 ,
1√

1− 2
(n−1)π

 . (79)
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Proof

Em,n(S) ≤ 2e
√

3λn(Ωn)n2(n− 1)

λn−1(Ωn−1)
·max

{
(m− n+ 1)

1
n−1 ,

1√
1− µn2

}

≤
√

2π

n
· n2 · (n− 1) · 2 · e ·

√
3 ·max

(m− n+ 1)
1

n−1 ,
1√

1− 2
(n−1)π

 .
This holds, because the constants in proposition 3 turn out to be maximal. 2
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