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Abstract. Interactive theorem provers typically use abstract algebraic
data structures to focus on algorithmic correctness. Verification of pro-
grams in real programming languages also has to deal with pointer struc-
tures, aliasing and, in the case of C, memory management. While progress
has been made by using Separation Logic, direct verification of code
still has to deal with both aspects at once. In this paper, we show a
refinement-based approach that separates the two issues by using a suit-
able modular structure.
We exemplify the approach with a correctness proof for red-black trees,
demonstrating that our approach can generate efficient C code that uses
parent pointers and avoids recursion. The proof is split into a large part
almost identical to high-level algebraic proofs and a separate small part
that uses Separation Logic to verify primitive operations on pointer struc-
tures.

Keywords: Hierarchical Components, Refinement, Verification, Separation Logic,
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1 Introduction

Interactive theorem provers typically use high-level algebraic data structures
like lists, sets, or trees to verify the correctness of algorithms conceptually. Code
generated from such algorithms is typically purely functional and often not very
efficient. Side effects, aliasing, or memory allocation are absent, except when a
heap with allocation and deallocation is explicitly modeled, which is rarely done
when studying algorithmic correctness.

However, verification of programs in real programming languages has to deal
with the fact that all non-primitive data types are represented as pointer struc-
tures, and destructive operations are often used to improve efficiency. The most
popular concept to handle these issues is to use Separation Logic, which moves
the specification of a heap structure into the semantics of the logic. Provers that

⋆ Partly supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von
Flash-Dateisystemen” (grants RE828/13-1 and RE828/13-2).



target the verification of C, Java, or Rust programs like VeriFast [20] or Viper [26]
are directly based on it. Many interactive theorem provers now support a library
for Separation Logic similar to the one we give in Section 3.2.

However, direct verification of algorithms given e.g. in C still suffers from the
complexity of conceptual correctness arguments being intertwined with questions
about pointer aliasing and side effects.

This paper contributes an approach that modularizes the verification effort of
a library implementation of sets by red-black trees into two independent parts:
a bigger one that deals with functional correctness on an algebraic level, and
a smaller part that is independent of the first and deals with mapping small
operations (like removing a leaf or rotating at a path) on abstract data structures
to operations on pointer structures. The approach separates the use of Separation
Logic from the proof of conceptual correctness by restricting it to the latter part.
It is based on components with sequential programs linked by data refinement,
supported natively in our theorem prover KIV.

We have chosen red-black trees as they offer good worst-case guarantees
for the operations search, insert and remove. Their verification on an algebraic
level is already non-trivial. However, our goal was to verify an efficient version
such that the resulting code is on par with standard C code implementations.
This mandates that our final implementation uses parent-pointers and avoids
recursion to be as efficient as possible. Our implementation is based on the
pseudocode given in [9].

Red-black trees are also useful in the Flashix project [5], where we have im-
plemented and verified a realistic file system for flash memory which can be used
as a kernel module in Linux. There, red-black are used to balance erase counts
of raw flash blocks in the wear leveling algorithm. Since verification there is also
based on the concept of components connected by refinement, we could replace
an unverified external C library with the verified implementation described here.

This paper is organized as follows. Sec. 2 introduces characteristic features of
our theorem prover KIV that comprises both a specification and programming
language. Sec. 3 presents the algebraic data types to describe a red-black tree
and the explicit heap that is used to reason about pointer-based programs. Sec. 4
explains how a software system can be broken down into hierarchical components
that refine an abstract system description to a realistic implementation.

Sec. 5 highlights the implementation split into a common part and elementary
operations that can also be performed on a pointer structure. Sec. 6 follows
with an overview of some key properties for verification. Sec. 7 presents existing
approaches and draws a comparison to them.

2 Background

To develop the necessary formal specifications and prove that our implementa-
tion follows them, we use the theorem prover KIV, which provides interactive
verification using a sequent calculus with explicit proof trees. The basic logic of
the specification language is higher order logic (HOL), recently extended from



monomorphic to polymorphic types. KIV supports an imperative programming
language with recursive procedures and nondeterminism. Details on the syntax
can be found in [33], Fig. 4 shows a procedure definition. The arguments of a
procedure proc#(in; ref ; out) are grouped into sequences of input, reference,
and output parameters. KIV does not support global variables, these must be
added explicitly as reference parameters.

Reasoning about sequential programs in KIV is done with a weakest precon-
dition calculus, borrowing notation from Dynamic Logic (DL) [18], including its
two standard modalities: the formula [α]φ (box ) denotes that, for every termi-
nating run of α, the final state must satisfy φ, corresponding to the weakest lib-
eral precondition wlp(α,φ). The formula ⟨α⟩φ (diamond) guarantees that there
is a terminating execution of α that establishes φ. Finally, the formula ⟨|α|⟩φ
(strong diamond) states that all runs of α terminate with a final state satisfing
φ (weakest precondition wp(α,φ)). Partial and total correctness of a program
α with respect to pre-/post-conditions pre/post is written pre → [α] post and
pre → ⟨|α|⟩ post, respectively. The calculus is more expressive than standard
Hoare-like program logics since it allows to combine and nest program formu-
las. This allows e.g. to establish a relation between two programs, which will be
useful in defining proof obligations for refinement, cf. Sec. 4.

The main proof technique for verifying program correctness in KIV is sym-
bolic execution. Each symbolic execution step calculates the strongest postcondi-
tions of the first program statement from the preconditions. When the symbolic
execution of the program is completed, the goal is reduced to predicate logic,
where proof automation is achieved via rewrite rules and heuristics, see [33].

3 Structured Specifications of Algebraic Data Types

In KIV, structured algebraic specifications are used to build a hierarchy of data
type definitions. Primitive data types may be generated freely or non-freely.
Specifications can be augmented by additional functions and combined using
standard structuring operations like enrichment, union, and renaming. It is also
possible to specify parameterized data types that can be instantiated explicitly.

3.1 Algebraic Red Black Tree Definition

The standard approach for proving the correctness of algorithms using complex
data structures is to specify the data structures algebraically. Red-black trees
[17,35] can be defined as a polymorphic free data type rbtree(′a), using a constant
constructor SENTINEL (representing the leaves of the tree) and a non-constant
constructor Node.

rbtree(′a) := SENTINEL | Node(.elem : ′a ; .color : rbcolor ;

.left : rbtree(′a) ; .right : rbtree(′a))

Nodes have a color (either RED or BLACK, defined by the enumeration type
rbcolor), a left and a right subtree, and an element of generic type ′a. These



fields can be accessed via the postfix selector functions .elem, .color, .left,
and .right. A type variable ′a for the type of elements stored in the tree is used
in the definition. So in principle, the data type can be used with any element
type. However, to express the properties of binary search trees, a generic, totally
ordered elements type tord (with <) is used. The resulting tree type is written
rbtree(tord). The specification can be instantiated later as needed by suitable
types, e.g. natural numbers or integers. When such a parameter is instantiated,
KIV generates proof obligations to ensure that the instantiated type satisfies the
assumed properties (in this case, a total order over the type).

For a free data type specification, KIV generates all necessary axioms, as
well as update functions (written e.g. rbt.color:= newcol), including their def-
initions. Note that selector (and update) functions are not given axioms for all
arguments: SENTINEL.color is left unspecified. The semantic function in a model
is still total, and SENTINEL.colormay be any value, following the standard loose
approach to semantics. However, KIV attaches a domain to the function for use
in programs. Calling .color outside of its domain in a program (here: with
SENTINEL, where it is “undefined”) will raise an exception. Therefore, proving
the correct use of the data type in programs includes showing the absence of such
exceptions, i.e. one has to prove that all operations are called with arguments
within their respective domain.

3.2 Modeling the Heap and Separation Logic

Reasoning about destructive pointer algorithms requires to model the heap, ei-
ther implicitly as part of the semantics of formulas or explicitly as an algebraic
data type. In KIV, the latter approach is realized: heaps are specified as a poly-
morphic non-free data type heap(′a). A heap can be considered a partial function
mapping references r (of type ref (′a)) to objects obj of a generic type ′a, where
allocation of references is explicit and the reference type contains a distinguished
element null that is never allocated (representing the null pointer).

The heap(′a) data type is inductively generated by the constant ∅ representing
the empty heap, allocating a new reference r (written h ++ r), or updating an
allocated location r with a new object obj (written h[r := obj ]). Again, the object
type is not specified further so that the heap specification can be used with any
concrete object type (for red-black trees, the type rbnode represents individual
nodes of the tree, see Sec. 5).

A predicate r ∈ h checks whether a reference is allocated in a heap, and a
function h[r ] is used to lookup objects in a heap (this corresponds to derefer-
encing a pointer). References can also be deallocated by the function h -- r .

Similar to the selector functions of free data types, the constructor functions
as well as lookup and deallocation are partial functions in order to specify valid
accesses to the heap: accesses to the heap with the null reference are always
undefined (r ̸= null), allocation is allowed with a new reference (¬ r ∈ h) only.
Lookup, update, and deallocation require an allocated reference r ∈ h.

In KIV, all parameters of procedures are explicit. Hence, when reasoning
about pointer-based programs, the heap must be an explicit parameter of the



program as well. To facilitate the verification of such programs, we built a simple
library for Separation Logic (SL) [32] in KIV, similar to the libraries of Isabelle
[24] and Coq [8]. We give some information, to explain the notation used in the
following. SL formulas are encoded using heap predicates hP : heap(′a) → bool .
A heap predicate describes the structure of a heap h. At its simplest, h is the
empty heap emp:

emp(h) ↔ h = ∅
The maplet r 7→ obj describes a singleton heap containing only one reference
r mapping to an object obj . It is defined as a higher-order function of type
(ref (′a)× ′a) → heap(′a) → bool :

(r 7→ obj )(h) ↔ h = (∅ ++ r)[r := obj ] ∧ r ̸= null

More complex heaps can be described using the separating conjunction hP0 * hP1

asserting that the heap consists of two disjoint parts, one satisfying hP0 and one
satisfying hP1 , respectively. Since it connects two heap predicates, it is defined as
a function with type (heap(′a) → bool)× (heap(′a) → bool) → (heap(′a) → bool):

(hP0 * hP1 )(h) ↔ ∃ h0, h1. h0 ⊥ h1 ∧ h = h0 ∪ h1 ∧ hP0 (h0) ∧ hP1 (h1)

Besides the basic SL definitions, the KIV library contains various abstractions of
commonly used pointer data structures like singly-/doubly-linked lists or binary
trees. These abstractions allow to prove the functional correctness (incl. memory
safety) of algorithms on pointer structures against their algebraic counterparts.
We will demonstrate this approach for a red-black tree implementation.

4 Modular Software Systems

For the development of complex software systems in KIV, we use the concept
of hierarchical components combined with the contract approach to data refine-
ment [10]. A component is an abstract data type (ST, Init, (Opj )j∈J) consisting
of a set of states ST , a set of initial states Init ⊆ ST , and a set of operations
Opj ⊆ Inj × ST × ST × Outj . An operation Opj takes inputs Ini and outputs
Outj and modifies the state of the component. Operations are specified with
contracts using the operational approach of ASMs [6]: for an operation Opj , we
give a precondition prej and a program αj in the form of a procedure declaration
opj#(inj ; st; outj ) pre prej {αj}. The program αj is given in KIV’s impera-
tive programming language and establishes the postcondition of the operation.
Instead of defining initial states directly, we also give a procedure declaration
init#(ininit; st; outinit) {αinit}.

Components are distinguished between specifications and implementations.
The former are used to model the functional requirements of a (sub-)system and
are typically kept as simple as possible by heavily utilizing algebraic functions
and non-determinism. The approach is as general as specifying pre- and post-
conditions since the program choose st′, out′ with post(st′, out′) in st, out :=
st′, out′ can be used to establish any postcondition post over state st and output



out. Implementations are typically deterministic and use constructs only that
allow generating executable Scala or C code from them with our code generator.

The functional correctness of implementation components is then proven by a
data refinement of the corresponding specification components (we write C ≤ A if
C = (ST C, InitC, (OpCj )j∈J) is a refinement of A = (ST A, InitA, (OpAj )j∈J) where
C and A have the same set of operations J). Proofs for such a refinement are
done with a forward simulation R ⊆ ST A × ST C using commuting diagrams.
This results in correctness proof obligations for all j ∈ J (an extra obligation
ensures that InitA and InitC establish matching states).

R(stA, stC) ∧ preAj (st
A)

→ ⟨|opC
j#(inj ; st

C; outj )|⟩ ⟨opA
j#(inj ; st

A; out′j )⟩(R(stA, stC) ∧ outj = out′j )

Note that the obligation refers to two procedure runs (opC
j# and opA

j#), string-
ing together a strong diamond and a diamond program formula. Thus, stA and
stC in the postcondition of the obligation refer to the changed states after the
runs of opA

j# and opC
j#, respectively. Informally, one has to prove that, when

starting in R-related states, for each run of an operation opC
j# of C, there must

be a matching run of opA
j# of A that maintains R(stA, stC) with the same inputs

and outputs. The obligation also requires to show that the precondition preAj (st
A)

is strong enough to establish the precondition preCj (st
C) if R(stA, stC) holds. This

obligation is implicit as the call rule creates this premise for a procedure with a
precondition.

For each component, invariant formulas inv(st) over the state st can be
given, which must be maintained by all (Opj )j∈J . This simplifies (or even makes
it possible in the first place) to prove the correctness proof obligations of a
refinement as invariants invA(stA) and invC(stC) are added as assumptions. If
an invariant is given for a component, additional proof obligations for all its
operations are generated that ensure that the invariant holds. Additionally, one
can give an individual postcondition postj (st) for an operation, which extends
its invariant contract.

prej (st) ∧ inv(st) → ⟨|opj#(inj ; st ; outj )|⟩ (inv(st) ∧ postj (st))

These invariant contracts can be applied when proving the refinement proof
obligations and may further simplify the proofs since symbolic execution of the
operation can be avoided.

A

AC

i

i i+1

Fig. 1: Data refinement
with subcomponents.

To facilitate the development of larger systems, we
introduced a concept of modularization in the form of
subcomponents. A component (usually an implementa-
tion) can use one or more components as subcompo-
nents (usually specifications). The client component
cannot access the state of its subcomponents directly
but only via calls to the interface operations of the
subcomponents. Using subcomponents, a refinement

hierarchy is composed of multiple refinements like in Fig. 1. A specification com-
ponent Ai is refined by an implementation Ci (dotted lines in Fig. 1) that uses



state rbs : set(tord)

init#()
initialization

{ rbs := ∅ }

insert#(elem; ; exists)
interface

{ exists := elem ∈ rbs, rbs := rbs ∪ {elem} }

remove#(elem; ; exists)
interface

{ exists := elem ∈ rbs, rbs := rbs \ {elem} }

isEmpty#(; ; empty)
interface

{ empty := rbs = ∅ }

lookup#(elem; ; exists)
interface

{ exists := elem ∈ rbs }

getMin#(; ; elem)
interface
pre rbs ̸= ∅

{ elem := rbs.min }

Fig. 2: Abstract representation of red-black trees: the component RBSET.

a specification Ai+1 as a subcomponent ( in Fig. 1, we write Ci(Ai+1) for
this subcomponent relation). This pattern then repeats in the sense that Ai+1

is refined further by an implementation Ci+1 that again uses a subcomponent
Ai+2 and so on. If it is not the top-level specification, Ai may also be used as a
subcomponent of an implementation Ci−1. The complete implementation of the
system then results from composing all individual implementation components
C0(C1(C2(...))). In [13] we have shown that C ≤ A implies M(C) ≤ M(A) for a client
component M which ensures that the composed implementation is a correct re-
finement of its top-level specification A0, i.e. C0(C1(C2(...))) ≤ A0. This allows
us to divide a complex refinement task into multiple, more manageable ones, as
demonstrated in the following sections for a red-black tree implementation.

5 Implementation of Destructive Red-Black Trees

Red-black trees are typically used as an efficient data structure for ordered sets
(or multisets). In order to abstract from the complex implementation details
of red-black trees (traversal, rotations, . . . ), the simple specification component
RBSET given in Fig. 2 can be used. Other components then can use RBSET as
a subcomponent, which simplifies formal reasoning about the client component
while the resulting system still uses an efficient heap implementation.

RBSET

RBTBASICRBTREE

RBTHEAP

Fig. 3: The refinement hierarchy
for red-black trees.

The state of RBSET is just a set of elements
that are totally ordered. It is determined by
a state variable rbs of type set(tord), where
set is a polymorphic non-free data type (cf.
Sec. 3.2), and a strict total order is given
over elements of type tord . Initially, rbs is
empty (∅), and it can be modified by inserting
or removing elements elem (by insert# and
remove#). Additional interface procedures
check whether the set is empty and whether
an element is in the set. The minimal element



can be selected. In Fig. 2 and below, state variables are omitted from the param-
eters of operation declarations but are implicitly added as reference arguments.

This component is refined by a pointer-based implementation of red-black
trees. However, this refinement is split into two parts to reduce the complexity
of the necessary reasoning about the heap done with Separation Logic. The
result is the refinement hierarchy shown in Fig. 3. In the first refinement step
RBTREE(RBTBASIC) ≤ RBSET, we show that the a red-black tree can implement
the set abstraction and that this implementation maintains all red-black tree
properties (cf. Sec. 6). But instead of using a heap data structure, we do this
using the algebraic datatype rbtree presented in Sec. 3.1.

The second refinement step RBTHEAP ≤ RBTBASIC proves that a heap im-
plementation conforms to this algebraic datatype. The goal of this separation
is to keep the operations of RBTBASIC (and hence those of RBTHEAP) as simple
as possible. The more complex algorithmic parts are handled in RBTREE while
RBTBASIC only provides an interface for primitive manipulations of rbtree. This
includes for example the insertion of an element at a given point within the tree,
or a single left- or right-rotation of one particular subtree. To specify a location
in the tree on the abstract level, we simply use paths, i.e. lists of an enumera-
tion type lrdesc := LEFT | RIGHT, and define functions like p ∈ rbt , rbt [p] and
rbt [p := rbt ′] that check a path p to be in a tree rbt , select the subtree at a path
p, or update the subtree at a path p with a new tree rbt ′, respectively.

When used directly, these operations are inefficient since RBTBASIC has to
traverse the paths at every access. However, note that we can already generate
Scala code from RBTREE(RBTBASIC): the resulting code can be used for testing
invariants and results of example runs, which often avoids unsuccessful proof
attempts of properties that do not hold in the first place.

Since the algorithms on red-black trees use at most two paths and data
refinement can refine state only (not input/output), we place two paths in the
state of RBTBASIC. The implementation in RBTHEAP replaces these paths with
two references that point to a heap storing individual tree nodes. The nodes
of the implementation use parent pointers, so shortening or lengthening one of
the two paths by one (which are operations of RBTBASIC) can be implemented
by simply dereferencing a pointer. Hence, the state of the component RBTBASIC
consists of an algebraic red-black-tree rbt using totally ordered elements tord
and two paths curPath and auxPath. Most of the time curPath is used only, but
for removal, it is necessary to store a second path auxPath that points to the
element after the deleted one.

state rbt : rbtree(tord), curPath : list(lrdesc), auxPath : list(lrdesc)

The corresponding state of RBTHEAP contains a heap rbh and a pointer rootRef
to the root of the tree, together with pointers curRef and auxRef matching
curPath and auxPath, respectively.

state rbh : heap(rbnode), rootRef : ref (rbnode),

curRef : ref (rbnode), auxRef : ref (rbnode)



remove#(elem; ; exists)
interface
post elems(rbt) = elems(rbt ‵) -- elem ∧ (exists ↔ elem ∈ elems(rbt ‵));

{
rbtbasic reset#(); // curPath := [], auxPath := []

search#(elem); // sets curPath to position of elem or to a leaf
rbtbasic isLeaf#(; ; exists); // exists := (rbt [curPath] = SENTINEL)
if ¬ exists then {

let doFix = ?, isLeftChild = ?, cond = ? in {
rbtbasic hasLeft#(; ; cond); // cond := curPath + LEFT’ ∈ rbt ;
if ¬ cond then {

rbtbasic replRight#(; ; doFix , isLeftChild);
// replace node at curPath with its right child
// and move curPath up one node

} else {
rbtbasic hasRight#(; ; cond); // analogous to hasLeft
if ¬ cond then {

rbtbasic replLeft#(; ; doFix , isLeftChild);
} else {

rbtbasic initD#(); // auxPath := curPath
rbtbasic right#(); // curPath := curPath + RIGHT

leftMost# // extend curPath to leftmost inner node
rbtbasic getElem#(; ; elem); // elem := rbt [curPath].elem
rbtbasic replRight#(; ; doFix , isLeftChild);
rbtbasic setElemD#(elem); // rbt [auxPath].elem := elem

} };
if doFix then removeFixup#(isLeftChild);
// restore balance and red-black tree properties
exists := true; }

} else exists := false // element was not found
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Fig. 4: RBTREE procedure for removing an element elem from the tree.

The heap stores nodes of type rbnode, which contain an element and a color like
the Nodes of rbtree but use references that point to their left and right subtrees.
A parent pointer is added to allow efficient traversal upwards in the tree.

rbnode := Node(.elem : tord ; .color : rbcolor ; .parent : ref (rbnode);

.left : ref (rbnode); .right : ref (rbnode))

Figure 4 lists the implementation of remove# in the RBTREE component
as an example of how this state is modified via the interface of RBTBASIC. For
primitive RBTBASIC operations, the comments in green show their implementa-
tion. All operations start by resetting the paths to point to the root (line 1, []
denotes an empty list). Then the tree is traversed to an element of interest by
performing a binary search in the procedure search#(elem). For removal, the
element to be removed (elem) is searched and curPath will be updated to point
to elem if it is found. When a SENTINEL is reached (checked in line 3), the search
is stopped and the removal is aborted with exists := false (line 26). If elem



was found, the element must be replaced in order to restore the red-black tree
properties. In case the node has a SENTINEL as left or right child (line 8 resp.
14), substitution of the node is performed simply by replacing it with the other
child. Otherwise, curPath is stored in auxPath (line 16) and is then updated by
rbtbasic right# and leftMost# to point to the next greater element. This
element is the minimal element of the right subtree of elem and thus cannot
have a left child (curPath + LEFT points to a SENTINEL). Therefore, the element
can be moved to auxPath (line 21) and the tree at curPath can be replaced with
its right child (line 20). Finally, the routine removeFixup# is called to fix up
the tree starting at curPath since the removal may have broken the red-black
tree properties and the tree may need to be rebalanced.

The RBTHEAP operations work similar to RBTBASIC but on the pointer struc-
ture. So instead of selecting a subtree at curPath, which requires a traversal
of the complete path, the node at curRef is accessed simply by dereferencing
the pointer (rbh[curRef ]). Analogously, instead of adjusting the paths, e.g. with
curPath := curPath + RIGHT, pointers are updated by following the references
of the current node, e.g. with curRef := rbh[curRef ].right.

The algorithm is essentially the same as the one in [9]. However, we implement
SENTINEL nodes as null pointers instead of using a dummy node that would be
necessary to get the parent of a leaf. This does not change the insert algorithm,
but results in remove working on the parent of the deleted node. Our algorithm
therefore has to explicitly pass the information whether the left or right child
was deleted (isLeftChild in Figure 4). On the other hand, our removeFixup#
is not called when curPath points to a leaf (and only when there is something
to fix), so the loop test in the original removeFixup# that checks for a leaf
or the root (which can only be true in the first iteration) is removed. Otherwise
the various cases and rotations are identical to [9].

6 Verification of Destructive Red-Black Trees

For verification, the functional properties must be specified as invariants of
RBTREE. In between interface calls, rbt must be a valid red-black tree (expressed
by isRbtree(rbt)) and must be a valid search tree, i.e. its elements must be
ordered (described by the predicate isOrdered(rbt)).

A non-empty red-black tree is characterized by three main properties: the
root of the tree is BLACK, both children of a RED node have to be BLACK, and
each path of any node to a leaf must contain the same number of BLACK nodes.

isRbtree(rbt) ↔
(
rbt = SENTINEL ∨

(rbt.color = BLACK ∧ redCorrect(rbt , RED) ∧ sameBlacks(rbt))
)

The predicate redCorrect(rbt , parCol) (parCol is the color of the parent node)
specifies the first two properties, sameBlacks(rbt) the last. Both are defined
recursively over the structure of the tree, as is isOrdered(rbt). As an example,



the axiom for a RED node for redCorrect is

redCorrect(Node(e, RED, left, right), parCol) ↔
parCol = BLACK ∧ redCorrect(left, RED) ∧ redCorrect(right, RED)

For the deletion of a node, additional predicates must be defined that allow
the properties to be violated at a specific path in the tree (we indicate them
by attaching D). They allow the tree to be characterized during the proce-
dure remove#. For instance, the following definition describes the violation
of redCorrect at the current node (path = []).

redCorrectD(Node(e, col, left, right), parCol, []) ↔
redCorrect(left, col) ∧ redCorrect(right, col)

While isOrdered(rbt) is maintained quite easily by the operations of RBTREE,
e.g. insert# adds the new element directly at a position that maintains the order
property, complex fixing mechanisms are necessary to re-establish isRbtree(rbt).
The main proof effort is to show that these mechanisms are actually correct. To
keep proof size manageable, we split the procedures into several subroutines,
and formulated and proved contracts for these separately. We will not go into
details of the verification of the routines (insertFixup# for insertion and re-
moveFixup# for removal), the KIV code and proofs can be found online [23].

The refinement RBTREE(RBTBASIC) ≤ RBSET is proven by the following for-
ward simulation, where elems calculates the set of elements stored in the tree.

abstraction relation rbs = elems(rbt)

This simple abstraction allows to encode the set modifications of RBSET into
the contracts of RBTREE. For example, the contract of remove# in Fig. 4
states that elem is removed from the tree (elems(rbt) = elems(rbt ‵) -- elem
where rbt ‵ denotes the value of rbt just before the execution of the proce-
dure). This modification happens within rbtbasic replRight# and rbtba-
sic replLeft#, the contracts of all other modifying auxiliary procedures, e.g. re-
moveFixup#, ensure that they do not change the set of elements stored in the
tree (elems(rbt) = elems(rbt ‵)). Similar contracts are given for the other inter-
face procedures, so the refinement is proven mainly by applying these contracts.
Note that the refinement proofs do not require the invariant isRbtree(rbt) (an
unbalanced tree would also refine a set correctly). However, they do require
isOrdered(rbt) since otherwise tree search is not correct (and thus correctness
of remove#, lookup#, and getMin# could not be shown).

For none of these proofs, it is necessary to reason about the heap implemen-
tation. In particular, the main invariant properties isOrdered and isRbtree are
proved solely over algebraic trees. What remains to prove is that the pointer-
based implementation in RBTHEAP is a correct refinement of RBTBASIC.

Most of the operations of RBTBASIC are just single assignments, for example
recolorings of the node at curPath or one of its relatives, or changes of curPath
or auxPath. RBTHEAP implements these operations analogously with lookups at
curRef and updates of curRef or auxRef by following the parent- or child-



Fig. 5: Exemplary right-rotation at a path p.

rotateRight#(p)
auxiliary
pre p + LEFT ∈ rbt ;

{
let rbt0 = rbt [p] in
let rbt1 = rbt0.left in
let rbt2 = Node(rbt0.elem, rbt0.color, rbt1.right, rbt0.right) in

rbt [p] := Node(rbt1.elem, rbt1.color, rbt1.left, rbt2)

1

2

3

4

}

Fig. 6: Procedure for right-rotations at a path p of component RBTBASIC.

pointers. The only more complex operations are rotations used in the fixing
routines. For example, Fig. 5 shows the effect of a right-rotation at some location
within the tree, i.e. at some path p (note that the left child B of A must be
an actual Node for a valid right-rotation, while the subtrees 0, 1, and 2 can
be SENTINELs). In RBTBASIC, such rotations are performed using the auxiliary
procedure rotateRight# listed in Fig. 6 (or a symmetric version rotateLeft#
for left-rotations). The operation takes a path p as an argument and performs
a right-rotation at the corresponding location. It selects the subtree at p, builds
the rotated subtree, and then inserts it at p again (the program rbt [p] := rbt0
is an abbreviation for rbt := rbt [p := rbt0] which replaces rbt [p] with rbt0 in
rbt). The RBTBASIC interface then provides operations for rotations at different
locations (at curPath, auxPath, or one of their relatives), all of which use one of
the two auxiliary procedures with respective arguments.

Figure 7 shows the corresponding implementation of RBTHEAP. Instead of a
path, it takes a reference ref as an input. The heap implementation performs
the rotation by updating the pointers of the node at ref as well as those of its
parent and left child. First, the link between the node at ref and its new left
child is established (lines 2 and 3). Then the link between the new root of the
subtree (lRef ) and its new parent is created (lines 5-8). Finally, ref is linked to
lRef as its new right child (lines 10 and 11). In contrast to the algebraic variant
in Fig. 6 (the assignment in line 4 would copy the whole tree rbt), all updates
are destructive. For example in C, the assignment in line 2 corresponds to a



rotateRight#(ref )
auxiliary
pre ref ∈ rbh ∧ rbh[ref ].left ∈ rbh;

{
let lRef = rbh[ref ].left in {

rbh[ref ].left := rbh[lRef ].right;
if rbh[lRef ].right ̸= null then rbh[rbh[lRef ].right].parent := ref ;
if lRef ̸= null then rbh[lRef ].parent := rbh[ref ].parent;
if rbh[ref ].parent ̸= null then {

if ref = rbh[rbh[ref ].parent].right
then rbh[rbh[ref ].parent].right := lRef ;
else rbh[rbh[ref ].parent].left := lRef ;

} else rootRef := lRef ;
rbh[lRef ].right := ref ;
if ref ̸= null then rbh[ref ].parent := lRef ;

1
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11

}}

Fig. 7: Procedure for right-rotations at a reference ref of component RBTHEAP.

statement ref->left = lRef->right where both ref and lRef as well as the
fields left and right are pointers to a struct rbnode.

The refinement is proven using Separation Logic (see Sec. 3.2) and the fol-
lowing abstraction that does not refer to any red-black tree properties.

abstraction relation rbh[rootRef , curPath] = curRef

∧ rbh[rootRef , auxPath] = auxRef

∧ abs(rootRef , null, rbt)(rbh)

The first two formulas assert that the references curRef and auxRef correspond
to the paths curPath and auxPath, respectively, i.e. they point to the same loca-
tions in the tree. Here, the function rbh[r , p] yields the reference reached when
traversing the heap rbh along the path p, starting at r . The heap predicate
abs : (ref (rbnode) × ref (rbnode) × rbtree(tord)) → heap(rbnode) → bool ab-
stracts the pointer tree in rbh starting at rootRef to the algebraic tree rbt . The
second ref (rbnode) argument specifies the parent of the root, for the complete
tree it is null. abs is defined recursively over the structure of rbt :

abs(rootRef , pRef , SENTINEL)(rbh) ↔ rootRef = null ∧ rbh = ∅

abs(rootRef , pRef , Node(elem, col , l , r))(rbh) ↔
∃ lRef , rRef . ( (rootRef 7→ Node(elem, col , pRef , lRef , rRef ))

* abs(lRef , rootRef , l)

* abs(rRef , rootRef , r))(rbh)

For a SENTINEL, the heap rbh must be empty. This ensures the absence
of memory leaks since one has to prove that all nodes have been deallocated
when they are removed from the tree. For a Node, the heap is separated into
three disjoint parts: a root node containing the same element and color as the
algebraic node and two trees that abstract to the left and right algebraic subtree.



The abstraction relation uses ordinary conjunction, and we found it easy to
support updating the first and second conjunct on heap updates via suitable
rewrite rules: modifications happen either at one of the two paths or below them
(in the latter case no update is necessary at all). Most Separation Logic based
provers (e.g. [20,26]) support separating conjunction only, which would require to
define several versions of abs with additional paths and references as arguments,
depending on which of them is contained in a subtree.

The proof exploits that each operation modifies at most one location inside
the tree. This allows to split up the abstraction at this location, prove that the
operation has the expected local behavior (e.g. that it rotates the referenced sub-
tree correctly), and then merge the abstraction again with the updated subtree.
For this, two fundamental theorems were formulated. The first theorem splits
the abstraction of a tree rbt at a path p.

p ∈ rbt → (abs(rootRef , pRef , rbt)(rbh) ↔
∃ pthRef , pPthRef .

( abspath(rootRef , pRef , rbt , p, pthRef , pPthRef )

* abs(pthRef , pPthRef , rbt [p]))(rbh))

The heap predicate abspath is a weaker version of abs: the tree represented in
rbh must match rbt except for the subtree starting at p. The references pthRef
and pPthRef are used to fix the references of the root of the subtree and its
parent. Thus, the split-off subtree rbt [p] can be abstracted separately using abs

with pthRef as root and pPthRef as parent reference. Conversely, reconnecting
a detached subtree rbt0 at path p with the original tree rbt is done via

( abspath(rootRef , pRef , rbt , p, pthRef , pPthRef )

* abs(pthRef , pPthRef , rbt0))(rbh)

→ abs(rootRef , pRef , rbt [p := rbt0])(rbh)

The theorem allows to attach an arbitrary tree rbt0 (that is not necessarily
related to the originally separated subtree rbt [p]). In practice, rbt0 typically
results from a simple modification of rbt [p] like a recoloration or a rotation.

7 Related Work

Our concept with components (machines) and subcomponents is similar to the
‘include’ of B machines into others (see [1], chapter 7), although our individ-
ual operations (called events in B) are not assumed to be atomic (B disallows
recursion, loops and sequential composition in operations).

Our approach is related but goes beyond the standard technique to use an
abstraction relation (or function) that maps the pointer structure to a (free)
algebraic structure, which is e.g. supported by Verifast [20] or was used e.g. in
Automath [30]. We use such an abstraction function, but only to verify the core
refinement from RBTBASIC to RBTHEAP.

We are aware of two alternatives to our approach. First, there is Cogent
[28] which restricts programs by using a linear type system to propagate data



structures linearly. This allows to generate destructive code immediately but
places severe limitations on the programming language.

Another alternative is to optimize code with a code generator that transforms
algebraic types into pointer structures and tries to optimize non-destructive op-
erations to destructive ones using checks for linear use. The approach developed
in [25] follows this idea. It additionally generates proof obligations showing that
the destructive implementation behaves the same way as the abstract one. It
may be possible to encode our approach into this approach, as it is also based on
data refinement, though the approach seems to be targeted towards individual
algorithms, not (state-based) abstract data types.

Our code generator in KIV works similarly: it would transform trees into a
tree-shaped pointer structure and use destructive updates on the pointer struc-
ture whenever a data flow analysis suggests this is possible (current work is
to optimize this). However, we currently do not verify the correctness of these
transformations; this is up to future work. The strategy is often sufficient to get
efficient code. However, without the refinement of RBTBASIC to RBTHEAP, paths
would be represented as doubly- linked lists, which would still be inefficient.

We are aware of several other works that verify red-black trees. Partial verifi-
cations, where the emphasis is on automation, are [7] (proving insertion without
establishing that on every path to a leaf the number of black nodes must be
equal) and [27] (just proving the ordering property). [2, 3, 16, 29] are complete
verifications of algebraic implementations that produce functional (nondestruc-
tive) code. Our approach follows that idea but expands it to refine the functional
to an imperative (destructive) implementation.

There are two complete verifications of destructive code we are aware of. One
is described in the recent paper [4] using VerCors. The implementation is directly
in Java, and the main routines use recursion and no parent pointers. But typical
C implementations of red-black trees do without a recursion stack, so they are
somewhat more efficient. Recursion simplifies the proofs considerably, as then a
recursive call transforms a red-black subtree into another one and an invariant
that combines isRbtreeD on our upper level with abspath from the lower level
can be avoided. With VerCors being an automatic verifier backed by an SMT
solver, proofs are guided by adding suitable annotations to the programs instead
of directly interacting with a GUI during a proof as in KIV. Overall, the user
input necessary for the final proof seems somewhat smaller in VerCors than in
KIV, but we expect that finding why a proof fails to be significantly harder since
SMT solvers do not give a reason why a goal is not provable, while KIV’s proof
trees allow inspecting residual goals that have been maximally simplified.

From the data given, the effort seems to have been somewhat higher than
with our approach. The case study described also includes the verification of
an extra concurrent operation that merges two red-black trees using lists as
an intermediate representation. Verification of our case study took two regular
students of computer science (who had done a KIV course) two months each
under the mentoring of one of the authors.



The other complete verification of a pointer-implementation of red-black trees
we are aware of is mentioned in [36] and can be found in Isabelle’s AFP library.
The version verified is derived from [22], which is a version of red-black trees
intended to be used in a functional language with garbage collection, originally
Haskell (the Scala-Library also uses it to implement immutable sets). This ver-
sion of the algorithm uses recursion and no parent pointers. For verification,
it has been modified to use destructive updates instead of copying the modi-
fied branch. The algorithm has a simpler, different rebalancing strategy than
the original algorithm, making it less efficient than the original algorithm: when
backing out of the recursion, a check for rebalancing is necessary on every level,
resulting in logarithmic effort for fixing the tree. The original algorithm however
has only one of four cases, where fixing a leaf after an insert (one in six cases for
delete) has to traverse upwards to fix the parent. The resulting geometric series
(1 + 1/4 + 1/16 + . . . = 4/3 nodes are traversed upwards on average) results
in constant average complexity for fixing the tree (see also [21], Chapter 7.4ff).
That a full traversal upwards is unnecessary is the main reason, why red-black
trees are more efficient than other versions of search trees like AVL trees, that
need rebalancing checks on every level. We were unable to get a figure on the
proof effort spent for the verification in [36], the automation using an automated
saturation prover called auto2 implemented on top of Isabelle however is quite
impressive. Apart from specific setup instructions for the prover, the proof seems
to be fully automated requiring just a few lemmas.

Partial verification of destructive code can also be found in [12] (C code)
and [11] (SPARKS, a subset of Ada). Both have analyzed insertion only and
left away the sameBlacks property. The last approach is interesting since it uses
an array-representation of red-black trees that would be suitable for real-time
use (the array needs to be large enough to hold all tree nodes). It should not
be too difficult to replace our heap-based representation in the lower refinement
with their array-based one, exploiting that we do not have to re-verify any of
the invariants of red-black trees to do this.

8 Conclusion

In this paper, we have demonstrated a refinement-based approach that allows
to separate considerations of algorithmic correctness and of using destructive
updates, aliasing and memory allocation into two individual refinements. The
two core ideas are to abstract pointers as used by the algorithm to paths over an
algebraic structure, and to use an interface that encapsulates primitive manipu-
lations on abstract structures and paths. Verification is then split into functional
correctness of the relevant algorithms on a purely algebraic level and a small part
that shows that primitive operations can be correctly refined to pointer updates.

Our approach is not intended to compete with the best-automated techniques
but to demonstrate that a clean separation of functional and pointer correctness
is possible without compromising the final algorithm’s efficiency. Our approach
also should enable using one of the many techniques that automate proofs, e.g.



[31] for Separation Logic used in the lower refinement, or [15] for the algebraic
trees of the upper refinement.

KIV’s code generator generates C code from this implementation that is
available together with all KIV specifications and proofs online [23].

The approach is successful in generating optimal code: it runs as fast (within
a margin of ±5%) of the code in stdc++ library when elements are inserted,
looked up, or deleted randomly (the code also uses the rotations as given in [9]
to fix red-black trees after inserting/deleting elements). For comparison, we also
programmed the recursive red-black algorithms verified in [36] in KIV (without
any modular structure or verification) and generated C code from them. The
resulting code runs ca. 10% slower than our code. The KIV programs, resulting
C code, and the benchmarks are included in the Web presentation [23] too.

There are two features we have not implemented compared to this code: one
is to have an additional pointer to the minimal and maximal element. As a
consequence accessing the maximum skips traversing the tree to the rightmost
leaf, so inserting (or removing) elements in ascending order is still 10-20% faster.
The algorithm in the library also has the option to cache deleted nodes to avoid
deallocation and reallocation. We have not used this option in the comparison.
Our current modularization, however, is certainly able to add these features.

We currently work on applying the approach to other data structures, namely
(wandering) B+ Trees [19], which are the last not yet verified component of our
flash filesystem [5], where we so far have achieved partial results [14] only.

Though we have defined an extension of the component concept to concur-
rency [34], it is future work to research how the approach given here could be
extended to concurrent data structures.
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