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Abstract
The parameters of a quantum system grow exponentially with the number of involved quantum
particles. Hence, the associated memory requirement to store or manipulate the underlying
wavefunction goes well beyond the limit of the best classical computers for quantum systems
composed of a few dozen particles, leading to serious challenges in their numerical simulation.
This implies that the verification and design of new quantum devices and experiments are
fundamentally limited to small system size. It is not clear how the full potential of large quantum
systems can be exploited. Here, we present the concept of quantum computer designed quantum
hardware and apply it to the field of quantum optics. Specifically, we map complex experimental
hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit.
We show explicitly how digital quantum simulation of Boson sampling experiments can be
realized. We then illustrate how to design quantum-optical setups for complex entangled photonic
systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives.
Since photonic hardware is already on the edge of quantum supremacy and the development of
gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for
the future of quantum device design.

1. Introduction

Photonic systems are highly flexible and controllable for small to medium-sized quantum systems, and offer
resilience against decoherence [1, 2]. These properties make them a first choice in many proof-of-concepts
in quantum information science. Examples include observations of fundamental quantum properties, such
as indefinite causal orders [3], early demonstrations of Wigner’s friend paradox [4, 5], high-dimensional
quantum communication systems such as quantum key distribution [6, 7], entanglement swapping [8],
quantum teleportation [9] and experimental quantum machine learning [10, 11] and new propositions for
quantum technologies [12–17].

While quantum experiments historically have been designed by experienced human experts, their
non-intuitive nature has led to the emergence of computational methods for designing quantum
experiments [18–25]. However, as the dimension of state space grows exponentially with the number of
photons, this approach is limited to small systems. Consequently, while the abilities of photonic hardware
constantly improve [26–30], there is no efficient computational method that can take advantage of the vast
resources provided by these systems. Furthermore, photonic quantum supremacy experiments are close to
the point where they cannot be calculated with classical hardware [31]. How can one verify their correct
execution when such calculations step beyond the point of classical calculation?

Here we illustrate a solution to solve the verification and the design processes of quantum optical setups.
We demonstrate how quantum optical systems can be recast in the language of digital quantum computers
and use the state-of-the-art simulators of quantum computers to design experiments for complex
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Figure 1. Quantum circuits for multi-photonic high-dimensional quantum optics. Optical paths are denoted by a, b, c while
internal mode numbers are denoted by subscripts. Here we use the orbital angular momentum of photons as a high dimensional
degree of freedom. In general, this approach can be applied to any discrete high dimensional quantum numbers. Each internal
mode is represented by several qubits representing the photon occupation number (see appendix A for additional details).
(a) Example of a BS used in figure 3 where each internal mode is represented by one qubit. The general multi-photon BS (see
figure 4) is constructed with a Trotter expansion and is too large to show here. (b) Direct emulation of a high-dimensional
entangled photon state created by SPDC in a nonlinear crystal. (c) Mode dependent phase shifter (DP) implemented as multiple
phase shifters acting on the corresponding modes. (d) Mode independent phase shifter where the photonic occupation number is
encoded in three-qubit binary representation (up to 7 photons per mode). (e) Cyclic approximation to a mode shifter
(hologram) implemented by swap gates (each swap denotes a swap operation on all the qubits which represent the mode). (f)
Mirror implemented by swap gates.

multi-photon entangled quantum systems. Furthermore, we showcase the quantum simulation for one of
the first demonstrations of Boson sampling [32], illustrating that digital quantum computers can function
as witnesses for photonic quantum supremacy experiments that are expected in the near future.

Due to the rapid progress in the development of gate based quantum computers in the recent years
[33, 34], we estimate that the design of photonic hardware with quantum computers will become a realistic
scenario in the near future. In the meantime, the optimization strategies presented here could also serve as
valuable benchmarks complementary to quantum chemistry [35]. While the latter mainly focuses on
determining an energy for an unknown ground state, the optimization of an optical setup focuses on
determining its parameters for a desired target quantum state.

We propose the design and simulation of general quantum hardware as a new application for quantum
computers. In this manuscript, we focus on photonic quantum hardware by translating optical elements
and measurement techniques into gate based quantum computers language. In a separate paper, some of us
target the design of efficient superconducting qubit architectures by translating the corresponding
Hamiltonians into a digital quantum circuit [36].

2. Quantum simulation of optical elements

In the following, we will explain the mapping from quantum optics onto quantum circuits. A quantum
optical setup consists of multiple optical path modes (paths) which can be occupied by multiple photons
with additional internal degrees of freedom (modes) like for example orbital angular momentum of light
[37–39]. The photonic occupation number of each internal degree of freedom is represented by a set of
qubits. We will use binary encoding and we refer to the reference [40] for detailed analyses of other
encodings (see also references [41, 42] for unary encodings). In this representation, the number of qubits
needed to represent an optical setup is given by

Nqubit = Nmodes × Npaths × �log2

(
Nγ

)
�,

2
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Figure 2. Quantum computer-aided design of quantum optics hardware: proposed usage of the developed techniques in
combination with topological optimizers like MELVIN [18] or THESEUS [45]. Within those optimizers, the (classical)
computation of the involved fidelities is currently the computational bottleneck. In this work we propose to replace this classical
subroutine with a quantum algorithm that can evaluate and optimize the corresponding fidelities.

where Nγ is the maximum number of photons in one mode and we have used the integer ceiling function.
With this encoding, a basis state of the photonic setup can be represented as

⊕
p

⊕
m |nm,p〉 where p, m, n

represent path, mode and number of photons, respectively. Take as an example a setup with Npaths = 1 path,
and Nmodes = 3 internal degrees of freedom, denoted as {−1, 0, 1}, where each can be occupied by up to
Nγ = 3 photons. A state in this setup can then be represented by Nqubit = 6 qubits. Assuming that 2 of the
photons occupy the mode −1 and 1 photon occupies mode 1, the state can then be denoted as

|2−1,a, 00,a, 1+1,a〉
qubits−−−→|10〉−1,a ⊗ |00〉0,a ⊗ |01〉+1,a.

These photonic states can be transformed by optical elements which can be represented by digital quantum
gates. In figure 1 we show gate based representations of important optical elements for high-dimensional
quantum optics and provide further details in the appendix.

2.1. Implementation
One of the advantages of simulating the optical setups on a digital quantum computer is the direct access to
gradients of parametrized elements within a fully automatically differentiable framework [43, 44]. This
fulfills all necessary conditions to replace the classical simulation module of topological optimizers such as
theseus [45] as illustrated in figure 2. We will illustrate the underlying framework here using the phase
shifter of figure 1 as an explicit example. The phase shifter is shifting the relative phase of the photonic state
depending on the number of photons occupying the photonic path onto which the element acts. Using the
Bosonic number operator, a phase shifter acting on path mode a can then be written as

PS (φ) = eia†a (1)

with the associated relative phase eiφ. With the mapping of figure 5 an n-qubit implementation of the phase
shifter can be realized by a collection of single qubit operations

P (φ)
n−qubits−−−−−→S

(
2n−1φ

)
⊗ S

(
2n−2φ

)
⊗ . . . S (φ) , (2)

where the S(φ) = e−i φ2 (σz−1) gate adds the phase eiφ to the state |1〉 and leaves |0〉 invariant (see the appendix
for more details). In the optimization of a quantum optical setup, we aim to optimize the fidelity of the
state, created by the setup, with a specific target state. In the next section (equations (3) and (5)) we will
construct this fidelity as a function of expectation values E = 〈H〉U(φ) depending on the phase shifter
parameter φ through the unitary U(φ) that encodes the quantum optical setup, and a Hamiltonian H that
encodes the measurements. In order to compute the gradient of the fidelity with respect to the phase shifter
parameter φ, we need the gradients of the expectation value ∂φE. Following Schuld et al [43] those gradients
can be obtained with the parameter-shift rule, which allows the evaluation of the analytical gradients via a
finite-difference like procedure as ∂φE = E(φ− π

4r ) + E(φ+ π
4r ). In order for this technique to be

3
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Figure 3. Optimization of an asymmetric high-dimensional entangled state. (a) Abstract representation of the optimization
setup. Optical elements are shown in green, blue and yellow and are described in figure 1. U†

p (α, β) transforms a parametrized
photonic qutrit to the computational zero-state which acts as a trigger for the three-photon state in paths b, c, d. The encoding E
emulates the post-selection by transferring information about the photon number in paths b, c, d to auxiliary qubits P1

b , P1
c , P1

d

leading them to be in the zero-state for valid configurations. Similar as the trigger in a, U†
Ψ transforms the target state of equation

(6) into the zero-state. The probability of measuring the overall zero-state directly corresponds to the heralded and post-selected
fidelity of (5) with the target state Ψ. The setup is parametrized with three angles (one for the DP and two for the trigger).
(b)–(c) Optimization of the setup with the ‘BFGS’ optimizer. (d) Explicit circuit for the setup in (a).

applicable, the generator of the parametrized quantum gate is required to have only two distinct eigenvalues
with distance 2r. Quantum gates that do not fulfill this condition can be decomposed into more primitive
gates, which allows to evaluate their gradients by combining the parameter-shift rule with the product rule
of calculus (see [46] for illustrations). In our explicit example the phase shifter is represented by a set of
S(φ) gates with the generator 1

2 (σz − 1). These gates fulfills the condition
(
r = 1

2

)
and no further

decomposition is necessary. Gradients of the other parametrized optical elements, such as the beam splitter
(BS) or the heralding process are obtained in an analogue fashion. The parametrized part of the BS is
represented by single qubit rotations which fulfill the requirements for the parameter-shift rule and also do
not require further decomposition. In our example in figure 3 the heralding process contains a controlled
rotation that needs to be further decomposed (see [46] for an explicit example). In our implementation we
use tequila [46], a high level python package that automatizes the illustrated gradient compilation and
associated gate decompositions. We refer to references [46, 47] for more details on the implementation of
the automatically differentiable framework. Note that the evaluation of the gradient in this way would not
be possible on an actual quantum optical setup, since the decomposition of the optical elements into more
primitive gates is not possible as those elements are already the primitive building blocks. This constitutes
one of the main advantages of our approach.

3. Quantum optical setups

In the following we will describe how to optimize the fidelity of a parametrized optical setup with a specific
target state on a digital quantum computer. The goal is to determine the optimal parameters of a quantum
optical setup for quantum communication, quantum metrology and experiments testing foundations of
quantum physics. Optimizing the quantum optical setup on a universal gate based quantum computer has
unique advantages, two of which are particularly relevant here: first, the initial state preparation can be
deterministic, in contrast to widely used probabilistic photon state sources. Second, the access to universal
gates allows the evaluation of analytical gradients as illustrated in the last section as well as more efficient
measurement protocols. Our concrete example results in measuring only the occurrence of one specific
product state as a proxy for the fidelity of a complex entangled state. In the future one could imagine large
parametrized optical setups simulated on quantum computers. Ideally, the simulation would reduce the
setup size by optimizing parameters of specific elements such that they are equivalent to the application of
the identity, allowing the removal of said elements. In this case the optimized topology would emerge.
Recently some of us developed classical graph based optimization methods for quantum optics. Here, the
above proposed reduction of the large setups through parameter optimization could already be realized

4
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with a classical simulation [45]. We believe that the full potential of the techniques developed in this work
will be reached in combination with those topological optimization methods. In figure 2 we illustrate
possible combinations of classical topological optimizers with the techniques proposed here and add further
details in the appendix. The quantum part can, for example, be an efficient sub-module of the overall
topological optimization. Note, that in the following proof of principle illustration, we chose a setup from
the literature that incorporates heralding and post-selection. Therefore choosing a setup that is not trivial,
but also small enough to envision execution on currently emerging ion-trap or superconducting quantum
hardware. Recent improvements on the topological optimizers, developed simultaneously with this work,
directly led to solutions of previously unanswered questions in experimental quantum optics [45]. Those
improvements where however mainly concerned with the topological part of the optimization and the
simulation of the optical setup is currently becoming the bottleneck. At this point, a powerful digital
quantum computer can step in, and take over the simulation of the optical setups within the topological
optimization. Compared to other scientific fields like quantum chemistry, the necessary classical simulation
of quantum optical setups is not as deeply explored, so that further improvements in this direction bear a
high potential. Although we are primarily concerned with quantum simulation in this work, our
implementation within tequila provides an ideal testbed for improved classical optimizers and simulators.
One example might be state of the art tensor-network based contraction methods [48] and we are currently
exploring this possibilities.

The quantum part of the optimization is performed in the spirit of variational quantum eigensolvers
(VQE’s) originally proposed to variationally approximate eigenstates of a given Hamiltonian [49]. In this
work, we use a variational algorithm to optimize fidelities for a given target state which can be written as
the expectation value

FΨ = |〈Ψ||Φ〉|2 = 〈Φ|H|Φ〉, (3)

with the Hamiltonian H = |Ψ〉〈Ψ|, and where Ψ is the desired target state. Depending on Ψ, the number of
measurable components (tensor products of Pauli matrices) in the Hamiltonian, can grow large. One
proposed way to reduce the number of measurements is to group the Hamiltonian into commuting cliques
[50–52], a technique which could be applied here in the same way. Since in contrast to most VQE
optimizations the target state is known here, we can measure the Hamiltonian directly by using the unitary
UΨ that prepares the target state and measure the transformed projector

P0 = U†
ΨHUΨ = |00 . . . 0〉〈00 . . . 0| =

⊕

j

1

2

(
1 + Zj

)
, (4)

where Zj denotes the Pauli Z-matrix on qubit j. This technique allows us to further optimize for target states
where only the unitary operation on the digital quantum machine is known, this includes states which are
themselves optimized by variational quantum algorithms beforehand. The expectation value of this
Hamiltonian can then be estimated by measuring all qubits in the computational basis and counting the
‘all-zero’ results where the probability of measuring them is directly proportional to the desired fidelity.

3.1. Optimization of a heralded, post-selected state
Two common measurement based preparation strategies in quantum optics are heralding and
post-selection. Heralding means that the measurement of a trigger photon in an ancillary path determines
the success of the preparation. This projection of the state by measuring the ancillary path can be
represented in the same way as above by measuring the following projector

Pp = UpP0U†
p ,

where the U†
p transforms the state |p〉 in which the trigger photon is measured into the |0 . . . 0〉 state. Note

that the state in which the trigger photon is measured, can be optimized when the unitary Up is
parametrized (see figure 3 for an example). In addition, the generated states can be restricted by post
selection that only outcomes of the experiment are counted with one photon in each measured path. Since
the post-selection projector acts on the same paths as the Hamiltonian representing the fidelity, it is not
possible to directly use the transformed Hamiltonian of (4) to reduce the number of measurements. If one
can afford using twice the number of qubits the approach of reference [53], can be applied, where the
information about the photon occupation number is transferred to additional ancillary qubits by a series of
controlled not operations. Depending on the specific setup, the number of ancillary qubits can be reduced
by constructing an efficient encoding E (see figure 3 for an example). The post-processing is then carried
out over the additional registers. For both methods, it is important to normalize the fidelity in order to
ensure that the parametrization leading to the highest fidelity after applying both projectors is the global
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minimum of the loss function. The fidelity one needs to optimize is

FΨ =
〈Φ|Pp ⊗ HP1|Φ〉
〈Φ|Pp ⊗ P1|Φ〉

, (5)

where P1 projects onto the one-photon subspace.

3.2. Example: optimization of a post-selected heralded 332-state
As an instructive example we will show here the optimization of a parametrized quantum optical setup
targeted to produce a so called 332-state [54, 55], a state with high-dimensional multipartite entanglement,
where the first two photons are entangled over all three paths and the third over two paths. Using
(−1, 0, +1) as internal degrees of freedom a 332-state can be written as

|332〉 = 1√
3

(
|1−1,a, 11,b, 1−1,c〉 (6)

+ |10,a, 10,b, 10,c〉+ |1−1,a, 1−1,b, 11,c〉 ) .

The preparation of the 332-state is a subset of the setup to prepare a multidimensional GHZ state and the
setup with the right parametrization has been found by using automatic generation and search algorithms
[18] where a variational quantum optimization shown in figure 2 was not applied. After it was found by
computer-aided design, the proposed state preparation setup could be demonstrated experimentally
[56, 57]. The parametrized setup which can generate a post-selected heralded 332-state is shown in figure 3
where the state is created in the photonic paths b, c, d and a measurement of the photon in path a is used as
a trigger for the successful preparation of the state in paths b, c, d. While the preparation of the state is
non-trivial with a quantum optical setup, it can be directly prepared on a digital quantum computer as
shown in figure 3. Another advantage of the digital quantum simulation is the direct generation of initial
states (here high-dimensional Bell states), which, on real photonic devices, have to be created in a
probabilistic fashion with spontaneous parametric down-conversion (SPDC). Successful pair generation
events through SPDC are rare, and the count rates are usually measured in counts per hour [25]. This is one
of the reasons that make direct optimization of the photonic hardware a less desirable task. In other words,
on the digital quantum computer, we simulate only the runs of the quantum optics experiment with
successful state initialization, circumventing the associated waiting times that come with the low count rates
for the original photonic device. For this example, it is possible to approximate each internal degree of
freedom by a single qubit and use an efficient encoding E for the implementation of the single-photon
projector leading to an overall circuit involving 15 qubits. The encoding E flips the ancillary qubits
(P1

b, P1
c , P1

d) assigned to each path (b, c, d) if the path has one or three photons and the post-selection process
is encoded by counting only measurements where all three ancillary qubits are zero. Notice that the three
photon case does not influence the result in this example since having three photons in all three paths is not
possible in this setup. Note as well that due to the encoding of the post-selection process, the fidelity with
the target state as well as the measurement process of the trigger photon in path a is again the same as in
(4). That means measuring all 15 qubits in the computational basis and counting the overall all-zero results
directly leads to the desired heralded and post-selected Fidelity of (5). For the initialization, we choose
angles close to zero with varying signs. We show one particular optimization in figure 3(c).

3.3. Example: Boson-sampling
A potentially interesting application for simulating quantum optical setups on a digital quantum computer
is the quantum simulation of Boson sampling experiments, which are currently approaching a size
inaccessible for classical computers. Boson sampling [58] is one major candidate for demonstrating
quantum supremacy on near-term quantum devices. There is no doubt that it will become challenging to
simulate Boson sampling devices as the system size grows. Several classical validation methods exist which,
though unable to confirm Boson sampling directly, may be used to rule out sampling from more classically
accessible distributions. Examples involve row norm estimates [59–61], Bayesian analysis [31],
Kolmogorov–Smirnov tests [62] and machine learning approaches [63]. The approach here however
simulates the underlying optical sampling setup directly providing the possibility to manipulate the
quantum state through unitary operations at different stages of the process. At and beyond the quantum
supremacy threshold, simulation with a classical computer will, for the general case, become impossible in
practice. A powerful digital quantum computer could at this point step in and reproduce the process. Apart
from solely showing quantum supremacy, there are proposals to employ them for more valuable
computations like the generation of Frank–Condon spectra of molecules [64], for which cross simulation
will be a useful tool. It is currently unclear if specialized quantum algorithms on digital machines could
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Figure 4. Digital quantum simulation of a Boson sampling experiment. (a) In the abstract representation of the setup each path
is represented by two qubits (allowing to represent 0–3 photons in each path). The setup consists of beam-splitters (B) and phase
shifters (P) and is initialized with three photons in paths a, c and e (|1a0b1c0d1e〉); the bit-flip X gates only operate on one of the
two qubits. (b) Percentage of physically valid states—meaning configurations of the simulated wave function obeying photon
number conservation and only having three photons in total—as an indicator of the error introduced by the Trotter expansion.
(c) Simulated distribution of three photon states with each photon in a separate path. At 10 Trotter steps the error with respect to
the exact quantum optical setup is about 2 percent, and consistent with the results presented in [32].

achieve the same task more efficiently. Here our mapping would provide a first test for prospective
candidates, that would need to offer advantages compared to a simulated Boson sampling device. Our
techniques can be used to translate Boson sampling devices onto digital quantum computers, hence it
naturally enables those kind of simulations. To illustrate this, we transform one of the first experimental
Boson sampling setups [32] using integrated photonics into the language of digital quantum computers and
reproduce its results. The corresponding setup is shown in figure 4. We simulate it by representing each
path with two qubits, resulting in a ten-qubit quantum circuit. The corresponding distribution, using
different Trotter numbers, is shown in figure 4, where distributions obtained with 40–50 trotter steps are
visually indistinguishable from the theoretically-obtained distribution in reference [32], and the low order
simulation with 5 Trotter steps already produces a qualitatively correct result that agrees with the results of
reference [32]. We used the number of valid states—obeying particle number conservation—as a potential
indicator for sufficient accuracy in the BS representation. We note here that there is still significant potential
for further improvement with respect to the explicit construction of the Trotter expansion, for example with
randomized compilation [65] or by optimizing the ordering in the Trotter decomposition using similar
ideas as those used in Fermionic simulation (see references [66, 67]). In our opinion, the digital quantum
simulation of a photonic Boson sampling setup will not bring any advantages regarding sample sizes and
runtime. It is furthermore a tool that might be applied to analyze the evolution of the wavefunction in the
same way as it is currently done with classical simulators. Our approach aims to take over, at a point where
explicit classical simulation is no longer feasible. Other than the optimization example of the last section,
our Boson sampling example is unlikely to be executable on recently emerging architectures due to the gate
counts in the quantum circuits. Due to it’s conceptual simplicity and low qubit requirements we think it
could be an interesting benchmark example for early stage fault tolerant machines and advanced
compilation strategies.

4. Conclusions

In 1981, Richard Feynman gave his visionary keynote speech at MIT that paved the way toward quantum
simulations [68]. He explained his intuitions using an quantum optical Einstein–Podolsky–Rosen
experiment and famously concludes that nature is not classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical. As a direct consequence of Feynman’s insight, we argue

7
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that the very hardware for simulating and measuring nature is not classical, and thereby you’d better make
design and verification quantum mechanical. Here, we have shown quantum simulation of quantum
hardware for entangled quantum photonic systems—the basis of Feynman’s original thought experiment.
However, the general idea that we propose here goes far beyond that. Any hardware that measures,
transforms or exploits quantum systems should ultimately be designed through methods that leverage the
power of quantum computers to exploit the full potential furnished by quantum physics [36].
Combinations with classical algorithms should however not be restricted but rather leveraged to gain the
best of both worlds. Compared to working directly with the photonic setups, our proposal brings several
advantages. First, it allows the usage of operations that are often easy to realize on a digital quantum
computer, such as the direct preparation of the target and initial states, allowing for less measurement
intensive optimization protocols and avoiding long waiting times associated to the low count rates of the
initial photon creation. Second, the formulation within a digital quantum computing framework gives
direct access of the associated gradients through decompositions into directly differentiable quantum gates
[43, 46, 47]. Finally, the abstract formulation within a generalized, automatically differentiable physical
language, in the form of quantum circuits and expectation values, make it independent of special purpose
simulation techniques. Our open-source implementation of the techniques developed here will profit
immediately from improvements in quantum hardware as well as classical simulators. In future
applications, the techniques for optimization and encoding developed in this work could be used as an
efficient sub-routine of graph based topological optimization algorithms [45]. As such, we anticipate the
applications of quantum designed quantum hardware to quantum computing hardware, quantum sensors,
quantum memories, and quantum communication networks.

Python code for the TEQUILA [46] package as well as explicit code [69] for the calculations in this work
can be found on github.
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Appendix A. Binary encoding

In the binary encoding, the usual bosonic operators are represented as

â† =
d−2∑

n=0

√
n + 1|n + 1〉〈n|. (A1)

The operators |n + 1〉〈n| are then mapped to strings of Pauli operators, after converting n = a02k + a12k−1

+ · · ·+ ak−121 + ak20 into binary and using the following relations:

|0〉〈1| = (X + iY)/2, |0〉〈0| = (I+ Z)/2, (A2)

|1〉〈0| = (X − iY)/2, |1〉〈1| = (I− Z)/2, (A3)

where, X, Y, Z are the usual Pauli matrices and I is the identity. Figure 5 illustrates the mapping of a
photonic path a with internal degrees of freedom (labeled as −1, 0, +1) and where each internal degree of
freedom is represented by multiple qubits encoding the photonic occupation number in binary.
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Figure 5. Mapping of a photonic setup into qubits. (a) Optical path. (b) Internal degrees of freedom. (c) Qubits representing the
photon occupation number of each internal degree of freedom [0–7].

Figure 6. BS acting two photonic paths with three internal modes each. (a) Abstract representation. (b) More detailed
representation with individual unitaries acting on the different internal modes.

Appendix B. Optical elements

B.1. Beam splitter
A BS which acts on two photonic paths a and b can be described as

BS (θ,ψ) = e
iθ

∑
m

(
ψâ†mb̂m+ψ∗ b̂†mâm

)

=
∏

m

e
iθ

(
ψâ†mb̂m+ψ∗ b̂†mâm

)
, (B1)

where θ and ψ are complex numbers and the operator â†m creates a photon in internal mode m in the
photonic path a. Since each term in the sum in the exponent commutes, the part which depends on the
internal modes separates naturally into a product of unitaries acting only on a specific mode in each path
(note that we formally apply the qubit encoding after this step). This is illustrated in figure 6. The Trotter
decomposition (used for example in figure 4 of the main text) becomes necessary after the photonic
operators have been mapped onto Pauli operators, i.e. the parts acting on the individual modes m are
trotterized after they are mapped onto qubit operators.
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Figure 7. Phase shifter acting on path a with one internal mode. (a) Abstract representation. (b) Explicit representation with
three qubits per mode.

Figure 8. Mode dependent phase shifter (DP) acting on path a with five internal modes. (a) Abstract representation. (b) More
detailed representation showing the internal modes. For the qubit-wise representation of each phase shifter see figure 7.

B.2. Phase shifter (P)
The phase shifter can be defined by its action onto a single internal degree of freedom in a given photonic
path. It acts by adding a phase φ to each photonic state w.r.t. the number of photons occupying it. In terms
of creation/annihilation operators this can be expressed as

P (φ) = eiφâ†â. (B2)

where we have assumed only one internal degree of freedom in the path. In binary representation the action
of the phase shifter can be implemented by a set of single qubit phase gates S (φ) which add a phase eiφ to
the |1〉 state and acts trivial on |0〉. Assume for example that the internal mode is represented by n qubits
and that the occupation number is encoded in binary, then the phase shifter acting on that mode can be
implemented as

P (φ)
n−qubits−−−−−→S

(
2n−1φ

)
⊗ S

(
2n−2φ

)
⊗ . . . S (φ) (B3)

where we assumed most significant ordering in the binary encoding. This implementation of the phase
shifter with phase gates is also shown in figure 7. Note that each S (φ) gate can be replaced by a Rz (−φ)
rotation which implements the same relative phase.

B.3. Mode-dependent phase shifter, Dove prism
If internal degrees of freedom are used within the photonic paths a mode dependent phase shifter (Dove
prism (DP)) can be applied. In the case of orbital angular momentum as inner degree of freedom the DP
acts like a set of mode dependent phase shifters

DP (φ) =
∏

m∈{···+1,0,−1... }
P (mφ) (B4)

where m is the orbital angular momentum quantum number. We illustrate the implementation of a DP in
figure 8

B.4. Photonic swap, hologram and mirror
In the following we show the implementation of two non-parametrized optical elements which are called
hologram and mirror and both depend on photonic swap operations which swap photons between two
photonic modes or paths. The implementation of those swap operations is straight forward by applying a
swap operation onto all qubits which represent the photonic mode or path. We illustrate this in figure 9. In
the main text we used the compressed notation of the photonic swaps in figure 1.
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Figure 9. Swap gate between two photonic modes m and n which can be in the same path or in different paths. (a) Abstract
representation. (b) Explicit representation with three qubits per mode.

Figure 10. Mirror acting on internal photonic modes in a given path. (a) Abstract representation. (b) Explicit representation
with photonic swap gates (see figure 9).

The mirror acts on the internal degrees of freedom in a single photonic path by changing the sign of the
internal degrees of freedom. Assume for example three internal modes and a state with ni photons in each
internal mode i ∈ {+1, 0,−1}, then the operation which represents the mirror element acts as

M|l−1, m0, n1〉 = |n−1, m0, l1〉. (B5)

The mirror can be implemented straight forwardly with the swap operations defined in figure 9. In
figure 10 this is illustrated.

The hologram (G) acts on the internal degrees of freedom by increasing them by one. Take for example
the state with l, m, n photons in modes −1, 0, 1, then the hologram will act as

G|l−1, m0, n+1〉 = |0−1, l0, m+1, n+2〉, (B6)

resulting state with no photons in mode −1, l photons in mode 0, m photons in mode 1 and n photons in
mode 2 which did not had any photons before. The action of the hologram is clearly not unitary for a
truncated number of internal degrees of freedom. In order to implement its action we propose a cyclic
version shown in figure 11. For internal degrees of freedom from −m to m, this acts as:

G̃|n−m, . . . , n0, . . . , nm〉 = |nm, n−m, . . . , n1, . . . , nm−1〉. (B7)

Simulating optical setups with the cyclic hologram can be performed as long as the number of represented
internal degrees of freedom is not restricted too much, meaning that the cutoff has to be carefully chosen in
a way that the represented highest internal degree of freedom is never occupied in the underlying setup or
at least that its occupation is unlikely.

The circuits we show here assume binary mapping when refined until the qubit level (see section 2 and
reference [40]). A generalization to unary and gray code can be achieved in a straight forward way by
permuting the individual gates on the qubit level for the phase shifter and for the BS by mapping the
creation/annihilation operators in the same way as described in reference [40]. The implementation of the
swap gate, mirror and hologram will stay the same for all three mappings.
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Figure 11. Cyclic approximation of a hologram acting two photonic paths with five internal modes each. (a) Abstract
representation. (b) Explicit representation with photonic swap gates (see figure 9).

Neither hologram nor mirror are used explicitly in the computations of this work. They are however
important to extend the 332-state preparation setup to prepare a multidimensional GHZ state (see
figure 2(a) of reference [18]).

Appendix C. Implementation of general elements

General elements can be represented in similar ways as the BS by mapping their second-quantized
generators onto qubits followed by a decomposition of the generated unitary into sequences of primitive
gates. Depending on the element, a customized approach (such as given here for the hologram, mirror and
phase shifter) might however lead to more optimized gate sequences for the specific element.

In addition to the implementation of concrete optical elements in a gate-based QComputer, we also
indicate in an example how more abstract representations of quantum optics can be mapped to circuits.
Here we will use an abstract edge within a generalized graph-based representation of quantum optical
setups developed in [45]. Those graph representation can, for example, be translated into non-linear
crystals that create photon pairs in specific modes (SPDC) or on-chip four-wave mixing processes (SFWM).
Consider an edge of reference [45] connecting vertices (photonic paths) a and b and having colors
(photonic modes) m and n. The generator G that generates the unitary of the edge U(ω) = e−iω2 G is

Gambn = a†mb†n − ambn. (C1)

With the mappings of [40] this generator can be mapped to Pauli strings and the generated unitary can be
decomposed via a Trotter decomposition. One of the proposals in the main text, is to combine those graph
based representations with the techniques of this work as the simulation of the graph (currently achieved
over explicit series expansion of the unitary, neglecting the Hermitian adjoint in the generator) is currently
the computational bottleneck of the theseus algorithm developed in [45]. For further illustration, we
added an additional example on github [69] that illustrates the optimization of a GHZ state via a small
graph based setup within our implementation.
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