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Artificial intelligence (Al) is a potentially disruptive tool for physics and science in general. One crucial
question is how this technology can contribute at a conceptual level to help acquire new scientific
understanding. Scientists have used Al techniques to rediscover previously known concepts. So far, no
examples of that kind have been reported that are applied to open problems for getting new scientific
concepts and ideas. Here, we present THESEUS, an algorithm that can provide new conceptual under-
standing, and we demonstrate its applications in the field of experimental quantum optics. To do so, we
make four crucial contributions. (i) We introduce a graph-based representation of quantum optical
experiments that can be interpreted and used algorithmically. (ii)) We develop an automated design
approach for new quantum experiments, which is orders of magnitude faster than the best previous
algorithms at concrete design tasks for experimental configuration. (iii) We solve several crucial open
questions in experimental quantum optics which involve practical blueprints of resource states in photonic
quantum technology and quantum states and transformations that allow for new foundational quantum
experiments. Finally, and most importantly, (iv) the interpretable representation and enormous speed-up
allow us to produce solutions that a human scientist can interpret and gain new scientific concepts from
outright. We anticipate that THESEUS will become an essential tool in quantum optics for developing new
experiments and photonic hardware. It can further be generalized to answer open questions and provide
new concepts in a large number of other quantum physical questions beyond quantum optical experiments.
THESEUS is a demonstration of explainable AI (XAI) in physics that shows how Al algorithms can

contribute to science on a conceptual level.

DOI: 10.1103/PhysRevX.11.031044

I. INTRODUCTION

Photons are at the core of many quantum technologies
that promise advances for imaging applications [1], effi-
cient metrological schemes [2], and fundamentally secure
communication protocols [3] as well as simulation [4] and
computation techniques [5—7] that are beyond the capabil-
ities of their classical counterparts. Besides, photons are
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also among the core players in the experimental inves-
tigation of fundamental questions about the local and
realistic nature of our Universe.

Motivated by these opportunities, recent years have seen
dramatic advances in quantum optical technology, which
include highly complex operations in integrated photonic
chips [8—12], generation of complex multiphotonic entan-
glement and its application [13—15], and the development
and application of high-quality deterministic single-photon
emitters [16] and highly efficient photon-number-resolving
detectors [3,17].

To advance technological and fundamental progress
further and to enable the exploration of numerous proposed
ideas in laboratories, new experimental concepts and ideas
are instrumental. Frequently, however, the design of exper-
imental setups even for well-defined targets is challenging for
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the intuition of human experts, and existing systematic
schemes (e.g., Ref. [18]) to date provide solutions only
for specific experimental scenarios. For that reason, compu-
tational design methods for quantum optical experiments
have been introduced [19], in the form of topological search
augmented with machine learning [20,21], genetic algo-
rithms [22,23], active learning approaches [24], and opti-
mization of parametrized setups [25]. Unfortunately, due to
the complexity and size of the Hilbert space as well as the
breadth of quantum optical applications, those algorithms
may have severe drawbacks, such as inefficient discovery
rates, requirements of a huge amount of training data, or
specialization on narrow sets of problems. Most importantly,
to the best of our knowledge, no method so far has shown
how to systematically extract new scientific ideas, concepts,
and understanding from the solutions of the computer
algorithm.

Here, we demonstrate THESEUS, an automated design
algorithm for quantum optics with highly interpretable
representation that allows scientists to understand solu-
tions quickly. THESEUS is generally applicable to discrete-
variable quantum optics problems (including postselected,
nonpostselected, and heralded states and probabilistic and
deterministic photon sources), does not need training data,
and is orders of magnitude faster than previous comparable
approaches. An essential feature of THESEUS is the pos-
sibility to simplify the solution to its conceptual cores.
Physicists can then interpret, understand, and generalize the
underlying ideas and concepts. These advances allow us to
apply THESEUS to solve several previously open questions
about quantum experiments, which we briefly summa-
rize now.

Concretely, we investigate complex multiphotonic entan-
glement and its applications. We discover a concept to
generate maximally entangled high-dimensional multipar-
ticle quantum states. Whether these states can even be created
with the given (experimentally feasible) resources has been
questioned in the past. Instead of finding a solution with
perfect fidelity, the algorithm discovers a way to suppress
undesired terms in the quantum state to arbitrary small
probabilities. The idea can be understood combinatorially
and can be generalized to many other cases.

Furthermore, we discover a new idea that allows for the
generation of heralded entanglement, which is crucial in
protocols for quantum communication and photonic quan-
tum computation. Here, the new enabling concept is the
destructive interference of vacuum contributions in the
quantum state. A vacuum contribution is a situation where
no photons emerge from the setup. The algorithm finds a
way to construct such a situation twice in the same setup,
but with opposite sign, such that they cancel each other.
Therefore, the experiment creates the correct photon state.

In addition, we gain new insights into complex photonic
quantum transformations and their generalizations to
higher dimensions—a significant task that is not yet well

understood. We gain an understanding of how heralded
photonic CNOTs work in terms of an intuitive combinatorial
picture.. Here, individual terms in the quantum state (edges
of the graph) can block or unblock other terms depending
on their mode number. Concretely, the amplitude of
blocked terms is significantly reduced as a consequence
of the probabilistic photon-pair sources.

In all of these cases, we uncover previously unknown
generalizable patterns and new experimental ideas and
interpretations.

THESEUS contributes directly to artificial scientific
discovery, a field which—Iloosely put—studies how far
science can be automated. Exciting early contributions
involve automated genetic experiments [26] and the extrac-
tion of equation of motions from experimental data [27]. In
recent years, fueled by massive growth of computing power
and algorithmic advances such as deep learning, many
more scientific tasks have been successfully automated in
various domains. Examples involve the design and labo-
ratory automation in chemistry [28-30], nanophotonics
[31,32], quantum circuit design [33,34], and many others
(for more details, see Ref. [19]).

An important question now is how new scientific
concepts and understanding can be automatically discov-
ered. Here is where our approach differs significantly from
others that try to employ machine learning to extract
scientific concepts. The main difference is that these
methods so far have been successfully applied only to
rediscover previously known concepts [35], and generali-
zation to the much more challenging task of discovering
new concepts has not been achieved yet. Examples include
the identification of astronomical concepts such as the
heliocentric world view which has already been considered
by Copernicus [36], the arrow of time and related thermo-
dynamical concepts that were discovered in the 20th
century [37], the identification of certain interferometric
devices that have been used by optical physicists for many
years [24], or the extraction of symbolic equations for
various physical systems [38]. Those are significant works
that indicate great future possibility. However, they come
with a grain of salt: It is not clear how much prior
knowledge the scientists implicitly use to identify those
concepts from the computer algorithms. Therefore, it is
unclear whether these methods can be extended to actual
open questions.

In quantum optics, in two works new concepts have been
identified [39,40] using a topological search algorithm [20].
There, tens of thousands of CPU hours are necessary to
arrive at a useful design. Those solutions are represented
directly as a sequence of optical elements, which are very
unintuitive to interpret conceptually. Moreover, the sequen-
ces are highly nonoptimized, because they emerge through
random processes. As a consequence, it requires scientists
weeks or even months to understand the underlying
principles (see Ref. [19] for more details).
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In contrast to those previous approaches, we introduce  to postselected experiments involving probabilistic photon-
for the first time an algorithm that produces solutions that ~ pair sources [41] and linear optical components [42].
can be interpreted and rationalized by scientists. The We  significantly extend the abstract description of
interpretable solutions allow human scientists to under- ~ quantum optics experiments as colored weighted graphs,
stand the new, underlying concepts in quasi-real time. We ~ demonstrating how general quantum optics technology and
explicitly demonstrate this feature by solving several — questions can be raised and solved using the new frame-
previously unresolved questions. In all of those cases, work. The extensions allow us for the first time to use the
we can interpret and understand the underlying design  framework of weighted colored graphs for computational
concepts outright. Put differently, THESEUS is an algorithm ~ design of quantum optical experiments and hardware.
that can provide targeted and systematic new conceptual Specifically, here, we introduce a weight function ®(w)
understanding in a scientific domain. We believe, therefore, ~ that gives access to the complete information of quantum
that THESEUS is an important step toward the goal of  optical experiments (rather than only postselected states, as

interpretable and explainable artificial intelligence in sci-  in Refs. [41,42,45]) and allows us to generalize the scope of
ence that will assist human researchers at a concep-  the method significantly. It allows for the description of
tual level. nonpostselected states, triggered and heralded photonic
states, states with multiple excitations per mode (such as

II. RESULTS NOON states), and general quantum transformations.

Furthermore, it enables the description of photon-
number-sensitive and -insensitive detectors [which corre-
Weighted colored graphs (explained in Fig. 1) can encode  spond to different projections of ®(w)] and deterministic

A. Graph theory—quantum experiment mapping

the information produced by a photonic quantum experi-  photon sources such as quantum dots (see Appendix A for
ment. The vertices correspond to spatial photon paths, and  details).
edges between vertex v, and v, stand for probabilistic photon We emphasize explicitly that the weight function ®(w) is

pairs in path v; and v,. The edge color represents the internal ~ a crucial conceptual advance that is necessary for all results
mode number of the photons, and edge weights @ stand for ~ presented in our manuscript. The weight function directly
amplitudes. Previously, the description was applicable only ~ connects the experimental setup with the quantum state. It
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FIG. 1. A weighted edge-colored graph as an abstract and efficient representation of the quantum information of a large variety of
quantum optics experiments. (a) As a specific example, we show a graph with four vertices and four colored and weighted edges. The
vertices a—d correspond to photonic paths, the edges correspond to correlated photon pairs, the edge colors stand for mode numbers, and
weights @ € C stand for complex coefficients. Probabilistic sources create the photon pairs (edges). Thus, the entire information about
the quantum state is represented by ®(w), with x,i being a creation operator of a photon in path x with mode number k. The graph can
directly be translated into a number of different quantum optical technologies, such as (b) standard bulk optics, for example, with
polarization encoding, or (c) path encoding as the carrier of quantum information or (d) entanglement by path identity. In all examples,
the gray squares I-IV stand for probabilistic pair sources (such as nonlinear crystals which create photon pairs using spontaneous
parametric down-conversion). Two crystals in a row, such as in (b), is a standard tool for generating photonic entanglement, denoted
cross-crystal sources [43,44]. Two of the four crystals produce a photon pair. Blue lines show the path of the photon pair from the crystal
to the photon detectors a—d. We show a number of examples in the Appendix A and provide an open-source code for the translation. The
results of the quantum experiments can directly be calculated from the information of the graph. For example, a prominent technique is
to condition the state on detecting a photon in each of the four detectors (postselection). The equivalent formulation in terms of graphs is
the sum of all subsets of edges that contain every vertex exactly once, which is called perfect matching. It reduces the example quantum
state to two terms. If all weights are equal, the resulting quantum state is a four-qubit GHZ state. Access to ®(w) allows for the
optimization of nonpostselected, heralded, and triggered quantum states, too, as we show in examples within the manuscript.
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FIG. 2. Algorithm—THESEUS: The initial graph contains all possible edges between each vertex, leading to |G| = d?[n(n —1)/2]
edges (with n vertices and d different edge colors), each of them having an independent complex weight @y ,,?, where v, (v,) stands for
the first (second) vertex, and m, (m,) stands for the color of the edge close to vertex v; (v,).. The main step is a minimization of the loss
function, which contains the quantum fidelity in terms of weights of the graph. Additionally, an L; regularization term controls the
magnitude of the weights. If the weights identified by the optimization, wyg, lead to fidelities larger than Fj;;, and the magnitude of the
weights is smaller than wy;,;,, then one edge of the graph is removed, and the optimization continues with the smaller graph. On the other
hand, if the criteria are not fulfilled, the same graph is optimized (with different starting conditions) until the discovery of a suitable

solution or the number of iterations exceeds cj;,;;- The result of THESEUS is a weighted graph that leads to sufficiently large fidelities,

=

Cit:O

with a small number of edges. This topological optimization enables the scientific interpretation and understanding of results.

can be constructed simply by enumerating all edges in the
graph, and the quantum state can be obtained by applying
the weight function (which is a function of operators) to the
vacuum state, i.e.,

W) = ®(w)|vac). (1)

In this way, we obtain the quantum state (and all
properties that can be computed from it) as a function of
weights of the graph and, simultaneously, the quantum
experimental setup. This fact is crucial, because now we
can perform continuous, gradient-based optimization
(similar to highly efficient optimization techniques used
for training large neural networks) of the quantum state’s
properties. The result is a weighted graph that we can
translate to quantum optical hardware implementation.
With that, the weight function ®(w) directly connects
the quantum state and its properties with an experimen-
tal setup.

Moreover, we introduce here how graphs can be directly
translated to several different schemes of photonic quantum
optics, such as standard bulk optics [46], integrated
photonics [8,47] or entanglement by path identity
[39,48]. A given graph can be translated in multiple
ways to quantum experimental setups, while each setup
corresponds to precisely one graph (more details in
Appendix A). Thereby, our algorithm is not restricted to
the relatively new idea of path identity which is exper-
imentally just being explored [48,49], but the experiments
can be performed with well-established photonic technol-
ogy. These novel features are necessary to use the graph-
theoretical description as a tool for the automated design of
quantum experiments that are feasible in state-of-the-art
quantum photonics laboratories. We provide an open-
source code for the translation between graphs and different
types of quantum optical implementations.

B. Graph-based automated design of quantum
experiments

The abstract and general representation of quantum
experiments as graphs allows us to find a new method for
automated designing quantum experiments. This possibility
arises because we have a way to write the whole quantum
state generated by an experimental setup as a function that
depends only on the weights w of the graph. Consequently,
every function that we can derive from the quantum state is
also a function that depends only on the weights @.
Therefore, it is possible to write optimization objective
functions in terms of weights @ of the graph.

For example, if we aim to find an experimental setup that
produces a specific quantum state, the objective function is
the state fidelity in terms of the weights of the graph. If we
aim to find a transformation, then the objective function is
the gate fidelity. Importantly, one can use the same
technique for more general optimization targets, where
neither the quantum state nor the quantum experiments are
known beforehand. Examples are quantum metrology,
where the objective function would be the Fisher informa-
tion (written in terms of weights w), or quantum-enhanced
imaging technologies, where the objective function could
be a signal-to-noise ratio (again, in terms of weights ).

The most general quantum state corresponds to a
complete graph with all possible multicolored weighted
edges between each vertex (see Fig. 2). As an essential step,
we need to construct the objective (e.g., state fidelity) in
terms of weights, F(w). While the entire quantum state
®(w) is directly defined by the edge weights, conditioning
measurements are commonly used to obtain more intricate
states and to overcome the lack of single-photon non-
linearities. Prominent examples for such measurements are
conditioning on the simultaneous detection of one photon
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in each path (I) or conditioning on the detection of ancilla
photons (II).

As an example in Fig. 1, we show the construction
of a four-photon Greenberger-Horne-Zeilinger (GHZ) state
|GHZ) = 1/+/2(]0,0,0,0) + |1,1,1,1)),_,, where |0) and
|1) stand for one photon in the internal mode 0 and 1 (such
as horizontal or vertical polarization), respectively. The
subscript a—d means one photon is in each of the four paths
a, b, ¢, and d. Under the condition of simultaneous
detection (I), the term |0, 0,0, 0) can be generated by three
different subgraphs: two blue horizontal edges, vertical
edges, or crossed edges. The weight of a subgraph is the
product of all its edge weights. The weight of the whole
term is the sum of all weights of the subgraphs. Therefore,
the weight of |0,0,0,0) is

@(0,0,0,0) = (0,0,0,0[®@(w)|vac)

0000 0,0 0.0 0,0 00
=W, 0. g T Odc@yy+ O G0 . (2)

In an equivalent way, the amplitude of |1, 1, 1, 1) can be
written in terms of @. As a result, we have the fidelity
written as

|®)0,000) + 60\1.1,1.1>|2
Flw) = 2 N(w) , (3)

where N(w) is a normalization constant of the state
emerging from the graph (more details in Appendix B).

The weights of the graph are optimized by minimizing a
loss function constructed from the fidelity and an additional
L, regularization term:

L(w) =[1 = Flo)] + a- o], (4)

with positive real coefficient a < 1. Inclusion of the L,
regularization term can drive the optimization toward a
solution with smaller amplitudes, thereby opening ways to
further reduce the edges of the graph by removing edges
with small weights. For optimization, we use the Broyden-
Fletcher-Goldfarb-Shanno algorithm, an iterative gradient-
descent method that approximates Hessians to solve non-
linear optimization problems. If we identify a solution with
F(w) above a limit (we use Fjp; = 0.95) and small
weights @ (we use @y = 1), we find a suitable exper-
imental setup candidate. At this point, as the loss mini-
mization is fast, we can perform a topological optimization
[50]. We reduce the size of the graph by iteratively
removing individual edges. We can choose the edge from
a distribution that depends on the magnitude of the weights
of the previous solution (with two special cases: choosing
entirely randomly and always choosing the edge with the
smallest weight magnitude). The new, smaller graph is used
to minimize the loss function in Eq. (4). The topological
optimization reduces the size of the graph iteratively.

The topological optimization distills small structures
such that human scientists can interpret and understand
the underlying physical principles and use the new knowl-
edge to solve other cases. In many instances, we use these
insights to find straightforward generalizations to infinitely
large classes of situations. This ability to generalize is in stark
contrast to typical artificial intelligence applications in the
natural sciences [51], where the solution of a parameter
optimization is the final product, without the intention of
discovering new scientific ideas (with few recent exceptions
that rediscover previously known physical ideas [36,37]).

C. Benchmarking

We compare the speed of THESEUs with previous
approaches, using classes of high-dimensional multipartite
states called Schmidt-rank vectors as a benchmark [52]. In
particular, we aim to discover maximally entangled three-
party quantum states of up to ten local dimensions. This
task is well understood theoretically; thus, it represents a
good benchmark. There are 81 unique entangled structures
that could be generated using linear optics [45]. A pure
topological circuit search using 150 CPU hours has dis-
covered 51 out of 81 different states in the set [20]. A
reinforcement learning algorithm has identified 17 out of
81 different states, with speed comparable to the topologi-
cal search algorithm [24]. THESEUS discovers 76 different
states within 2 h, where the first 17 are identified within 2 s
and the first 51 states in less than 15 min. This results in a
speed-up of a factor of 600.

We turn to a second benchmarking task: the identifica-
tion of high-dimensional CNOT gates. A recent study shows
that the identification of the first photonic high-dimensional
controlled operation takes 150 000 CPU hours [40]. Our
algorithm finds a solution that is experimentally quantita-
tively simpler, within 1 CPU second. This results in a
speed-up of a factor 10%. We come back to this example
in Fig. 5.

D. Scientific discovery and understanding

The improvement in speed shows that THESEUS is ready
to go beyond benchmarks and be applied to the discovery
of new scientific targets and to the development of new
scientific insights and understanding. Scientific under-
standing is essential to the epistemic aims of science
[53] but rarely addressed in applications of artificial
intelligence to the natural sciences. In the philosophy of
science, pragmatic criteria have been found for scientific
understanding, in particular, by de Regt’s award-winning
work [53,54]. He describes that scientists can understand a
phenomenon if they can recognize qualitatively character-
istic consequences without performing exact calculations.
We connect this criterion to our discoveries: We discover
the first high-dimensional six-photonic GHZ states, which
have been conjectured to be not constructible with linear
optics. We can understand the underlying concept and use it
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to construct a simple method to generate high-dimensional
GHZ states with an arbitrary number of photons.
Furthermore, we discover the first solutions of heralded
three-dimensional Bell states. We also understand the
underlying concept, which, among others, contains an idea
to destructively interfere vacuum terms. We generalize the
concept to arbitrary-dimensional Bell states—without addi-
tional calculations. Similarly, we discover setups for
heralded GHZ states that need fewer resources than
methods proposed in the literature, which could form the
building blocks for photonic quantum computation [7]. We
furthermore apply THESEUS to multiphotonic transforma-
tions. We find a new way to interpret and construct
photonic qubit operations such as CNOT gates. Moreover,
we discover high-dimensional CNOT operations that need
quantitatively fewer resources than methods proposed in
the literature. Connecting to de Regt’s criterion, our
algorithm is the source of scientific understanding in
multiple instances.

Why does our approach allow us to understand the
solution? An essential substance of the illuminating power
is the fact that the final result is presented in a minimal
graph, which is the conceptual core of the solution. The
final graph can be inspected visually, and visualizability has
long been used as a tool to gain understanding. This use
goes back at least to Schrodinger, who argued for visual-
izability (Anschaulichkeit) for intelligible physical theories.
Detailed discussions about this tool for understanding can
be found in the work of de Regt [53,54]. In this concrete
case, the minimal graph represents the quantum state and
how it is produced in a visual way. We can detect
symmetries or other apparent visual properties that can
readily be generalized.

1. High-dimensional GHZ states

A d-dimensional n-partite GHZ quantum state is written
as

(5)

lw)
\/_ ntlme%

These states are studied in the interplay between quantum
and local-realistic theories [55] and have recently found
potential applications in quantum communication tasks [56].

Graph-theoretical arguments show that perfect high-
dimensional GHZ states can be generated with standard
quantum optical tools (e.g., probabilistic photon-pair
sources and postselection) only for four-photon states
[41], because terms in addition to those in Eq. (5) neces-
sarily emerge. Using THESEUS, we discover the first
example that circumvents the no-go theorem; see Fig. 3.
The algorithm identifies solutions with fidelities arbitrarily
close to one, by adjusting the edge weights such that
unwanted terms have arbitrarily small weights (albeit at the

(a) Complete 3-dimensional Graph (b) 3-dimensional 6-photonic GHZ state

(C)\ff XH .

[1)= 0,0,0,0,0,0) + w[1,1,1,1,1,1) + w]2,2,2,2,2,2) +w3|1.1.0,2.2,0>

FIG. 3. Finding a three-dimensional six-photonic GHZ state.
(a) The initial state is a complete graph of six vertices and three
colors. Each pair of vertices is connected by nine edges, which
stand for all nine possibilities (blue, red, and green stand for
modes 0, 1, and 2, respectively). A bicolored edge stands for a
photon pair with different mode numbers. For example, a blue-
red edge between vertices a and b stands for a photon pair with
one photon in path a with mode number 0 and one photon in b
with mode number 1, i.e., aéb'l'. In total, this procedure leads to
135 edges. (b) The optimized graph for a six-photonic three-
dimensional GHZ state. While it has been shown that such a state
cannot be created with perfect fidelity [41] with linear optics and
probabilistic photon-pair sources (without additional photons),
THESEUS finds a solution where the fidelity scales with F'~ 1 —
O(w*) with the overall counts C scaling as C ~ O(w?), which is
experimentally feasible. (c) The concept of the solution can be
interpreted in the context of graph-theoretical results and can be
immediately generalized by human scientists.

expense of lower count rates). The solution can immedi-
ately be generalized to GHZ states (and other states) with
higher dimensions and a larger number of particles, by
identifying subgraphs of additional terms whose edges are
multiplied with @ < 1.

No further computations or optimizations are necessary,
demonstrating that we achieve scientific understanding
based on a computational optimization in the appropriate
representation of the problem at hand.

2. Heralded photonic entangled states

The next targets we address are heralded entangled
photonic states. Standard sources of photonic entanglement
such as spontaneous parametric down-conversion or spon-
taneous four-wave mixing are entirely probabilistic [9].
That means photons are produced at random times, and
only after the detection of the photon state does one know
that they have been created. The generation of heralded
states would allow for event-ready schemes, which are
essential in photonic quantum computation [7,57].
Experimentally, two-dimensional Bell states have been
generated conditioned on the detection of photons in four
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FIG. 4. Heralded entangled states. (a) Optimized graph for a heralded three-dimensionally entangled Bell state with photons in a and b
containing a Bell state if detectors in c—h click, which requires eight photons in total. The crucial insight is the destructive interference of
the undesired heralded vacuum term. (b) Each of the two subgraphs heralds the vacuum. The overall weight of the two subgraphs differs
only in sign, leading to destructive interference. (c) With the same phase setting, all terms of the Bell state constructively interfere, such
as |1, 1), and all cross-correlation terms cancel, such as |1,2) in (d). This solution can immediately be generalized to arbitrary high-
dimensional Bell states; see (e) and (f). (g) Solution for a heralded two-dimensional GHZ state in a—c, with triggers in d—j, requiring ten
photons. The algorithm identifies a highly symmetric solution that destructively interferes lower-order eight-photon contributions.

trigger detectors [58,59]. However, higher-dimensional
generalizations are missing. A major challenge in creating
heralded states are cases where all trigger detectors see a
photon, but no photons emerge from the setup. Those cases,
where the triggers herald a vacuum term, usually have
significantly higher probability of happening than the
correct heralded Bell state, because fewer pair creation
events need to occur simultaneously.

THESEUS identifies experiments for a heralded three-
dimensional Bell state; see Fig. 4(a). The setup requires
four photon-pair events simultaneously, which is well
within today’s experimental capabilities [60]. The solution
contains a remarkable idea that has not been explored
before: the destructive interference of the triggered vacuum
term; see Fig. 4(b). Creating the possibility of two heralded
vacuum outputs and assigning their amplitudes opposite
signs leads to their cancellation.

Furthermore, each of the two subgraphs that lead to a
vacuum term in Fig. 4(b) forms the basis of a three-
dimensional Bell state which constructively interferes,
while all cross-correlations destructively interfere.
Specifically, two of the three edges are used to herald
the trigger detectors, while two additional edges are
necessary to create a two-photon output. More information
is provided in Supplemental Material [61]. Higher-order
events and cases where multiple photons are detected in the
trigger detectors can be reduced to arbitrarily low proba-
bilities by adjusting the weights of the edges. Assuming a
standard pump laser with 80 MHz repetition rate, the
expected count rate to reach a fidelity that guarantees
genuine three-dimensional entanglement, i.e., F > 2/3, is
on the order of ten per second (for details, see Appendix D).
The concepts used by THESEUS, in particular, the cancel-
lation of vacuum, can be immediately generalized to other

cases, for example, to arbitrary high-dimensional Bell
states; see Figs. 4(e) and 4(f).

Next, we use THESEUS to find heralded multiphotonic
states, which have been proposed a decade ago but never
experimentally implemented due to their experimental
requirements [62,63]. Heralded GHZ states provide the
resources for definite demonstration of deterministic vio-
lations of local-realistic world views [64] and are among
the most promising building blocks for photonic quantum
computation [7,57]. We find an experimental configuration
which requires fewer resources and which is within reach of
experimental capabilities; see Fig. 4(g). The solution is
highly symmetric and uses a very similar concept to avoid
lower-order contributions as the solution of the Bell state.
In this case, however, the problematic lower-order event
creates single-photon outputs. The strategy, again, is to
generate two subgraphs for each single-photon output
with opposite phase which destructively interfere (see
Supplemental Material [61]).

3. Photonic controlled gates

Finally, we demonstrate the usage of THESEUS for pho-
tonic quantum transformations, which are essential elements
for photonic quantum simulation [4] and computation
schemes [3,17,57]. In Fig. 5, we introduce virtual vertices
thatrepresent input photons and optimize multiple dependent
graphs simultaneously that represent different states of the
transformation. Interestingly, exactly this concept has been
the core of one of the first photonic CNOT experiments [65],
which gives a new interpretation for a 17-year-old experi-
ment (see Supplemental Material [61] for details).

We apply THESEUS to find high-dimensional quantum
transformations, which are discussed in the context
of resource-efficient quantum computation algorithms
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FIG. 5. Qubit cNoT transformation: Two input photons (denoted as Va and Vb) undergo a CNOT operation and exit in path a and b,
conditioned on the simultaneous detection of one photon in each of the trigger paths ¢ and d. This example goes beyond state generation
and shows how the same framework allows identification of quantum transformations. We introduce virtual vertices Va and Vb, which
are interpreted as incoming photons. Edges between a virtual vertex and vertices a—d (in all graphs together) represent unitary
transformations of the incoming photon. For example, if Vb = |0), the photon goes to path ¢, while for Vb = 1) it goes to path d. The
CNOT consists of four individual transformations (one for each of the inputs |0, 0), |0, 1), |1, 0), and |1, 1)). Each transformation stands
for one graph, and the subgraph of vertices a—d has to stay constant for each transformation. The four graphs in the upper row are the
solution of an automated design for a two-qubit CNOT. The quantum state in the output of @ and b (after conditioning on the trigger
detectors ¢ and d) is governed by all subgraphs that fulfill the following conditions (see orange inset): contains three edges (two edges
from incoming photons and one ancillary photon pair); each of the virtual vertices Va and Vb is contained in one edge (which
symbolizes that one photon is entering the setup); and both ¢ and d are contained in an edge (such that the two triggers detect a photon in
paths ¢ and d). The solution can be conveniently interpreted: No vertex can have two incoming edges (as follows from the three
conditions). Therefore, an edge involving Va or Vb blocks all edges at the other vertex of the edge, which significantly simplifies the
interpretation of the graphs. The resulting terms are written in the lower row. From the solution, we discover an interesting concept: If
Va = |0), the edge involving Vb chooses the outgoing term by blocking the appropriate edge. However, if Va = |1), the double edge

1,1

between a and b is active—as the weight w;, , = (—1), Vb chooses the term that will destructively interfere. The idea of having one

Va,a

virtual vertex choosing the terms can be generalized to more complex multiqubit transformations.

[66,67]. The solution follows similar concepts as the two-
dimensional case and requires fewer experimental resour-
ces than Ref. [40]; for details, see Appendix E.

E. Scalability

In general, it can be extremely challenging to optimize
and design experiments for very large quantum systems (a
large number of photons), because the state space increases
exponentially with the number of photons. This fact is the
basis of quantum advantage experiments, both for gate-
based quantum computers and for photons via boson
sampling. Therefore, one would expect that classical
computer algorithms can fundamentally not be scalable
design methods for quantum optics. One solution would be
to perform the design of quantum optical systems on
quantum computers itself [68].

We show another way that allows for the design of large
systems using only classical computers. The key is that our
algorithm allows us to understand (and thereby generalize)
solutions. As we show in Fig. 4, from the computer solution
for heralded high-dimensional Bell states, we are able to
extract the general concept of how and why they work.
Thereby, we are able to generalize the concept to arbitrary
dimensional systems. Finding a heralded 50-dimensional
Bell state directly with a computer algorithm might be

entirely infeasible. However, we find and understand the
concept for arbitrary d-dimensional Bell states, such that
we can write down the solution for a 50-dimensional Bell
state immediately.

I11. DISCUSSION

We present the algorithm THESEUS for the automated
design of quantum optical experiments, which is based on
an abstract physics-inspired representation. We use it to
discover several previously unknown experimental con-
figurations to realize quantum states and transformations in
the challenging high-dimensional and multiphotonic
regime, such as generation of high-dimensional GHZ
states, heralded entangled quantum states, and high-dimen-
sional controlled operations. Those experimental setups are
within reach of modern photonic technology and could lead
to fascinating experimental investigations of fundamental
questions and technological advances. THESEUS can
immediately be applied to discover a multitude of other
targets in experimental quantum optics, such as tools to
enable silicon-photonics quantum computation [57] or
highly efficient, low-noise quantum entanglement sources
by overcoming the main noise sources in multiphoton
experiments [60]. It can also directly be applied to
situations where the target state is not known beforehand,
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such as for applications in quantum metrology [2] or in
quantum-enhanced microscopes and telescopes [69,70].

From a practical point of view, it is important that the
loss function can furthermore be augmented with additional
relevant properties and experimental constraints. For exam-
ple, the expected count rate of the experiment can be
optimized simultaneously with the quality of the generated
state. This extension is possible because the count rate (as
many other properties) of the quantum state can be written
in terms of the weights of the graph and could lead to higher
count rates of experiments.

The concept behind THESEUS is not restricted to quantum
optics but can be applied in a more general setting in
physics. In general, the graph-based representation is
directly connected to creation and annihilation operators,
which are regularly used in quantum physics; thus,
THESEUS can further be generalized to a much larger

scope. For example, multiexcitation processes (rather than
pair excitations as we use here) can be immediately
described using hypergraphs [71]. Furthermore, THESEUS
could be directly applied to the design of hybrid matter-
wave—photon systems which use abstractly the same
physical description as pure photonic systems. One con-
crete example involves electron-photon interactions [72].
One further way to directly generalize THESEUS is to take
into account Klyshko’s advanced-wave picture [73]. In this
way, rather than treating an edge in the graph as a photon-
pair creation, we can interpret it as a quantum information
transfer of one single system. This approach will allow us
to use THESEUS (including its graph-based representation,
the corresponding loss functions, and the ability for
topological optimization) for the design of entirely different
nonphotonic quantum systems, such as quantum circuits
for gate-based quantum computers. We give more details

Generating a 3-qubit GHZ state in a gate-based quantum computer circuit

(a) Layer3 (b) Translated gate-based quantum circuit

[0y @3 0" | O> —H

10) o‘ 0) l

U
IO) 0 ‘
\ 0) ®
Layerl Layer2 Output qubits:
State evolution [) = 1/\/5([0,0,0) +11,1,1))
(c) Layerwise joined perfect matchings (d) Potential initial graph for THESEUS
:
0) O—OCT O®O—WOI0) 10)D—) OF—D O—®|1)
() ()

0) O—BO—FE ©®|0) 0)EO—MmE OOl

®
10) O—©O—OO—FOI0)
(9

@
|o>|1>
(9

FIG. 6. A quantum circuit for creating a three-qubit GHZ state, represented using graphs that can be optimized by THESEUS. In this
concrete case, the graph in (a) represents a quantum circuit that transforms the initial state |000) to a three-qubit GHZ state
1/4/2(]000) + [111)) [circuit in (b)]. In (a), every row stands for a qubit, and blue (red) edges stand for |0) (|1)). The vertices a; stand for
the input values of the qubit; in this example, all are initialized into |0). The quantum state evolves from left to right. The vertices b, are
the final state of layer 1, ¢; — d; and e; — f; are the initial and final quantum information states of the second and third layer, respectively.
The vertices A; stand for ancilla vertices to represent control operations between the qubits. The evolution of the state is computed via
perfect matchings in the individual layers. The perfect matchings from the layers are then joined; the final state of layer n and the initial
state of layer (n + 1) need to match. That is because the quantum information cannot change between layers. With this straightforward
recipe, we find that there are exactly two joined perfect matchings in the graph, shown in (c). In the left one, all qubits remain in their
initial state |000). In the right one, qubit 1 is changed to state |1) in layer 1; subsequently, qubit 2 is changed to |1} in layer 2, and qubit 3
is changed to |1} in the final layer. In this way, the state emerges in [111). As before in the photonic case, the full state is a coherent
superposition of all perfect matchings. For that reason, the final state is 1/4/2(]000) 4 [111)), which is a three-qubit GHZ state. This
representation can be used for designing nonphotonic gate-based quantum circuits using THESEUS. We start with a general weighted
graph, such as (d). Here, qubits can interact with each other only through ancilla vertices; therefore, there are no edges between the
qubits from different rows. The first layer allows for single-qubit transformations. The second layer encodes two control operations, one
between qubits 1 and 2 and one between 2 and 3. We choose to use only one control operation in layer 3 (to see the allowed structure
more clearly).
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for the application in quantum circuit design in Fig. 6 and in
Appendix C.

One of the main features is the possibility to extract
scientific understanding from computer-inspired designs.
This feature is made possible by a topological optimization
that reduces the solutions to conceptual cores. Those
minimal topologies allow for the interpretation and gener-
alizations of the discovered solution, without performing
additional calculations. This ability is in accord with
criteria from the philosophy of science that argue that
scientific understanding is connected with the skill to use
concepts fruitfully, without exact calculations. Hence, in a
broader sense, we argue that the ability of our algorithm
goes beyond simple optimization and enters the realm of
providing scientific insights and allowing for scientific
understanding. Thereby—together with its general appli-
cability to large classes of problems in physics—THESEUS
directly contributes to scientific, explainable Al and, in
general, to an essential aim of science.

Code availability: The source code of THESEUS, includ-
ing numerous examples, translation of experimental setups
to graphs, and graphs to experimental setups can be found
on GitHub [74].
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APPENDIX A: TRANSLATION TO EXPERIMENT

In Figs. 7 and 8, we show how to translate subgraphs to
different experimental configurations. In Fig. 9, we show
how to translate one graph to a number of different
quantum experiments.

APPENDIX B: NORMALIZATION OF
QUANTUM STATES

We show how the state of a complete two-colored graph
with four vertices can be written using the weight function
®(w) of a graph. It can be represented in terms of creation
operators as

oY (Y ¥

xy€fab.cd} ¢
[ c1.c,€{0.1}

n
c1,Cr T T
0yl nglyc2 + H.c.> .

(B1)

If we are conditioning the state on one photon in each
detector, it reduces to

|W>:ﬁ Z @i j k.l

i.j.k1€{0.1}

ijkl) (B2

with the edge weights

Wi jr1y = (i, J, k, [|@(w)|vac)

_ ikl ik il il ik
=W, Oy T Oae Wy gt O 4 W (B3)

and the normalization constant
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FIG. 7.

(9)

Va
Photon-number- b
sensitive detector —
10,0

Entire state is conditioned
on one photon in detector Va

&\r

Deterministic
single-photon source
(e.g., Quantum dot)

Graph to experiment translation for individual edges. Designing quantum optical experiments using the abstract notation of

graphs is possible because we find translations of graphs into several different experimental schemes. Edges between vertices a and b are
translated to probabilistic photon sources; see (a)—(f). Edge colors correspond to mode numbers. Multiedges correspond to superposition
or entanglement and can be created with standard photonic technologies, for example, cross-crystal sources [75,76]. (g) A deterministic
single-photon source emitting in path b can be understood as an edge between a vertex b and a virtual vertex Va. For each term in the
resulting quantum state, every virtual vertex always needs to have exactly one incoming edge. This constraint is conceptually equivalent
to the situation of a probabilistic photon-pair source, where the whole state is conditioned on the detection of one photon using a photon-

number-sensitive detector in path Va.
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FIG. 8. Merging edges of graphs. Edges can be merged at one vertex in several different ways. (a) If the edges have the same color, the
corresponding photons have the same mode number. (b)—(d) In that case, the edges can be merged with probabilistic beam splitters
(green squares) or by creating them directly with path identified photon-pair sources [for instance, SPDC crystals; see (e)]. (f) If the
edges have different colors, the corresponding photons have different mode numbers. In that case, the edges can be merged losslessly
with mode-dependent beam splitters (so-called multiplexing or demultiplexing); white squares, for example, polarizing beam splitters if
the degree of freedom is photonic polarization [see (g)—(i)]. (j) The edges could also be created by path identified photon-pair sources

(for instance, SPDC crystals). Other probabilistic photon sources, such as lasers as probabilistic single-photon sources, can be added by
exploiting hypergraph structures [71].
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FIG. 9. Translation of a graph to three different types of quantum optics experiments. (a) A graph with four vertices and five edges and
two colors represents a four-photon quantum experiment using two state levels (dimensions), such as polarization. (b) Implementation
using entanglement by path identity. (c) Implementation using path encoding, which is the most commonly used encoding for on-chip
quantum optics experiments. (d) Implementation using bulk optics for polarization quantum optics experiments.
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The objective of the optimization is to find w}ﬁ € C that
minimize the loss function and, subsequently, find solu-
tions with a large number of edge weights being zero. The
information about higher-order contributions to the state,
which results in experimentally reduced quantum fidelities,

APPENDIX C: QUANTUM CIRCUIT DESIGN

In 1994, Belinskii and Klyshko describe “an intuitive
treatment of two-photon correlation with the help of the
concept of an effective field acting upon one of the two
detectors and formed by parametric conversion of the
advanced wave emitted by the second detector” [73]. Let
us now imagine a situation where a nonlinear crystal
produces two photons, detected by detector D1, the other
one in detector D2. Belinskii and Klyshko interpret this

N(w) = (B4)

is encoded within the weight function ®(w). Therefore,
higher-order contributions could be directly accounted for
within the optimization procedure. More details about the
approximations in Eq. (B1) can be found in Refs. [77,78].

situation in a different way. They imagine a photon being
produced at the place of detector D1, which
travels back to the crystal. At the crystal, it is reflected
and travels toward detector D2. This picture allows for the
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interpretation of numerous quantum correlation effects.
Importantly, it gives an intuition that the representation of
THESEUS can not only describe SPDC crystals but abstract
quantum information flow. This significantly expands the
field of application of THESEUS to nonphotonic quantum
systems. We demonstrate this intuition in a concrete non-
photonic example, namely, the design of quantum circuits
for gate-based quantum computers.

The loss function can be written in terms of the weights
of the graph, entirely analogously to the photonic examples
in the main text. That is because the evolution of the state
can be represented as weights @, and the emerging quantum
state and all of its properties (such as the state fidelity at the
end of the quantum circuit) can be written as a function
of the weights @. In this way, THESEUS can perform
gradient-based optimization of the weights in the graph.
Furthermore, the topological optimization removes edges
and, thereby, simplifies the final quantum circuit.

To translate the graph to quantum gates, we can simply
inspect the action at every individual level. For example, in
Fig. 6 in the first layer 1, we have two perfect matchings
(ai,by,ay,by,a3,b3) = (r,r,r,r,r,r) and (r, g, r, 1, r, 7).
These perfect matchings mean the state evolves from |000) to
1/4/2(]0) +]1))|00). The action of this transformation
resembles exactly that of Hadamard operations. In a similar
way, we can analyze the action of the input-output relation of
every layer, and individual layers can easily be rewritten in
terms of universal gates. A detailed analysis goes far beyond
the scope of this manuscript. This example, however, shows
that THESEUS and its representation and the optimization
algorithm are not restricted to quantum optics but can
represent and solve a wide variety of tasks in physics and
quantum physics.

For the future, it will be very interesting to identify
similarities and differences between this application of
THESEUS and other quantum circuit design algorithms. In
particular, it will be very interesting to compare other graph-
based design principles such as the ZX formalism [79].

Again, at a big-picture level, this example shows that the
graph representation, the weight function, and the gradient-
based optimization are not restricted to the design of
quantum optics experiments but can also be useful in
the design of quantum information processes or potentially
quantum logic design.

APPENDIX D: FIDELITY AND COUNT RATE
OF A HERALDED THREE-DIMENSIONAL
BELL STATE

The fidelity of the three-dimensional Bell state can be
arbitrary close to one, by adjusting the weights of the edges.
In the most straightforward setting, all edges that are
connected to a or b have the same weight v, while all
edges connecting ancilla vertices c—h have weight w (with
phases as shown in the main text). In this way, the heralded
state can be written as

TABLE 1. Fidelity and count rates for heralded three-dimen-
sional Bell states.

v w Fidelity Count rate
0.16 0.07 2/3 18.8 Hz
0.125 0.048 0.75 1.5 Hz
0.1 0.035 0.8 0.8 Hz
0.0820219 0.024 001 8 0.85 65 per hour
0.0576405 0.0139269 0.9 1.8 per hour

ly) = 2022(10,0) — 1. 1) = [2.2)),.,

+ UWS |¢>0ne photon + W4|¢>zero photons

+ O(higher orders), (D1)

where |$) gne photon Stands for combinations where three
ancilla photon pairs and one pair containing an ancilla
photon and an output photon are produced. The state
) sero photon ar€ cases where four ancillary photon pairs
are created. Both of those terms can be reduced by making
w smaller than ». The term O(higher orders) correspond to
cases with five or more photon pairs produced, which can
be reduced by having » and w smaller than one.

We calculate the fidelity and expected count rates for
various settings of weights v and w in Table I, calculated up
to the sixth order of SPDC, and not considering any losses
or detector inefficiency.

APPENDIX E: cnotr BEYOND QUBITS

A control operation in a 2 x 3-dimensional space is
shown in Fig. 10. The subgraphs a — f remain constant,
while the edges containing Va and Vb change depending on
the input control or target photons. The correct trans-
formation is heralded by simultaneous detection of a
photon in each of the detectors ¢ — f. The structure of
the subgraphs a — f is very reminiscent of the solution of

10, 1)yavp = 10,1),

10,0)y5vp = 10,0), 1,

10,2}y, v = 10.2), 1,

FIG. 10. High-dimensional cNOT gate, with a qubit control
photon and a qutrit target photon.
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heralded Bell states in Fig. 4 in the main text. Here, each
internal mode (represented as edge color) from a and b is
connected to one individual heralding detector.

Furthermore, the solution uses destructive interference
for producing the correct output states, as in Fig. 4 in the
main text. Some of the resulting subgraphs (those that have
one incoming edge to vertex ¢ — f) do not vanish. Still,
they are reduced in magnitude by adapting the edge weights
appropriately. Thereby, an experimentally feasible method
of performing CNOT transformations beyond qubits is
constructed.
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